
Journal of Machine Learning Research 23 (2022) 1-32 Submitted 1/21; Revised 1/22; Published 2/22

PECOS: Prediction for Enormous and Correlated Output
Spaces

Hsiang-Fu Yu rofu.yu@gmail.com
Amazon Inc.

Kai Zhong kaizhong89@gmail.com
Amazon Inc.

Jiong Zhang zhangjiong724@gmail.com
Amazon Inc.

Wei-Cheng Chang weicheng.cmu@gmail.com
Amazon Inc.

Inderjit S. Dhillon∗ inderjit@cs.utexas.edu

UT Austin & Google Inc.

Editor: Sanjiv Kumar

Abstract
Many large-scale applications amount to finding relevant results from an enormous output space
of potential candidates. For example, finding the best matching product from a large catalog
or suggesting related search phrases on a search engine. The size of the output space for these
problems can range from millions to billions, and can even be infinite in some applications. More-
over, training data is often limited for the “long-tail” items in the output space. Fortunately,
items in the output space are often correlated thereby presenting an opportunity to alleviate the
data sparsity issue. In this paper, we propose the Prediction for Enormous and Correlated Out-
put Spaces (PECOS) framework, a versatile and modular machine learning framework for solving
prediction problems for very large output spaces, and apply it to the eXtreme Multilabel Rank-
ing (XMR) problem: given an input instance, find and rank the most relevant items from an
enormous but fixed and finite output space. We propose a three phase framework for PECOS:
(i) in the first phase, PECOS organizes the output space using a semantic indexing scheme, (ii) in
the second phase, PECOS uses the indexing to narrow down the output space by orders of mag-
nitude using a machine learned matching scheme, and (iii) in the third phase, PECOS ranks the
matched items using a final ranking scheme. The versatility and modularity of PECOS allows for
easy plug-and-play of various choices for the indexing, matching, and ranking phases. The indexing
and matching phases alleviate the data sparsity issue by leveraging correlations across different
items in the output space. For the critical matching phase, we develop a recursive machine learned
matching strategy with both linear and neural matchers. When applied to eXtreme Multilabel
Ranking where the input instances are in textual form, we find that the recursive Transformer
matcher gives state-of-the-art accuracy results, at the cost of two orders of magnitude increased
training time compared to the recursive linear matcher. For example, on a dataset where the
output space is of size 2.8 million, the recursive Transformer matcher results in a 6% increase in
precision@1 (from 48.6% to 54.2%) over the recursive linear matcher but takes 100x more time to
train. Thus it is up to the practitioner to evaluate the trade-offs and decide whether the increased
training time and infrastructure cost is warranted for their application; indeed, the flexibility of

∗. This paper was done when ISD worked in Amazon Inc.

©2022 Hsiang-Fu Yu, Kai Zhong, Jiong Zhang, Wei-Cheng Chang, Inderjit S. Dhillon.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v23/21-0085.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0085.html


Yu, Zhong, Zhang, Chang, and Dhillon

the PECOS framework seamlessly allows different strategies to be used. We also develop very fast
inference procedures which allow us to perform XMR predictions in real time; for example, infer-
ence takes less than 1 millisecond per input on the dataset with 2.8 million labels. The PECOS
software is available at https://libpecos.org.

Keywords: Extreme Multi-label Text Classification, Large Output Space Learning, Transform-
ers

1. Introduction

Many challenging problems in modern applications amount to finding relevant results from an enor-
mous output space of potential candidates, for example, finding the best matching product from a
large catalog or suggesting related search phrases on a search engine. The size of the output space
for these problems can range from millions to billions, and can also be infinite in some applications.
For example, when suggesting related searches, the output space is the set of valid search phrases
which is clearly infinite; many valid search phrases have already been seen by the search engine, but
on emerging topics a new search phrase may need to be synthesized.

Moreover, observational or training data is often limited for many of the so-called “long-tail”
of items in the output space. Given the inherent paucity of training data for most of the items
in the output space, developing machine learned models that perform well for spaces of this size
is challenging. We illustrate these challenges on a multi-label problem, where the goal is to assign
or predict labels for a new input instance. Consider the Wiki-500K dataset (Varma, 2019), where
the problem is to assign text labels to a Wikipedia page from a known label set. The left panel of
Figure 1 shows that only 2% of the labels have more than 100 “positive” training instances, while
the remaining 98% are “long-tail” labels with many fewer training instances. Due to this severe
data sparsity issue, it is challenging to design an effective multilabel strategy that assigns tail labels
to input instances.

Fortunately, items in the output space are often correlated thereby presenting the opportunity
to alleviate the data sparsity issue. In this paper, we exploit these correlations in the output space
and propose the Prediction for Enormous and Correlated Output Spaces (PECOS) framework, a
versatile and modular machine learning framework for solving prediction problems for very large
output spaces, and apply it to the eXtreme Multilabel Ranking (XMR) problem: given an input
instance, find and rank the most relevant items from an enormous but fixed and finite output space.
We propose a three phase framework for PECOS: (i) in the first phase, PECOS organizes the output
space using a semantic indexing scheme, (ii) in the second phase, PECOS uses the indexing to narrow
down the output space by orders of magnitude using a machine learned matching scheme, and (iii)
in the third phase, PECOS ranks the matched items using a final ranking scheme. The indexing and
matching phases alleviate the data sparsity issue by leveraging correlations across different items
in the output space thereby strengthening statistical signals. As an example, consider again the
Wiki-500K dataset where PECOS performs semantic indexing by clustering the labels; on the right
panel of Figure 1 we show the distribution of training data over the label clusters. Now, over 99%
of label clusters have more than 100 training instances; this allows transfer of training signals to tail
items and alleviates the data sparsity issue thus allowing PECOS to make better quality predictions.

For the critical matching phase, we investigate a recursive machine learned linear matching
strategy as well as a recursive deep learned neural matcher. When applied to eXtreme Multilabel
Ranking where the input instances are in textual form, we find that the recursive neural matcher
based on Transformer encoders gives state-of-the-art accuracy results; however the recursive Trans-
former matcher requires about two orders of magnitude increased training time than the recursive
linear matcher. For example, on a dataset where the output space is of size 2.8 million, the re-
cursive Transformer matcher results in a 6% increase in precision@1 (from 48.6% to 54.2%) over
the recursive linear matcher but takes 100x more time to train. Thus it is up to the practitioner
to evaluate the trade-offs and decide whether the increased training time and infrastructure cost is

2

https://libpecos.org


PECOS: Prediction for Enormous and Correlated Output Spaces

Figure 1: On the left, Wiki-500K shows a long-tail distribution of training data over the labels. Only
2.1% of the labels have more than 100 training instances, as indicated by the cyan blue regime. On
the right is the distribution of labels after our semantic label indexing is performed to form 8,192
label clusters; 99.4% of the clusters have more than 100 training instances, which mitigates the data
sparsity issue.

warranted for their application; indeed, the flexibility of the PECOS framework seamlessly allows
different strategies to be used.

Our contributions in this paper are summarized as follows:
• We propose the Prediction for Enormous and Correlated Output Spaces (PECOS) framework,

a versatile and modular machine learning framework for solving prediction problems for very
large output spaces. The versatility of PECOS comes from our proposed three-phase approach:
(i) semantic label indexing, (ii) machine learned matching, and finally (iii) ranking.

• The flexibility of PECOS allows practitioners to evaluate the trade-offs between performance
and infrastructure cost to identify the most appropriate PECOS variant for their application.

• To exhibit the flexibility of PECOS, we propose three concrete realizations: (i) XR-LINEAR is
a recursive linear machine learned realization of our PECOS framework; (ii) X-TRANSFORMER
is a neural realization of the PECOS framework without recursive Transformer encoders;
(iii)XR-TRANSFORMER is a neural realization of the PECOS framework with recursive
Transformer encoders;

• We present detailed experimental results showing that PECOS yields state-of-the-art results
for XMR in terms of precision, recall, and computational time (training and inference).

Parts of this paper related to X-TRANSFORMER and XR-TRANSFORMER have appeared in Chang
et al. (2020b) and Zhang et al. (2021), respectively, while the part related to fast inference has ap-
peared in Etter et al. (2022).

This paper is organized as follows: we setup the problem formulation in Section 1.1. In Section 2,
we propose a three-phase framework for PECOS and describe each phase in detail. Next, we present
XR-LINEAR, a recursive linear machine learned realization in Section 3, and X-TRANSFORMER
and XR-TRANSFORMER, the neural realization for inputs in textual form in Section 4. We then
discuss the connections of PECOS to related work in Section 5. We present detailed experimental
results in Section 6 and conclude our paper in Section 7. The PECOS software is available at
https://libpecos.org.

1.1 Setting the Scene

In this paper, we focus on the eXtreme Multilabel Ranking (XMR) problem: given an input instance,
return the most relevant labels from an enormous label collection, where the number of labels
could be in the millions or more. One can view the XMR problem as learning a score function
f : X×Y → R, that maps an (instance, label) pair (x, `) to a score f(x, `), where ` ∈ Y. The function

3

https://libpecos.org


Yu, Zhong, Zhang, Chang, and Dhillon

f should be optimized such that highly relevant (x, y) pairs have high scores, whereas irrelevant pairs
have low scores. Many real-world applications are in this form. For example, in E-commerce dynamic
search advertising, x represents an item and ` represents a bid query on the market (Prabhu and
Varma, 2014; Prabhu et al., 2018). In open-domain question answering, x represents a question and
` represents an evidence passage containing the answer (Lee et al., 2019; Chang et al., 2020a). In the
PASCAL Large-Scale Hierarchical Text Classification (LSHTC) challenge, x represents an article
and y represents a category in the hierarchical Wikipedia taxonomy (Partalas et al., 2015).

Formally speaking, in an XMR problem, we are given a training dataset {(xi,yi) : i = 1, . . . , n},
where xi ∈ Rd is a d-dimensional feature vector for the i-th instance, and yi ∈ {0, 1}L denotes the
relevant labels for this instance from an output space Y ≡ {1, . . . , `, . . . , L} with L labels. In a typical
XMR problem, the number of instances n, the number of instance features d, and the number of
labels L can all be in the millions, or larger. We also use X = [x1, . . . ,xi, . . . ,xn]> ∈ Rn×d to denote

the input feature matrix, and use Y = [y1, . . . ,yi, . . . ,yn]> ∈ {0, 1}n×L to denote the input-to-label
matrix.

The scoring function f(x, `) : Rd × Y → R is to be learned from the given training data such
that f(x, `) maps an input (or instance) x and a label ` to a relevance score, which can be used to
identify labels most relevant to x from the output space Y. Since the top scores are the salient ones,
we further use fb(x) ⊂ Y to denote the top-b predicted labels for a given instance x, i.e.,

fb(x) = arg max
S⊂Y:|S|=b

∑
`∈S

f(x, `).

To evaluate the feasibility of f(·) for a given XMR problem, we need to consider the following
questions:

• Quality of fb(·): how well does fb(·) perform on an unseen input instance x?
• Training Efficiency: how efficient is the training algorithm in learning the parameters of f(·)?
• Inference Speed: how fast is the computation of fb(·) to serve real-time requests?
• Infrastructure Cost: how much do the training and inference procedures cost in terms of

computational resources?
As an example, using the vanilla linear one-versus-rest (OVR) approach (Bishop, 2006), the

scoring function can be defined on each label as follows:

f(x, `) = w>` x, ∀` ∈ Y. (1)

The parameter w` ∈ Rd for the `-th label may be obtained by solving a regularized binary classifi-
cation problem:

w` = arg max
w∈Rd

n∑
i=1

L(Yi`,w
>xi) +

λ

2
w>w, (2)

where L(·, ·) is a loss function and λ > 0 is a regularization hyperparameter. The overall parameter
space for this linear OVR approach is O(dL), the training time is L×Tbinary, and the inference time
is Ω(dL), where Tbinary is the time required to train a binary classifier. Usually, Tbinary is at least
linear in the number of nonzeros in the training data, which we denote by nnz(X).

Let us sketch a ballpark estimate of how long it would take to train an OVR model on the
Wiki-500K dataset with n = 1.5 million text training documents and L = 0.5 million output labels,
with average number of tokens in each document being around 1, 000. Further suppose that we use
logistic regression as our binary classifier and the term frequency-inverse document frequency (tfidf)

vectorizer with a vocabulary of size 2.5 million to form a sparse training matrix X ∈ R1.5·106×2.5·106

.
With such a training matrix X each logistic regression can be trained in about 50 seconds (Fan
et al., 2008; Hsieh et al., 2008).1 Note that the training time remains similar even if we use dense

1. Our 50 second estimate is obtained by extrapolating the running time in terms of nonzero entries from Hsieh
et al. (2008, Table 2).

4



PECOS: Prediction for Enormous and Correlated Output Spaces

embeddings to form a dense feature matrix X as nnz(X) might be even larger than the sparse
tfidf feature matrix. In this setting, the overall training time will be around 1.5 · 106 × 50 =

7.5 · 107 seconds = 7.5·107

(60×60×24×30) ≈ 29 months on 1 CPU and 1.8 months even with perfect 16-way

parallelization! Further, the full model would require a prohibitive amount of 2.5 · 106 × 0.5 · 106 ×
4 Bytes ≈ 5 TB disk space (assuming a single precision floating point format). Clearly such a
simple approach is not feasible for an XMR problem of this scale even with linear models. Note that
the simple deep learning extension to multi-label classification (e.g., binary cross entry or softmax
losses), which jointly learns parameters for all labels, only imposes more computational requirements.
Another important aspect is that the inference for the OVR approach is extremely slow when L is
large as the inference time has O(L) complexity. Clearly, both training and inference times and
memory are prohibitive for a simple OVR solution. In contrast, with PECOS, we are able to train a
dataset of this size (n = 1.5 · 106, d = 2.5 · 106, L = 0.5 · 106) in 5 hours on a 16 CPU machine with
the model requiring about 5 GB space. This PECOS model also allows inference in O(logL) time.

2. PECOS XMR Framework

In order to build a framework to solve general XMR problems, we borrow from the design of modern
information retrieval (IR) systems where the goal is to find the top few relevant documents for a
given query from an extremely large number of documents. IR can be regarded as a special XMR
problem with queries as inputs and documents as output labels. Furthermore, when both queries
and documents are in the same text domain, an efficient and scalable IR system such as Apache
Lucene2, typically consists of the following stages (Google, 2019); 1) lexical indexing: building an
efficient data structure in an offline manner to lexically index the documents by its tokens; 2) lexical
matching: finding the documents that contain this query; and 3) ranking: scoring the matched
documents, often using machine learning. This three stage design is crucial to any scalable IR
system that deals with a large number of documents.

Albeit scalable, an IR system cannot be easily generalized to handle general XMR problems
due to the following reasons. First, output labels for a general XMR problem might not have text
information so the lexical indexing approach is not applicable. Second, input instances and output
labels for a general XMR problem might not be in the same domain, for example, the inputs could
be images and the labels could be image annotations. Third, input instances for a general XMR
problem are usually in a feature vector form instead of in text form, so the indexing/matching
techniques in IR are not applicable.

Motivated by the design for IR systems, in PECOS, we propose a three-stage framework to solve
general XMR problems in a scalable and modular manner:

• Semantic Label Indexing: we organize the original label space Y, |Y| = L, so that semanti-
cally similar labels are arranged together. One way is to partition the labels into K clusters,
{Yk : k = 1, . . . ,K}, where K � L and each cluster Yk is a subset of labels which are “se-
mantically similar” to each other. Similar to lexical indexing in IR, semantic label indexing is
constructed in an offline manner before the training is done. Alternatives for semantic indexing
are an approximate kNN index structure.

• Machine-learned Matching: we learn a scoring function g(x, k) that maps an input x to relevant

indices/clusters denoted by an indicator vector m̂ ∈ {0, 1}K , where the k-th element m̂k = 1
denotes that the k-th index/cluster is deemed to be relevant for the input x.

• Ranking: we train a ranker h(x, `) to give final scores of candidate labels shortlisted by the
matcher (given by

⋃
k:m̂k=1

Yk). The efficiency of the method stems from only ranking O(K)

(� L) labels.

2. https://lucene.apache.org/

5



Yu, Zhong, Zhang, Chang, and Dhillon

Label 2

Label 11

Label 33

Label 37

Label 31

Label 75

Label 26

Label 86

Label 34

Label 5

Label 1

Label 65

. . .Cluster 1 Cluster 2

1. Semantic Label Indexing:
• Current indexing: Cluster labels

Cluster 1 Cluster 2 Cluster 3

Instance

Machine-learned
Matching

. . .

2. Machine-learned Matching:
• Find the most relevant clusters

Label 5 Label 86Label 34

Cluster 2

Instance

Ranking Model

Rank 1 Rank 2 Rank 3

. . .

3. Ranking:
• Rank labels in the 

matched clusters

Figure 2: Illustration of the three-stage PECOS framework for XMR.

With this three-stage framework, the inference complexity can be greatly reduced. For a given
input x, let b = nnz(m̂) be the number of matched indices/clusters given by g(x, k) and let
avg(|Yk|) = L/K be the average number of labels in each index/cluster. The inference complexity
is reduced to

K ×O(time to evaluate g(x, k))︸ ︷︷ ︸
matcher time

+ b× L

K
×O(time to evaluate h(x, `))︸ ︷︷ ︸

ranker time

.

With an appropriate choice of K and b, the overall inference time complexity can be drastically
reduced. For example, assuming linear models that have time complexity O(d) for both g(x, k) and
h(x, `), if K =

√
L, the time complexity for inference is reduced to O(b×

√
L× d) from O(L× d),

which is the time complexity of inference for a vanilla linear OVR model. Later in Section 3, we will
show that this time complexity can be further reduced to O(b× logL× d) by a recursive approach.

It is worthwhile to mention that this framework also alleviates the data sparsity issue that is
a major issue in XMR problems. By using clustering for semantic label indexing, tail labels (i.e.,
labels with fewer positive instances) are clustered with head labels (i.e., labels with more positive
instances). This allows the information from head labels to be “transferred” to tail labels using our
approach. As a result, most indices (or clusters) contain more positive instances. For example, the
right panel of Figure 1 shows the number of positive instances for each index/cluster after semantic
label indexing with K = 8, 192 clusters for an XMR dataset with L = 500, 000 labels. We can see
that 99.4% of the clusters contain more than 100 training instances.

We now discuss each of the semantic indexing, matching and ranking phases in greater detail.

2.1 Semantic Label Indexing

Inducing label clustering with semantic meaning brings several advantages to our framework. The
number of clusters K is typically set to be much smaller than the original label space L. Our machine
learned matcher g(x, k) then needs to map the input to a cluster, which itself is an induced XMR
sub-problem where the output space is of size K. This significantly reduces computational cost and
mitigates the data sparsity issue illustrated in Figure 1. Furthermore, label clustering also plays a
crucial role in the learning of the ranker h(x, `). For example, only labels within a cluster are used to
construct “hard” negative instances for training the ranker (more details are in Section 2.3). During
inference, ranking is only performed for labels within the top-b clusters predicted by our machine
learned matcher g(x, k). In some XMR applications, labels may come with some meta information,
such as taxonomy or category information which can be used to naturally form a semantic label
clustering. However, when such information is not explicitly available, we need to think about how
to effectively perform semantic label indexing.

6



PECOS: Prediction for Enormous and Correlated Output Spaces

There are two key components to achieve a good semantic label indexing: label representations
and indexing/clustering algorithms.

2.1.1 Label Representations

In general, label representations or label embeddings should encode the semantic information such
that two labels with high semantic similarity have a high chance to be grouped together. We use
{z` : ` ∈ Y} to denote the label representations. If meta information is available for labels, we can
construct label representations directly from that information. For example, if labels come with
meaningful text descriptions such as the category information for Wiki pages, we can use either
traditional approaches such as term frequency-inverse document frequency (tfidf) or recent deep-
learning based text embedding approaches such as Word2Vec (Mikolov et al., 2013), ELMo (Peters
et al., 2018) to form label representations. If labels come with a graph structure such as co-purchase
graphs among items or friendship among users, one can consider forming graph Laplacians (Smola
and Kondor, 2003) or graph convolution neural networks (Wu et al., 2019) to obtain label represen-
tations. Here, we present a few alternative ways to represent labels when such meta information is
not available.

Label Representation via Positive Instance Indices (PII). PII is a simple approach to
represent each label by the membership of its instances:

zPII` :=
ȳ`
‖ȳ`‖

, ` ∈ Y,

where ȳ` ∈ {0, 1}n is the `-th column of the instance-to-label matrix Y .
Label Representation via Positive Instance Feature Aggregation (PIFA). In PIFA, each

label is represented by aggregating feature vectors from positive instances:

zPIFA` =
v`
‖v`‖

, where v` =

L∑
i=1

Yi`xi =
(
X>Y

)
`
, ` ∈ Y,

where xi is the feature representation of the i-th training instance, and X = [x1, . . . ,xi, . . . ,xn]
>

is
the training instance matrix. Note that the dimension of PIFA representations is d, which is different
from the dimension of PII representations n.

Label Representation via Label Features in addition to PIFA (PIFA + LF). If a label
feature matrix Z̃ = [z̃1, . . . , z̃`, . . . , z̃L]> ∈ Rd×L is given and z̃` and xi are in the same domain, we
can consider a weighted combination of z̃` and PIFA representation as follows:

zPIFA + LF
` = (1− α`)z̃` + α`z

PIFA
` =

(
(1− α`)Z̃ + α`

(
X>Y

))
`
.

Label Representation via Graph Spectrum (Spectral). In Spectral, we consider the instance-
to-label matrix Y as a bi-partite graph between instances and labels. We can then follow the co-
clustering algorithm described in Dhillon (2001) to obtain spectral representations for labels. In
particular, we first form a normalized label matrix Ỹ as follows

Ỹ = D
−1/2
1 Y D

−1/2
2 ,

where D1 ∈ Rn×n, and D2 ∈ RL×L are degree diagonal matrices such that (D1)ii =
∑

` Yi` and
(D2)`` =

∑
i Yi`. Next, let

{
(ut,vt) : ut ∈ Rn, vt ∈ RL, t = 2, . . . , k + 1

}
be the singular vector

pairs (left and right) corresponding to the 2nd,. . ., k + 1-st largest singular values of Ỹ . Following
Dhillon (2001, Eq. 12), we can construct a k-dimensional label representation matrix as follows:

zSpectral` = the `-th row of Z, Z = D
−1/2
2 [v2, . . . ,vk+1]> ∈ RL×k.

See Figure 3 for an illustration of the indexing matrix with L = 9 labels and K = 3 clusters.

7



Yu, Zhong, Zhang, Chang, and Dhillon

Cluster 1

1 2 3 4 5 6 7 8

Cluster 2

9

Cluster 3 𝐶
1

1

1

1

1

1

1

1

1

𝐿 = 9

𝐾 = 3

𝒄& = [1, 1, 1, 2, 3, 2,3, 2, 3]

Labels:  𝒴 = {1,2, … , 9}

𝒴! = {1,2,3} 𝒴" = {4,6,8} 𝒴# = {5,7,9}

Figure 3: Illustration of Label Indexing/Clustering. c ∈ {1, 2, 3}9 denotes the clustering vector with

c` being the index of the cluster containing the `-th label, while C ∈ {0, 1}9×3
denotes the cluster

indicator matrix (with same information as c).

2.1.2 Semantic Indexing Through Clustering

Once the label representations {z` : ` ∈ Y} are decided, we can get a semantic indexing scheme using
an appropriate clustering. Let C = {1, . . . ,K} denote the set of K label clusters. The purpose of our
clustering algorithm is to learn a label-to-cluster assignment: c ∈ CL, where c` denotes the index of
the cluster containing the label `. Equivalently, the clustering assignment can also be represented
by the indexing matrix C ∈ {0, 1}L×K as follows:

Clk =

{
1, if k = c`,

0, otherwise.
(3)

Below we give the objective used in two popular K-Means (Duda et al., 2012) and Spherical
K-Means (Dhillon and Modha, 2001) clustering algorithms:

cK-MEANS = arg min
c∈CL

∑
k∈C

∑
`:c`=k

‖z` − µk‖2, where µk :=

∑
`:c`=k z`

|{l : c` = k}|
, (4)

cSK-MEANS = arg max
c∈CL

∑
k∈C

∑
`:c`=k

z>` µk

‖z`‖‖µk‖
, where µk :=

∑
l:c`=k z`∥∥∑
`:c`=k z`

∥∥ . (5)

Standard K-Means/Spherical K-Means algorithms have O(nnz(Z)×K×# iterations) computa-
tion complexity, where Z is the label representation matrix. This can still be very time consuming if
K is also large (say K = 104). In PECOS, we provide an implementation which utilizes a recursive
B-ary partitioning approach to further improve the efficiency of label clustering, see Algorithm 1
The high level idea is to apply B-ary partitioning on the label set by either B-Means or spherical
B-Means recursively. B is usually chosen as a small constant such as 2 or 16. An illustration with
B = 2 is given in Figure 4. The time complexity of Algorithm 1 is O(nnz(Z)×logB K×# iterations),
which is much lower than directly clustering into K clusters, which would have time complexity that
is linear in K.

8



PECOS: Prediction for Enormous and Correlated Output Spaces

Algorithm 1 Clustering with B-ary partitions

Input:

— Y: label indices and {z` : ` ∈ Y} represen-
tations,

— K = BD−1: number of clusters.

Output: indexing matrix: C ∈ {0, 1}L×K

• Y(1)
1 ← Y

• For t = 1, . . . , D

— For k = 1, . . . , Bt−1

* perform either B-Means or Spherical B-

Means to partition Y(t)
k into B clusters{

Y(t+1)
B(k−1)+j : j = 1, . . . , B

}
• construct C with Clk =

{
1 if ` ∈ Y(D+1)

k ,

0 otherwise.

Cluster 1 Cluster 2 Cluster 3

Label representations
{𝒛!: ℓ ∈ 𝒴}

Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

𝒴"
(") = 𝒴

𝒴"
(%) 𝒴%

(%)

𝒴"
(&) 𝒴%

(&) 𝒴&
(&)

𝒴'
(&)

𝒴"
(') 𝒴%

(') 𝒴&
(') 𝒴'

(') 𝒴(
(') 𝒴)

(') 𝒴*
(') 𝒴+

(')

Figure 4: Illustration of label clustering with recursive
B-ary partitions with B = 2.

2.1.3 Other Indexing Methods

In this paper, we mainly focus on label clustering as the algorithmic choice for the semantic label
indexing phase. There are other strategies which might be promising alternatives for PECOS, which
we leave as direction for future exploration. When using typical clustering algorithms like K-Means
each label is assigned to exactly one label cluster. However, labels in real world applications might
have more than one semantic meaning. For example, “apple” could be either a fruit or a brand. Thus,
one interesting direction to explore is to adopt overlapping clustering algorithms such as Whang et al.
(2019) for semantic label indexing. Recently, Liu et al. (2021) propose to find overlapped clusters
by jointly optimizing cluster assignments and model parameters of partition-based XMR models,
which is complementary to our PECOS framework.

In addition, we can use various approximate nearest neighbor (ANN) search (Li et al., 2019)
schemes as the basis of semantic indexing. There is a successful attempt by Jain et al. (2019)
to apply a state-of-the-art approx ANN search algorithm called hierarchical navigable small world
(HNSW) graphs (Malkov and Yashunin, 2020) for the XMR problem when the feature vectors are
low-dimensional dense embeddings. The ability of variants of the HNSW data structure such as
Rand-NSG (Subramanya et al., 2019) to quickly get a small match set for any given input would be
very suitable for the three-stage design framework of PECOS.

2.2 Machine Learned Matching

The matching stage in PECOS is crucial since the final ranking stage is restricted to the labels
returned by the matcher; hence if the matcher fails to identify the candidate labels accurately,
performance can greatly suffer. In general, the input features xi and label representations z` could
be in different domains and have different dimensionalities. Thus, in the machine learned matching
stage, we need to learn a general matcher function g(x, k) which finds the relevance between a given
instance x and the k-th label cluster. This matching scoring function can then be used to obtain
the top-b label clusters:

gb(x) = arg max
S⊂C:|S|=b

∑
k∈S

g(x, k).

Given a semantic label indexing denoted by the clustering matrix C ∈ {0, 1}L×K , the original
XMR problem with the output space Y morphs to an XMR sub-problem with a much smaller output

9



Yu, Zhong, Zhang, Chang, and Dhillon

space C of sizeK. In particular, we can transform the original training dataset {(xi,yi) : i = 1, . . . , n}
to a new dataset {(xi,mi) : i = 1, . . . , n}, wheremi ∈ {0, 1}K = binarize

(
C>yi

)
denotes the ground

truth input-to-cluster assignment for the i-th training instance. Similar to the instance-to-label ma-
trix Y , we can stack the ground truth {mi} into the ground truth input-to-cluster assignment matrix

M = [m1, . . . ,mi, . . . ,mn]> ∈ {0, 1}n×K . For any given indexing matrix C, the ground truth M
can be obtained by

M = binarize(M̃), where M̃ = Y C,

where Mik = I
[∑

`∈Y Yi`Clk > 0
]
. Note that if we wanted a weighted input-to-cluster matrix, we

could work with M̃ instead.
Thus, the machine learned matcher reduces to an XMR problem with a smaller output space

of size K. Hence, we can apply any existing multi-label classifier which can handle K labels. For
example, if K is not very large, we can consider the aforementioned vanilla one-versus-rest (OVR)
approach to learn the matcher g(x, k). If K is still too large, we can recursively apply the three-
stage PECOS framework to learn the matcher. We will give an example of this recursive PECOS
approach, called XR-LINEAR, in Section 3.

Note that if the cluster of a relevant label is not correctly predicted by the matcher, this relevant
label does not have a chance to be surfaced by our ranker at all. Thus, in Section 4, we consider
using more advanced deep learning based approaches to learn the matcher, especially when the input
instances are in text form.

2.3 Ranking

The goal of the ranker h(x, `) is to model the relevance between the input x and the shortlisted labels
obtained from the relevant label clusters identified by our matcher gb(x). Informally, the shortlist
of candidate labels is the set of label clusters. Given a label-to-cluster assignment vector c ∈
{1, . . . ,K}L, where the k-th cluster is given by Yk = {` ∈ Y : c` = k}, the “shortlisting” operation
for an input x can be formally described by s(m̄|c) as follows:

s(m̄|c) =
⋃

k:m̄k 6=0

Yk, (6)

where m̄ ∈ {0, 1}K is the cluster indicator vector for the input x. Here m̄k = 1 denotes that the k-th
cluster is considered relevant to the input x. In general, for the i-th input xi, this indicator vector
m̄i can come from either the ground truth input-to-cluster assignment {mi} defined in Section 2.2 or
the relevant clusters predicted by our machine learned matcher {m̂i}, where the details are provided
in Section 2.3.1. Note that, given the clustering, mi is an induced static assignment while the choice
of m̂i from the machine learned matcher depends on the predictions made by the matcher. In
particular, we use m̂ to denote the indicator vector of label clusters predicted by our matcher gb(x):

m̂k =

{
1 if k ∈ gb(x),

0 otherwise.

The ideal ranker h(x, `) for the given matcher gb(x) should satisfy the property:

h(x, `1) > h(x, `2)⇔ `1 �x `2 ∀`1, `2 ∈ s(m̂|c), (7)

where `1 �x `2 denotes that label `1 is more relevant than label `2 for the input x in the ordering
of the ground truth.

In general, one can choose any ML ranking model as the ranker. Common choices include linear
models, gradient boosting decision trees (GBDT) and neural nets. Choices of the loss function
include point-wise, pair-wise, and list-wise ranking losses. The modeling of PECOS allows for easy
inclusion of various rankers.

10



PECOS: Prediction for Enormous and Correlated Output Spaces

2.3.1 Hard Negative Sampling for Ranker Training in PECOS

One of the key components in learning a ranking model is to identify the sets of positive (relevant)
and negative (irrelevant) labels for each instance. Unlike most standard ranking problems where
positive and negative labels for each instance are explicitly provided in the training dataset, for each
instance in an XMR problem, we are usually provided a small number of explicit relevant labels and
abundant implicit irrelevant labels. Obviously, including all implicit irrelevant labels as negative
labels to train a ranker is not feasible as it greatly increases training time with little increase in
accuracy. Hence, we propose to include only hard negatives, by restricting them to be irrelevant
labels from relevant label clusters for each instance. In particular, for a given instance xi, letting
m̄i be the indicator vector for the relevant clusters, we have

positives(xi) = {` ∈ s(m̄i|c) : Yi` = 1},
negatives(xi) = {` ∈ s(m̄i|c) : Yi` 6= 1}, (8)

where s(m̄i|c) is as in (6), and gives the shortlist candidate set of labels for training instance xi.
Depending on the choice of the indicator vectors {m̄i}, we have the following hard negative

sampling schemes.
Teacher Forcing Negatives (TFN). Teacher forcing (Williams and Zipser, 1989; Lamb et al.,

2016) is a known training strategy used in recurrent neural networks (RNN), where the ground
truth for earlier outputs is fed back into RNN training to be conditioned on for the prediction
of later outputs. In our framework, we use teacher forcing negatives (TFN) to denote the hard
negative sampling scheme where the ground-truth input-to-cluster assignment for the input xi is
used to identify hard negative labels for the training of the ranker. In particular, the input-to-cluster
assignment is chosen as follows:

m̄i ←mi, ∀i,

where mi is the ground-truth input-to-cluster assigned used to train our matcher in Section 2.2.
As discovered in Bengio et al. (2015), the teacher forcing scheme can lead to a discrepancy be-
tween training and inference for recurrent models. In particular, during inference, the unknown
ground truth is replaced by the prediction generated by the model itself. This discrepancy leads to
sub-optimal performance for the models trained with the teacher forcing strategy. Similarly, this
discrepancy also appears in the TFN sampling scheme for inferring our hard negatives as mi is
independent of the performance of our matcher.

Matcher Aware Negatives (MAN). An alternative strategy is to include matcher-aware hard
negatives for each training instance. In particular, for each input xi, we can use the instance-to-
cluster indicator m̂i predicted by our matcher:

m̄i ← m̂i, ∀i.

In practice, we observe that a union of TFN and MAN yields the best performance:

m̄i ← binarize(mi + m̂i), ∀i.

See Figure 5 for an illustration of how to identify the set of shortlisted labels in order to train the
OVR classifier for each label, given an input-to-cluster indicator vector m̄i.

2.3.2 A One-Versus-Rest Linear Ranker

In general, we can use any ranker with a corresponding ranking loss function in PECOS. Here we
present a simple one-versus-rest linear ranker with a point-wise ranking loss. In particular, the linear
ranker is parametrized by a matrix W = [w1, . . . ,w`, . . . ,wL] ∈ Rd×L of parameters as follows.

h(x, `) = w>` xi, ` ∈ Y.

11



Yu, Zhong, Zhang, Chang, and Dhillon

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

𝑌

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1

1 0 1 0 1 0 1 0 1 1 1 1 0 0 1

1 1 1 0 0 0 1 0 1 1 0 0 0 1 1

1 0 0 1 1 1 1 0 0 0

1 0 1 1 0 0 0 0 1 0

0 0 1 1 0 0 1 0 0 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

TFN:
𝑀# ← 𝑀 = binarize(𝑌𝐶)

𝒎# 1
𝒎# 2
𝒎# 3
𝒎# 4
𝒎# 5
𝒎# 6

𝒙1
𝒙2
𝒙3
𝒙4
𝒙5
𝒙6

𝒙1
𝒙2
𝒙3
𝒙4
𝒙5
𝒙6

𝒄 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

𝑠 𝒎# 4 𝒄 = 𝒴2 ∪ 𝒴4

𝒴𝟏 𝒴𝟐 𝒴𝟑 𝒴𝟒

	𝑌A

Figure 5: Illustration of Hard Negative Sampling for Ranker Training in PECOS. In this toy XMR
example, we have n = 6 instances, L = 20 labels, and K = 4 label clusters. Y shown on the
top, denotes the ground-truth input-to-label matrix where explicit positives are denoted by 1. c ∈
{1, . . . , 4}20

is the label-to-cluster assignment vector for the label clustering {Yk : k = 1, . . . , 4}. We
illustrate how to identify the set of shortlisted labels given a input-to-cluster indicator vector mi.
(TFN chooses M̄ to be M : M̄ ← M = [· · ·mi · · · ]> is the matrix obtained by stacking {mi}).
Taking x4 as an example, the positive labels are y+

4 = {6, 9, 10, 16, 17}. m̄4 is an example instance-
to-cluster indicator where only the second and the fourth clusters are chosen: m4 ← [0, 1, 0, 1]>. As a
result, only labels from the shortlisted candidates s(m̄4|c) = Y2∪Y4 = {6, 7, 8, 9, 10, 16, 17, 18, 19, 20}
are considered in the training of the ranker for instance x4. In particular, the negative labels for x4,
denoted by cells with explicit zeros on the bottom, become s(m̄4|c) \ y+

4 = {7, 8, 18, 19, 20} instead
of Y \y+

4 . The choice of M̄ in above example follows teacher forcing negatives (TFN): M̄ ←M (i.e.,
m̄i ←mi, ∀i), which denotes that the ground-truth input-to-cluster indicator mi = binarize(C>yi)
is used to induce hard negatives for each input. See Section 2.3.1 for more discussion about various
hard negative sampling schemes.

Given an indexing vector c and an instance-to-cluster matrix M̄ , the parameters W can be obtained
by solving the following optimization problem:

min
W

n∑
i=1

∑
`∈s(m̄i|c)

L(Yi`,w
>
` xi) +

λ

2

L∑
`=1

‖w`‖2, (9)

where L(·, ·) is a point-wise loss function such as

Lhinge(y, h) = max{0, 1− ẏh},

Lsquared-hinge(y, h) = max{0, 1− ẏh}2,
Llogistic(y, h) = log{1 + exp(−ẏh)},

12



PECOS: Prediction for Enormous and Correlated Output Spaces

where ẏ = 2y − 1, which maps y from {0, 1} to {−1,+1}. Due to the choice of point-wise loss, (9)
can be decomposed into L independent binary classification problems as follows.

min
W

n∑
i=1

∑
`∈s(m̄i|c)

L(Yi`,w
>
` xi) +

λ

2

L∑
`=1

‖w`‖2

= min
W

∑
`∈Y

 ∑
i:M̄ic`

6=0

L(Yi`,w
>
` xi) +

λ

2
‖w`‖2


=

min
w`

∑
i:M̄ic`

6=0

L(Yi`,w
>
` xi) +

λ

2
‖w`‖2 : ` ∈ Y

 (10)

As a result, w` for label ` can be obtained, independent of other labels, by any efficient solver for
the binary classification problem such as stochastic gradient descent (SGD) or LIBLINEAR (Fan
et al., 2008). In the example of Figure 5, cells with colored background in the bottom Y matrix refer
to shortlisted labels for each input instance. For example, to train the OVR classification for label
2, i.e., to compute w2, we only include inputs corresponding to the cells with colored background
in the second column of the bottom Y matrix: {(x1, Y12 = 1), (x2, Y22 = 0), (x6, Y62 = 0)}. We
use Ỹ to denote the bottom sub-matrix containing only cells with colored background. Thus the
training time for our approach is reduced to nnz(Ỹ ) in contrast to n× L which would be needed if
all instances that are not positive were used as negatives in the training procedure. Furthermore,
as each binary classifier can be independently trained, we can apply various techniques to sparsify
w` before we store it in memory, for example, by dropping zeros and small entries in the computed
w` parameters (Babbar and Schölkopf, 2017; Prabhu et al., 2018). It is worth mentioning that,
in practice, L independent binary classification problems can be computed in an embarrassingly
parallel manner to fully utilize the multi-core CPU design in modern hardware.

2.4 Model Ensembling

Model ensembling is a common and effective approach to further improve the performance of machine
learning models. There are two key components in model ensembling: how to ensemble and what
to ensemble. In terms of how to ensemble, many simple strategies are considered and shown to be
effective in many recent XMR approaches such as Prabhu et al. (2018); You et al. (2019). Options
include the averaging of the relevance score from individual models, the count of being relevant from
individual models, or the average candidate rank from individual models. In terms of what models
to ensemble, for XMR, the existing literature only uses limited options. Indeed, all of them consider
homogeneous models obtained by varying the random seed in some phases of the training procedure,
such as the random seed used to initialize the K-Means clustering or the initial parameters (Prabhu
et al., 2018).

Due to its flexible three phase framework, PECOS offers a much more sophisticated ensembling
possibility. Thus, we propose to obtain an ensemble of heterogeneous models obtained by various
combinations of different label representations, different label clusterings, different semantic indexing
schemes, different input feature representations, different machine learned matchers, and different
rankers. We have found that with the same number of models to ensemble, an ensemble of heteroge-
neous models usually yields better performance than ensembling homogeneous models. Due to the
modularity and the flexibility of PECOS, this further allows us to explore various combinations for
each XMR application.

13



Yu, Zhong, Zhang, Chang, and Dhillon

2.5 Inference

In the inference phase of a PECOS XMR model, we have a few options to obtain the final relevance
score f(x, `). In general, it can be characterized as follows.

f(x, `) =

{
σ(g(x, c`), h(x, `)) if ` ∈ s(m̂|c),
inf{σ(g, h) : g, h ∈ R} otherwise,

(11)

where σ(g, h) is a transform of the relevance scores from our matcher g(x, c`) and ranker h(x, `).
The time complexity of inference is

O(time to compute gb(x) + b× L

K
× time to compute h(x, `)),

where b is the number of clusters predicted by our matcher (i.e., the so-called beam size), and L/K
is the average number of labels in each label cluster Yk.

Here we discuss a few options for the transform function σ(g, h). One option is to only use the
ranker score; using the matcher g(x, `) only to shortlist the label candidates in s(m̂|c), i.e.,

σ(g, h) = h. (12)

Another option is to consider the Lp-hinge transformation, i.e.,

σ(g, h) = exp(−max(1− g, 0)p)× exp(−max(1− h, 0)p), (13)

where p = {1, 2, . . .}. The other option is to convert both g and h into probability values and
multiply the two probability values as the final score, e.g.,

σ(g, h) = sigmoid(g)× sigmoid(h).

In this case, one can give a probabilistic interpretation to the final value f(x, `) as follows:

f(x, `) = Prob(c`-th cluster | x)× Prob( `-th label | x, c`),

where c` is the label cluster containing label `.

3. XR-LINEAR

In this section, we present XR-LINEAR, a recursive realization of our PECOS framework proposed
in Section 2. In particular, we exploit the property that the sub-problem handled by the matcher is
also an XMR problem with a smaller output space of size K. Thus, we can further apply the three
stage PECOS framework recursively.

Let {X,Y } be the training matrices for the original XMR problem with X ∈ Rn×d and Y ∈
{0, 1}n×L. Given an indexing matrix C ∈ {0, 1}L×K , the ranker h(x, `) can be trained on {X,Y }
with negatives induced by M = binarize(Y C) and/or M̂ , which is the predicted instance-to-cluster
matrix by the matcher gb(x) on the training feature matrix X. For the choice of ranker in XR-
LINEAR, we consider the simple linear ranker proposed in Section 2.3.2. On the other hand, the
training data to train the matcher g(x, k) is {X,M}. If K is small enough, we can apply an OVR
ranker or classifier to obtain g(x, k); otherwise, we can treat {X ′ = X,Y ′ = M} as a smaller XMR
problem and apply the PECOS 3-stage framework to learn the matcher. In particular, what we need

is a smaller indexing matrix C ′ ∈ {0, 1}L
′×K′

, where L′ = K is the size of the output space of the
matcher.

In XR-LINEAR, we apply the above procedure recursively D times. In particular, let{
Ct ∈ {0, 1}Kt×Kt−1 : K0 = 1, KD = L, t = 1, . . . , D

}
(14)

14



PECOS: Prediction for Enormous and Correlated Output Spaces

Matcher RankerIndexer

Matcher RankerIndexer

Matcher RankerIndexer

One-Versus-Rest

𝑊 (") ∈ ℝ$×&!𝐶(") ∈ {1}&!×&"'"

𝐶(() ∈ {0,1}&#×&!

𝐶()) ∈ {0,1}&$×&#

𝐶(*) ∈ {0,1}+'&%×&$

𝑊(') ∈ ℝ)×+!

𝑊 ()) ∈ ℝ$×&$

𝑊(*) ∈ ℝ$×&%'+

𝒟(*) = {𝑋, 𝑌 * = 𝑌 ∈ {0,1},×+'&%}

𝒟()) = {𝑋, 𝑌 ) = 𝑌(*)𝐶(*) ∈ {0,1},×&$}

𝒟(() = {𝑋, 𝑌 ( = 𝑌())𝐶()) ∈ {0,1},×&#}

𝒟(") = {𝑋, 𝑌 " = 𝑌(()𝐶(() ∈ {0,1},×&!}

Figure 6: Illustration of XR-LINEAR.

be a series of indexing matrices used for each of the D XMR sub-problems. When t = D, it
corresponds to the original XMR problem on the given training dataset

{
X(D) = X,Y (D) = Y

}
.

When t = D − 1, we construct the XMR sub-problem induced by the matcher with the training
dataset

{
X,binarize

(
Y DCD

)}
. In general, the sub-problem for the matcher at the t-th layer forms

a full XMR problem at the (t−1)-st layer. When t = 1, the output space of the XMR sub-problem is
small enough to be solved directly by an OVR ranker. In Algorithm 2, we present detailed steps on
how to apply the three stage PECOS framework D times in order to solve the original XMR problem.
In Figure 6, we give an illustration by using a toy example with D = 4. It is worth mentioning two
special cases of XR-LINEAR. When D = 2, XR-LINEAR is the same as the standard non-recursive
three stage PECOS with an OVR linear matcher and a linear ranker. On the other hand, when
D = 1, XR-LINEAR is equivalent to vanilla linear OVR over all the labels.

Model Sparsification. An XR-LINEAR model is composed of D rankers h(t)(x, `) parametrized
by matrices W t ∈ Rd×Kt . As mentioned earlier in Section 1, naively storing the entire dense
parameter matrices is not feasible. To overcome a prohibitive model size, we apply a common
strategy (Babbar and Schölkopf, 2017; Prabhu et al., 2018) to sparsify W (t). In particular, after

the training process of each binary classification to obtain w
(t)
` , we perform a (hard) thresholding

operation to truncate parameters with magnitude smaller than a user given value ε ≥ 0 to zero.
We can choose ε approximately so that the parameter matrices can be stored in the main memory.
Model sparsification is essential to avoid running out of memory when both the number of input
features d and the number of labels L are large. In addition to hard thresholding, we also explored
the option to include ‖w‖1 as the regularization and found that hard thresholding yields slightly
better performance than L1 regularization.

Choice of Indexing Matrices. XR-LINEAR described in Algorithm 2 is designed in a way to
take any series of indexing matrices of the form specified in (14), which in fact can represent a
family of hierarchical label clusterings. This means that if the original label set Y comes with a
hierarchy which can be represented in a form as (14), this hierarchy can be directly used within
XR-LINEAR. On the other hand, when such a label hierarchy is not available, we can still apply the

15



Yu, Zhong, Zhang, Chang, and Dhillon

Output Space: 𝒴

… …

…

……

…

…

Input: 𝒙

…

…

Figure 7: Illustration of the inference of XR-LINEAR using beam search with beam width b = 2
to obtain 4 relevant label predictions for the given input x. The circular internal nodes denote
label clusters at different levels of the label hierarchy, while the rectangular leaf nodes denote labels
` ∈ Y. We indicate in green color the label clusters which have been traversed during the beam
search. Finally, the labels found relevant for the input x are the green rectangular leaf nodes.

semantic label indexing (clustering) approaches described in Section 2.1 to obtain a series of indexing
matrices. In particular, as a byproduct of Algorithm 1 with B-ary partitions, when K = BD−1 a
series of indexing matrices are naturally formed as follows. C(D) = C ∈ {0, 1}L×K and for t < D,

C(t) ∈ {0, 1}B
t×Bt−1

with(
C(t)

)
lk

=

{
1 if

⌈
`
B

⌉
= k,

0 otherwise
, ∀ 1 ≤ ` ≤ Bt+1, 1 ≤ k ≤ Bt.

This is essentially balanced hierarchical label clustering. With the choice of this hierarchical clus-
tering, the size of the output spaces in the D XMR problems are

KD = L,KD−1 = BD−1,KD−2 = BD−2, · · · ,K1 = B1,

respectively.

Choice of Negative Sampling Schemes and Transform functions XR-LINEAR in Algo-
rithm 2 is flexible to adopt a different choice of negative sampling schemes and transform functions
σ(t)(g, h) at each layer. In general, the best choices for all the layers are data dependent and can be
obtained via a proper hyper-parameter tuning. After some explorations, we observe that the follow-
ing choice gives reasonably good performance among all the datasets we tried: TFN with L3-hinge
transformation (13) for the first D − 1 layers, and TFN + MAN with the shortlisting transform
function (12) for the D-th layer.

3.1 Efficient Inference for XR-LINEAR

With the above choice of indexing matrices,Choice of Negative the inference for XR-LINEAR can
be made very efficient with beam search. Beam search is a heuristic search algorithm to explore a

16



PECOS: Prediction for Enormous and Correlated Output Spaces

0      1      2      3

Labels

Features

Label-indexed

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Feature-indexed

0
2
5
8
13

Doubly-Sparse

Sparse Feature vector
Sparse Label vector

Figure 8: Sparse Data Structures for the weight matrix W ∈ Rd×|Y| in a label cluster, Y. The
memory requirements from left to right are O(|Y| + nnz(W )), O(d + nnz(W )) and O(nnz(W ))
respectively.

directed graph (hierarchical label tree in our case) with a limited memory requirement. In particular,
beam search is a variant of breadth-first search which only stores at most b states at each level to
further expand, where b is also called beam size. In Figure 7, we give an illustration of how beam
search works to perform inference in an XR-LINEAR model. Let Th be the time to compute
h(t)(x, `), the time complexity of inference via beam search with beam size b becomes

D∑
t=1

O
(

beam size× max
1≤k≤Bt

∣∣∣Y(t)
k

∣∣∣× Th)

=

D∑
t=1

O
(
b× Kt

Kt−1
× Th

)
· · · due to the balanced partitions

= O
(
D × b×max

(
B,

L

BD−1

)
× Th

)
· · · due to the B-ary partitions.

We can see that if D and B are chosen such that L/BD−1 is a small constant (i.e., D = O(logB L))
such as 100, the overall time complexity of the inference for XR-LINEAR is

O(logL× b× Th),

which is logarithmic in the size of the original output space.

Efficient Ranking with Sparse Inputs. Now we focus on how to efficiently rank the retrieved
labels in real time when the XR-LINEAR model weights and the input vectors are sparse. For a
given input x, the score is defined as h(x, `) = w>` x, where w` is the weight vector for the `-th label.
For sparse input data, such as tfidf features of text input, x is a sparse vector. By enforcing sparsity
structure on the weight vectors during training, a key computational step becomes the multiplication
of a sparse matrix and a sparse vector. However, many existing XMR linear classifiers, such as
Parabel, are optimized for batch inference, i.e., the average time is optimized for a large batch of
testing data. In many applications, we often need to do real-time inference, where the inputs arrive
one at a time.

17



Yu, Zhong, Zhang, Chang, and Dhillon

Table 1: Time and memory complexity of the inference. Here b: beam size. nnz(ŵ): average number
of non-zeros of the weight vectors. D: the depth of the tree (D = O(logL)).

Data Structure Computational Complexity Memory Usage
Label-indexed b× (nnz(x) + nnz(ŵ))× (D + L/BD−1) nnz(ŵ)× L

Feature-indexed b× nnz(x)×D + b× nnz(ŵ)× (D + L/BD−1) nnz(ŵ)× L+ d×BD

Doubly-sparse b× nnz(x)×D + b× nnz(ŵ)× (D + L/BD−1) nnz(ŵ)× L

Here we propose a data structure called doubly-sparse representation for the weight vectors along
with an algorithm to improve the speed of the real-time inference. Given a label cluster Y ⊂ [L],
we aggregate the weight vectors in this cluster and form a weight matrix W = [w`]`∈Y ∈ Rd×|Y|,
where d is the number of features and |Y| is the number of labels in this cluster. In Figure 8, we
illustrate several data structures to store the weight matrix. In the label-indexed representation,
we store multiple (feature-index, value) pairs for each column of W . We call each column vector
as a sparse feature vector. Note that Parabel (Prabhu et al., 2018) implements the label-indexed
representation. In the feature-indexed representation, we store multiple (label-index, value) pairs
for each row of W . We call each row vector as a sparse label vector. Each row of the weight matrix
is recorded even if it is empty. In the doubly sparse representation, we store only the non-empty
sparse label vectors and the corresponding row indices.

Note that when the label cluster only contains a small set of labels and the feature dimension
is very large, the weight matrix will be very sparse, i.e., nnz(W ) < d, and the feature-indexed
representation will consume a lot of memory to store an empty vector for each feature. Therefore, to
achieve efficient real-time inference for a XR-LINEAR model, we propose to use the doubly sparse
representation, which is based on feature-indexed representation but only stores non-empty label
vectors. There are two data structures we can utilize to quickly find a given row index: 1) store the
row indices of the non-empty label vectors in a sorted array and use binary search, 2) use a hash
table to map the row indices to label vectors. For simplicity, we focus on using a hash table in this
paper.

Given an input data, x, and a weight matrix W , our goal is to calculate the scores for the
labels, i.e., W>x. In the feature-indexed representation, we can find the sparse label vector for
the index of any non-zero feature of the input x in a constant time, therefore, the computational
complexity is O(nnz(x) + nnz(W )). However, the memory requirement will be O(d + nnz(W ))
for each weight matrix. For some datasets, such as Wiki-500K (d ≈ 500, 000 and K ≈ 5, 000),
the total memory required can be huge. In the label-indexed representation, W>x consists of |Y|
inner products between two sparse vectors. As implemented in the Parabel code (Varma, 2019),
for every inner-product, it first transforms a sparse weight vector to a dense vector and then uses
(sparse-matrix, dense-vector) multiplication to calculate the inner product between the weight vector
and the input vector. Therefore, the computational complexity is O(|Y| × nnz(x) + nnz(W )). To
reduce both the computational complexity and memory requirement, we use a doubly-sparse weight
matrix. We still use (label-index, value) pairs to store each non-empty row in the weight matrix.
We use a hash table to map the feature indices to the non-empty rows. Although the hashing
step is slightly slower than direct memory access as in feature-indexed representation, it still has
an amortized constant time. Given a sparse input, we can get the corresponding rows from the
non-zero feature indices in constant time, therefore, the computational complexity for calculating
W>x is only O(nnz(x) + nnz(W )) while using O(nnz(W )) memory. We list the time and memory
complexity of the overall inference in Table 1.

In summary, feature-indexed representation is the fastest but takes too much memory when d is
very large. The doubly sparse representation is slightly slower than the feature-indexed representa-
tion due to the hashing step but is much more memory-efficient. Therefore, we recommend doubly
sparse representation and use it for the experimental results in Table 5 of Sec. 6.3. In Etter et al.

18



PECOS: Prediction for Enormous and Correlated Output Spaces

Text	sequence	𝒕 = {Tok!, … , Tok"}

vectorizer	𝛷#$$ 𝒕|Θ ∈ ℝ% ×

𝑊 ∈ ℝ%×'

=

Predicted	Scores	𝒚2 ∈ ℝ!×'

1 0 0 0 0 1 0 0 0 0 1 0

True	Scores	𝒚 = 𝑦! ,… 𝑦' from	end	task	
≈

Figure 9: Illustration of fine-tuning a pre-trained Transformer model such as BERT (Devlin et al.,
2019) to a given end task.

(2022), we apply doubly sparse representation (called Masked Sparse Chunk Multiplication in Etter
et al. (2022)) to different algorithms for sparse extreme multi-label ranking trees and achieve faster
inference than methods in Parabel (Prabhu et al., 2018) and NAPKINXC (Jasinska-Kobus et al.,
2020).

4. Deep Learned Matchers for Text Inputs

In this section, we present deep learned matchers for XMR problems with text inputs. Note that
unlike XR-LINEAR which can handle general inputs where the features are in vector form, the
techniques discussed in this section only apply to XMR problems with text inputs. Let ti denote the
text sequence associated with the i-th input. Let x = φ(t | Θ) denote a vectorizer function which
converts the input text sequence t to a d-dimensional feature vector x, where Θ is the parameter
controlling the vectorizer. For example, a term frequency-inverse document frequency (tfidf) vector-
izer, φtfidf(t | Θtfidf) is parameterized by a vocabulary V and the inverse document frequency of each
term {idf(v) : ∀v ∈ V}. For an XMR problem with text inputs, PECOS with a tfidf vectorizer works
reasonably well in our experience. However, the parameters Θ for traditional text vectorizers such
as tfidf are obtained using only the text of the training set and are independent from the supervision
Y provided in the training set.

Recently, deep pre-trained Transformers, e.g., BERT (Devlin et al., 2019) along with its many
successors such as XLNet (Yang et al., 2019) and RoBERTa (Liu et al., 2019), have led to state-of-
the-art performance on many NLP tasks, such as question answering, part-of-speech tagging, and
sentence classification with very few labels. Deep pretrained Transformer models provide a trainable
text vectorizer that can be rapidly fine-tuned on many downstream NLP problems by adding a task-
specific lightweight linear layer on top of the Transformer models as illustrated in Figure 9. In
particular, the text vectorizer from a given Transformer model can be represented as φdnn(t | Θ),
where Θ denotes the weights for the deep neural network architecture. Although the pretrained Θ is
usually obtained by learning a general language model on a large text corpus, it can be fined-tuned
on various downstream NLP tasks, such as those in the GLUE benchmark (Wang et al., 2019).

We consider incorporating such a trainable deep text vectorizer so we have a deep learned matcher:

gdnn(t, k) = w>k φdnn(t | Θ).

Note that the first argument of g is the text sequence t instead of the feature vector x. Recall that
the sub-problem to learn our matcher is also an XMR problem, where the training data is {X,M}.
Note that when we have millions of labels, using trainable deep vectorizers on the original problem

19



Yu, Zhong, Zhang, Chang, and Dhillon

{X,Y } would be prohibitive. If an OVR approach is used to learn the matcher, we can solve the
following fine-tuning problem to obtain the parameters for our deep learned matcher:

min
{wk},Θ

n∑
i=1

K∑
k=1

L
(
Mik,w

>
k φdnn(ti | Θ)

)
, (15)

where L(·, ·) is a loss function and M = binarize(Y C) is the instance-to-cluster matrix. In particular,
we use Lsquared-hinge loss in our experiments as it has shown better performance in existing XMR
work (Yen et al., 2017; Prabhu et al., 2018). Due to the use of a deep text vectorizer φdnn(t | Θ)
and having Θ as a trainable parameter in (15), we follow the providers of the pre-trained models
and use a variant of the Adam algorithm (Kingma and Ba, 2014) to solve (15). Below we summarize
our learnings in this exploration.

Choice of Deep Text Vectorizers. We consider three state-of-the-art pre-trained Transformer-
large-cased models (i.e., 24 layers with case-sensitive vocabulary) as our deep text vectorizers, namely
BERT (Devlin et al., 2019), XLNet (Yang et al., 2019), and RoBERTa (Liu et al., 2019). In terms
of training speed, BERT and RoBERTa are similar while XLNet is nearly 1.8 times slower. In terms
of performance on XMR tasks, we found RoBERTa and XLNet to be slightly better than BERT,
but the gap is not significant.

Training Efficiency. The time and space complexity of the Transformer scales quadratically with
the input sequence length (Vaswani et al., 2017), i.e., O(T 2), where T = len(t) is the number of
tokenized sub-words in the instance t. Using smaller T reduces not only the GPU memory usage that
supports using larger batch size, but also increases the training speed. For example, BERT (Devlin
et al., 2019) first pre-trains on inputs of sequence length 128 for 90% of the optimization, and the
remaining 10% of optimization steps on inputs of sequence length 512. Interestingly, we observe that
the model fine-tuned with sequence length 128 v.s. sequence length 512 does not differ significantly
in downstream XMR performance. Thus, we fix the input sequence length to be T = 128 for model
fine-tuning, which significantly speeds up the training time. It would be interesting to see if we
can bootstrap training the Transformer models from shorter sequence length and ramp up to larger
sequence length (e.g., 32, 64, 128, 256), but we leave that as future work.

Recursive Realization with Shared Encoder. Intuitively, the recursive realization with deep
learned matchers would involve multiple deep learning text encoders. However, in practice, sharing
the text encoder across all the hierarchical layers would be a better choice. On one hand, the
inference time is dominated by the evaluation of text embeddings and having multiple text encoders
would greatly increase the inference latency. On the other hand, having a shared encoder means
that the same neural network can be trained on multi-resolution label signals, which is proven to
improve both training efficiency and model performance. More details can be found in Zhang et al.
(2021, Section 4).

Further Utilization of Learned Deep Text Vectorizer. As a byproduct of our deep learned
matcher, we have a powerful deep text vectorizer φdnn(t | Θfnt), where Θfnt denotes the fine-tuned
parameters after solving (15). This vectorizer can be further utilized to further improve the overall
XMR performance. First, we can concatenate it with a simple tfidf vectorizer to form the feature
vector for our ranker. In particular, we can have

x>i =
[
φ>tfidf(ti | Θtfidf), φ

>
dnn(ti | Θfnt)

]
as the feature vector for the i-th instance to train the simple linear ranker. We observe that such
concatenation leads to the best overall performance compared to the use of either tfidf or Deep Text
Vectorizer individually. Second, as mentioned earlier in Section 2.4, we can use this deep learned
text vectorizer to form a new set of feature vectors and learn a new model based on it, which we
can then ensemble with the model based on tfidf vectorizer.

20



PECOS: Prediction for Enormous and Correlated Output Spaces

5. Related Work

5.1 Sparse Linear Models with Partitioning Techniques

Conventional XMR algorithms consider fixed input representations such as sparse tfidf features and
leverage different partitioning techniques or surrogate loss functions on the large label space to reduce
complexity. For example, sparse linear one-versus-reset (OVR) methods such as DiSMEC (Babbar
and Schölkopf, 2017), ProXML (Babbar and Schölkopf, 2019), PPDSparse (Yen et al., 2016, 2017)
explore parallelism to speed up the algorithm and reduce the model size by truncating model weights
to encourage sparsity.

The efficiency and scalability of OVR models can be further improved by incorporating different
partitioning techniques on the label spaces. For instance, Parabel (Prabhu et al., 2018) partitions
the labels through a balanced 2-means label tree using label features constructed from the instances.
Other approaches attempt to improve on Parabel, for instance, eXtremeText (Wydmuch et al.,
2018), Bonsai (Khandagale et al., 2020), and NAPKINXC (Jasinska-Kobus et al., 2020) relax two
main constraints in Parabel by: 1) allowing multi-way instead of binary partitions of the label set
at each intermediate node, and 2) removing strict balancing constraints on the partitions. On the
other hand, SLICE (Jain et al., 2019) and AnnexML (Tagami, 2017) partition the label spaces via
graph-based approximate nearest neighbor (ANN) indices. For a given instance, relevant labels can
be found quickly from nearest neighbors of the instance via the ANN graph.

Comparing PECOS with Parabel. Concerning the three phase framework for PECOS, we can
interpret Parabel (Prabhu et al., 2018) as a special case of XR-LINEAR with the following choices:
PIFA label representation + Algorithm 1 (with B = 2) + TFN sampling scheme. There are three
main differences between XR-LINEAR and Parabel. First, XR-LINEAR generalizes Parabel with
multi-way partitioning of the hierarchical label tree. Second, XR-LINEAR incorporates various hard
negative sampling schemes (e.g., MAN, TFN+MAN). Finally, even if the model parameters are the
same for XR-LINEAR and Parabel, XR-LINEAR achieves significantly lower real-time inference
latency because of the doubly-sparse data structure described in Sections 3.1 and 6.3.

5.2 Neural Embedding-based Models

Neural-based XMR models employ various network architectures to learn semantic embeddings of
the input text. XML-CNN (Liu et al., 2017) employs one-dimensional CNN on the input sequence
and train the model with binary cross entropy loss without sampling, which is not scalable to large
label spaces. Shallow embedding-based methods aggregate word embeddings of a text input followed
by shallow MLP layers to obtain input embeddings, which has smaller encoding latency for real-time
inference. Specifically, DeepXML (Dahiya et al., 2021) and its variant (i.e., DECAF (Mittal et al.,
2021a), GalaXC (Saini et al., 2021), ECLARE (Mittal et al., 2021b)) pre-train MLP encoders on
XMR sub-problems induced by label clusters. They freeze the pre-trained word embedding and learn
another MLP layer with hard negative labels from HNSW (Malkov and Yashunin, 2020). Notably,
shallow embedding-based methods only show competitive performance on short-text XMR problems
where the number of input tokens is small.

To better handle longer text sequence, AttentionXML (You et al., 2019) uses BiLSTMs and
label-aware attention as the scoring function. For better scalability to large output spaces, training
of AttentionXML involves various negative sampling strategies to avoid back-propagating the entire
label embedding layer. More recently, LightXML (Jiang et al., 2021) adopts the transformer models
as text encoder, and performs label shortlist and re-ranking with the same transformer encoder. By
capturing rich semantic information from input text, LightXML establishes competitive results on
public XMR benchmarks.

Comparing PECOS with AttentionXML. PECOS induces two neural-based realizations using
Transformer encoders, which are X-TRANSFORMER (Chang et al., 2020b) and XR-TRANSFORMER (Zhang

21



Yu, Zhong, Zhang, Chang, and Dhillon

Table 2: Data Statistics. ntrn, ntst refer to the number of instances in the training and test sets,
respectively. |Dtrn|, |Dtst| refer to the number of word tokens in the training and test corpus, respec-
tively. d is the dimension of tfidf feature vector. L is the number of labels, L̄ the average number
of labels per instance, n̄ the average number of instances per label. These six publicly available
benchmark datasets are downloaded from https://github.com/yourh/AttentionXML which are
the same as AttentionXML (You et al., 2019) for fair comparison.

Dataset ntrn ntst |Dtrn| |Dtst| d L L̄ n̄

Eurlex-4K 15,449 3,865 19,166,707 4,741,799 186,104 3,956 5.30 20.79
Wiki10-31K 14,146 6,616 29,603,208 13,513,133 101,938 30,938 18.64 8.52

AmazonCat-13K 1,186,239 306,782 250,940,894 64,755,034 203,882 13,330 5.04 448.57
Wiki-500K 1,779,881 769,421 1,463,197,965 632,463,513 2,381,304 501,070 4.75 16.86

Amazon-670K 490,449 153,025 119,981,978 36,509,660 135,909 670,091 5.45 3.99
Amazon-3M 1,717,899 742,507 174,559,559 75,506,184 337,067 2,812,281 36.04 22.02

et al., 2021). There are three main differences between XR-TRANSFORMER and AttentionXML.
First, XR-TRANSFORMER captures better semantic embeddings for long text sequence using
Transformers. Second, XR-TRANSFORMER can easily leverage any pre-trained Transformer mod-
els from the literature. Finally, XR-TRANSFORMER is optimized with cost-sensitive loss induced
by recursive course-to-fine signals.

6. Experimental Results

In this section, we compare various realization of PECOS with recent XMR models on six real-world
extreme multi-label text classification datasets: Eurlex-4K, Wiki10-31K, AmazonCat-13K, Wiki-500K,
Amazon-670K and Amazon-3M. Details of these datasets and its statistics are presented in Table 2.
We use the same raw text input, sparse feature representations, and training/test data split as in
You et al. (2019); Chang et al. (2020b); Zhang et al. (2021); Jiang et al. (2021) to have a fair and
reproducible comparison.

In Section 6.1, we focus on the performance of various models and demonstrate that XR-
TRANSFORMER, a realization of PECOS framework with a recursive Transformer matcher, achieves
state-of-the-art prediction performance. In Section 6.2, we show that XR-LINEAR (Section 3), a
linear counterpart of XR-TRANSFORMER, achieves satisfactory prediction performance while re-
quiring substantially less training time. In Section 6.3, we demonstrate that the efficiency of the
inference procedure for XR-LINEAR, which allows it to serve real-time requests. Finally, in Sec-
tion 6.4, we present the ablation study of XR-LINEAR to examine the effectiveness of semantic label
clustering and model ensembling.

6.1 Performance Comparison

To compare the predictive performance of various models, we use the widely used precision and
recall metrics for the XMR task (Prabhu and Varma, 2014; Bhatia et al., 2015; Jain et al., 2016;
Prabhu et al., 2018; Reddi et al., 2019). In particular, for an input x and the corresponding ground
truth y ∈ Y, the Prec@p (p = 1, 3, 5) and Recall@p (p = 1, 3, 5) for the top-b predictions fb(x) are
defined as follows:

Prec@b =
1

b

∑
`∈fb(x)

y`, Recall@b =
1

nnz(y)

∑
`∈fb(x)

y`.

We consider three PECOS instantiations:
• XR-LINEAR: We use PIFA as label embeddings to construct the hierarchical label tree (HLT)

with branching factor B = 32 in Algorithm 1. We use TFN as the negative sampling in

22

https://github.com/yourh/AttentionXML


PECOS: Prediction for Enormous and Correlated Output Spaces

Table 3: Comparison of XR-LINEAR, X-TRANSFORMER and XR-TRANSFORMER with recent
XMR methods on six publicly available datasets. Results of non-PECOS models are taken from You
et al. (2019, Table 3) and Jiang et al. (2021, Table 2). The results show that XR-TRANSFORMER
achieves state-of-the-art precision numbers.

Methods Prec@1 Prec@3 Prec@5 Methods Prec@1 Prec@3 Prec@5

Eurlex-4K Wiki10-31K

AnnexML 79.66 64.94 53.52 AnnexML 86.46 74.28 64.20
DiSMEC 83.21 70.39 58.73 DiSMEC 84.13 74.72 65.94

PfastreXML 73.14 60.16 50.54 PfastreXML 83.57 68.61 59.10
Parabel 82.12 68.91 57.89 Parabel 84.19 72.46 63.37

eXtremeText 79.17 66.80 56.09 eXtremeText 83.66 73.28 64.51
Bonsai 82.30 69.55 58.35 Bonsai 84.52 73.76 64.69

fastText 71.59 60.51 51.07 fastText 82.26 65.93 55.25
XML-CNN 75.32 60.14 49.21 XML-CNN 81.41 66.23 56.11

AttentionXML 87.12 73.99 61.92 AttentionXML 87.47 78.48 69.37
LightXML 87.63 75.89 63.36 LightXML 89.45 78.96 69.85

XR-LINEAR 82.07 69.61 58.23 XR-LINEAR 84.55 73.02 64.24
X-TRANSFORMER 87.61 75.39 63.05 X-TRANSFORMER 88.26 78.51 69.68

XR-TRANSFORMER 88.41 75.97 63.18 XR-TRANSFORMER 88.69 80.17 70.91

AmazonCat-13K Wiki-500K

AnnexML 93.54 78.36 63.30 AnnexML 64.22 43.15 32.79
DiSMEC 93.81 79.08 64.06 DiSMEC 70.21 50.57 39.68

PfastreXML 91.75 77.97 63.68 PfastreXML 56.25 37.32 28.16
Parabel 93.02 79.14 64.51 Parabel 68.70 49.57 38.64

eXtremeText 92.50 78.12 63.51 eXtremeText 65.17 46.32 36.15
NAPKINXC 93.04 78.44 63.70 NAPKINXC 66.77 47.63 36.94

Bonsai 92.98 79.13 64.46 Bonsai 69.26 49.80 38.83
fastText 90.55 77.36 62.92 fastText 31.59 18.47 13.47

XML-CNN 93.26 77.06 61.40 XML-CNN - - -
AttentionXML 95.92 82.41 67.31 AttentionXML 76.95 58.42 46.14

LightXML 96.77 84.02 68.70 LightXML 77.78 58.85 45.57

XR-LINEAR 92.97 78.94 64.30 XR-LINEAR 68.12 49.07 38.39
X-TRANSFORMER 96.48 83.41 68.19 X-TRANSFORMER 77.09 57.51 45.28

XR-TRANSFORMER 96.79 83.66 68.04 XR-TRANSFORMER 79.40 59.02 46.25

Amazon-670K Amazon-3M

AnnexML 42.09 36.61 32.75 AnnexML 49.30 45.55 43.11
DiSMEC 44.78 39.72 36.17 DiSMEC 47.34 44.96 42.80

PfastreXML 36.84 34.23 32.09 PfastreXML 43.83 41.81 40.09
Parabel 44.91 39.77 35.98 Parabel 47.42 44.66 42.55

eXtremeText 42.54 37.93 34.63 eXtremeText 42.20 39.28 37.24
NAPKINXC 43.54 38.71 35.15 NAPKINXC 46.23 43.48 41.41

Bonsai 45.58 40.39 36.60 Bonsai 48.45 45.65 43.49
fastText 24.35 21.26 19.14 fastText 22.51 19.05 16.99

XML-CNN 33.41 30.00 27.42 XML-CNN - - -
AttentionXML 47.58 42.61 38.92 AttentionXML 50.86 48.04 45.83

LightXML 49.10 43.83 39.85 LightXML - - -

XR-LINEAR 45.36 40.35 36.71 XR-LINEAR 47.96 45.09 42.96
X-TRANSFORMER 48.07 42.96 39.12 X-TRANSFORMER 51.20 47.81 45.07

XR-TRANSFORMER 50.11 44.56 40.64 XR-TRANSFORMER 54.20 50.81 48.26

Algorithm 2. Similar to Parabel (Prabhu et al., 2018), we use beam size b = 10 and an
ensemble of three HLTs for the prediction stage.

23



Yu, Zhong, Zhang, Chang, and Dhillon

Table 4: Training time (in seconds) versus predictive performance of various PECOS realizations.

Eurlex-4K (|Y| = 3, 956, ntrn = 15, 449, ntst = 3, 865) Model Training
Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Time (s)

XR-TRANSFORMER 88.41 75.97 63.18 17.93 45.26 61.49 2,880.0
X-TRANSFORMER 87.61 75.39 63.05 17.78 44.92 61.35 26,766.0
XR-LINEAR

TFN 82.07 69.61 58.23 16.59 41.36 56.60 7.4
TFN+MAN 83.08 69.87 58.18 16.81 41.55 56.52 20.2

Wiki10-31K (|Y| = 30, 938, ntrn = 14, 146, ntst = 6, 616) Model Training
Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Time (s)

XR-TRANSFORMER 88.69 80.17 70.91 5.30 14.17 20.44 5.400.0
X-TRANSFORMER 88.26 78.51 69.68 5.28 13.76 19.79 51,815.0
XR-LINEAR

TFN 84.55 73.02 64.24 4.99 12.72 18.40 36.0
TFN+MAN 84.70 73.86 64.76 5.02 12.92 18.57 70.9

AmazonCat-13K (|Y| = 13, 330, ntrn = 1, 186, 239, ntst = 306, 782) Model Training
Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Time (s)

XR-TRANSFORMER 96.79 83.66 68.19 27.69 63.31 79.37 47,520.0
X-TRANSFORMER 96.48 83.41 68.19 27.52 63.11 79.30 531,308.0
XR-LINEAR

TFN 93.06 78.95 64.28 26.33 59.78 75.20 220.2
TFN+MAN 93.06 78.95 64.20 26.30 59.77 75.17 1,074.3

Wiki-500K (|Y| = 501, 070, ntrn = 1, 779, 881, ntst = 769, 421) Model Training
Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Time (s)

XR-TRANSFORMER 79.40 59.02 46.25 26.59 49.61 59.53 136,800.0
X-TRANSFORMER 77.09 57.51 45.28 25.51 48.03 58.05 2,005,550.0
XR-LINEAR

TFN 68.12 49.07 38.39 22.18 40.72 49.21 2,796.6
TFN+MAN 68.77 48.24 37.07 22.57 40.33 47.87 19,356.2

Amazon-670K (|Y| = 670, 091, ntrn = 490, 449, ntst = 153, 025) Model Training
Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Time (s)

XR-TRANSFORMER 50.11 44.56 40.64 10.52 26.02 38.29 37,800.0
X-TRANSFORMER 48.07 42.96 39.12 9.94 24.90 36.71 1,853,263.0
XR-LINEAR

TFN 45.36 40.35 36.71 9.44 23.43 34.45 147.2
TFN+MAN 45.81 40.64 36.82 9.63 23.67 34.61 928.4

Amazon-3M (|Y| = 2, 812, 281, ntrn = 1, 717, 899, ntst = 742, 507) Model Training
Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Time (s)

XR-TRANSFORMER 54.20 50.81 48.26 3.93 9.59 13.99 105,480.0
X-TRANSFORMER 51.20 47.81 45.07 3.28 8.03 11.65 1,951,324.0
XR-LINEAR

TFN 47.96 45.09 42.96 3.04 7.54 11.12 1,453.5
TFN+MAN 48.64 45.90 43.76 3.28 8.05 11.81 4,971.6

• X-TRANSFORMER: PECOS with non-recursive Transformer matchers. Predictions are an
ensemble of 9 X-TRANSFORMER models with three encoders and three HLTs. Detailed
specifications and hyperparameters can be found in Chang et al. (2020b, Section 4.2).

• XR-TRANSFORMER: PECOS with recursive Transformer matchers. Predictions are an en-
semble of 3 XR-TRANSFORMER models with three encoders. Detailed specifications and
hyperparameters can be found in Zhang et al. (2021, Section 5).

We then include the following XMR models in our comparisons.
• Embedding-based Approaches: AnnexML (Tagami, 2017)

24



PECOS: Prediction for Enormous and Correlated Output Spaces

• OVR-based Approaches: DiSMEC (Babbar and Schölkopf, 2017)
• Tree-based Approaches: PfastreXML (Jain et al., 2016), Parabel (Prabhu et al., 2018), eX-

tremeText (Wydmuch et al., 2018), Bonsai (Khandagale et al., 2020), and NAPKINXC (Jasinska-
Kobus et al., 2020).

• Deep learning-based Approaches: fastText (Joulin et al., 2017), XML-CNN (Liu et al., 2017),
AttentionXML (You et al., 2019) and LightXML (Jiang et al., 2021).

Note that in terms of our three phase framework for PECOS, Parabel (Prabhu et al., 2018) may be
interpreted as a special case of XR-LINEAR with the following special choices: PIFA label represen-
tation + Algorithm 1 (with B = 2) + TFN negative sampling scheme. In other words, XR-LINEAR
with B = 32 in Table 3 has a smaller depth of hierarchical label tree, which enjoys faster inference
time in practice.

Table 3 shows that our proposed XR-TRANSFORMER method outperforms other competitive
deep learning based XMR methods (e.g., AttentionXML and LightXML) on most metrics, espe-
cially on datasets with large output spaces such as Amazon-670K and Amazon-3M. This verifies the
effectiveness of recursive learning of transformer encoders on large output space problems. While
X-TRANSFORMER and XR-TRANSFORMER results in better predictive performance compared
to its linear counterpart XR-LINEAR, they also requires considerably longer training time, as we
will see in the Section 6.2.

6.2 Training Time versus Predictive Performance

In this section, we analyze various PECOS realizations based on their training time and predic-
tive performance. All the experiments of XR-LINEAR are run on a r5.24xlarge AWS instance,
which contains 96 Intel Xeon Platinum 8000 CPUs and 768 GB RAM. All the experiments of X-
TRANSFORMER and XR-TRANSFORMER, are obtained on a p3.16xlarge AWS instance, which
contains 8 Nvidia V100 GPUs.

Experimental results are shown in Table 4, which include two variants of XR-LINEAR with
different negative mining (i.e., TFN, TFN+MAN). We can clearly see that XR-LINEAR is the
most efficient approach in terms of training time, followed by XR-TRANSFORMER and then X-
TRANSFORMER. In particular, XR-LINEAR with TFN negative sampling is often 2x to 5x faster
than XR-LINEAR with TFN+MAN sampling, because the latter requires model inference on the
large training set to generate hard negative based on the model parameters. Nevertheless, XR-
LINEAR with TFN+MAN may lead to better predictive performance on larger output space datasets
such as Amazon-3M.

Compared to XR-LINEAR, on the other hand, X-TRANSFORMER and XR-TRANSFORMER
yield state-of-the-art precision and recall results at the cost of larger training time, where XR-
TRANSFORMER is often 10x faster than X-TRANSFORMER. This verifies the effectiveness of
recursive training for Transformer matchers on the large output space datasets. It is notewor-
thy that PECOS is flexible to have realizations like XR-TRANSFORMER which yields the best
prediction performance and realizations like XR-LINEAR which strikes a good balance between
prediction performance and training cost. Note that even though relatively cheaper compared with
X-TRANSFORMER, the XR-TRANSFORMER method still requires faster and more expensive
GPU hardware. This flexibility allows practitioners to choose the most appropriate PECOS model
for their applications.

6.3 Real-Time Inference

Next, we compare the real-time inference latency of various PECOS realization with competitive
XMR methods. Specifically, in real-time mode, we consider the test instances are fed one-by-one to
the model. Table 5 compares the inference latency (milliseconds per input instance) among Para-
bel, XR-LINEAR, NAPKINXC, X-TRANSFORMER and XR-TRANSFORMER in real time mode.

25



Yu, Zhong, Zhang, Chang, and Dhillon

Table 5: Online Inference Latency (milliseconds per input) for Parabel, NAPKINXC, XR-LINEAR,
XR-TRANSFORMER and X-TRANSFORMER. X-TRANSFORMER and XR-TRANSFORMER
are evaluated on a Nvidia Tesla V100 GPU while other models are evaluated on an AWS instance
r5.4xlarge using a single thread.

Eurlex-4K Wiki10-31K AmazonCat-13K Wiki-500K Amazon-670K Amazon-3M

Parabel 1.20 5.77 17.00 175.00 10.70 44.60
NAPKINXC 1.63 7.10 1.93 12.60 2.80 3.59
XR-LINEAR 0.20 1.06 0.33 2.26 0.48 0.61

X-TRANSFORMER 433.87 433.20 428.58 433.33 432.24 451.97
XR-TRANSFORMER 66.90 117.30 78.30 101.70 92.70 105.60

Real-time experiments for Parabel, NAPKINXC and XR-LINEAR are conducted on a AWS instance
r5.4xlarge using single thread while X-TRANSFORMER and XR-TRANSFORMER are evaluated
on a Tesla V100 GPU. In our experiments, we randomly sampled 10,000 test inputs/instances for
reporting the numbers in Table 5.

We implemented our version of Parabel and NAPKINXC for fair comparison in the real-time
inference case. The original Parabel code is designed for batch input mode, so it is slow in real-time
mode. Parabel, XR-LINEAR, NAPKINXC all use the same model parameters and same number of
branch splits, B = 32. XR-LINEAR and NAPKINXC use hash method to look up the non-empty
rows. Beam size and topk are both set to 10 for all experiments in Table 5.

As we can see, XR-LINEAR is much faster than NAPKINXC and Parabel across all datasets.
X-TRANSFORMER and XR-TRANSFORMER are deep learning models which achieve better pre-
cision and recall but require much larger inference time due to expensive transformer encoders.

6.4 Ablation Study of XR-LINEAR

In Table 6, we compare different configurations of hierarchical label tree (HLT) as the ablation
study of XR-LINEAR. The experiment results are conducted on an r5.24xlarge AWS instance, which
contains 96 Intel Xeon Platinum 8000 CPUs and 768 GB RAM. Note that we use the multi-threading
batch-mode for model predictions and report the total prediction time in seconds.

First, we investigate different tree depths of HLT by vary branching splits B = {2, 8, 32}. From
Table 6, we observed that B = 32 (shallower HLTs) usually results in better predictive performance
compared to B = 2 (deeper HLTs). Furthermore, the prediction time of shallower HLTs are also
faster than the prediction time of deeper HLTs, which justifies the default choice of B = 32 for
experiments of all previous sections. We also explore a randomly clustered HLT on Eurlex-4K, where
the Prec@k drops to 79.3, 67.1, and 55.9, for k = 1, 3, 5, respectively. Given this significant drop,
we omit the results of random clusters in Table 6.

Finally, we compare the performance versus training time of a single HLT (T = 1) versus an
ensemble of three HLTs (T = 3). From Table 6, XR-LINEAR with T = 3 has better precision and
recall compared to XR-LINEAR with T = 1. However, it also comes with the price of larger training
and prediction time.

7. Conclusions and Future Work

In this paper, we have proposed PECOS, a versatile and modular machine learning framework for
solving prediction problems for very large output spaces. The flexibility of PECOS allows prac-
titioners to evaluate the trade-offs between performance and training cost to identify the most
appropriate PECOS variant for their applications. In particular, we propose XR-LINEAR, a recur-
sive realization of our three-stage framework, which is highly efficient in both training as well as

26



PECOS: Prediction for Enormous and Correlated Output Spaces

Table 6: Ablation study of XR-LINEAR with respective to different configurations of the hierarchical
label tree (HLT). T is the number of HLT, where T = 1 refers to XR-LINEAR with a single HLT
while T = 3 refers to XR-LINEAR with an ensemble of three HLTs. B and D are the branching
splits and depth of HLT, respectively. Training time and prediction time (in seconds) are measured
on an r5.24xlarge AWS instance, which contains 96 Intel Xeon Platinum 8000 CPUs and 768 GB
RAM. Note that we use TFN sampling to train the model and consider beam size b = 10 for the
model prediction using multi-threading batch-mode.

Eurlex-4K (|Y| = 3, 956, ntrn = 15, 449, ntst = 3, 865)
T B D Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Train Time Predict Time

3 2 7 81.47 69.13 57.87 16.51 41.10 56.28 8.70 0.28
3 8 3 81.79 69.30 58.04 16.54 41.16 56.46 7.40 0.32
3 32 3 82.07 69.61 58.23 16.59 41.36 56.60 7.47 0.28
1 32 3 82.48 68.83 57.61 16.65 40.85 55.98 2.49 0.09

Wiki10-31K (|Y| = 30, 938, ntrn = 14, 146, ntst = 6, 616)
T B D Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Train Time Predict Time

3 2 10 84.19 72.57 63.39 4.97 12.61 18.12 36.05 1.20
3 8 4 84.40 72.87 64.09 4.99 12.68 18.33 30.38 0.65
3 32 3 84.55 73.02 64.24 4.99 12.72 18.40 31.18 0.65
1 32 3 84.14 72.85 64.09 4.97 12.69 18.35 10.39 0.22

AmazonCat-13K (|Y| = 13, 330, ntrn = 1, 186, 239, ntst = 306, 782)
T B D Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Train Time Predict Time

3 2 9 93.06 78.95 64.28 26.33 59.78 75.20 220.20 22.52
3 8 4 93.01 78.93 64.28 26.31 59.74 75.17 144.61 14.96
3 32 3 92.97 78.94 64.30 26.28 59.74 75.20 134.00 15.11
1 32 3 92.53 78.45 63.85 26.13 59.38 74.72 44.67 5.04

Wiki-500K (|Y| = 501, 070, ntrn = 1, 779, 881, ntst = 769, 421)
T B D Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Train Time Predict Time

3 2 14 68.44 49.28 38.58 22.30 40.89 49.44 2,933.10 177.16
3 8 6 68.27 49.19 38.50 22.23 40.81 49.33 2,678.91 98.73
3 32 4 68.12 49.07 38.39 22.18 40.72 49.21 2,796.64 92.38
1 32 4 66.60 47.67 37.19 21.62 39.43 47.50 932.21 30.79

Amazon-670K (|Y| = 670, 091, ntrn = 490, 449, ntst = 153, 025)
T B D Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Train Time Predict Time

3 2 14 45.05 40.09 36.47 9.37 23.25 34.20 155.61 16.56
3 8 6 45.35 40.26 36.59 9.43 23.36 34.31 145.25 11.77
3 32 4 45.36 40.35 36.71 9.44 23.43 34.45 147.23 11.52
1 32 4 44.14 39.06 35.30 9.17 22.63 33.07 49.08 3.84

Amazon-3M (|Y| = 2, 812, 281, ntrn = 1, 717, 899, ntst = 742, 507)
T B D Prec@1 Prec@3 Prec@5 Recall@1 Recall@3 Recall@5 Train Time Predict Time

3 2 16 47.30 44.38 42.23 2.96 7.32 10.79 1,481.56 99.74
3 8 6 47.65 44.81 42.68 3.00 7.45 10.98 1,397.83 64.63
3 32 4 47.96 45.09 42.96 3.04 7.54 11.12 1,453.53 63.82
1 32 4 46.76 43.87 41.76 2.91 7.23 10.68 484.51 21.27

inference, while being much less expensive in training costs but yielding slightly lower quality than
XR-TRANSFORMER, which is a recursive neural realization of PECOS that yields state-of-the-art
prediction performance.

27



Yu, Zhong, Zhang, Chang, and Dhillon

As future work, we plan to extend PECOS in various directions. One direction is to explore more
alternatives for each stage of PECOS such that it offers more options to practitioners so they can
identify the most appropriate variants for their applications. For example, there are other semantic
label indexing strategies which might be promising alternatives, for example, overlapping label
clustering or approximate nearest neighbor search schemes. In addition to linear rankers, we plan
to explore more sophisticated ranker choices such as gradient boosting models or neural network
models. To further improve the scalability of PECOS, we plan to use distributed computation.
Another direction is to extend PECOS to handle infinite output spaces that have structure. In
particular, we plan to conduct research to develop PECOS models that are able to not only identify
relevant labels from a given finite and large label set but also generate relevant new labels when
there is a generative model for these labels. To facilitate this work by the research community, we
have open-sourced the PECOS software, which is available at https://libpecos.org.

Acknowledgement

We thank Amazon for supporting this work. We also thank Lexing Ying, Philip Etter, and Tavor
Baharav for providing feedback on the manuscript.

References

R. Babbar and B. Schölkopf. DiSMEC: distributed sparse machines for extreme multi-label clas-
sification. In Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pages 721–729, 2017.

R. Babbar and B. Schölkopf. Data scarcity, robustness and extreme multi-label classification. Ma-
chine Learning, pages 1–23, 2019.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction with
recurrent neural networks. In Advances in Neural Information Processing Systems, pages 1171–
1179, 2015.

K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for extreme multi-label
classification. In Advances in Neural Information Processing Systems, pages 730–738, 2015.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

W.-C. Chang, F. X. Yu, Y.-W. Chang, Y. Yang, and S. Kumar. Pre-training tasks for embedding-
based large-scale retrieval. In International Conference on Learning Representations, 2020a.

W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. S. Dhillon. Taming pretrained transformers for
extreme multi-label text classification. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 3163–3171, 2020b.

K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and M. Varma.
DeepXML: A deep extreme multi-label learning framework applied to short text documents. In
Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pages
31–39, 2021.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4171—-4186. Association for Computational Linguistics,
2019.

28

https://libpecos.org


PECOS: Prediction for Enormous and Correlated Output Spaces

I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 269–274, 2001.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering.
Machine learning, 42(1-2):143–175, 2001.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley & Sons, 2012.

P. A. Etter, K. Zhong, H.-F. Yu, L. Ying, and I. Dhillon. Accelerating inference for sparse extreme
multi-label ranking trees. In Proceedings of the Web Conference 2022, 2022.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: a library for large
linear classification. Journal of machine learning research, 9(Aug):1871–1874, 2008.

Google. How search works. https://www.google.com/search/howsearchworks/, 2019. Accessed:
2019-1-18.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent
method for large-scale linear SVM. In Proceedings of the 25th international conference on Machine
learning, pages 408–415, 2008.

H. Jain, Y. Prabhu, and M. Varma. Extreme multi-label loss functions for recommendation, tag-
ging, ranking & other missing label applications. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 935–944, 2016.

H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. SLICE: Scalable linear extreme classifiers
trained on 100 million labels for related searches. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pages 528–536. ACM, 2019.

K. Jasinska-Kobus, M. Wydmuch, K. Dembczynski, M. Kuznetsov, and R. Busa-Fekete. Probabilis-
tic label trees for extreme multi-label classification. arXiv preprint arXiv:2009.11218, 2020.

T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang. LightXML: Transformer with dynamic
negative sampling for high-performance extreme multi-label text classification. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 7987–7994, 2021.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text classification. In
Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431. Association for Computational Linguistics,
April 2017.

S. Khandagale, H. Xiao, and R. Babbar. Bonsai: diverse and shallow trees for extreme multi-label
classification. Machine Learning, 109(11):2099–2119, 2020.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the Interna-
tional Conference on Learning Representations, 2014.

A. M. Lamb, A. G. A. P. Goyal, Y. Zhang, S. Zhang, A. C. Courville, and Y. Bengio. Professor
forcing: A new algorithm for training recurrent networks. In Advances In Neural Information
Processing Systems, pages 4601–4609, 2016.

K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly supervised open domain ques-
tion answering. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 6086–6096. Association for Computational Linguistics, 2019.

29

https://www.google.com/search/howsearchworks/


Yu, Zhong, Zhang, Chang, and Dhillon

W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin. Approximate nearest neighbor
search on high dimensional data—experiments, analyses, and improvement. IEEE Transactions
on Knowledge and Data Engineering, 32(8):1475–1488, 2019.

J. Liu, W.-C. Chang, Y. Wu, and Y. Yang. Deep learning for extreme multi-label text classification.
In Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 115–124. ACM, 2017.

X. Liu, W.-C. Chang, H.-F. Yu, C.-J. Hsieh, and I. Dhillon. Label disentanglement in partition-
based extreme multilabel classification. In Advances in Neural Information Processing Systems,
2021.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42(4):824–836, 2020.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems,
pages 3111–3119, 2013.

A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal, P. Kar, and M. Varma. DECAF: Deep ex-
treme classification with label features. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pages 49–57, 2021a.

A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar, and M. Varma. ECLARE: Extreme
classification with label graph correlations. In Proceedings of the Web Conference 2021, pages
3721–3732, 2021b.

I. Partalas, A. Kosmopoulos, N. Baskiotis, T. Artieres, G. Paliouras, E. Gaussier, I. Androutsopou-
los, M.-R. Amini, and P. Galinari. LSHTC: A benchmark for large-scale text classification. arXiv
preprint arXiv:1503.08581, 2015.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep
contextualized word representations. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 2227–2237. Association for Computational Linguistics, 2018.

Y. Prabhu and M. Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-
label learning. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 263–272, 2014.

Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for
extreme classification with application to dynamic search advertising. In Proceedings of the Web
Conference 2018, pages 993–1002, 2018.

S. J. Reddi, S. Kale, F. Yu, D. Holtmann-Rice, J. Chen, and S. Kumar. Stochastic negative mining for
learning with large output spaces. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1940–1949. PMLR, 2019.

D. Saini, A. K. Jain, K. Dave, J. Jiao, A. Singh, R. Zhang, and M. Varma. GalaXC: Graph neural
networks with labelwise attention for extreme classification. In Proceedings of the Web Conference
2021, pages 3733–3744, 2021.

30



PECOS: Prediction for Enormous and Correlated Output Spaces

A. J. Smola and R. Kondor. Kernels and regularization on graphs. In Learning theory and kernel
machines, pages 144–158. Springer, 2003.

S. J. Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy, and R. Kadekodi. Rand-NSG: Fast
accurate billion-point nearest neighbor search on a single node. In Advances in Neural Information
Processing Systems, pages 13748–13758, 2019.

Y. Tagami. AnnexML: Approximate nearest neighbor search for extreme multi-label classification.
In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 455–464, 2017.

M. Varma. The extreme classification repository: Multi-label datasets & code. http://manikvarma.
org/downloads/XC/XMLRepository.html, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task benchmark
and analysis platform for natural language understanding. In Proceedings of the International
Conference on Learning Representations, 2019.

J. J. Whang, Y. Hou, I. S. Dhillon, and D. F. Gleich. Non-exhaustive, overlapping k-means. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(11):2644–2659, 2019.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph neural
networks. Computational Social Networks, 6(11), 2019.

M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dembczynski. A no-regret
generalization of hierarchical softmax to extreme multi-label classification. In Advances in Neural
Information Processing Systems, 2018.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. XLNet: Generalized autore-
gressive pretraining for language understanding. In Advances in Neural Information Processing
Systems, 2019.

I. E. Yen, X. Huang, K. Zhong, P. Ravikumar, and I. S. Dhillon. PD-Sparse: A primal and dual
sparse approach to extreme multiclass and multilabel classification. In International Conference
on Machine Learning, pages 3069–3077. PMLR, 2016.

I. E. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing. PPDsparse: A parallel
primal-dual sparse method for extreme classification. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 545–553, 2017.

R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, and S. Zhu. AttentionXML: Label tree-based
attention-aware deep model for high-performance extreme multi-label text classification. In Ad-
vances in Neural Information Processing Systems, pages 5812–5822, 2019.

J. Zhang, W.-C. Chang, H.-F. Yu, and I. S. Dhillon. Fast multi-resolution transformer fine-tuning
for extreme multi-label text classification. In Advances in Neural Information Processing Systems,
2021.

31

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html


Yu, Zhong, Zhang, Chang, and Dhillon

Algorithm 2 XR-LINEAR: a recursive realization of PECOS XMR framework with simple linear
rankers.

Input:

• X ∈ Rn×d: input feature matrix
• Y ∈ {0, 1}n×L: input label matrix

•
{
C(t) : 1 ≤ t ≤ D

}
: C(t) ∈ {0, 1}Kt×Kt−1 indexing matrix at t-th layer with KD = L and

K0 = 1.

Output:

•
{
h(t)(x, k) : 1 ≤ k ≤ Kt, 1 ≤ t ≤ D

}
: h(t)(x, k) = x>w

(t)
k ranker at t-th layer.

• Form the training dataset for the XMR problem at the t-th layer

X(t) ← X, ∀t = 1, . . . , D

Y (t) ←

{
Y if t = D,

binarize
(
Y (t+1)C(t+1)

)
if t < D.

• Initialize a dummy XMR model f (0):

f (0)(x, `) = 1 ∀x ∈ Rd, ` ∈ {1, 2, . . . ,K1},

f
(0)
b (x) = {1, 2, . . . ,K1}.

• For t = 1, . . . , D

• Set the matcher to be the XMR model obtained from the previous layer:

g(t)(x, k) = f (t−1)(x, k), k ∈ {1, 2, . . . ,Kt−1}

g
(t)
b (x) = f

(t−1)
b (x)

• Select Negative Sampling Strategy for the ranker at t-th layer:

M̄ (t) ←


M (t) ≡ binarize

(
Y (t)C(t)

)
Teacher Forcing Negatives (TFN)

M̂ (t) ≡ g(t)
b (X) Matcher Aware Negatives (MAN)

binarize
(
M (t) + M̂ (t)

)
TFN + MAN

• Train the ranker h(t)(x, `) at the t-th layer with the parameter matrix W (t) ∈ Rd×Kt where

w
(t)
` is the `-th column obtained by solving:

w
(t)
` = arg min

w

∑
i:M̄

(t)
ic`
6=0

L(Y
(t)
i` ,w>xi) +

λ

2
‖w‖2, ` = 1, . . . ,Kt

where c` = c
(t)
` ∈ {1, . . . ,Kt−1} is the cluster index of the `-th label at the t-th layer.

• Obtain the XMR model f (t)(·) for the t-th layer, which will be used as the matcher for the
t+ 1-st layer:

f (t)(x, `) =

{
σ(t)

(
g(t)(x, c

(t)
` ), h(t)(x, `)

)
if ` ∈ s(m̂|c(t)),

−∞ otherwise,

where m̂ ∈ {0, 1}Kt−1 is induced by g
(t)
b (x), and c(t) is the indexing vector corresponding to

C(t).

32


	Introduction
	Setting the Scene

	PECOS XMR Framework
	Semantic Label Indexing
	Label Representations
	Semantic Indexing Through Clustering
	Other Indexing Methods

	Machine Learned Matching
	Ranking
	Hard Negative Sampling for Ranker Training in PECOS
	A One-Versus-Rest Linear Ranker

	Model Ensembling
	Inference

	XR-LINEAR
	Efficient Inference for XR-LINEAR

	Deep Learned Matchers for Text Inputs
	Related Work
	Sparse Linear Models with Partitioning Techniques
	Neural Embedding-based Models

	Experimental Results
	Performance Comparison
	Training Time versus Predictive Performance
	Real-Time Inference
	Ablation Study of XR-LINEAR

	Conclusions and Future Work

