END-TO-END CONFORMAL PREDICTION FOR TRAJEC TORY OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Conformal Prediction (CP) is a powerful tool to construct uncertainty sets with coverage guarantees, which has fueled its extensive adoption in generating prediction regions for decision-making tasks, e.g., Trajectory Optimization (TO) in uncertain environments. However, existing methods predominantly employ a sequential scheme, where decisions rely unidirectionally on the prediction regions, and consequently the information from the decision-making end fails to be transmitted back to instruct the CP end. In this paper, we propose a novel End-to-End CP (E2E-CP) framework for shrinking-horizon TO with a joint risk constraint over the entire mission time. Specifically, a CP-based posterior risk calculation method is developed by fully leveraging the realized trajectories to adjust the posterior allowable risk, which is then allocated to future times to update prediction regions. In this way, the information in the realized trajectories is continuously fed back to the CP end, enabling attractive end-to-end adjustments of the prediction regions and a provable online improvement in trajectory performance. Furthermore, we theoretically prove that such end-to-end adjustments consistently maintain the coverage guarantees of the prediction regions, thereby ensuring provable safety. Additionally, we develop a decision-focused iterative risk allocation algorithm with theoretical convergence analysis for allocating the posterior allowable risk which closely aligns with E2E-CP. The effectiveness and superiority of the proposed method are demonstrated through benchmark experiments.

032

004

010 011

012

013

014

015

016

017

018

019

020

021

022

024

025

026

027

1 INTORDUCTION

033 In recent years, Trajectory Optimization (TO) has achieved significant success in fields such as 034 autonomous driving Zhou et al. (2020), autonomous surface vessels Tsolakis et al. (2024), and 035 coverage control Davis et al. (2016). However, collision-free TO in uncertain environments is a formidable challenge, because the intentions of obstacles are unknown. A crucial aspect of collision 037 avoidance involves predicting obstacle trajectories. Existing trajectory prediction tools are unable to 038 predict fully accurate trajectories. Therefore, a common approach is to generate the $(1-\alpha)$ -coverage prediction regions of the obstacle trajectories. If these regions contain the true trajectories with a probability of at least $1 - \alpha$, they are considered *valid*. The key to probabilistic collision-free TO 040 lies in adjusting the prediction regions while remaining valid to improve the trajectory performance. 041

Conformal Prediction (CP) is an attractive framework to produce prediction regions with finitesample guarantees of validity Vovk et al. (2005); Shafer & Vovk (2008). Without imposing any assumptions about prediction algorithms and data distributions, CP utilizes a calibration dataset to obtain a valid prediction region for test data. Owing to its simplicity and versatility, CP and its variants have been widely applied in various safety-critical applications, such as probabilistic collision-free TO Lindemann et al. (2023); Sun et al. (2024), reliable estimation of graph neural networks H. Zargarbashi et al. (2023) and language modeling Quach et al. (2024).

However, there is a disconnect between existing research on CP theory and CP application for
decision-making. On the side of CP theory, most existing work primarily focuses on upstream
data, developing new CP algorithms to enhance prediction performance, such as addressing distributional shifts Gibbs & Candes (2021), performing multi-step time forecasting Sun & Yu (2023),
and improving the efficiency of prediction regions Bai et al. (2022). There is a lack of CP algorithms focused on enhancing the performance of downstream decisions. On the side of CP application for

054 decision-making, most existing work embeds the CP into decision-making pipelines as a method for 055 generating prediction regions, and employs a sequential approach, i.e. the prediction region is first 056 computed using CP and then the decision depends unidirectionally on the prediction region without 057 considering the favorable impact of the decision on the prediction region. However, this informa-058 tion channel blockage from the decision-making end to the CP end seriously prevents the CP from leveraging the information of past decisions to boost the performance of future decisions. Therefore, there is a pressing research need to develop an end-to-end framework that seamlessly integrates CP 060 with decision-making, fully exploiting the information of past decisions to adjust prediction regions 061 in an end-to-end fashion and thereby remarkably enhance the performance of future decisions. 062

063 To fill the aforementioned research gap, we propose an End-to-End CP (E2E-CP) framework for 064 shrinking-horizon TO in uncertain environments and the collision risk over the total mission time is constrained at all times. The proposed framework leverages CP to construct the prediction regions of 065 obstacle positions and adjusts these regions online in an end-to-end fashion while ensuring coverage 066 guarantees, i.e. validity. In particular, we propose a novel posterior probability calculation method 067 to obtain the posterior probability of collision conditional on realized trajectories. The posterior 068 collision probability is then used to adjust the allowable collision risk, which is allocated to future 069 times to yield prediction regions. In this manner, information from past trajectories is transmitted to the CP end through the posterior probability calculation, guiding the end-to-end adjustments of the 071 prediction regions. Such adjustments in E2E-CP not only offer provable performance improvements 072 but also consistently maintain the validity of the prediction regions. With the adjusted prediction 073 regions, the trajectory is obtained by solving the resulting TO problem. Additionally, we further 074 propose a decision-focused risk allocation method, i.e. Iterative Risk Allocation (IRA), which aims 075 to optimize the trajectory performance by iteratively allocating the allowable risk to future times while enjoying the convergence guarantee. We highlight the main contributions of our work below. 076

- We propose, for the first time in the literature E2E-CP, a general uncertainty quantification framework closely associated with downstream decision-making which enables the adjustment of prediction regions using the feedback information embedded in decisions.
 - We prove that 1) the end-to-end adjustments in E2E-CP do not compromise the coverage guarantees of prediction regions, and 2) E2E-CP offers guarantees for decision-making performance improvement. In other words, E2E-CP enjoys both validity and performance.
 - We propose a decision-focused risk allocation algorithm with theoretical convergence analysis for E2E-CP, which optimizes the risk allocation to enhance decision-making performance.

2 RELATED WORK

077

078

079

080

081

082

084

085

087

Conformal Prediction. Conformal prediction originated in the early work Vovk et al. (1999; 2005); Shafer & Vovk (2008) to generate the prediction region. The salient advantage of CP lies in its 090 ability to offer coverage guarantees regardless of prediction algorithms and data distributions. Most 091 recently, various variants of CP have been developed to handle upstream data with different char-092 acteristics H. Zargarbashi et al. (2024); Liu et al. (2024) or to produce prediction regions in a wide array of forms Angelopoulos et al. (2024); Auer et al. (2023). In response to the distribution shift in 094 the upstream data, ACI Gibbs & Candes (2021); Podkopaev et al. (2024); Zaffran et al. (2022) and 095 EnbPI Xu & Xie (2021; 2023) developed CP through online learning and sliding window, respec-096 tively, and achieved asymptotic validity. In the context of multi-step time series forecasting, Sun & Yu (2023) combined CP with copula to propose the CopulaCPTS, while Cleaveland et al. (2024) 098 employed an optimization-based method. Zhou et al. (2024b) presented a new conformal method for time series forecasting. In addition, numerous studies focused on improving the efficiency of the prediction region by changing the region shape Xu et al. (2024), minimizing the region length 100 Kiyani et al. (2024), or directly optimizing the region construction function Bai et al. (2022). Note 101 that the prediction regions are typically utilized by downstream tasks in a sequential manner. How-102 ever, the aforementioned research work primarily aims to enhance the predictive performance of CP 103 rather than directly improving the performance of downstream decision-making. 104

TO in Uncertain Environments. The probabilistic collision-free TO in uncertain environments
 relies on the accurate description of uncertainties. Robust optimization and chance-constrained op timization are typically employed in TO to mitigate collision risks Kuwata & How (2010); Petrović et al. (2022); Zhu & Alonso-Mora (2019). However, in these methods, the bound or distribution of

108 uncertainty is assumed to be perfectly available to construct the confidence set of uncertainty. Fortu-109 nately, the recent development of CP theory relaxes the above limitations and offers distribution-free 110 methods for constructing the confidence set. Lindemann et al. (2023) and Strawn et al. (2023) ap-111 plied CP to the safe planning for single-robot systems, while Muthali et al. (2023) and Kuipers et al. 112 (2024) extended it to multi-robot systems. Additionally, Dixit et al. (2023) and Zhou et al. (2024a) employed the ACI to address the obstacle trajectory distribution shift. Stamouli et al. (2024) pro-113 posed a novel nonconformity score for shrinking-horizon TO. All the above methods directly employ 114 CP in a sequential way to generate prediction regions. Nevertheless, the performance of realized 115 trajectories has yet to be conveyed to the upstream CP end as feedback information to adjust the 116 prediction regions, which has the great potential to further boost the performance of trajectory. 117

118 119

120

122

123 124

3 PROBLEM FORMULATION AND BACKGROUND

121 3.1 PROBLEM FORMULATION

Consider a discrete-time nonlinear dynamical system as follows.

 x_t

$$x_{t+1} = f(x_t, u_t), \quad x_0 = x_{init}$$
 (1)

125 where $x_t \in \mathcal{X} \subseteq \mathbb{R}^{n_x}$ and $u_t \in \mathcal{U} \subseteq \mathbb{R}^{n_u}$ are the state and control at time t = 0, ..., T, respectively, 126 and $T \ge 1$ is the total mission time. The sets \mathcal{U} and \mathcal{X} represent the admissible sets of control 127 inputs and system states, respectively. The function $f : \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ represents the system 128 dynamics and x_{init} is the initial state of the system. For brevity, let $x_{t_1:t_2} := (x_{t_1}, ..., x_{t_2})$ and 129 $u_{t_1:t_2} := (u_{t_1}, ..., u_{t_2})$ denote the state and control sequences from t_1 to t_2 ($t_1 \le t_2$), respectively.

The system operates in an environment with M dynamic obstacles with a priori unknown trajectories. Let $Y_t := (Y_{t,1}, ..., Y_{t,M})$ represent the joint obstacle position at time t, where $Y_{t,j} \in \mathbb{R}^p$ denotes the position of obstacle j at time t. Additionally, the joint obstacle trajectory $Y := (Y_0, ..., Y_T)$ is assumed to be sampled from an unknown probability distribution \mathcal{D} , i.e. $Y \sim \mathcal{D}$. The system can observe the joint obstacle states $Y_0, ..., Y_t$, when making the decision at time t. We assume the independence between \mathcal{D} and system (1), and the availability of an offline dataset as follows.

Assumption 3.1. For any time $t \ge 0$, the system state $x_{0:t}$ and control $u_{0:t}$ do not change the distribution \mathcal{D} .

Assumption 3.2. We have a calibration dataset $D_{cal} := \{Y^{(1)}, ..., Y^{(N)}\}$, where each of the N joint obstacle trajectories are independently drawn from \mathcal{D} , i.e. $Y^{(i)} \sim \mathcal{D}, \forall i = 1, ..., N$.

Assumption 3.1 is typically adopted by default in the literature related to TO Lindemann et al. (2023); Zhu & Alonso-Mora (2019); Hakobyan & Yang (2021) and Assumption 3.2 is not restrictive in practice, e.g. the historical trajectories of obstacles. With Assumptions 3.1 and 3.2, we can conclude that the real joint obstacle trajectory Y and the N available joint obstacle trajectories $Y^{(i)}$ are independent and identically distributed (i.i.d.), and are therefore also exchangeable.

We focus on the TO problem whose objective is to find the sequences $x_{1:T}$ and $u_{0:T-1}$ that minimize the cost function $J(x_{1:T}, u_{0:T-1})$ subject to the dynamics and constraints. The TO is performed in a shrinking-horizon fashion, with the optimization problem at time t formulated as follows.

$$\min_{x_{t+1:T}, u_{t:T-1}} \quad J(x_{t+1:T}, u_{t:T-1}) = l_T(x_T) + \sum_{\tau=t}^{T-1} l_\tau(x_\tau, u_\tau)$$
(2a)

s.t.
$$x_{\tau+1} = f(x_{\tau}, u_{\tau}), \quad \forall \tau = t, ..., T-1$$
 (2b)

$$x_{\tau} \in \mathcal{X}, \qquad \forall \tau = t+1, \dots, T \tag{2c}$$

$$u_{\tau} \in \mathcal{U}, \qquad \forall \tau = t, ...T - 1$$
 (2d)

$$\mathbb{P}\left\{\bigcap_{\tau=1}^{T} \{c(x_{\tau}, Y_{\tau}) \ge 0\}\right\} \ge 1 - \alpha$$
(2e)

156 157

158

159

149 150

151

152

153

154

140

where $\mathbb{P}{X}$ denotes the probability of event X, the constraint function $c := \mathbb{R}^{n_x} \times \mathbb{R}^{N_p} \to \mathbb{R}$ is L-Lipschitz continuous, which can encode various tasks, such as collision avoidance. Due to the uncertainty of the joint obstacle position Y_{τ} , we impose the joint chance constraint (2e) with failure probability $\alpha \in (0, 1)$ to ensure that the joint probability of satisfying the constraint over the total

160 probability $\alpha \in (0, 1)$ to ensure that the joint probability of satisfying the constraint over the total 161 mission time is no less than $1 - \alpha$. To ensure the initial feasibility of the TO problem, we assume 162 that the initial state satisfies the constraint, i.e. $c(x_0, Y_0) \ge 0$, with probability 1.

162 3.2 TRAJECTORY PREDICTOR

164 Recall that system (1) can observe the joint obstacle positions $Y_0, ..., Y_t$ when making decisions 165 at time t. By inputting $Y_{0:t}$ into a trajectory prediction algorithm, we can obtain the predictions $\hat{Y}_{t+1|t}, ..., \hat{Y}_{T|t}$ of the future obstacle states $Y_{t+1}, ..., Y_T$. Specifically, a trajectory predictor can be 166 developed by learning a prediction model $g_t : \mathbb{R}^{(t+1)Np} \to \mathbb{R}^{Np}$ from the training dataset D_{train} 167 168 which is independent of D_{cal} . Given an observed joint obstacle trajectory $Y_{0:t}$, the model $g_t(\cdot)$ 169 provides the prediction $\hat{Y}_{t+1|t}$ for the state of the next time Y_{t+1} . Then we recursively generate 170 the predictions $\hat{Y}_{t+2|t}, ..., \hat{Y}_{T|t}$ by inputting $\hat{Y}_{1:t+1|t}, ..., \hat{Y}_{T-t-1:T-1|t}$ to the function $g_t(\cdot)$. A spe-171 cific example of $g_t(\cdot)$ is modeled by Recurrent Neural Network (RNN) which demonstrates signif-172 icant performance in time series prediction Rudenko et al. (2020). In this paper, we employ Long 173 Short-Term Memory (LSTM) Graves & Graves (2012) to generate the predictions of joint obstacle 174 trajectories. Note that $g_t(\cdot)$ can be any prediction algorithm in our proposed framework. 175

176 3.3 CONFORMAL PREDICTION

177

189

193 194

196

197

199

200 201

202

CP is used to obtain prediction regions for predictive models without making any assumptions on the data distribution or the predictive models Vovk et al. (2005); Shafer & Vovk (2008). Here we provide a brief introduction to the theoretical results for CP and refer readers to Angelopoulos & Bates (2021) for a thorough introduction.

Given N + 1 exchangeable random variables $R, R^{(1)}, ..., R^{(N)}$, CP aims to find a probabilistic upper bound for R based on $R^{(1)}, ..., R^{(N)}$ such that R is less than this upper bound with high probability. In practice, R represents the test datapoint, while $R^{(1)}, ..., R^{(N)}$ denote the calibration dataset. Formally, the central idea behind CP is summarized in the following lemma.

Lemma 3.1. [Lemma 1 in Tibshirani et al. (2019)] If $R, R^{(1)}, ..., R^{(N)}$ are N + 1 exchangeable random variables, then for a failure probability $\alpha \in (0, 1)$, it holds that

$$\mathbb{P}\left\{R \le Quantile_{1-\alpha}(R^{(1)}, ..., R^{(N)}, \infty)\right\} \ge 1 - \alpha$$
(3)

where the function $Quantile_{1-\alpha}(R^{(1)}, ..., R^{(N)}, \infty)$ denotes the level $1-\alpha$ quantile of the empirical distribution of the values $R^{(1)}, ..., R^{(N)}, \infty$ as follows.

$$Quantile_{1-\alpha}(R^{(1)}, ..., R^{(N)}, \infty) = \inf\{z : \mathbb{P}\{Z \le z\} \ge 1-\alpha\},$$
(4a)

$$Z \sim \left(\sum_{i=1}^{N} \delta_{R^{(i)}} + \delta_{\infty}\right) / (N+1) \tag{4b}$$

where $\delta_{R^{(i)}}$ and δ_{∞} denote the Dirac delta function at $R^{(i)}$ and ∞ , respectively.

The variable R is usually referred to as the nonconformity score, whose common choice in regression is the prediction error $R := |Y_{\tau} - \hat{Y}_{\tau|t}|$, where $\hat{Y}_{\tau|t}$ is the prediction of Y_{τ} .

4 END-TO-END CONFORMAL PREDICTION

203 The challenge in solving the TO problem (2) lies in the computation of the joint probability (2e). 204 Existing literature predominantly employs a sequential way of using CP, i.e. the prediction regions of 205 obstacle positions are first computed based on the failure probability α , and then the decision of TO 206 depends one-way on the prediction regions. However, it is important to note that in the shrinking-207 horizon TO framework, at time t the past decisions $x_{0:t}$ are available and typically contain rich 208 information that can instrumentally assist in refining the prediction regions at subsequent time steps, 209 thereby considerably improving the performance of TO. Therefore, we propose a novel E2E-CP. In particular, E2E-CP not only exploits the feedback information provided by realized trajectories to 210 perform end-to-end adjustments of the prediction regions but also maintains coverage guarantees. 211

To begin with, the joint chance constraint (2e) can be reformulated as a set of individual chance constraints and a total risk constraint by using Boole's inequality as follows.

214 215 $\mathbb{P}\left\{\bigcap_{\tau=1}^{T} \{c(x_{\tau}, Y_{\tau}) \ge 0\}\right\} \ge 1 - \alpha \Longleftarrow \left\{\begin{array}{c} \mathbb{P}\left\{c(x_{\tau}, Y_{\tau}) \ge 0\right\} \ge 1 - \alpha_{\tau}, \ \forall \tau = 1, ..., T\\ \sum_{\tau=1}^{T} \alpha_{\tau} \le \alpha\end{array}\right.$ (5)

The risk α_{τ} at each time can be initially allocated uniformly at time t = 0, i.e. $\alpha_{\tau} = \alpha/T$, and remains constant throughout the shrinking-horizon TO process, as in Lindemann et al. (2023). However, at time t, the system states x_{τ} for $\tau \leq t$ are available, which grants us to compute the posterior probability $\beta_{\tau} = \mathbb{P}\left\{c(x_{\tau}, Y_{\tau}) > 0 | x_{\tau}\right\}$ and the permissible risk for future times, which is then used to adjust the prediction regions. Using the information in the realized trajectories, the end-to-end adaptation of the prediction regions tremendously reduces the conservatism of trajectory online while ensuring coverage guarantees. In Subsection 4.1, we present the individual chance constraint reformulation using the prediction regions derived based on a specific risk allocation. In Subsection 4.2, we present a CP-based method for calculating β_{τ} . We reformulate the TO problem in Subsection 4.3. The specific details of the risk allocation are deferred to Section 5.

4.1 CONSTRAINT REFORMULATION USING CONFORMAL PREDICTION REGION

We randomly divide the calibration dataset D_{cal} into two subsets D_{cal}^1 and D_{cal}^2 with K and L joint obstacle trajectories, respectively, where K+L=N. Without loss of generality, we reassign indices to the joint obstacle trajectories as $D_{cal}^1 := \{Y^{(1)}, ..., Y^{(K)}\}$ and $D_{cal}^2 := \{Y^{(K+1)}, ..., Y^{(K+L)}\}$. At time t, we can obtain the prediction of the joint obstacle position $\hat{Y}_{\tau|t}$ for all future time $\tau =$ t+1,...,T using $g_t(\cdot)$ described in Section 3.2. Similarly, the prediction $\hat{Y}_{\tau|t}^{(i)}$ for each trajectory $Y^{(i)}$ in D^1_{cal} is derived by using the same method. We define the nonconformity score as follows.

$$R_{\tau|t} = \|Y_{\tau} - \hat{Y}_{\tau|t}\| \qquad R_{\tau|t}^{(i)} = \|Y_{\tau}^{(i)} - \hat{Y}_{\tau|t}^{(i)}\| \quad \forall i = 1, ..., K$$
(6)

Note that $Y_{\tau}, Y_{\tau}^{(1)}, ..., Y_{\tau}^{(K)}$ are exchangeable and the prediction function $g_t(\cdot)$ is trained from D_{train} independent of D_{cal}^1 . Therefore, given an allocated risk α_{τ} for future time τ , the random variables $R_{\tau|t}, R_{\tau|t}^{(1)}, ..., R_{\tau|t}^{(K)}$ are exchangeable and the prediction region with coverage guarantee is derived according to Lemma 3.1 as follows.

$$\mathbb{P}\{\|Y_{\tau} - \hat{Y}_{\tau|t}\| \le C_{\tau|t}^{1-\alpha_{\tau}}\} \ge 1 - \alpha_{\tau}$$
(7a)

$$C_{\tau|t}^{1-\alpha_{\tau}} = Quantile_{1-\alpha_{\tau}}(R_{\tau|t}^{(1)}, ..., R_{\tau|t}^{(K)}, \infty)$$
(7b)

Based on the $(1 - \alpha_{\tau})$ -coverage prediction region $\{y : \|y - \hat{Y}_{\tau|t}\| \le C_{\tau|t}^{1-\alpha_{\tau}}\}$, the individual chance constraint in (5) can be reformulated as the following lemma proven in Appendix A.1.

Lemma 4.1. If Assumptions 3.1 and 3.2 hold and $c(x_{\tau}, \hat{Y}_{\tau|t}) \ge LC_{\tau|t}^{1-\alpha_{\tau}}$ is satisfied where $C_{\tau|t}^{1-\alpha_{\tau}}$ is calculated by (7b), then the individual chance constraint $\mathbb{P}\{c(x_{\tau}, Y_{\tau}) \ge 0\} \ge 1 - \alpha_{\tau}$ is satisfied.

POSTERIOR PROBABILITY CONDITIONAL ON PAST DECISIONS 4.2

At time t, the states x_{τ}^{*} for all past time $\tau = 1, ..., t$ are deterministic and available to the trajectory optimizer. We assume that x_{τ}^* is the true system state at time τ . Note that x_{τ}^* is an feasible solution to the TO problem (2) at time $\tau - 1$ with the reformulated constraints through Lemma 4.1. Therefore, the individual chance constraint $\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) \geq 0\} \geq 1 - \alpha_{\tau}$ is satisfied at time $\tau - 1$ and will be naturally satisfied for all time $\tau' \geq \tau - 1$. However, the constraint violation probability α_{τ} is a priori probability allocated before time τ that tends to overestimate the violation probability and thus leads to conservative results. Fortunately, the determined x_{τ}^* allows us to compute the posterior probability of constraint violation β_{τ} , which, as we theoretically prove, is less than α_{τ} with high probability. The risk redundancy between α_{τ} and β_{τ} can be allocated across future times. In this way, the information embedded in x_{τ}^* is transmitted back from the decision-making end to the CP end to readjust the prediction region end-to-end and to achieve a trajectory with notably improved performance. To compute β_{τ} using Lemma 3.1, we propose a novel nonconformity score as follows.

$$S_{\tau} = c(x_{\tau}^*, Y_{\tau}) \qquad S_{\tau}^{(i)} = c(x_{\tau}^*, Y_{\tau}^{(i)}) \quad \forall i = 1, ..., K + L$$
(8)

We note that $Y_{\tau}, Y_{\tau}^{(1)}, ..., Y_{\tau}^{(K+L)}$ are exchangeable, and if x_{τ}^* is fixed and independent of $Y_{\tau}, Y_{\tau}^{(1)}, ..., Y_{\tau}^{(K+L)}$, the random variables $S_{\tau}, S_{\tau}^{(1)}, ..., S_{\tau}^{(K+L)}$ are also exchangeable. However, as x_{τ}^* is derived through the TO problem (2) at time $\tau - 1$, it depends on D_{cal}^1 and the random variables $S_{\tau}, S_{\tau}^{(1)}, ..., S_{\tau}^{(K+L)}$ are no longer exchangeable. Therefore, we only use the subset D_{cal}^2 , i.e.

 $S_{\tau}^{(K+1)}, ..., S_{\tau}^{(K+L)}$, to compute β_{τ} . The upper bound of the posterior violation probability β_{τ} is computed via the following lemma, whose proof is given in Appendix A.2.

Lemma 4.2. Assume that x_{τ}^* is the true state of the system at time τ and Assumption 3.1 holds, then the upper bound of the posterior violation probability at time τ is as follows.

$$\mathbb{P}\{c(x_{\tau}^{*}, Y_{\tau}) < 0\} \le \beta_{\tau} = \left(1 + \sum_{i=1}^{L} \mathbb{I}\left(S_{\tau}^{(K+i)} < 0\right)\right) / (1+L)$$
(9)

where $\mathbb{I}(\cdot)$ is the indicator function.

Some might raise the concern that β_{τ} could be higher than α_{τ} , which could result in a more conservative trajectory when using β_{τ} in subsequent times. However, the following corollary proven in Appendix A.3 restricts the upper bound of the expectation of β_{τ} .

Corollary 4.1. Suppose that $\delta \in (0,1)$ and K is sufficiently large $(K > (-\ln \delta)/(2\alpha_{\tau}^2))$, we have

$$\mathbb{P}\left\{\mathbb{E}(\beta_{\tau}) \le \left(1 + L\left(\alpha_{\tau} + \sqrt{-\ln\delta/(2K)}\right)\right) / (1+L)\right\} \ge 1 - \delta$$
(10)

Furthermore if $K, L \to \infty$, then $\mathbb{E}(\beta_{\tau}) \leq \alpha_{\tau}$ holds with probability one.

Remark 4.1. We remark that Corollary 4.1 provides a performance guarantee for the proposed method, i.e. the proposed method performs at least as well as the sequential method Lindemann et al. (2023) with high probability. Furthermore, the experiments in Section 6 demonstrate that the proposed method performs significantly better in practice. This is attributed to the conservatism of the inequality (37) in the proof of Corollary 4.1 (Appendix A.3). Since $c(x_{\tau}^*, Y_{\tau})$ contains the information provided by the function c (e.g. the size and shape of the robot and obstacles) and the system state x_{τ}^* , it typically occurs that $\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) < 0\} \ll \mathbb{P}\{||Y_{\tau} - \hat{Y}_{\tau|t}|| > C_{\tau|t}^{1-\alpha_{\tau}}\}$ in practice.

By effectively utilizing β_{τ} , we intelligently adjust the allowable risk and the prediction region for future times to improve the performance of the optimized trajectory online.

4.3 **OPTIMIZATION PROBLEM REFORMULATION**

Thus far, by making use of the joint chance constraint reformulation (5), the individual constraint reformulation in Lemma 4.1 and the posterior probability calculation in Lemma 4.2, the TO problem (2) at time t can be transformed as follows.

$$\min_{x_{t+1:T}, u_{t:T-1}, \alpha_{t+1:T}} \quad J(x_{t+1:T}, u_{t:T-1}) = l_T(x_T) + \sum_{\tau=t}^{T-1} l_\tau(x_\tau, u_\tau)$$
(11a)

s.t.
$$x_{\tau+1} = f(x_{\tau}, u_{\tau}), \quad \forall \tau = t, ..., T-1$$
 (11b)

$$\in \mathcal{X}, \qquad \forall \tau = t+1, ..., T$$
 (11c)

$$\in \mathcal{U}, \qquad \forall \tau = t, ...T - 1$$
 (11d)

$$c(x_{\tau}, \hat{Y}_{\tau|t}) \ge LC_{\tau|t}^{1-\alpha_{\tau}}, \quad \forall \tau = t+1, \dots, T$$

$$(11e)$$

$$\alpha_{\tau} \ge 0, \qquad \qquad \forall \tau = t+1, ..., T \tag{11f}$$

 x_{τ}

 u_{τ}

$$\sum_{\tau=t+1}^{T} \alpha_{\tau} \le \alpha - \sum_{\tau=0}^{t} \beta_{\tau}$$
(11g)

where Constraint (11e) ensures the satisfaction of individual chance constraints (5) for future times $\tau = t + 1, ..., T$ through Lemma 4.1, and $C_{\tau}^{1-\alpha}$ is calculated by (7b). Constraint (11f) is imposed to ensure the non-negativity of α_{τ} . Constraint (11g) is the most important part for end-to-end adjust-ments of the prediction region and online performance enhancement of the optimized trajectory. It is derived by replacing α_{τ} for past time $\tau = 1, ..., t$ in the total risk constraint (5) with β_{τ} calculated through Lemma 4.2. The information embedded in past decisions $x_1^*, ..., x_t^*$ influences the future values of $\alpha_{t+1}, ..., \alpha_T$ through the calculation of $\beta_1, ..., \beta_t$ thereby reshaping the prediction region of CP in an end-to-end way. Based on Corollary 4.1 and Remark 4.1, β_{τ} is highly likely to be less than α_{τ} in practice. Consequently, using β_{τ} grants more risk to be reserved for future times, result-ing in much compact prediction regions and tremendously improved optimization performance.

However, it is important to note that $C_{\tau|t}^{1-\alpha_{\tau}}$ depends on α_{τ} and D_{cal}^{1} . Consequently, treating $\alpha_{t+1:T}$ as decision variables alongside $x_{t+1:T}$ and $u_{t:T-1}$ would make the optimization problem (11) computationally demanding to solve for larger values of T and K. Therefore, we will present an allocation method for $\alpha_{t+1:T}$ that aligns with the optimization problem (11) in the next section.

Figure 1: Shrinking-horizon trajectory optimization framework using E2E-CP.

5 SHRINKING-HORIZON TRAJECTORY OPTIMIZATION USING E2E-CP

The shrinking-horizon TO framework using E2E-CP is illustrated in Figure 1. The information in $x_{0:t}^*$ guides the end-to-end adjustments of the size of the prediction regions $C_{\tau|t}^{1-\alpha_{\tau}}$ through posterior probability calculations. Solving the TO problem (11) is divided into two steps: 1) risk allocation and 2) TO with the fixed $\alpha_{t+1:T}$. The TO problem (11) with the fixed $\alpha_{t+1:T}$ is formalized as follows.

$$\min_{x_{t+1}:T, u_{t}:T-1} \quad J(x_{t+1:T}, u_{t:T-1}) \qquad s.t. \quad (11b) - (11e) \tag{12}$$

The problem (12) can be readily solved to obtain $x_{t+1:T}^*$ and $u_{t:T-1}^*$ and only the first system input u_t is implemented as the control input. Therefore, as the actual time t progresses, the optimization horizon gradually shrinks. For the risk allocation, a general approach is the Average-based Risk Allocation (ARA), i.e. the allocable risk is evenly allocated across future times at time t below.

$$\alpha_{\tau} = \left(\alpha - \sum_{\tau=0}^{t} \beta_{\tau}\right) / (T - t) \qquad \forall \tau = t + 1, ..., T$$
(13)

Although the ARA method has the advantage of computational efficiency, the fixed proportion al-location significantly diminishes the flexibility in modifying the prediction regions for future times. Therefore, we extend the IRA proposed in Ono & Williams (2008) to the E2E-CP. To begin with, we refer to the TO problem with a fixed risk allocation $\alpha_{t+1:T}$ (12) and the risk allocation problem as the lower-stage problem and the upper-stage problem, respectively. The system states $x_{t+1,T}^*$ and inputs $u_{t:T-1}^*$, as well as the risk allocation $\alpha_{t+1:T}$ are obtained by iteratively solving the lower and upper-stage problems. We denote the feasible region of the lower-stage problem (12) with $\alpha_{t+1:T}$ as $\mathcal{R}_t(\alpha_{t+1:T})$. The upper-stage problem optimizes $\alpha_{t+1:T}$, formally stated below.

$$\min_{\alpha_{t+1:T}} J^*(\alpha_{t+1:T}) \tag{14a}$$

s.t.
$$\alpha_{\tau} \ge 0,$$
 $\forall \tau = t+1,...,T$ (14b)

$$\sum_{\tau=t+1}^{T} \alpha_{\tau} \le \alpha - \sum_{\tau=0}^{t} \beta_{\tau} \tag{14c}$$

$$\alpha_{t+1:T} \in \{\alpha_{t+1:T} : \exists (x_{t+1:t}, u_{t:T-1}) \in \mathcal{R}_t(\alpha_{t+1:T})\}$$
(14d)

where $J^*(\alpha_{t+1:T})$ is the optimal objective function of (12) given $\alpha_{t+1:T}$. If a risk allocation $\alpha_{t+1:T}$ satisfies (14b)-(14d), then we refer to $\alpha_{t+1:T}$ a feasible risk allocation. However, the lower-stage problem (14) is challenging to solve due to the computational complexity arising from its objective function (14a) and Constraint (14c). To solve (14) efficiently, we introduce a descent algorithm, i.e. IRA for E2E-CP. This algorithm is based on the monotonicity of $J^*(\alpha_{t+1:T})$ below, which is theoretically proven in Appendix A.4.

Lemma 5.1. *At time t, the following inequalities always hold.*

$$\frac{\partial J^*(\alpha_{t+1:T})}{\partial \alpha_{\tau}} \le 0 \quad \forall \tau = t+1, ..., T$$
(15)

where $J^*(\alpha_{t+1:T})$ is defined as the same as in (14a).

378 We assume that $\alpha_{t+1:T}^n$ represents the feasible risk allocation obtained after the *n*th iteration at 379 time t. IRA aims to obtain a feasible risk allocation $\alpha_{t+1:T}^{n+1}$ in the (n+1)th iteration such that 380 $J^*(\alpha_{t+1:T}^{n+1}) \leq J^*(\alpha_{t+1:T}^n)$. In the (n+1)th iteration, IRA first solves the lower-stage problem (12) 381 using $\alpha_{t+1:T}^n$ to obtain the optimal solution $x_{t+1:T}^n$ and $u_{t:T-1}^n$. Subsequently, based on $x_{t+1:T}^n$, Con-382 straint (11e) in the lower-stage problem (12) is categorized into active and inactive constraints. The active and inactive constraint sets are formally defined as $\mathcal{I}_{act} := \{\tau : c(x_{\tau}^n, \hat{Y}_{\tau|t}) = LC_{\tau|t}^{1-\alpha_{\tau}^n}, \tau = C_{\tau|t}^{1-\alpha_{\tau}^n}, \tau = C_{\tau|t}^{1-\alpha_{$ 384 t+1,...,T and $\mathcal{I}_{ina} := \{\tau : \tau \notin \mathcal{I}_{act}, \tau = t+1,...,T\}$, respectively. In summary, IRA consists 385 of two steps: 1) tightening the inactive constraints and 2) relaxing the active constraints. 386

Tightening the inactive constraints is first implemented to construct $\tilde{\alpha}_{t+1:T}^n$ from $\alpha_{t+1:T}^n$. Specifically, for $\tau \in \mathcal{I}_{act}$, set $\tilde{\alpha}_{\tau}^n = \alpha_{\tau}^n$. Based on the definition of $C_{\tau|t}^{1-\alpha_{\tau}}$ (7b), $C_{\tau|t}^{1-\alpha_{\tau}}$ is non-increasing with respect to α_{τ} for the fixed D_{cal}^1 . Thus for $\tau \in \mathcal{I}_{ina}$, we choose $\tilde{\alpha}_{\tau}^n \leq \alpha_{\tau}^n$ so that

391 392

400 401

405

406 407 408

$$e(x_{\tau}^n, \hat{Y}_{\tau|t}) \ge LC_{\tau|t}^{1-\widetilde{\alpha}_{\tau}^n} \ge LC_{\tau|t}^{1-\alpha_{\tau}^n}$$
(16)

Based on (16), it can be deduced that $(x_{t+1:T}^n, u_{t:T-1}^n) \in \mathcal{R}_t(\tilde{\alpha}_{t+1:T}^n) \subseteq \mathcal{R}_t(\alpha_{t+1:T}^n)$. Therefore, the optimal solution $(x_{t+1:T}^n, u_{t:T-1}^n)$ for $\alpha_{t+1:T}^n$ is also the optimal solution for $\tilde{\alpha}_{t+1:T}^n$, and thus $J^*(\alpha_{t+1:T}^n) = J^*(\tilde{\alpha}_{t+1:T}^n)$. Finally, it is straightforward to show that $\tilde{\alpha}_{t+1:T}^n$ is a feasible risk allocation, because (i) (14b) follows from (16) and the fact that when $\alpha_{\tau} \to 0$, $C_{\tau|t}^{1-\alpha_{\tau}} \to \infty$; (ii) (14c) is satisfied since $\sum_{\tau=t+1}^T \tilde{\alpha}_{\tau}^n \leq \sum_{\tau=t+1}^T \alpha_{\tau}^n \leq \alpha - \sum_{\tau=1}^t \beta_{\tau}$; (iii) (14d) is satisfied because $(x_{t+1:T}^n, u_{t:T-1}^n)$ is feasible for $\tilde{\alpha}_{t+1:T}$. The specific construction of $\tilde{\alpha}_{\tau}^n$ is as follows.

$$\widetilde{\alpha}_{\tau}^{n} = \begin{cases} \alpha_{\tau}^{n}, & \tau \in \mathcal{I}_{act} \\ (1-\eta)\alpha_{\tau}^{n} + \eta \underline{\alpha}_{\tau}^{n}, & \tau \in \mathcal{I}_{ina} \end{cases}$$
(17)

where $\eta \in (0,1)$ is the step size and $\underline{\alpha}_{\tau}^{n}$ is the lower bound of $\widetilde{\alpha}_{\tau}^{n}$, $\forall \tau \in \mathcal{I}_{ina}$ calculated as in Lemma 5.2, which is proven in Appendix A.5.

Lemma 5.2. Assume that $x_{t+1:T}^n$ is feasible for the problem (12) with $\alpha_{t+1:T}^n$ and $\alpha_{t+1:T}^n < 1$. For $\tau \in \mathcal{I}_{ina}$, the lower bound of $\tilde{\alpha}_{\tau}^n$ while satisfying (16) is as follows.

$$\underline{\alpha}_{\tau}^{n} = \left(1 + \sum_{i=1}^{K} \mathbb{I}\left(c(x_{\tau}^{n}, \hat{Y}_{\tau|t}) < LR_{\tau|t}^{(i)}\right)\right) / (1+K)$$

$$(18)$$

409 Furthermore, it is deterministic that $\underline{\alpha}_{\tau}^{n} \leq \alpha_{\tau}^{n}$.

Then $\alpha_{t+1:T}^{n+1}$ is constructed from $\widetilde{\alpha}_{t+1:T}^n$ to relax the active constraints as follows.

415

419

420

$$\alpha_{\tau}^{n+1} = \begin{cases} \widetilde{\alpha}_{\tau}^{n} + \left(\alpha - \sum_{\tau=1}^{t} \beta_{\tau} - \sum_{\tau=t+1}^{T} \widetilde{\alpha}_{\tau}^{n}\right) / N_{act}, & \tau \in \mathcal{I}_{act} \\ \widetilde{\alpha}_{\tau}^{n}, & \tau \in \mathcal{I}_{ina} \end{cases}$$
(19)

where N_{act} represents the number of elements in the set \mathcal{I}_{act} . It can be easily verified that $\alpha_{t+1:T}^{n+1}$ satisfies (14b)-(14d), and thus $\alpha_{t+1:T}^{n+1}$ is a feasible risk allocation. Note that $\alpha_{\tau}^{n+1} \ge \tilde{\alpha}_{\tau}^{n}$ since $\tilde{\alpha}_{\tau}^{n}$ satisfies (14c). Therefore, the following inequality is obtained by implying Lemma 5.1.

$$J^*(\alpha_{t+1:T}^{n+1}) \le J^*(\widetilde{\alpha}_{t+1:T}^n) = J^*(\alpha_{t+1:T}^n)$$
(20)

421 By recursively constructing $\alpha_{t+1:T}^1, ..., \alpha_{t+1:T}^n$ in this manner, J^* monotonically decreases. The 422 algorithm of E2E-CP using IRA at time t is delineated in Algorithm 1 (in Appendix B). The conver-423 gence of Algorithm 1 is provided in the following theorem proven in Appendix A.6.

Theorem 5.1. Assume that $x_{t+1:T}^0$, $u_{t:T-1}^0$ are feasible in problem (12) with risk allocation $\alpha_{t+1:T}^0$. If the sets \mathcal{X} , \mathcal{U} are bounded and the objective function $J(x_{t+1:T}, u_{t:T-1})$ is continuous, then the sequence of the optimal objective value $\{J^*(\alpha_{t+1:T}^n)\}_{n\in\mathbb{N}}$ converges to a finite limit.

427 **Remark 5.1.** One may notice that the calculation of β_{τ} in Lemma 4.2 is similar to the computation 428 of $\tilde{\alpha}_{\tau}^n$ in Lemma 5.2. This observation is correct. The key difference between the two lies in that the 429 former utilizes the dataset D_{cal}^2 independent with D_{cal}^1 to achieve the coverage guarantee for β_{τ} . By 430 contrast, as a step in solving (11), the latter does not need to consider the coverage guarantee and 431 thus directly uses D_{cal}^1 . The use of different datasets results in the former providing probabilistic guarantee (Corollary 4.1), while the latter achieves deterministic guarantee ($\underline{\alpha}_{\tau}^n \leq \alpha_{\tau}^n$).

432 **EXPERIMENTS** 6 433

434

435

437

438

439

440

441

442 443

444

464

We conduct simulations to demonstrate the effectiveness of the E2E-CP for TO. In particular, we conduct 1,000 Monte Carlo experiments on a kinematic vehicle model Pepy et al. (2006), a 3D linear 436 quadrotor model Mistler et al. (2001), and a dynamic bicycle model Hakobyan & Yang (2021)¹. We present and analyze experimental results, and the experiment details and comprehensive results can be found in Appendix C. The following TO methods are analyzed in all benchmark experiments².

- Sequential CP: Computation of the CP region and TO is performed sequentially, without end-to-end adjustments to the region after decision-making.
- E2E-CP with ARA: The method based on E2E-CP using average risk allocation.
- E2E-CP with IRA: The method based on E2E-CP using iterative risk allocation.

Figure 2 shows the simulation results from one of the 1,000 independent simulations using the 2D 445 vehicle model. At t = 0, the vehicle performs the first TO using different methods. For E2E-446 CP with IRA, IRA allows for flexible allocation of the risks across future times. Therefore, by 447 assigning more risk to the time $\tau = 9$, which leads to a compact prediction region, a trajectory 448 passing between Obstacles 2 and 3 is obtained. However, with the fixed risk allocation at t = 0, 449 Sequential CP and E2E-CP with ARA can only optimize the trajectory based on fixed prediction 450 regions. Consequently, they can only navigate around to pass between Obstacles 1 and 2. Note that 451 at t = 0, no deterministic vehicle position is available for posterior probability calculation. Thus 452 E2E-CP with ARA degenerates into Sequential CP, resulting in both methods obtaining essentially 453 the same trajectory. As time progresses, more and more vehicle positions become available. For 454 E2E-CP with ARA, $\beta_{1:3}$ can be computed at t = 3 and is with high probability less than $\alpha_{1:3}$, as 455 outlined in Corollary 4.1. The reduction from $\alpha_{1:3}$ to $\beta_{1:3}$ leads to an increased allowable risk for future times, corresponding to a narrowing in the prediction regions. As a result, compared with 456 Sequential CP, E2E-CP with ARA generates a less conservative trajectory. Similarly, E2E-CP with 457 IRA also leverages $\beta_{1:3}$ to increase the total allocable risk, thereby further enhancing the flexibility 458 in allocating risks for future times. As illustrated in Figure 2, the trajectory obtained by E2E-CP 459 with IRA at t = 3 exhibits reduced conservativeness compared with the trajectory obtained at t = 0. 460

461 Table 1 summarizes the average cost, average computation time, and collision avoidance rate of 1,000 simulations with different methods. The complete tables can be found in Appendix C. As 462 shown in Table 1, the E2E-CP with ARA noticeably reduces the cost by an average of 11.26% 463

> E2E-CP with ARA E2E-CP with IRA All trajectories Squence CP П

Figure 2: Trajectories of the vehicle with different TO methods. (Numbers on the circles denote the indices of obstacles. The diamond and pentagon symbols represent the initial and target points of the vehicle, respectively. The translucent circles represent the planned positions of the vehicle and the prediction regions for further time. In particular, the colored and transparent circles with black edges denote the planned positions and the prediction regions for $\tau = 9$, respectively.)

483 484 485

480

481

482

¹The interior-point method-based solver IPOPT (v3.12.9) was used to solve the TO problem (11).

²Source code will be made available upon acceptance of the paper.

492

500

517 518

519

521

522

523

524

525

527

528 529

530 531

487	different methods. The total risk	tolerance is set to α	= 0.2.	
488		Sequential CP	E2E-CP with ARA	E2E-CP with IRA
489	Average cost	17.05	15.13	2.89
490	Average computation time (s)	0.076	0.078	0.131
491	Collision avoidance rate	88.4%	89.1%	91.2%

Table 1: Average cost, computation time, and collision avoidance rate using the vehicle model with different methods. The total risk tolerance is set to $\alpha = 0.2$.

compared with Sequential CP thanks to the feedback information of posterior probabilities, with a
negligible additional computational burden. Furthermore, by flexibly allocating the additional allowable risk provided by posterior probabilities, E2E-CP with IRA achieves an 83.05% reduction in
average cost compared with Sequential CP. However, since IRA needs to solve the TO problem (12)
iteratively, the average computation time increases significantly. Additionally, thanks to the coverage
guarantee for E2E-CP provided by Lemma 4.2, both E2E-CP with ARA and IRA achieve a collision
avoidance rate that exceeds the required threshold (80%). Thus ARA and IRA can be freely chosen
according to the computational capability, real-time requirement, and trajectory performance.

To investigate the impact of using prior versus posterior probabilities on the prediction regions, 501 we collect the prediction region radius for time t, denoted as $C_{20|t}$, using the vehicle model with 502 different methods across 1,000 simulations, as illustrated in Figure 3. It can be observed that $C_{20|t}$ decreases as t increases, which is reasonable since the error of the trajectory predictor diminishes 504 as t approaches τ . Note that since Sequential CP only uses prior probabilities to compute $C_{20|t}$ 505 throughout the entire planning process, which depends solely on D_{cal} , $C_{20|t}$ remains constant for a fixed t across the 1,000 simulations. By contrast, for E2E-CP with ARA, $C_{20|t}$ also depends on the 507 actual obstacle positions and past decisions due to the use of the posterior probabilities, which leads to the variability of $C_{20|t}$ across 1,000 simulations. The distribution of $C_{20|9}$ is illustrated in the right 509 panel of Figure 3. It can be seen that $C_{20|t}$ computed by E2E-CP with ARA is typically smaller than that computed by Sequential CP. As t increases, more posterior probabilities can be used, leading to 510 a growing gap between the $C_{20|t}$ calculated by the two methods, which corroborates Corollary 4.1. 511 The details about the prediction region radius for different t and τ are provided in Appendix F. 512

Although our experiments are conducted under exchangeability provided by Assumptions 3.1 and
3.2, we have empirically demonstrated the proposed method exhibits a certain degree of robustness
to moderate distribution shifts and can maintain safety and high performance in realistic scenarios
(beyond Assumption 3.1). Detailed experiments can be found in Appendix D and Appendix E.

Figure 3: Left: prediction region radius for $\tau = 20$ at each time $t (C_{20|t})$ using the vehicle model with different methods across 1,000 simulations. Right: distributions of $C_{20|9}$.

7 CONCLUSION AND LIMITATIONS

In this paper, we proposed an E2E-CP framework for shrinking-horizon TO with a joint risk constraint over the entire mission time in uncertain environments. This method enables the feedback of the information in the realized trajectory from the decision-making end to the CP end, guiding the end-to-end adjustments of the prediction regions. The proposed end-to-end adjustment rule balances both performance and safety, offering provable performance and coverage guarantees. Furthermore, the proposed E2E-CP is not limited to TO, it can be applied to any safety-critical decision-making.

The proposed E2E-CP has two limitations: the requirement for a sufficient calibration dataset size
and the reliance of the theoretical guarantees in this paper on data exchangeability. We provide a
detailed discussion and several potential ways to address these limitations in Appendix G.

540 REFERENCES

542 543 544	Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 961–971, 2016.
545 546	Anastasios Angelopoulos, Emmanuel Candes, and Ryan J Tibshirani. Conformal pid control for time series prediction. <i>Advances in neural information processing systems</i> , 36, 2024.
547 548 549	Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. <i>arXiv preprint arXiv:2107.07511</i> , 2021.
550 551 552	Andreas Auer, Martin Gauch, Daniel Klotz, and Sepp Hochreiter. Conformal prediction for time series with modern hopfield networks. <i>Advances in Neural Information Processing Systems</i> , 36: 56027–56074, 2023.
553 554 555	Yu Bai, Song Mei, Huan Wang, Yingbo Zhou, and Caiming Xiong. Efficient and differentiable conformal prediction with general function classes. <i>arXiv preprint arXiv:2202.11091</i> , 2022.
556 557 558	Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident predictions even when distributions shift. <i>Journal of the American Statistical Association</i> , pp. 1–66, 2024.
559 560 561 562	Matthew Cleaveland, Insup Lee, George J Pappas, and Lars Lindemann. Conformal prediction regions for time series using linear complementarity programming. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 38, pp. 20984–20992, 2024.
563 564	Bobby Davis, Ioannis Karamouzas, and Stephen J Guy. C-opt: Coverage-aware trajectory optimiza- tion under uncertainty. <i>IEEE Robotics and Automation Letters</i> , 1(2):1020–1027, 2016.
565 566 567 568	Anushri Dixit, Lars Lindemann, Skylar X Wei, Matthew Cleaveland, George J Pappas, and Joel W Burdick. Adaptive conformal prediction for motion planning among dynamic agents. In <i>Learning for Dynamics and Control Conference</i> , pp. 300–314. PMLR, 2023.
569 570	Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. Advances in Neural Information Processing Systems, 34:1660–1672, 2021.
571 572 573	Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with recurrent neural networks, pp. 37–45, 2012.
574 575 576	Soroush H. Zargarbashi, Simone Antonelli, and Aleksandar Bojchevski. Conformal prediction sets for graph neural networks. In <i>Proceedings of the 40th International Conference on Machine Learning</i> , volume 202, pp. 12292–12318. PMLR, 2023.
577 578 579 580	Soroush H. Zargarbashi, Mohammad Sadegh Akhondzadeh, and Aleksandar Bojchevski. Robust yet efficient conformal prediction sets. In <i>Proceedings of the 41st International Conference on Machine Learning</i> , volume 235, pp. 17123–17147. PMLR, 2024.
581 582	Astghik Hakobyan and Insoon Yang. Wasserstein distributionally robust motion control for collision avoidance using conditional value-at-risk. <i>IEEE Transactions on Robotics</i> , 38(2):939–957, 2021.
583 584 585	Shayan Kiyani, George Pappas, and Hamed Hassani. Length optimization in conformal prediction. <i>arXiv preprint arXiv:2406.18814</i> , 2024.
586 587 588	Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecasting in crowds: A deep learning perspective. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 23(7):7386–7400, 2021.
589 590 591 592	Tom Kuipers, Renukanandan Tumu, Shuo Yang, Milad Kazemi, Rahul Mangharam, and Nicola Pao- letti. Conformal off-policy prediction for multi-agent systems. <i>arXiv preprint arXiv:2403.16871</i> , 2024.
	Voshigki Kuwata and Jonathan B How. Cooperative distributed robust trajectory optimization using

593 Yoshiaki Kuwata and Jonathan P How. Cooperative distributed robust trajectory optimization using receding horizon milp. *IEEE Transactions on Control Systems Technology*, 19(2):423–431, 2010.

594 Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dynamic environments using conformal prediction. IEEE Robotics and Automation Letters, 2023. 596 Yi Liu, Alexander Levis, Sharon-Lise Normand, and Larry Han. Multi-source conformal infer-597 ence under distribution shift. In Proceedings of the 41st International Conference on Machine 598 Learning, volume 235, pp. 31344–31382. PMLR, 2024. 600 V Mistler, Abdelaziz Benallegue, and NK M'sirdi. Exact linearization and noninteracting control of 601 a 4 rotors helicopter via dynamic feedback. In Proceedings 10th IEEE international workshop on 602 robot and human interactive communication., pp. 586–593. IEEE, 2001. 603 Anish Muthali, Haotian Shen, Sampada Deglurkar, Michael H Lim, Rebecca Roelofs, Aleksandra 604 Faust, and Claire Tomlin. Multi-agent reachability calibration with conformal prediction. In 2023 605 62nd IEEE Conference on Decision and Control (CDC), pp. 6596–6603. IEEE, 2023. 606 607 Masahiro Ono and Brian C Williams. Iterative risk allocation: A new approach to robust model 608 predictive control with a joint chance constraint. In 2008 47th IEEE Conference on Decision and Control, pp. 3427–3432. IEEE, 2008. 609 610 Romain Pepy, Alain Lambert, and Hugues Mounier. Path planning using a dynamic vehicle model. 611 In 2006 2nd International Conference on Information & Communication Technologies, volume 1, 612 pp. 781–786. IEEE, 2006. 613 Luka Petrović, Ivan Marković, and Ivan Petrović. Mixtures of gaussian processes for robot mo-614 tion planning using stochastic trajectory optimization. IEEE Transactions on Systems, Man, and 615 Cybernetics: Systems, 52(12):7378–7390, 2022. 616 617 Aleksandr Podkopaev, Dong Xu, and Kuang-chih Lee. Adaptive conformal inference by betting. In 618 Forty-first International Conference on Machine Learning, 2024. 619 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S. Jaakkola, and Regina 620 Barzilay. Conformal language modeling. In The Twelfth International Conference on Learning 621 Representations, 2024. 622 623 Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila, and Kai O 624 Arras. Human motion trajectory prediction: A survey. The International Journal of Robotics 625 Research, 39(8):895-935, 2020. 626 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning 627 Research, 9(3), 2008. 628 Charis Stamouli, Lars Lindemann, and George Pappas. Recursively feasible shrinking-horizon mpc 630 in dynamic environments with conformal prediction guarantees. In 6th Annual Learning for Dynamics & Control Conference, pp. 1330–1342. PMLR, 2024. 631 632 Kamile Stankeviciute, Ahmed M Alaa, and Mihaela van der Schaar. Conformal time-series fore-633 casting. Advances in neural information processing systems, 34:6216–6228, 2021. 634 635 Kegan J Strawn, Nora Ayanian, and Lars Lindemann. Conformal predictive safety filter for rl controllers in dynamic environments. *IEEE Robotics and Automation Letters*, 2023. 636 637 Jiankai Sun, Yiqi Jiang, Jianing Qiu, Parth Nobel, Mykel J Kochenderfer, and Mac Schwager. Con-638 formal prediction for uncertainty-aware planning with diffusion dynamics model. Advances in 639 Neural Information Processing Systems, 36, 2024. 640 Sophia Huiwen Sun and Rose Yu. Copula conformal prediction for multi-step time series prediction. 641 In The Twelfth International Conference on Learning Representations, 2023. 642 643 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-644 diction under covariate shift. Advances in neural information processing systems, 32, 2019. 645 Anastasios Tsolakis, Rudy R Negenborn, Vasso Reppa, and Laura Ferranti. Model predictive tra-646 jectory optimization and control for autonomous surface vessels considering traffic rules. IEEE 647

Transactions on Intelligent Transportation Systems, 2024.

- Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for real-time multi-agent navigation. In 2008 IEEE international conference on robotics and automation, pp. 1928-1935. Ieee, 2008. Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian conference on machine learning, pp. 475–490. PMLR, 2012. Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world, volume 29. Springer, 2005. Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of al-gorithmic randomness. 1999. Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In International Conference on Machine Learning, pp. 11559–11569. PMLR, 2021. Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In International Conference on Machine Learning, pp. 38707–38727. PMLR, 2023. Chen Xu, Hanyang Jiang, and Yao Xie. Conformal prediction for multi-dimensional time series by ellipsoidal sets. In Proceedings of the 41st International Conference on Machine Learning, volume 235, pp. 55076-55099. PMLR, 2024. Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive conformal predictions for time series. In International Conference on Machine Learning, pp. 25834-25866. PMLR, 2022. Hao Zhou, Yanze Zhang, and Wenhao Luo. Safety-critical control with uncertainty quantification using adaptive conformal prediction. In 2024 American Control Conference (ACC), pp. 574–580. IEEE, 2024a. Jinyun Zhou, Runxin He, Yu Wang, Shu Jiang, Zhenguang Zhu, Jiangtao Hu, Jinghao Miao, and Qi Luo. Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization. *IEEE Robotics and Automation Letters*, 6(2): 439-446, 2020. Yanfei Zhou, Lars Lindemann, and Matteo Sesia. Conformalized adaptive forecasting of heteroge-neous trajectories. In Proceedings of the 41st International Conference on Machine Learning, volume 235, pp. 62002–62056. PMLR, 21–27 Jul 2024b. Hai Zhu and Javier Alonso-Mora. Chance-constrained collision avoidance for mays in dynamic environments. IEEE Robotics and Automation Letters, 4(2):776–783, 2019. Steve Zymler, Daniel Kuhn, and Berc Rustem. Distributionally robust joint chance constraints with second-order moment information. *Mathematical Programming*, 137:167–198, 2013.

702 A PROOFS

704 A.1 PROOF OF LEMMA 4.1 705

According to Assumptions 3.1 and 3.2 as well as the calculation of $C_{\tau|t}^{1-\alpha_{\tau}}$ (7b), the $(1 - \alpha_{\tau})$ coverage guarantee of the prediction (7a) is obtained through Lemma 3.1. Note that the function *c* is *L*-Lipschitz continuous, the following inequality is obtained.

$$\|c(x_{\tau}, Y_{\tau}) - c(x_{\tau}, \hat{Y}_{\tau|t})\| \le L \|Y_{\tau} - \hat{Y}_{\tau|t}\| \Longrightarrow c(x_{\tau}, Y_{\tau}) \ge c(x_{\tau}, \hat{Y}_{\tau|t}) - L \|Y_{\tau} - \hat{Y}_{\tau|t}\|$$
(21)

If the constraint $c(x_{\tau}, \hat{Y}_{\tau|t}) \ge LC_{\tau|t}^{1-\alpha_{\tau}}$ is satisfied, we have the following inequality.

$$c(x_{\tau}, Y_{\tau}) \ge L(C_{\tau|t}^{1-\alpha} - \|Y_{\tau} - \hat{Y}_{\tau|t}\|)$$
(22)

According to the $(1 - \alpha_{\tau})$ -coverage guarantee (7a) $\mathbb{P}\{C_{\tau|t}^{1-\alpha} - \|Y_{\tau} - \hat{Y}_{\tau|t}\| \ge 0\} \ge 1 - \alpha_{\tau}$, the lemma is proven.

717

728 729

732

733

735 736

742 743

747 748 749

750 751

752

755

709 710

713

718 A.2 PROOF OF LEMMA 4.2

719 720 Based on Assumption 3.1, the random variables $Y_{\tau}, Y_{\tau}^{(K+1)}, ..., Y_{\tau}^{(K+L)}$ are exchangeable. 721 Note that x_{τ}^{*} is the true state of the system at time τ , thus x_{τ}^{*} is fixed and independent of 722 $Y_{\tau}, Y_{\tau}^{(K+1)}, ..., Y_{\tau}^{(K+L)}$. Therefore, the random variables $S_{\tau}, S_{\tau}^{(K+1)}, ..., S_{\tau}^{(K+L)}$ are exchange-723 able.

Without loss of generality, we assume that the dataset $\{-S_{\tau}^{(K+i)} : i = 1, ..., L\}$ are sorted in nondecreasing order. We first assume that $-S_{\tau}^{(K+1)} \leq 0$, and then we define the maximum index ℓ that makes $-S_{\tau}^{(K+\ell)} \leq 0$ hold as follows.

$$\ell = \max_{l=1,...,L} l$$
s.t. $-S^{(K+\ell)} < 0$
(23)

Then the posterior satisfaction probability can be computed below.

$$\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) \ge 0\} = \mathbb{P}\{-S_{\tau} \le 0\} \ge \mathbb{P}\{-S_{\tau} \le -S_{\tau}^{(K+\ell)}\}$$
(24)

It is assumed that there are t terms in $\{-S_{\tau}^{(K+i)}: i = 1, ..., L\}$ identical to $-S_{\tau}^{(K+\ell)}$, i.e.

$$-S_{\tau}^{(K+\ell-t)} < -S_{\tau}^{(K+\ell-t+1)} = \dots = -S_{\tau}^{(K+\ell)} \le 0 < -S_{\tau}^{(K+\ell+1)}$$
(25)

Then $-S_{\tau}^{(K+\ell)}$ can be equivalently reformulated as follows.

$$-S_{\tau}^{(K+\ell)} = Quantile_{\beta}(-S_{\tau}^{(K+1)}, ..., -S_{\tau}^{(K+L)}, \infty), \quad \forall \beta \in \left(\frac{\ell-t}{1+L}, \frac{\ell}{1+L}\right]$$
(26)

Combining (24) and (26) we have

$$\mathbb{P}\{c(x_{\tau}^{*}, Y_{\tau}) \ge 0\} \ge \mathbb{P}\{-S_{\tau} \le Quantile_{\beta}(-S_{\tau}^{(K+1)}, ..., -S_{\tau}^{(K+L)}, \infty)\}$$
(27)

744 Note that the random variables $S_{\tau}, S_{\tau}^{(K+1)}, ..., S_{\tau}^{(K+L)}$ are exchangeable and $\beta \in \left(\frac{\ell-t}{1+L}, \frac{\ell}{1+L}\right] \subset$ 746 (0, 1), and thus we can apply Lemma 3.1 and obtain

$$\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) \ge 0\} \ge \beta, \quad \forall \beta \in \left(\frac{\ell - t}{1 + L}, \frac{\ell}{1 + L}\right]$$
(28)

Therefore, the upper bound of the posterior violation probability can be computed by

$$\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) < 0\} \le 1 - \beta, \quad \forall \beta \in \left(\frac{\ell - t}{1 + L}, \frac{\ell}{1 + L}\right]$$
(29)

To minimize this upper bound, we take the maximum value of β and (29) becomes (30).

$$\mathbb{P}\{c(x_{\tau}^{*}, Y_{\tau}) < 0\} \le 1 - \frac{\ell}{1+L}$$
(30)

According to the definition of ℓ (23), we can compute ℓ as follows.

$$\ell = \sum_{i=1}^{L} \mathbb{I}\left(S_{\tau}^{(K+i)} \ge 0\right) = L - \sum_{i=1}^{L} \mathbb{I}\left(S_{\tau}^{(K+i)} < 0\right)$$
(31)

Combining (30) and (31), we have

758 759 760

761 762 763

767 768

769

772

773 774 775

781 782

784

787

790

791 792

793

794 795

796 797

804 805

806 807 808

809

$$\mathbb{P}\{c(x_{\tau}^{*}, Y_{\tau}) < 0\} \le \frac{1 + \sum_{i=1}^{L} \mathbb{I}\left(S_{\tau}^{(K+i)} < 0\right)}{1 + L}$$
(32)

Finally, we consider the scenario in which $-S_{\tau}^{(K+1)} > 0$, which means $S_{\tau}^{(K+i)} < 0 \ \forall i = 1, ..., L$. Then the inequality (32) is simplified as follows.

$$\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) < 0\} \le 1 \tag{33}$$

which is always true. Thus, the Lemma is proven.

Taking expectations on both sides of Equation (9), we can obtain

$$\mathbb{E}(\beta_{\tau}) = \frac{1 + L\mathbb{P}\{S_{\tau}^{(K+i)} < 0\}}{1 + L} = \frac{1 + L\mathbb{P}\{S_{\tau} < 0\}}{1 + L} = \frac{1 + L\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) < 0\}}{1 + L}$$
(34)

The second equality holds because x_{τ}^* is fixed and independent of $Y_{\tau}, Y_{\tau}^{(K+1)}, ..., Y_{\tau}^{(K+L)}$, and since $Y_{\tau}, Y_{\tau}^{(K+1)}, ..., Y_{\tau}^{(K+L)}$ are i.i.d., $S_{\tau}, S_{\tau}^{K+1}, ..., S_{\tau}^{K+L}$ are also i.i.d. Note that the function *c* is *L*-Lipschitz continuous and x_{τ}^* is a feasible solution of problem (2) with the reformulated constraint through Lemma 4.1, and the following inequality can be derived in the same manner as inequalities (21) and (22) in the Proof of Lemma 4.1 (Appendix A.1).

$$c(x_{\tau}^{*}, Y_{\tau}) \ge L(C_{\tau|t}^{1-\alpha_{\tau}} - \|Y_{\tau} - \hat{Y}_{\tau|t}\|)$$
(35)

783 Based on (35), we can obtain

$$c(x_{\tau}^*, Y_{\tau}) < 0 \Rightarrow ||Y_{\tau} - \hat{Y}_{\tau|t}|| > C_{\tau|t}^{1-\alpha_{\tau}}$$
(36)

And the following inequality is derived.

$$\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) < 0\} \le \mathbb{P}\{\|Y_{\tau} - \hat{Y}_{\tau|t}\| > C_{\tau|t}^{1-\alpha_{\tau}}\}$$
(37)

788 Combining (34) and (37), we have

$$\mathbb{E}(\beta_{\tau}) \le \frac{1 + L \mathbb{P}\{\|Y_{\tau} - \hat{Y}_{\tau|t}\| > C_{\tau|t}^{1 - \alpha_{\tau}}\}}{1 + L}$$
(38)

For $\alpha_{\tau}, \delta \in (0, 1)$ and $K > (-\ln \delta)/(2\alpha_{\tau}^2)$, we can apply [Vovk (2012), Proposition 2a] so that

$$\mathbb{P}\left\{\mathbb{P}\left\{\|Y_{\tau} - \hat{Y}_{\tau|t}\| \le C_{\tau|t}^{1-\alpha_{\tau}}\right\} \ge 1 - \left(\alpha_{\tau} + \sqrt{-\ln\delta/(2K)}\right)\right\} \ge 1 - \delta$$
(39)

which can be equivalently transformed into the following expression.

$$\mathbb{P}\left\{\mathbb{P}\left\{\|Y_{\tau} - \hat{Y}_{\tau|t}\| > C_{\tau|t}^{1-\alpha_{\tau}}\right\} \le \alpha_{\tau} + \sqrt{-\ln\delta/(2K)}\right\} \ge 1 - \delta$$

$$\tag{40}$$

Combining (38) and (40), we can finally obtain the inequality (10).

800 When $K, L \to \infty$, we can further assume that $L \ge 1/\delta$ and $K \ge \max\{(-\ln \delta)/(2\alpha_{\tau}^2), 1/\delta\}$. Note 801 that for a fixed α_{τ} , we can always find a small enough positive δ such that $\alpha_{\tau} + \sqrt{(-\ln \delta)/(2K)} <$ 802 $\alpha_{\tau} + \sqrt{(-\delta \ln \delta)/2} < 1$. Therefore for a small enough positive δ we have 803

$$\mathbb{P}\left\{\mathbb{E}(\beta_{\tau}) \leq \frac{\delta + \alpha_{\tau} + \sqrt{-\delta \ln \delta/2}}{\delta + 1}\right\} \\
\geq \mathbb{P}\left\{\mathbb{E}(\beta_{\tau}) \leq \frac{1 + L\left(\alpha_{\tau} + \sqrt{-\ln \delta/(2K)}\right)}{1 + L}\right\} \geq 1 - \delta$$
(41)

Let $\delta \to 0^+$, we finally obtain that $\mathbb{E}(\beta_{\tau}) \leq \alpha_{\tau}$ holds with probability one.

810 A.4 PROOF OF LEMMA 5.1

812 Let $\alpha_{t+1:T}^1$ and $\alpha_{t+1:T}^2$ be two risk allocations at time t. Based on the definition of $C_{\tau|t}^{1-\alpha_{\tau}}$ (7b), 813 $C_{\tau|t}^{1-\alpha_{\tau}}$ is non-increasing with respect to α_{τ} for fixed D_{cal}^1 . Therefore, if $\alpha_{\tau}^1 \leq \alpha_{\tau}^2$, $\forall \tau = t+1, ..., T$, 814 then $C_{\tau|t}^{1-\alpha_{\tau}} \geq C_{\tau|t}^{1-\alpha_{\tau}^2}$ which further leads to $\mathcal{R}_t(\alpha_{t+1:T}^1) \subseteq \mathcal{R}_t(\alpha_{t+1:T}^2)$. Since $J^*(\alpha_{t+1:T})$ is 816 the minimum of the objective problem (12) with the feasible region $\mathcal{R}_t(\alpha_{t+1:T})$, $J^*(\alpha_{t+1:T}^1) \geq$ 817 $J^*(\alpha_{t+1:T}^2)$ can be obtained and the lemma is proven.

A.5 PROOF OF LEMMA 5.2

 The computation of the lower bound is analogous to the calculation of β_{τ} in Lemma 4.1, except that Lemma 3.1 is not required to obtain coverage guarantees. Therefore, the computation is based on D_{cal}^1 . Without loss of generality, we assume that the dataset $\{R_{\tau|t}^{(i)}: i = 1, ..., K\}$ is sorted in non-decreasing order. Note that $x_{t+1:T}^n$ is feasible for the problem (12) with $\alpha_{t+1:T}^n$ and $\tau \in \mathcal{I}_{ina}$, the inequality $c(x_{\tau}^n, \hat{Y}_{\tau|t}) > LC_{\tau|t}^{1-\alpha_{\tau}^n} = LQuantile_{1-\alpha_{\tau}^n}(R_{\tau|t}^{(1)}, ..., R_{\tau|t}^{(K)}, \infty)$ holds true. Since $\alpha_{\tau}^n < 1$, it follows that $c(x_{\tau}^n, \hat{Y}_{\tau|t}) > R_{\tau|t}^{(1)}$. Therefore, we define the maximum index \mathcal{K} that makes $c(x_{\tau}^n, \hat{Y}_{\tau|t}) \ge LR_{\tau|t}^{(\mathcal{K})}$ hold as follows.

$$\mathcal{K} = \max_{k=1,\dots,K} \quad k$$

$$s.t. \quad c(x_{\tau}^n, \hat{Y}_{\tau|t}) \ge LR_{\tau|t}^{(k)}$$
(42)

It is assumed that there are t terms in $\{R_{\tau|t}^{(i)}: i = 1, ..., K\}$ identical to $R_{\tau|t}^{\mathcal{K}}$, and thus we can obtain

$$R_{\tau|t}^{(\mathcal{K}-t)} < R_{\tau|t}^{(\mathcal{K}-t+1)} = \dots = R_{\tau|t}^{(\mathcal{K})} \le c(x_{\tau}^n, \hat{Y}_{\tau|t})/L < R_{\tau|t}^{(\mathcal{K}+1)}$$
(43)

We aim to determine the maximum value of $C_{\tau|t}^{1-\widetilde{\alpha}_{\tau}^{n}}$ (the minimum value of $\widetilde{\alpha}_{\tau}^{n}$) while satisfying $C_{\tau|t}^{1-\widetilde{\alpha}_{\tau}^{n}} \leq c(x_{\tau}^{n}, \hat{Y}_{\tau|t})/L$, which is equivalent to $C_{\tau|t}^{1-\widetilde{\alpha}_{\tau}^{n}} \leq R_{\tau|t}^{\mathcal{K}}$ because $C_{\tau|t}^{1-\widetilde{\alpha}_{\tau}^{n}}$ can only take values at a finite number of discrete points $R_{\tau|t}^{(1)}, ..., R_{\tau|t}^{(K)}, \infty$. Furthermore, $R_{\tau|t}^{\mathcal{K}}$ can be equivalently reformulated as follows.

$$R_{\tau|t}^{\mathcal{K}} = Quantile_{\beta}(R_{\tau|t}^{(1)}, ..., R_{\tau|t}^{(K)}, \infty) = C_{\tau|t}^{\beta}, \quad \forall \beta \in \left(\frac{\mathcal{K} - t}{1 + K}, \frac{\mathcal{K}}{1 + K}\right]$$
(44)

Therefore, the constraint $C_{\tau|t}^{1-\tilde{\alpha}_{\tau}^{n}} \leq R_{\tau|t}^{\mathcal{K}}$ is equivalent to the following expression.

$$C_{\tau|t}^{1-\tilde{\alpha}_{\tau}^{n}} \leq C_{\tau|t}^{\beta}, \quad \exists \beta \in \left(\frac{\mathcal{K}-t}{1+K}, \frac{\mathcal{K}}{1+K}\right]$$
(45)

Note that $C^{\beta}_{\tau|t}$ is non-decreasing with respect to β for fixed D^{1}_{cal} . Constraint (45) is further reformulated as follows.

$$\widetilde{\alpha}_{\tau}^{n} \ge 1 - \frac{\mathcal{K}}{1+K} \tag{46}$$

According to the definition of \mathcal{K} (42), we can compute \mathcal{K} in (47).

$$\mathcal{K} = \sum_{i=1}^{K} \mathbb{I}\left(c(x_{\tau}^{n}, \hat{Y}_{\tau|t}) \ge LR_{\tau|t}^{(i)}\right) = K - \sum_{i=1}^{K} \mathbb{I}\left(c(x_{\tau}^{n}, \hat{Y}_{\tau|t}) < LR_{\tau|t}^{(i)}\right)$$
(47)

Combining (46) and (47), the lower bound of $\tilde{\alpha}_{\tau}^{n}$ is computed as follows.

$$\underline{\alpha}_{\tau}^{n} = \frac{1 + \sum_{i=1}^{K} \mathbb{I}\left(c(x_{\tau}^{n}, \hat{Y}_{\tau|t}) < LR_{\tau|t}^{(i)}\right)}{1 + K}$$
(48)

We note that $\underline{\alpha}_{\tau}^{n}$ is the lower bound of $\widetilde{\alpha}_{\tau}^{n}$ that ensures the constraint $c(x_{\tau}^{n}, \hat{Y}_{\tau|t}) \geq LC_{\tau|t}^{1-\widetilde{\alpha}_{\tau}^{n}}$. Furthermore, since $x_{t+1:T}^{n}$ is feasible for the problem (12) with $\alpha_{t+1:T}^{n}$, the constraint $c(x_{\tau}^{n}, \hat{Y}_{\tau|t}) \geq LC_{\tau|t}^{1-\widetilde{\alpha}_{\tau}^{n}}$. Furthermore, since $x_{t+1:T}^{n}$ is satisfied. Therefore, $\underline{\alpha}_{\tau}^{n} \leq \alpha_{\tau}^{n}$ is naturally obtained. Thus the Lemma is proven. \Box

864 A.6 PROOF OF THEOREM 5.1

866 The proof adapts elements of the proof from Zymler et al. (2013). If $x_{t+1:T}^0, u_{t:T-1}^0$ is a feasible solution for the risk allocation $\alpha_{t+1:T}^0$, the update law of $\alpha_{t+1:T}$ guarantees that the sequence of the 868 optimal objective values $\{J^*(\alpha_{t+1:T}^n)\}_{n\in\mathbb{N}}$ is monotonically decreasing, as previously mentioned. Since the sets \mathcal{X} and \mathcal{U} are bounded, $x_{t+1:T}$ and $u_{t:T-1}$ are bounded. Because the objective function $J(x_{t+1:T}, u_{t:T-1})$ is continuous, the boundedness of $x_{t+1:T}$, $u_{t:T-1}$ and the monotonicity of the 870 optimal objective value sequence imply that $\{J^*(\alpha_{t+1:T}^n)\}_{n\in\mathbb{N}}$ converges to a finite limit. 871

В Algorithm

872 873

874

895 896

900 901

875 The algorithm of E2E-CP using IRA at time t is delineated as follows. Note that at time t = 0, the input parameter $\alpha_{0:T}$ is initialized as $\alpha_0 = 0$, $\alpha_{1:T} = \alpha/T$, $\beta_{0:t-1}$ is omitted, and the posterior 877 probability calculation in Line 3 is replaced by the assignment $\beta_0 = 0$. ϵ is a given small tolerance.

878		
879 880	Algorithm 1: E2E-CP using IRA at time t	
881 882	Input: α , $\alpha_{t:T}$, $\beta_{0:t-1}$, ϵ , η , D_{cal}^1 , D_{cal}^2 1 Observe the system state x_t and joint obstacle states Y_t ;	
883	2 $\hat{Y}_{t+1 t},, \hat{Y}_{T t} \leftarrow$ Trajectory prediction using LSTMs based on $Y_0,, Y_t$;	
884	$\beta_t \leftarrow \text{Posterior probability calculation (9)};$ // Using x_t and D_{cal}^2	
885	$ \text{ $J^*(\alpha_{t+1:T}^{-1}) \leftarrow \infty, \alpha_{t+1:T}^0 \leftarrow \alpha_{t+1:T}, n \leftarrow 0$; } \\ \text{ I Initialization of IRA } $	
886	5 repeat	
887	6 $J^*(\alpha_{t+1:T}^n), x_{t+1:T}^n, u_{t:T-1}^n \leftarrow$ Solve the lower-stage problem (12) with $\alpha_{t+1:T}^n$;	
888	$\tau = \mathcal{I}_{act}, \mathcal{I}_{ina}, N_{act} \leftarrow \text{Identification of active and inactive constraints};$	
889	8 $\widetilde{\alpha}_{t+1:T}^{n} \leftarrow \text{Transitional risk allocation calculation (17)};$	
890	9 $\alpha_{t+1:T}^{n+1} \leftarrow$ New risk allocation calculation (19);	
891	10 $n \leftarrow n+1;$	
892	11 until $ J^*(\alpha_{t+1,T}^{n-1}) - J^*(\alpha_{t+1,T}^{n-2}) < \epsilon;$	
893	Output: $\beta_{0:t}, u_{n-1}^{n-1}, \alpha_{t+1:T} = \alpha_{t+1:T}^{n-1}$	
894	$= -\frac{1}{2} \left(\frac{1}{2} - $	

EXPERIMENT DETAILS AND ADDITIONAL RESULTS С

C.1 SIMULATION FOR A KINEMATIC VEHICLE MODEL

We examine the kinematic vehicle model Pepy et al. (2006) with the following nonlinear dynamics.

$$\begin{bmatrix} p_{x,t+1} \\ p_{y,t+1} \\ \theta_{t+1} \\ v_{t+1} \end{bmatrix} = \begin{bmatrix} p_{x,t} + \Delta v_t \cos \theta_t \\ p_{y,t} + \Delta v_t \sin \theta_t \\ \theta_t + \Delta \frac{v_t}{l} \tan \phi_t \\ v_t + \Delta a_t \end{bmatrix}$$
(49)

907 where $p_t := (p_{x,t}, p_{y,t}), \theta_t, v_t$ are the position, orientation, and velocity of the vehicle, respectively. 908 l := 0.2 is the length, and $\Delta = 0.125$ is the sampling time. The system inputs are the steering angle $\phi_t \in [-\pi/6, \pi/6]$ and the acceleration $a_t \in [-5, 5]$. The total time is set to T = 20. The objective 909 is to reach the vicinity of the target point while avoiding collisions with obstacles. Formally, the 910 objective function is defined as $J = \sum_{\tau=t}^{T-1} 100\phi_{\tau}^2 + a_{\tau}^2$ to minimize energy consumption and the 911 constraint $||p_T - p_{tar}||_2 \le 0.2$ is incorporated into (11) to ensure the vehicle reaches the target point, 912 where p_{tar} is the target point. The constraint function for collision avoidance is as follows. 913

$$c(p_{\tau}, Y_{\tau}) = \min_{j=1,\dots,M} \|p_{\tau}, Y_{\tau,j}\|_2 - r_r - r_o - r_s$$
(50)

916 where r_r and r_o are the inflation radius of the vehicle and obstacle, respectively. r_s is the safety margin. Similar to Lindemann et al. (2023), we consider M = 3 obstacles, with their trajectories 917 generated by TrajNet++ Kothari et al. (2021) using the ORCA simulator Van den Berg et al. (2008). 924

925

953 954

955

918 We generate 13,000 joint obstacle trajectories and randomly divide them into training D_{train} , cal-919 ibration D_{cal} , and test D_{test} datasets with the set sizes 2,000, 10,000, and 1,000, respectively. We 920 train an LSTM Alahi et al. (2016) using D_{train} as the trajectory predictor. For the proposed E2E-921 CP, D_{cal} is further divided into D_{cal}^1 and D_{cal}^2 with sizes $|D_{cal}^1| = 2,000$ and $|D_{cal}^2| = 8,000$. We 922 conduct 1,000 Monte Carlo simulations using D_{test} . As we discussed in Section 6, the methods Sequential CP, E2E-CP with ARA, and E2E-CP with IRA are analyzed. 923

Table 2: Average cost, computation time, and collision avoidance rate using the kinematic vehicle model with different methods.

		Sequential CP	E2E-	CP
		Sequential er	with ARA	with IRA
	$\alpha = 0.05$	22.20	20.46	4.77
Average cost	$\alpha = 0.10$	20.24	18.78	3.52
Average cost	$\alpha = 0.15$	19.22	17.35	3.18
	$\alpha = 0.20$	17.05	15.13	2.89
	$\alpha = 0.05$	0.111	0.100	0.128
Average computation time	$\alpha = 0.10$	0.093	0.087	0.126
Average computation time	$\alpha = 0.15$	0.078	0.085	0.130
	$\alpha = 0.20$	0.076	0.078	0.131
	$\alpha = 0.05$	95.4%	95.7%	98.4%
Colligion avoidance rate	$\alpha = 0.10$	93.9%	93.1%	98.3%
Comsion avoidance rate	$\alpha = 0.15$	90.8%	89.8%	97.6%
	$\alpha = 0.20$	88.4%	89.1%	91.2%

941 Table 2 shows the average cost, average computation time, and collision avoidance rate of 1,000 simulations using the kinematic vehicle model with different methods. We collect the simulation 942 data under different total risk tolerances $\alpha = 0.05, 0.10, 0.15, 0.20$. On one hand, with an increase 943 in total risk tolerance, the average cost of all methods decreases. On the other hand, benefiting from 944 the feedback information of posterior probabilities, the average cost of E2E-CP with ARA shows a 945 reduction of 7.21% to 11.26% compared to Sequential CP. Furthermore, by flexibly allocating the 946 allowable risk provided by posterior probabilities, the average cost of E2ECP with IRA exhibits a 947 significant reduction compared with Sequential CP. Additionally, the increase in total risk tolerance 948 provides greater flexibility in the risk allocation of E2E-CP with IRA, resulting in a significant 949 reduction in its average cost. As mentioned in Section 6, the calculation of posterior probabilities 950 does not incur additional computational burden. Therefore, the average computation time of E2E-951 CP with ARA is essentially comparable to that of Sequential CP. The collision rates of all methods 952 do not exceed their corresponding total risk tolerances.

C.2 SIMULATION FOR LINEAR QUADROTOR MODEL

We examine the quadrotor model Mistler et al. (2001) with the following linear dynamics.

$$\ddot{x} = g\theta \qquad \qquad \ddot{y} = -g\phi \qquad \qquad \ddot{z} = \frac{1}{m_Q}u_1 \ddot{\phi} = \frac{l_Q}{I_{xx}}u_2 \qquad \qquad \ddot{\theta} = \frac{l_Q}{I_{yy}}u_3 \qquad \qquad \qquad \ddot{\psi} = \frac{l_Q}{I_{zz}}u_4$$
(51)

960 where g = 9.81 represents the gravitational acceleration, $m_Q = 0.65$ denotes the mass, and $l_Q = 0.23$ is the distance between the quadrotor and the rotor. $I_{xx} = 0.0075$, $I_{yy} = 0.0075$, 961 and $I_{zz} = 0.013$ correspond to the area moments of inertia about the principle axes in the body 962 frame. The states are the position and orientation with the corresponding velocities and rates -963 $(x, y, z, \dot{x}, \dot{y}, \dot{z}, \phi, \theta, \psi, \dot{\phi}, \dot{\theta}, \dot{\psi}) \in \mathbb{R}^{12}$. The control inputs u_1, u_2, u_3, u_4 correspond to the thrust 964 force in the body frame and three moments. The system (51) is discretized using the sampling time 965 $\Delta = 0.125$, and the total time is also set to T = 20. 966

967 Similar to the experiments based on the kinematic vehicle model in Appendix C.1, the objective 968 is to control the quadrotor to reach the target point p_{tar} while navigating around M = 3 moving obstacles. The target point constraint and obstacle avoidance constraints are consistent with those 969 used in the simulation using the kinematic vehicle model. We randomly generate 13,000 obstacle 970 trajectories and assign them as in Appendix C.1. The methods Sequential CP, E2E-CP with ARA, 971 and E2E-CP with IRA are analyzed through 1,000 Monte Carlo simulations.

974	·····		Sequential CP	E2E-CP		
975			sequential er	with ARA	with IRA	
976		$\alpha = 0.05$	17.321	15.356	7.189	
977	Average cost	$\alpha = 0.10$	16.168	14.228	6.798	
978	Average cost	$\alpha = 0.15$	14.835	12.354	6.191	
979		$\alpha = 0.20$	13.217	10.222	5.398	
980		$\alpha = 0.05$	0.022	0.027	0.038	
981	Avanage computation time	$\alpha = 0.10$	0.020	0.021	0.039	
982	Average computation time	$\alpha = 0.15$	0.021	0.020	0.037	
983		$\alpha = 0.20$	0.020	0.019	0.036	
984		$\alpha = 0.05$	98.8%	98.2%	96.3%	
985	Collision avaidance rate	$\alpha = 0.10$	93.5%	94.6%	94.1%	
986	Consion avoidance rate	$\alpha = 0.15$	92.0%	90.2%	91.9%	
987		$\alpha = 0.20$	88.2%	86.7%	88.2%	

72	Table 3: Average cost,	computation time.	, and collision	avoidance rat	e using the	quadrotor n	nodel
73	with different methods.						

Table 3 shows the average cost, average computation time, and collision avoidance rate of 1,000 simulations using the quadrotor model with different methods. The experimental results using the quadrotor model are fundamentally consistent with those derived from the experiments using the kinematic vehicle model. Compared with Sequential CP, E2E-CP with ARA benefits from the posterior probabilities calculation, leading to a moderate improvement in performance. E2E-CP with IRA, leveraging the combined use of posterior probabilities and a more flexible risk allocation, exhibits a significant enhancement in performance. Note that due to the linear nature of the quadrotor model, there is a significant reduction in computation time compared to the nonlinear vehicle model.

C.3 SIMULATION FOR DYNAMIC BICYCLE MODEL

We examine a vehicle with the following dynamic bicycle model Hakobyan & Yang (2021).

$$\dot{x} = v_x \cos \theta - v_y \sin \theta \tag{52}$$

$$\dot{y} = v_x \sin \theta + v_y \cos \theta \tag{53}$$

$$\dot{\theta} = r \tag{54}$$

$$\dot{v_y} = \frac{-2(C_f + C_r)}{m_V v_x} v_y - \left(\frac{2l_f C_f - 2l_r C_r}{m_V v_x} + v_x\right) r + \frac{2C_f}{m_V} \delta_f$$
(55)

$$\dot{r} = \frac{-2(l_f C_f + l_r C_r)}{I_z v_x} v_y - \frac{2l_f^2 C_f - 2l_r^2 C_r}{I_z v_x} r + \frac{2l_f C_f}{I_z} \delta_f$$
(56)

where x, y are the vehicle's central of mass, θ, v_y , and r are lateral velocity, orientation, and yaw rate, respectively. Furthermore, v_x is the constant longitudinal velocity, m_V denotes the mass of the vehicle, C_f and C_r represent the cornering stiffness coefficients of the front and rear tires re-spectively, L_f and L_r denote the distances from the center of mass to the front and rear wheels, and I_z corresponds to the moment of inertia around the z-axis. The input variable is the front wheel steering angle δ_f . The system (52) is discretized using the sampling time $\Delta = 0.125$, and the total time is also set to T = 20. According to Hakobyan & Yang (2021), the parameters of the dynamic bicycle model used in this simulation are listed in Table 4.

1017	Table 4: Dynamic bicycle model parameters.								
1018	m_V	C_f	C_r	I_z	L_f	L_r	v_x		
1019	1700 kg	50kN/rad	50kN/rad	$6000 kg \cdot m^2$	1.2m	1.3m	5m/s		

The task is to steer the vehicle to its target point p while avoiding M = 2 moving obstacles. Similar to the experiments in Appendix C.1, the target point constraint and obstacle avoidance constraints are incorporated into the optimization problem to ensure the vehicle reaches the target point while avoiding collisions with obstacles. We collect 13,000 joint obstacle trajectories and assign them as in Appendix C.1. The methods Sequential CP, E2E-CP with ARA, and E2E-CP with IRA are analyzed through 1,000 Monte Carlo simulations.

		Sequential CP	E2E-	СР
		23.05	with ARA	with IRA
	$\alpha = 0.05$	23.05	20.91	13.77
Average cost	$\alpha = 0.10$	22.38	18.39	11.35
	$\alpha = 0.15$	20.71	16.99	10.17
	$\alpha = 0.20$	16.55	14.78	8.58
	$\alpha = 0.05$	0.365	0.361	0.884
A	$\alpha = 0.10$	0.339	0.335	0.817
Average computation time	$\alpha = 0.15$	0.494	0.506	1.292
	$\alpha = 0.20$	0.309	0.407	1.003
	$\alpha = 0.05$	96.8%	96.5%	97.0%
Collision avoidance rate	$\alpha = 0.10$	94.8%	94.0%	94.3%
	$\alpha = 0.15$	91.5%	90.0%	91.5%
	$\alpha = 0.20$	89.5%	87.8%	89.5%

1026	Table 5: Average cost, computation time, and collision avoidance rate using the dynamic bicycle
1027	model with different methods.

1043 Table 5 shows the average cost, average computation time, and collision avoidance rate of 1,000 1044 simulations using the dynamic bicycle model with different methods. The experimental results are 1045 generally consistent with those obtained from the experiments using the kinematic vehicle mode and 1046 the quadrotor model. The performance of E2E-CP shows a certain degree of improvement over Se-1047 quential CP based on posterior probability calculations. Based on posterior probability calculations, 1048 E2E-CP with ARA demonstrates a certain level of performance improvement compared to Sequen-1049 tial CP, while E2E-CP with IRA further attains significant performance by leveraging the combined use of posterior probabilities and a more flexible risk allocation. It should be noted that, due to the 1050 1051 simulation of a relatively complex nonlinear model in this experiment, the average computation time inevitably increases. Furthermore, it may be observed that the reduction in average cost achieved by 1052 E2E-CP with IRA compared to Sequential CP decreases in this experiment (47.2% reduction) com-1053 pared with the experiment using the kinematic vehicle model in Appendix C.1 (81.9% reduction). 1054 This is because, compared to relatively simple scenarios (2 obstacles, dynamic bicycle model exper-1055 iment), more complex scenarios (3 obstacles, kinematic vehicle model experiment) better highlight 1056 the performance improvements enabled by the flexibility in risk allocation. 1057

In summary, the three simulation experiments demonstrate the general applicability of the proposed method, achieving significant performance improvements across various system models while satisfying probabilistic collision avoidance requirements. In fact, the complexity of different system models only affects the average computation time. In addition, simulations demonstrate that E2E-CP with IRA achieves more significant performance improvements in relatively complex scenarios.

- 1063
- 1064

D EXPERIMENTS AND DISCUSSION ON DISTRIBUTION SHIFT

1066

1067 The individual chance constraint reformulation in Lemma 4.1 and the posterior probability calcula-1068 tion in Lemma 4.2 rely on Assumptions 3.1 and 3.2, which imply that real joint obstacle trajectory 1069 and those in the training and calibration datasets follow the same distribution \mathcal{D} . Specifically, As-1070 sumption 3.1 posits that the system does not influence the real joint obstacle trajectory, which holds approximately in many robotic applications, e.g., autonomous vehicles behave in ways that result 1071 in socially acceptable trajectories that do not change the behavior of pedestrians Lindemann et al. 1072 (2023). Assumption 3.2 assumes the availability of the training and calibration datasets. Assumption 1073 3.2 is commonly used and not restrictive in practice Sun & Yu (2023); Stankeviciute et al. (2021), 1074 as extensive data can be sourced from advanced high-fidelity simulators or robotic applications like 1075 autonomous vehicles, where datasets are increasingly accessible. 1076

1077 Although many scenarios approximately satisfy our assumption of the same distribution, we ac-1078 knowledge that the system states x may change \mathcal{D} during test time, e.g., when a robot is too close to 1079 a pedestrian. However, in this appendix, we demonstrate through analysis and experiments that the proposed method exhibits a certain degree of robustness to moderate distribution shifts. Specifically, we design experiments to compare the effects of different levels of distribution shifts between test
 trajectories and calibration trajectories on the performance and safety of the proposed method.

Apart from the method of generating obstacle trajectories, the experimental setup is identical to that of the kinematic vehicle model experiment in Appendix C.1. To obtain obstacle trajectories with different distributions, the obstacles are modeled using the following double integrator model.

$$\begin{bmatrix} p_{x,t+1} \\ p_{y,t+1} \\ v_{x,t+1} \\ v_{y,t+1} \end{bmatrix} = \begin{bmatrix} p_{x,t} + \Delta v_{x,t} + \frac{\Delta^2}{2} a_{x,t} \\ p_{y,t} + \Delta v_{y,t} + \frac{\Delta^2}{2} a_{y,t} \\ v_{x,t} + \Delta a_{x,t} \\ v_{y,t} + \Delta a_{y,t} \end{bmatrix}$$
(57)

1091 where (p_x, p_y, v_x, v_y) is the state of an obstacle, consisting of its center of mass and velocity vector. 1092 The control input $u = (a_x, a_y)$ is the acceleration vector. Similarly, the sampling time Δ is selected 1093 as 0.125. The obstacle trajectories from a given start point to the target point are obtained by solving 1094 an optimization problem. And the obstacle trajectories with different distributions are generated 1095 by adding zero-mean Gaussian noise $\mathcal{N}(0, \sigma^2)$ with varying covariance σ to the system input u. 1096 Specifically, the trajectories in the training and calibration datasets are generated under $\sigma_{cali} = 0.3$, 1097 while the test trajectories are generated under different values of σ_{test} . Thus, the difference between σ_{test} and σ_{cali} reflects the magnitude of the distributional shift. For each different value of σ_{test} , 1099 we conduct 1,000 Monte Carlo experiments.

Table 6: Average cost and collision avoidance rate using the kinematic vehicle model with different distribution shifts ($\alpha = 0.2$).

		Sequential CP	E2E-CP	
		bequentiar er	with ARA	with IRA
	$\sigma_{test} = 0.01$	15.45	12.36	3.88
	$\sigma_{test} = 0.10$	15.98	13.70	3.96
Average cost	$\sigma_{test} = 0.30$	17.27	15.82	5.06
	$\sigma_{test} = 1.00$	20.53	16.66	7.27
	$\sigma_{test} = 2.00$	22.78	18.93	9.77
	$\sigma_{test} = 3.00$	23.93	20.72	10.75
	$\sigma_{test} = 0.01$	97.6%	99.0%	99.6%
	$\sigma_{test} = 0.10$	97.6%	97.9%	99.6%
Colligion evoidence rate	$\sigma_{test} = 0.30$	90.4%	90.0%	92.4%
Comsion avoidance rate	$\sigma_{test} = 1.00$	85.7%	85.7%	84.1%
	$\sigma_{test} = 2.00$	83.6%	82.8%	82.4%
	$\sigma_{test} = 3.00$	79.3%	78.9%	78.2%

1117

1083

1084

1100

1118 Table 6 shows the average cost and collision avoidance rate of 1,000 simulations using the kinematic 1119 vehicle model with different values of σ_{test} . An increase in σ_{test} relative to σ_{cali} indicates an in-1120 crease in the distributional shift between the test and calibration trajectories. However, even when 1121 σ_{test} increases to 2, the collision rate of the proposed method remains within the total risk tolerance 1122 $(\alpha = 0.2)$. Although the collision rate no longer meets the risk tolerance requirement when σ_{test} increases to 3, we will demonstrate in Appendix E that such large distribution shifts are unlikely to 1123 occur in practical applications. Moreover, an increase in σ_{test} leads to unexpected obstacle move-1124 ments, which ultimately result in an increase in the average cost. However, under all values of σ_{test} , 1125 the proposed method achieves a significant decrease in average cost compared to the Sequential CP. 1126 In summary, the proposed method exhibits a certain degree of robustness to moderate distribution 1127 shifts. Specifically, when the distribution shift between the test trajectory and the calibration trajec-1128 tories is not substantial, the proposed method can maintain the satisfaction of the total risk constraint 1129 and the performance improvement compared to Sequential CP.

One might question whether, in realistic scenarios, the test trajectory could experience a large distribution shift, leading to a violation of the total risk constraints. Fortunately, this is highly unlikely to occur in practice. In Strawn et al. (2023), the author explicitly checked through experiments that

interactions among agents in multi-agent systems do not introduce large distribution shifts.

1134 Ε **EXPERIMENTS AND DISCUSSION ON DEPENDENT SCENARIOS**

1135 1136

In this appendix, we directly design simulation scenarios where the system and obstacles are depen-1137 dent, to demonstrate the safety and high performance of the proposed method in realistic scenarios. 1138

Except for the method of generating obstacle trajectories, the experimental setup is identical to that 1139 of the kinematic vehicle model experiment in Appendix C. The obstacles are modeled using the 1140 double integrator model (57). The training and calibration trajectories are generated in the same 1141 manner as described in Appendix D. Considering the interdependence between the system and the 1142 obstacles, the test obstacle trajectories are generated online during test time based on the current 1143 system state. Specifically, only the references of the test trajectories are generated offline. The real 1144 test trajectories are obtained by solving an optimization problem to follow the reference trajectories. 1145 Additionally, when obstacles approach the system, the distance between the obstacles and the system 1146 is incorporated into the objective function to simulate real-world avoidance behavior. Both the 1147 scenarios, considering and ignoring the interdependence between the system and the obstacles, are 1148 simulated.

1149

1150 Table 7: Average cost and collision avoidance rate using the kinematic vehicle model with indepen-1151 dent and dependent obstacles.

		Sequential CP	E2E-	СР
		sequential er	with ARA	with IRA
	α	= 0.1		
Average cost	Independent	20.116	18.022	4.053
Average cost	Dependent	20.269	18.005	4.123
Collision avaidance rate	Independent	94.7%	93.6%	94.4%
Comsion avoluance rate	Dependent	93.8%	91.0%	93.3%
	α	= 0.2		
Average cost	Independent	17.289	14.932	3.032
Average cost	Dependent	17.279	15.007	3.045
Colligion quaidance rate	Independent	88.2%	89.5%	92.0%
Consion avoidance rate	Dependent	86.5%	88.3%	89.5%

1166 Table 7 shows the average cost and collision avoidance rate of 1,000 simulations using the kinematic vehicle model with independent and dependent obstacles. "Independent" and "Dependent" represent 1167 1168 the cases where the influence of the system on the obstacle trajectories is disregarded and considered, respectively. It can be observed that the influence of the system on obstacles indeed reduces the 1169 overall collision avoidance rate, as it disrupts the exchangeability between the test and calibration 1170 trajectories. However, the reduction in the collision avoidance rate is negligible and remains well 1171 within the corresponding total risk tolerance. Moreover, Table 7 also shows that the dependence 1172 between the system and obstacles has almost no impact on the average cost. In summary, in realistic 1173 scenarios, relaxing Assumption 3.1 does not significantly impact the performance of the proposed 1174 algorithm. 1175

1176 1177

1178

F **DETAILS ABOUT THE PREDICTION REGIONS**

1179 Table 8 shows the prediction region radius for different time t and τ ($C_{\tau|t}$) using the kinematic 1180 vehicle model with different methods (Sequential CP and E2E-CP with ARA). At the initial state 1181 (t = 0), no realized state is available for calculating posterior probabilities. As a result, $C_{\tau \mid 0}$ 1182 for all τ obtained by Sequential CP and E2E-CP with ARA are essentially identical, with minor 1183 differences arising from the fact that Sequential CP utilizes the calibration \mathcal{D}_{cal} , whereas E2E-CP with ARA only employs \mathcal{D}_{cal}^1 . As the system operates, an increasing number of realized states x_t^* 1184 1185 are available for the calculation of posterior probabilities, enabling E2E-CP to yield a relatively narrower prediction region, corresponding to a smaller $C_{\tau|t}$. As shown in Table 8, the average ratio 1186 of the predicted region radius obtained by E2E-CP with ARA to those by Sequential CP generally 1187 exhibits a decreasing trend as time t increases. Moreover, when t > 10, based on sufficient posterior

differen	t methods (Sequential G	CP and E2	2E-CP wit	h ARA) ε	across 1,00	0 simulatio	ons ($\alpha = 0$.	2).
		$\tau = 3$	$\tau = 6$	$\tau = 9$	$\tau = 12$	$\tau = 15$	$\tau = 18$	Ratio
t = 0	E2E-CP with ARA Sequential CP	$0.125 \\ 0.129$	$0.258 \\ 0.247$	$0.374 \\ 0.374$	$0.519 \\ 0.520$	$0.698 \\ 0.691$	$0.913 \\ 0.902$	1.005
t = 3	E2E-CP with ARA Sequential CP	~	$0.102 \\ 0.129$	$\begin{array}{c} 0.216 \\ 0.263 \end{array}$	$\begin{array}{c} 0.351 \\ 0.409 \end{array}$	$0.527 \\ 0.598$	$0.705 \\ 0.738$	0.793
t = 6	E2E-CP with ARA Sequential CP	~	~	$0.141 \\ 0.152$	$0.289 \\ 0.304$	$0.442 \\ 0.451$	$0.604 \\ 0.625$	0.956
t = 9	E2E-CP with ARA Sequential CP	~	~	~	$0.134 \\ 0.149$	$0.268 \\ 0.305$	$\begin{array}{c} 0.414 \\ 0.466 \end{array}$	0.889
t = 12	E2E-CP with ARA Sequential CP	~	~	~	~	$0.059 \\ 0.138$	$0.139 \\ 0.291$	0.453
t = 15	E2E-CP with ARA Sequential CP	~	~	~	~	~	$0.054 \\ 0.115$	0.470

1188 probabilities, the prediction region radius obtained by E2E-CP with ARA is reduced by more than 1189 50% compared to that of Sequential CP. 1190

1191 Table 8: Prediction region radius for different τ and $t(C_{\tau|t})$ using the kinematic vehicle model with

1207 1208

1209

G LIMITATIONS

1210 The proposed E2E-CP has two limitations. The first limitation lies in the reliance of the proposed 1211 method on the size of the calibration dataset. As previously mentioned, to ensure coverage guaran-1212 tees within the end-to-end framework, the calibration dataset needs to be split into two parts: one 1213 for forward computation of prediction regions and the other for backward computation of posterior 1214 probabilities. This requirement results in the proposed method needing a larger calibration dataset 1215 compared to standard CP methods. However, extensive data can be sourced from advanced high-1216 fidelity simulators or robotic applications like autonomous vehicles, where datasets are increasingly 1217 accessible. Thus we believe that the reliance on data quantity will not present a substantial challenge.

1218 1219

Additionally, the second limitation lies in the reliance of the proposed method's theoretical guar-1220 antees on exchangeability. Although we have empirically demonstrated that the proposed method 1221 exhibits a certain degree of robustness to moderate distribution shifts (Appendix D) and ensures 1222 safety and high performance in the realistic setting (Appendix E), we do not address distribution shifts in full generality or provide theoretical guarantees. Therefore, extending the proposed method 1223 beyond exchangeability represents a promising direction for future work. To this end, we propose 1224 several potential ways to extend the proposed method beyond the assumption of exchangeability. 1225 Firstly, the robust conformal prediction Cauchois et al. (2024) can be used to obtain valid prediction 1226 regions for all distributions that are "close" to \mathcal{D} (in terms of the f-divergence), and integrate these in 1227 our algorithm. Additionally, integrating the adaptive conformal prediction Gibbs & Candes (2021) 1228 with our proposed method is also a potentially viable approach. Moreover, updating the calibra-1229 tion dataset online using real-time data based on a sliding window Xu & Xie (2021) may also be a 1230 potential way to go beyond the assumption of exchangeability.

1231 1232

- 1233

- 1236
- 1237
- 1239
- 1240
- 1241