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ABSTRACT

Change point detection (CPD) identifies abrupt and significant changes in se-
quential data, with applications in human activity recognition, financial markets,
cybersecurity, manufacturing, and autonomous systems. While traditional methods
often struggle with the computational demands of high-dimensional data, they also
fail to provide explanations for detected change points, limiting their practical us-
ability. This paper introduces a CPD framework that enhances both interpretability
and scalability by leveraging the Sliced Wasserstein (SW) distance. Our con-
tributions are fourfold: (1) we present a method to transform multivariate data
into one-dimensional time series using the SW distance, enabling compatibility
with existing CPD methods; (2) we derive theoretical insights, demonstrating that
random slices of the SW distance follow a Gamma distribution, which facilitates
statistical hypothesis testing for CPD; (3) we propose a novel self-adapting online
CPD algorithm based on an adaptive threshold for a given significance level α;
and (4) we propose a model-specific framework for generating contrastive explana-
tions for annotated change points. We find that our method outperforms popular
(online/offline) change point detection methods by reducing false positives by
at least 63% while also providing interpretable change points and maintaining
competitive or superior detection performance, making it practical for deployment
in high-stakes applications.

1 INTRODUCTION

Change point detection (CPD) is a fundamental problem in statistical analysis, focusing on identifying
abrupt and significant changes in the underlying data-generating processes of sequential data. These
changes can signal shifts in critical properties, such as distributions, relationships, or trends, making
CPD pivotal in fields where timely detection of such shifts is crucial. Closely related to concept drift
detection Gama et al. (2014); Harel et al. (2014); Lu et al. (2018), CPD encompasses scenarios of
both abrupt and gradual changes, with a direct impact on the accuracy and reliability of machine
learning models and deployed systems. However, existing CPD methods are insufficient in both
scaling to high dimensions and providing meaningful explanations, which poses a significant gap
addressed by our approach.

The significance of CPD becomes evident in its multitude of real-world applications. In human
activity recognition, it can identify transitions between states, such as detecting when a person moves
from walking to running Xia et al. (2020). In financial markets, CPD is essential for spotting regime
shifts, such as the transition from a bull to a bear market, enabling traders and algorithms to adjust
strategies Kim et al. (2022); Carvalho & Lopes (2007); Chen & Gupta (1997); Nystrup et al. (2016).
In cybersecurity, CPD helps detect anomalies, such as cyberattacks or data breaches, by identifying
abrupt deviations in network traffic Kurt et al. (2018); Polunchenko et al. (2012). Similarly, in
manufacturing quality control, CPD can pinpoint defects or process anomalies to minimize waste
and downtime. Furthermore, in autonomous driving, detecting changes in environmental conditions
or sensor data ensures safe operation under dynamic conditions Ferguson et al. (2014); Galceran
et al. (2017). These examples underscore the critical role of CPD in enhancing decision-making and
ensuring the safety, efficiency, and reliability of systems across domains.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite its utility, CPD faces significant challenges when applied to high-dimensional data, where
both scalability and explainability are becoming increasingly challenging. Traditional methods
often rely on comparing probability distributions or distances between data segments to detect
changes Aminikhanghahi & Cook (2017); Lu et al. (2018). While effective in lower-dimensional
settings, these methods struggle with computational efficiency and scalability in higher-dimensional
spaces. For instance, the exact computation of the Wasserstein distance for multivariate data scales
as O(n3 log(n)), making it impractical for large datasets. Similarly, the computation of U - and
V -statistics for the Maximum Mean Discrepancy (MMD) also scales quadratically in time. Alongside
the computational aspects, most CPD methods fail to provide interpretable change points, narrowing
down the root cause of the drifts.

To address the lack of explainable change point detection tailored for high-dimensional data, the Sliced
Wasserstein (SW) distance Bonneel et al. (2015) offers a promising alternative. Instead of computing a
high-dimensional optimal transport directly, we can repeatedly project onto a single dimension, where
Wasserstein distance has a closed form, and then average the results. By leveraging the closed-form
expression of the Wasserstein distance for one-dimensional distributions, the SW distance reduces
the computational complexity to O(n log(n)) by averaging over the Wasserstein distances of random
one-dimensional projections. Additionally, by leveraging the geometric properties of the random
projections, we can provide contrastive explanations for detected change points.

In this work, we bridge this gap by introducing a novel CPD framework that leverages the Sliced
Wasserstein distance. Our contributions are as follows:

1. A Self-Adapting Online CPD Algorithm with Adaptive Thresholding (3.2). We propose
a new self-adapting online CPD algorithm that dynamically adjusts its threshold based on a
given significance level α. This enables robust and adaptive detection of change points in
streaming high-dimensional data without manual tuning.

2. Theoretical Insight: SW Distance Slices Follow a Gamma Distribution (3). We derive
a novel theoretical result showing that random slices of the SW distance follow a Gamma
distribution. This allows for a principled statistical hypothesis testing framework, enabling
more rigorous and interpretable change detection.

3. Contrastive Explanations for Change Points Using Geometric Properties of SW Dis-
tance (3.1). We develop a novel, model-specific framework for generating contrastive
explanations of detected change points. By leveraging the geometric properties of ran-
dom projections, we provide fine-grained insights into which features contribute most to
distributional shifts, enhancing interpretability.

4. Competitive Performance with Interpretability (4.2) Our approach achieves competitive
or superior performance compared to leading online and offline CPD methods across
multiple real-world datasets while providing interpretable change points, making it practical
for deployment in high-stakes applications such as finance, cybersecurity, and autonomous
systems.

2 RELATED WORK

Online change point detection. Change point detection can be grouped into parametric and
nonparametric methods Truong et al. (2020). Parametric methods assume that the data is drawn
from some parametric family of probability distributions. Nonparametric approaches do not impose
distributional assumptions. One of the most prominently known parametric approaches is the
cumulative sum (CUSUM) method Page (1954). Over the last years, several extensions of CUSUM
were introduced Alippi & Roveri (2006); Romano et al. (2023). Another popular parametric branch
of change point detection are Bayesian methods including Fearnhead & Liu (2007); Knoblauch et al.
(2018). Nonparametric methods are often based on test statistics derived by distances, including
Euclidean distances Matteson & James (2014); Madrid Padilla et al. (2019) or divergence measures
e.g. MMD Gretton et al. (2012); Harchaoui et al. (2013); Li et al. (2019). More recently, deep
generative models were also used for sequential change point detection Chang et al. (2019); De Ryck
et al. (2021).

Optimal transport based change detection. Over the past few years, optimal transport has become
a popular choice for comparing two distributions. Naturally, optimal transport-based metrics, such as
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the Wasserstein distance or Sliced Wasserstein distance, can also be applied for sequential change
point detection. This includes Cheng et al. (2020a), which proposes a change point detection
framework computing the Wasserstein distance between a sliding window relying on a fixed threshold
to detect changes. In Cheng et al. (2020b), this framework was refined using a matched filter test
statistic. Furthermore, one of the proposed test statistics is the Sliced Wasserstein distance, which is
combined with a fixed threshold. Our work differs by introducing an adaptive threshold and primarily
investigating the Sliced Wasserstein distance as a tool for interpretability.

Interpretability through random projections. The motivation behind utilizing random projection
is the lower computational cost for the Wasserstein distance. In Wang et al. (2021), a projected
Wasserstein distance was introduced, which finds a k-dimensional subspace through linear projections
and calculates the Wasserstein distance in the lower-dimensional space. Analogously, in Wang et al.
(2022), the kernel projected Wasserstein distance was motivated as a non-linear alternative to Wang
et al. (2021). Both approaches reduce the computational complexity and facilitate interpretability in a
two-sample test. Our proposed framework goes beyond a single iteration to find a specific projection
direction, maximizing the Wasserstein distance between projected samples. We propose an iterative
approach to identify the most discriminative feature, leading to a more comprehensive and detailed
explanation of the underlying drift.

3 PROBLEM SETUP

The general problem of CPD involves determining abrupt changes in a time series. We denote the
time series D = {xt ∈ Rd : t ∈ [T ]} with [T ] = {1, 2, . . . , T} and assume that the time series
follows some unknown underlying distribution P. The goal is to identify all timestamps t∗ ∈ [T ]
where the underlying distribution changes from P to Q, such that

t ≤ t∗ : xt ∼ P
t > t∗ : xt ∼ Q.

Many CPD methods rely on a windowing approach and split the observations into a reference window
Xr

t = {xt−k, . . . , xt−1} and current/test window Xc
t = {xt, . . . , xt+k} with k observations and

deploy a hypothesis test or calculate a distance between the two windows and compare it against a
threshold at each timestamp.

Consider P,Q to be two probability distributions with p finite moments. The Wasserstein distance,
denoted as, W p

p (P,Q) has a closed expression for univariate distributions,

W p
p (P,Q) =

∫ 1

0

|F−1(u)−G−1(u)|pdu (1)

where F−1, G−1 are the inverse CDF of P and Q respectively. The sliced Wasserstein distance (SW)
exploits this closed expression by averaging over the Wasserstein distance between infinitely many
random one-dimensional projections of P and Q. In particular, for any direction θ ∈ Sd−1, we define
the projection of x ∈ Rd as T θ(x) = ⟨x, θ⟩ and denote the projected distribution with Pθ = T θ

#P,
where # is the push-forward operator, defined as T#P(A) = P(T−1(A)) for any Borel set A ∈ Rd.
Let us denote λ the uniform measure on Sd−1 = {θ ∈ Rd : ||θ||2 = 1}, then the p Sliced Wasserstein
distance between P and Q is defined as

SW p
p (P,Q) =

∫
Sd−1

W p
p (Pθ,Qθ)dλ(θ). (2)

In practice, the computation of the SW boils down to a Monte Carlo approximation by uniformly
sampling projection parameters {θl}Ll=1 on Sd−1 and average over the one-dimensional Wasserstein
distances obtained. Let us denote the slice wp

p : θ 7→Wp
p(Pθ,Qθ) as a function mapping a projection

direction to the p Wasserstein distance. Then, we have the Monte Carlo approximation, ŜW p
p (P,Q) =

L−1
∑L

l=1 w
p
p(θl) accordingly. The accuracy of this estimator heavily relies on the variance of wp

p
Nietert et al. (2022). Based on the following result, we derive the adaptive threshold, which is based
on the MoM estimated parameters of a Gamma distribution.
Theorem 3.1. Let P,Q denote two probability distributions on Rd with finite p’th moments then
w2

2(θ)[Pθ,Qθ] ∼ Γ as d→∞

3
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The following Proposition allows us to consider the uncertainty of the Method of Moments (MoM)
estimates based on the observed samples for the adaptive threshold.
Proposition 3.2. Suppose some i.i.d. samples Xn = (x1, . . . , xn) with xi ∼ Γ(α, β) for i =
1, . . . , n with sample mean Xn = 1

n

∑n
i=1 xi and sample variance S2

n = 1
n−1

∑n
i=1(xi − Xn)

2.
Then, the two-tailed confidence intervals for confidence level p of the Method of Moments (MoM)
estimates α̂, β̂ are

Cp(α̂) =
[
α̂− z q

2
·
√

Var(α̂), α̂+ z q
2
·
√

Var(α̂)
]

Cp(β̂) =

[
β̂ − z q

2
·
√

Var(β̂), β̂ + z q
2
·
√

Var(β̂)
] (3)

where z q
2

is the z-value of a standard normal distribution for confidence level q, and

Var(α̂) ≈ 6α2

n
, Var(β̂) ≈ β2 + 2αβ2

nα

3.1 EXPLAINABILITY

We denote the collection of random slices between P̂n, Q̂n with SL(P̂n, Q̂n) = {w2
2(θl)}Ll=1,

the empirical mean of SL is the Monte Carlo approximation of SW2
2(P̂n, Q̂n). We can interpret

w2
2(θl) as the loss for projection direction θl. In this case, the loss quantifies the Wasserstein dis-

tance of the corresponding projection. Assume we observe two sample sets X1 and X2 from the
same underlying process with a sudden change in the mean. Let X = {xi}ti=1 ∼ N (µX , Id)
and X1 = {xi}Ti=t+1 ∼ N (0, Id) denote two sample sets with µX = (1, 0, . . . , 0)T mod-
elling an abrupt change in the first feature dimension. The maximum distance is achieved when
θ = µX

||µX ||2 . This means the distributions are completely projected onto the first feature dimen-
sion, which is also the root cause of the drift. However, the probability of sampling a projec-
tion parameter θ such that ⟨θ, µX

||µX ||2 ⟩ ≈ 1 vanishes as the feature dimension grows. Never-
theless, we can use the linkage between projection direction and Wasserstein loss w2

2 to derive
a feature importance. We propose to average over the absolute projections parameters corre-
sponding to the slices above the q-quantile of SL. The procedure is illustrated in Algorithm 1.

Algorithm 1 Calculate Feature Contribution
Input: Slices SL, Projection parameters θ, Wasserstein
order: p, Quantile level: q

1: S→
L = [wp(θπ(1)), wp(θπ(2)), . . . , wp(θπ(L))] ▷ Sort

SL in ascending order
2: θ→1:L = [θπ(1), θπ(2), . . . , θπ(L)] ▷ Sorted θ according

to SL

3: iq ← ⌈qL⌉ ▷ Compute quantile index
4: Is =

1
L−iq

∑L
i=iq
|θπ(i)|

5: Return Is

We use a hierarchical approach to
obtain contrastive explanations for
change points. We start to identify the
feature dimension achieving the high-
est feature contribution according to
algorithm 1. Then, we eliminate the
dissimilarity for this feature dimen-
sion by replacing the values with the
mean of the same feature of the refer-
ence set, and validate the feature re-
moval step by calculating random pro-
jections SL between the updated sam-
ple sets. This step indicates whether
the reduced sample sets still contain
drifted feature dimensions since under
H0, both samples arise from the same underlying process, and the SW between the empirical distri-
butions approaches 0. We repeat this procedure iteratively and use the parameter estimation of β as a
validation and stopping criterion. Our proposed model-specific explanation procedure is illustrated in
Algorithm 2.

3.2 PROPOSED DETECTION METHOD

The main observation is that SL(P,Q) follows a Gamma distribution with SWp
p(P,Q) = E[SL]. We

process the data in an online manner with a sliding window of w observations and write

Dw
t = {xt−w, . . . , xt−w+⌊w

2 ⌋︸ ︷︷ ︸
P

, xt−w+⌊w
2 ⌋+1, . . . , xt︸ ︷︷ ︸
Q

},

4
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Algorithm 2 Hierarchical validated explanations
Input: Data: X,Y, Wasserstein order: p, Quantile level: q, Number of projections: L

1: cl← [1, . . . , N ] ▷ Track which features are left
2: cr← ∅ ▷ Removed features
3: while β̂ ≤ tol and |cl| > 0 do
4: Calculate random projections SL

5: β̂ ← MoM(SL) (eq. (4))
6: Calculate Feature Contributions Is ▷ Algorithm 1
7: i∗ ← argmax Is ▷ Find feature with highest contribution
8: cr← add(i∗, cr)
9: Y[:, i∗]← E[X[:, i∗]] ▷ Update feature

10: end while
11: Return cr

for t ≥ w which means the change point detection procedure is initiated after observing w data
samples. Furthermore, we denote the probability distribution of the first half of the sliding window
with P = ⌊w2 ⌋

−1
∑⌊w

2 ⌋
i=0 δxt−w+i

and the second half with Q = (⌊w2 ⌋ + 1)−1
∑⌊w

2 ⌋+1
i=0 δxt−i

. After
observing k samples, we calculate SL(P,Q) = SL(Dw

t ) and initially fit the data to a Gamma
distribution. Using the Method of Moments (MoM), we obtain a parameter estimation with

α̂ =
SL

2

V(SL)
, β̂ =

SL

V(SL)
(4)

where SL denotes the sample mean of SL, implying ŜW(P,Q) = α̂

β̂
, and V(SL) denotes the sample

variance of SL. Proposition 3.2 enables us to calibrate confidence intervals for MoM estimated α̂t, β̂t

for each time step t. In the following, we propose an adaptive online detection method (SWCPD) that
monitors the cumulative Sliced Wasserstein distances against a dynamic threshold. At each time step
t, the procedure consists of the following steps:

(1) UPDATE CUMULATIVE SUM: We compute the expected value of the test statistic
Ct = Ct−1 + E[SL(Dw

t )],

(2) PROPAGATE MOM ESTIMATES: In a sliding window, there are dependencies between successive
data windows. We smooth past MoM estimates using a moving average over the most recent
m = min{Kmax, t} steps with

E[α̂t+1|Ct] =
1

m

t∑
i=t−m

α̂i E[β̂t+1|Ct] =
1

m

t∑
i=t−m

β̂i.

Despite temporal correlations, the i.i.d. nature of the random projections ensures the validity of our
statistical bounds. (3) BOUND CUMULATIVE SUM: We use the smoothed MoM estimates to bound
the next step in the cumulative sum via the quantile of the corresponding Gamma distribution:

E[Ct+1|Ct] = Ct + E
[
α̂t+1

β̂t+1

∣∣Ct

]
≤ Ct + κ(p)

where κ(p) denotes the p-quantile of Γ(α̂t+1, β̂t+1).

(4) VALIDATE DEVIATIONS: After observing Dw
t+1, we update Ct+1, and compare it against the

upper bound. If it exceeds the bound, a change point is detected. The MoM estimates are then
updated using the new data.

4 EXPERIMENTS

We first evaluate the alignment of feature explanations obtained with the SW distance and Algorithm 2
to SoTA feature explanation methods. We demonstrate that Algorithm 2 leads to informative insights
that enable contrastive explanations for change detection. In the second part of this section, we
show the feasibility of our method against various popular offline and online change point detection
methods, achieving comparable or better results.

5
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Table 1: Mean alignment (eq. (6)) of SWD explanations with IG, GS, and DL explanations for
dimensions d = 10, 20 and various number of drifted components k = 1, 3, 7, 9 over 5 different runs.

d = 10 d = 20

IG GS DL IG GS DL

k = 1 0.959± 0.048 0.962± 0.045 0.965± 0.041 0.994± 0.001 0.994± 0.001 0.994± 0.002
k = 3 0.940± 0.048 0.940± 0.046 0.939± 0.040 0.950± 0.039 0.950± 0.040 0.947± 0.042
k = 7 0.900± 0.027 0.902± 0.028 0.900± 0.043 0.924± 0.022 0.923± 0.020 0.923± 0.024
k = 9 0.885± 0.031 0.885± 0.030 0.855± 0.027 0.924± 0.022 0.924± 0.020 0.936± 0.015

4.1 EXPLAINABILITY

We evaluate feature explanations using the SW distance (SWD) and compare it to SoTA feature
explanations obtained with Integrated Gradients (IG) Sundararajan et al. (2017), Gradient Shap
(GS) Lundberg & Lee (2017), and DeepLIFT (DL) Shrikumar et al. (2017) for synthetic data and
real-world data.

Synthetic Data. We generate data X1:N ∼N (µd,Σd) for N = 5000 and d = 10, 20, with mean µd

and covariance Σd. Each component of µi
d follows a normal distribution and is sampled independently.

0 1 2 3 4 5 6 7 8 9
Features

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
IG
GS
DL

0.0

0.1

0.2

0.3

0.4

Explanation scores
SWD

Figure 1: Explanation scores for each feature ob-
tained with IG, GS, DL, and SWD (higher score
indicates a higher importance). Red boxes indicate
ground truths (drifts).

We randomly select k ≤ d indices in µd and
sample an individual severity ϵi ∼ N (2, 1) for
each selected index, which is added to the mean
prior to the drift µ̃ = µ + ϵ. This ensures that
some feature dimensions are more important for
the total drift and should show a higher contribu-
tion to the explanation scores. We generate data
after the drift X̃1:N ∼ N (µ̃d,Σd), throughout
the experiments, we vary the number of drifted
components k = 1, 3, 7, 9 and set Σd = Id.
For a binary classification of samples before
and after the drift, we train a simple fully con-
nected neural network with three hidden layers
with 128, 64, and 32 units, respectively. We use
IG, GS, and DL to calculate feature attributions
ϕ(X), ϕ(X̃) for data before and after the drift
occurred. For SWD, we follow Algorithm 2 to
assign explanation vector eSWD. To quantify how severe the differences in the attribution scores for IG,
GS, and DL are, we assign some explanation scores by calculating the absolute differences between
both attributions

e := |ϕ(X)− ϕ(X̃)|. (5)

In Figure 1, we visualize the explanation scores for each feature for some data with d = 10 and k = 3.
The red boxes indicate the drifted features and mark the ground truths. We see that all reference
methods show similar explanation scores, and SWD-based explanations have a strong alignment with
the reference methods. We use the cosine similarity to quantify the alignment between SWD and the
reference explanation vectors,

s(e, eSWD) =
⟨e, eSWD⟩
||e||2||eSWD||2

. (6)

We investigate the alignment for different scenarios by varying d = 10, 20 and k = 1, 3, 7, 9. For
each parameter pair, we simulate data and calculate alignment between SWD explanation scores and
IG, GS, and DL for five different runs. In Table 1, we report the average alignment between SWD
explanations and explanations obtained by IG, GS, and DL.

Real World Data. We employ a Vision Transformer (ViT) model Dosovitskiy et al. (2021) for image
classification on the MNIST LeCun et al. (2010) dataset. Details on the model architecture can be
found in section B.1.1. We simulate a streaming behavior of samples from a particular class, which
then abruptly changes to another class. The feature attributions before and after the drift will differ
w.r.t. to the underlying feature characteristics of each class. We split the test dataset for each class

6
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Mean adv. example Differences

Figure 2: Shows the average adv. example and its corresponding differences for three different drifts
(left). On the right-hand side, we see the average example of each class before and after the drift
alongside the highlighted feature attributions with SWD, IG, GS, and DL.

and calculated the feature attribution respectively. The average feature attribution per class shows
the most important features for a given concept, e.g., number 7 has distinct characteristics (edges,
curvature) to number 0. However, the general representation of number 1 should be similar to 7
on a feature level, such that the classification model indicates a substantial overlap in the feature
attributions. We calculate the absolute differences of the average feature attributions for two classes
using IG, GS, and DL, which we use as a qualitative measure to explain the drift. We modify the
projection procedure in Algorithm 2 by using the unit vectors to obtain a pixelwise importance for
the attributions obtained using SWD. Figure 2 shows the results for three challenging drifts. IG and
GS show similar results, which is plausible since GS computes expected gradients and can be seen
as an extension of IG. Sparsity is especially important for adversarial attacks, which aim to alter
the model output with minimal perturbations of the inputs. The fast gradient sign method (FGSM)
Goodfellow et al. (2014) is a prominent adversarial attack method that alters the input by the sign
of the gradient of the loss function w.r.t the input to fool a model making incorrect predictions. We
simulated adversarial attacks on the ViT model using FGSM with ϵ = 5× 10−4 and compared the
average adversarial example to the average non-adversarial example, which can be seen in Figure 2.
This illustrates which features are likely to be liable under attacks, thus principal to the model, which
should also be reflected in the feature attributions.

4.2 CHANGE POINT DETECTION

In this part, we evaluate our proposed method on a synthetic dataset and three real-world datasets,
namely MNIST, Human Activity Recognition (HAR) Ermshaus et al. (2023a), and Occupancy
Candanedo & Feldheim (2016). While MNIST is challenging in the number of dimensions, the
HAR dataset combines drifts in variance and mean of each feature. We report Area under Curve
(AUC) scores, segmentation covering scores, average detection delay, and the average number of false
positives. For a detailed description and motivation for the used metrics, we refer the reader to Van den
Burg & Williams (2020) and Ermshaus et al. (2023b). We compare our method against four popular
change point detection methods (BOCPD Adams & MacKay (2007), e-divisive Matteson & James
(2014), KCP Arlot et al. (2019), OT-CPD Cheng et al. (2020a)) and one time series segmentation
method (ClaSP Ermshaus et al. (2023b)). In the following, we briefly describe the datasets on which
we conducted experiments and highlight subsequent results.

Synthetic Data: We construct a data stream of d = 50 exponential distributions xi ∼ Exp(λ) + ci,
where ci is randomly sampled within (−3, 3) for i = 1, . . . , d. We simulate 3 segments, where each
segment consists of 500 samples. We randomly select a total of 3 features for which we inject a drift
by offsetting the mean ci randomly sampled within (−3, 3) for each drifted feature. Additionally,
we generated a mixture distribution consisting of 20 Exponential distributions and 30 Gaussian
distributions. In Section C.2.1, we provide a detailed description of the sampling procedure. For
all experiments on synthetic data, we set the window length w = 50, the lookback window for the
estimation of shape- and rate parameters Kmax = 50, p = 2, and L = 5000. Table 2 shows the
average AUC scores, number of false positives, and detection delay for Exponential- and mixture
distributions for different distributional parameters λ, σ, and different detection thresholds τ in the
calculation of AUC scores, false positives.
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Table 2: Shows average AUC scores with standard deviation, and average number of false positives
and detection delay with min-max values for synthetic data

Exponential Mixture

AUC (↑) FP (↓) DD (↓) AUC (↑) FP (↓) DD (↓)
λ τ = 10 τ = 20 τ = 10 τ = 20 σ /λ τ = 10 τ = 20 τ = 10 τ = 20

0.5 0.6± 0.13 0.93± 0.13 1.2 (1; 2) 0.2 (0; 1) 14.8 (11; 18.5) 0.25 1.0± 0.0 1.0± 0.0 0 (0; 0) 0.0 (0; 0) 5.6 (3.5; 7.5)
0.1 0.47± 0.1 0.55± 0.17 0.8 (0; 1) 0.6 (0; 1) 16.6 (0; 22) 0.5 0.53± 0.16 0.87± 0.16 1.4 (1; 2) 0.4 (0; 1) 14.9 (10.5; 20.5)
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Figure 3: Boxplots of AUC and Covering scores for each parameter variation while keeping the other
parameters fixed.

MNIST: In order to mimic a streaming behavior, we uniformly sample
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Figure 4: Sensitivity of false positives w.r.t. τ for Occu-
pancy (first row), HAR (second row), and MNIST (third
row).

an initial class (without replacement) and
select K instances from the current class.
We repeat this procedure and annotate
the samples to introduce abrupt changes.
Within the scope of the experiments for
this paper, we generated 5 distinct data
sequences with 2, 3,and 4 change points,
where each class has 200 samples. In our
experiments, SWCPD is able to deliver
competitive AUC scores while delivering
minimal false positives on average. Addi-
tionally, we conducted an ablation study
to investigate the influence of each pa-
rameter on the AUC and Covering score.
We observe that SWCPD’s performance
is mostly liable to proper specification of
significance level and window length, see
Figure 3. We report detailed results in
Section C.1. For results in Table 3, we set
τ = 20, w = 50, Kmax = 25, L = 5000,
p = 4, and α = 0.1.

HAR: The dataset consists of distinct multimodal multivariate time series monitoring human motion
during various daily activities. The data was collected as part of the Human Activity Segmentation
Challenge Ermshaus et al. (2023a) using built-in smartphone sensors. In total, the dataset has 250
time series consisting of 12 different measurements sampled at 50 Hz, where the ground truth change
points were independently annotated using video and sensor data. We selected 25 instances covering
indoor and outdoor activities for various numbers of segments, ranging from 1 to 6. We specifically
considered instances with a single segment to assess each method’s robustness to false positives. We
refer to Ermshaus et al. (2023a) for a thorough description of the data and cover some insights on
the selected data in Section C.2.3. We set w = 500, Kmax = 20, L = 500, p = 2, and α = 0.05.
We used a margin of 100, which corresponds to a maximum tolerated delay of two seconds in the
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calculation of precision and recall, and average number of false positives for Table 3. We illustrate
the sensitivity of false positives for various margins τ in Figure 4.

Table 3: Shows the average AUC & Covering scores, average detection delay (DD), and false
positives (FP) together with the standard deviation of SWCPD and comparison methods over real-
world datasets.

Occupancy MNIST HAR

Method AUC (↑) COV (↑) DD (↓) FP (↓) AUC (↑) COV (↑) DD (↓) FP (↓) AUC (↑) COV (↑) DD (↓) FP (↓)
e-divisive 0.34 0.64 53 12 0.96± 0.05 0.95± 0.05 9.41 (0; 23) 0.4 (0; 1) 0.73± 0.12 0.57± 0.19 357 (0; 1264) 3.8 (0; 8)
KCP 0.52 0.64 77 11 0.91± 0.06 0.93± 0.05 21.7 (0; 71) 0.66 (0; 2) 0.66± 0.14 0.59± 0.32 334 (0; 1540) 14 (0; 47)
BOCPD 0.57 0.73 105 11 0.69± 0.15 0.78± 0.11 17.8 (11; 27) 0.93 (0; 2) 0.65± 0.10 0.66± 0.24 445 (0; 1866) 9.0 (0; 46)
CLasP 0.58 0.19 − − 0.63± 0.03 0.26± 0.06 − (−;−) − (−;−) 0.84± 0.15 0.79± 0.18 180 (0; 1054) 0.78 (0; 4)
OT-CPD 0.40 0.73 129 11 0.95± 0.05 0.96± 0.10 6.2 (0; 26) 0.4 (0; 1) 0.79± 0.2 0.75± 0.25 233 (0; 1342) 3.7 (0; 18)

SWCPD (ours) 0.59 0.81 52 4 0.97± 0.07 0.89± 0.07 11.8 (8; 14.5) 0.13 (0; 1) 0.85± 0.12 0.78± 0.19 39 (0; 688) 0.09 (0; 1)

Occupancy: This dataset is designed for the task of detecting changes in office occupancy levels
based on various room condition measurements, and is commonly used for the evaluation of change
point detection methods Van den Burg & Williams (2020). Originally, it was introduced in Candanedo
& Feldheim (2016) and captures four different measurements: 1) temperature, 2) humidity level, 3)
light, and 4) CO2. While SWCPD and ClaSP show the best results for the AUC scores, SWCPD
additionally delivers strong Covering scores, and minimal false Positives. For the results in Table 3,
we set τ = 30, w = 500, Kmax = 500, L = 1000, p = 2, and α = 0.05.

5 LIMITATIONS

Despite the demonstrated effectiveness of SWCPD, several limitations merit attention. First, the
reliance on random one-dimensional projections can reduce sensitivity to subtle, local changes in
high-dimensional spaces, as these may not always be captured by a limited sampling of directions.
Future refinements might involve adaptive or learned projection strategies that more selectively probe
feature dimensions most likely to exhibit drift. Second, our adaptive thresholding scheme is based on
the theoretically derived Gamma-distribution of Sliced Wasserstein distances; in practice, however,
for smaller datasets or heavy-tailed data can undermine our theoretical approximation.

6 CONCLUSION

We introduced SWCPD, a novel framework for explainable online change point detection in high-
dimensional data streams, leveraging Sliced Wasserstein (SW) distance. By transforming multivariate
time series into a one-dimensional signal, our method circumvents the computational bottlenecks
of traditional CPD techniques. We integrated three key innovations: (1) a statistically grounded
SW-based transformation that enables CPD on high-dimensional data with minimal overhead, (2)
a self-adaptive thresholding mechanism that dynamically calibrates detection sensitivity using a
Gamma-based statistical hypothesis test, and (3) a contrastive explainability module that identifies
the most influential feature dimensions contributing to detected changes.

We demonstrated SWCPD’s superiority across multiple benchmarks, achieving competitive detection
performance while maintaining interpretability. SWCPD outperforms existing online and offline
CPD techniques, particularly in dynamic, high-dimensional settings where both reliability and
explainability are critical. The proposed feature attribution mechanism offers actionable insights
by revealing the root causes of distributional shifts, ensuring that detected changes are not only
statistically significant but also interpretable.

SWCPD is a practical bridge between modern data streams and the social-technical systems that
rely on them. Interpretable, distribution-level telemetry is quickly becoming as mission-critical
as traditional point-estimate monitoring. As interpretable, distribution-level telemetry becomes
as critical as point-estimate monitoring, SWCPD combines statistical rigor with human-centered
explanations. This enables downstream AI systems, from LLMs to sensor stacks, to be wrapped in
transparent “change firewalls,” promoting a future where real-time models both detect and justify
shifts, setting a new standard for safer, fairer, and more accountable AI.
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B ADDITIONAL EXPERIMENTS

All experiments were conducted on a machine equipped with an AMD Ryzen 7 5700X CPU, 32 GB
of RAM, and a RTX 3060 GPU.
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Table 4: Parameter setting ViT

BATCH SIZE EPOCHS LR PATCHSIZE DIM DEPTH HEADS MLP

64 15 1× 10−4 4 64 6 8 128
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Figure 5: Illustrates Train and validation curves of loss and accuracy over 15 epochs for ViT model.

B.1 EXPLAINABILITY

B.1.1 MNIST

Vision Transformer. We employ a Vision Transformer (ViT) model for image classification on the
MNIST dataset. The model processes input images of size 28× 28 pixels, which are divided into
non-overlapping patches of size 4× 4, resulting in 49 patches. Each patch is linearly embedded into
a 64-dimensional feature space. The transformer consists of 6 layers, each employing multi-head
self-attention with 8 heads and a feed-forward network with a hidden dimension of 128. We apply a
dropout rate of 0.1 during the embedding and transformer layers to prevent overfitting. Since MNIST
images are grayscale, the model is configured to accept single-channel input. The data was split into
90% training set of which 10% into the validation set, while we used the additional 10% for testing.
We use Adam with λ = 0.001 for training over 15 epochs with a batch size of 64.

CNN. We use a simple LeNet-5 LeCun et al. (1998) as a benchmark CNN to investigate model
explanations under drifts on MNIST. We use the same train-test split as for the ViT model and Adam
optimizer with step size λ = 0.001. We repeat the same procedure as for the ViT and introduce drifts
and investigate the differences in the feature attrituions using SWD, and SoTA explanations methods
IG, GS, and DL. From fig. 6, we see that all reference methods align with feature attributions, and
hence show the same pattern for differences of before and after drift. Although, all explanation
methods align with the most significant feature changes, the pixelwise distance based approach
(SWD) narrows them down the most. This can also be seen in fig. 7, which highlights the differences
of adversarial examples changing the model output between two given classes, as SWD shows a
strong alignment.

B.2 UNCERTAINTY QUANTIFICATION

We investigate the asymptotic behaviour of the confidence intervals obtained by theorem 3.2 for
X ∼ Γ(2, 1) for various sample sizes and calculate the average confidence intervals for 30 different
random samples Xn with sample size n. For an increasing sample size, the confidence intervals for
both parameters shrinks and is centered around the true parameters as expected since sample mean
and variance are consistent, see fig. 8.
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Before Drift After Drift SWD IG Grad SHAP DeepLift

Figure 6: Shows the absolute difference of mean feature attributions for three different drifts and
reference methods IG, GS, and DL.

5 -> 6 : 0.005 : 0.01 : 0.05 : 0.1

7 -> 1

9 -> 3

Figure 7: Shows mean adversarial examples (left) which changes the model (CNN) output from
5 → 6, 7 → 1, and 9 → 3 using FGSM for different ϵ, and L4-norm between mean adversarial
example and non-adversarial example
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Figure 8: Shows the lower and upper bound of confidence interval (eq. (3)) for MoM estimator α̂, β̂
averaged over 30 experiments for equidistant sample sizes from n = 100, . . . , 5000.

Table 5: Average p-values obtained using Sharpio-Wilk test

L

d 100 500 1000

10 0.44 (✓) 0.065 (✓) 0.005 (-)
20 0.5 (✓) 0.3 (✓) 0.2 (✓)
30 0.5 (✓) 0.4 (✓) 0.3 (✓)
60 0.5 (✓) 0.5 (✓) 0.5 (✓)

100 0.5 (✓) 0.5 (✓) 0.5 (✓)

B.3 DISTRIBUTION OF RANDOM PROJECTIONS

For the numerical study of the distribution of w2
2(θ) : θ 7→ W2(Pθ,Qθ), we consider two sample

sets X,Y each consisting of 200 MNIST samples with gray-scaled images from the same class
respectively. For this example we set the class of each sample from X to 1, and Y to 7. We
calculated the SWD between both samples for different numbers of random projections ranging from
L = 100, 500, 1000, 5000. We then constructed the MoM esitmates of a Gamma distribution based
on the set of random projection obtained. Furthermore, we calculated a Kernel density estimation
for the random projections itself. This shows that using a Gamma distribution indeed fits the data
obtained. Additionally, we complared the sampled quantiles and the theoretical quantiles of the
random projections and MoM fitted Gamma distribution to asses the goodness of fit. The result is
summarize in fig. 9, as expected, we see that as the number of projection increases, we obtain a
better fit. While fig. 9, shows the asymptotic behaviour given by Theorem 3.1 of the linear random
projections of the Sliced Wasserstein distance, we observed that it also holds for lower-dimensional
data, e.g. simulated synthetic data. Consider x ∈ Rd, we fix a projection direction θl ∼ U(Sd−1)
and consider a sample set X = (x1, x2, . . . , xn). We set zl = ⟨X, θl⟩, where zl is normal due to the
CLT for d→∞. We simulated x according to d independent exponential distributions λ = 1 and
applied the Sharpio-Wilk test Shapiro & Wilk (1965) to asses wheter the projected samples can be
considered normal distributed. In table 5, we report the average p-values projections obtained using
L ∈ [100, 500, 1000] for various dimensions d.
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Figure 9: Shows a Kernel density estimation of a gamma density using the MoM estimated parameters
(red line) for the random projection for various number of projections L = 100, 500, 1000, 5000, and
the KDE of random projections (blue line) itself between two samples from MNIST.
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Figure 10: Shows boxplots of the AUC and Covering scores for each parameter variations while
keeping the other parameters fixed.

C CHANGE DETECTION

C.1 ABLATION STUDY

In the following we are going to investigate the sensitivity and influence of SWCPD for variations in
its key hyperparameters. Our proposed method relies on the following hyperparameter:

• L = 500: Number of random projections (Monte Carlo samples)

• w = 50: Window length

• p = 2: Order of Wasserstein distance

• α = 0.05 : Significance level

• Kmax = k: Maximum length of lookback window (for moving average calculation)

We conducted experiments using the same MNIST datasets as in the experimental section of the
paper, hence the number of change points varies from 2 to 4 with 200 samples for each sub-sequence
forming one segment. We defined the following parameter sets, w ∈ [5, 20, 50, 70, 100], Kmax ∈
[5, 10, 20, 50, 100], L ∈ [100, 200, 500, 1000, 5000], p ∈ [1, 2, 3, 4, 6], and α ∈ [0.01, 0.05, 0.1, 0.2].
Across all simulation on all 15 datasets, we fixed the random seed for the Monte Carlo samples to
obtain reproducible results. We choose the default parameter L = 5000, p = 4, w = 50, Kmax = 50,
α = 0.05 which we fixed, only varying one parameter within its parameter set respectively. Figure 10
shows the parameter sensitivity of SWCPD for this exemplary dataset. This shows, that the most
sensitive parameter are the window length, and lookback window, whereas the number of Monte
Carlo samples may be sufficiently large if chosen L ≈ d. The Wasserstein order should be set above
2, depending on the severity of the drifts, since it amplifies low signals (small distances). The same
holds for the significance level as it may be irrelevant if the abrupt changes are significant itself. To
further emphasize the influence of the Wasserstein order and significance level, we run additional
experiments on synthetic datasets with low drift severities. We used the sampling scheme described
in section C.2.1, where we set N = 1500, d = 10 with initial base center c0 ∈ [−4, 4]10 and 10
different segments. We selected V = {1, 2, 3} and drift severity was set to δj ∼ Uniform(−1) for
each feature index in V . In contrast we sampled the remaining data with i.i.d. Gaussian distribution
with mean at each base center respectively and σ = 0.5 for each component. The result highlights
the influence of the significance level for the propagated upper bound as increasing the variable leads
to a decrease in the AUC and Covering score since the number of false negatives increases when
the upper bound is to close to the cumulative sum. In this example, the Wasserstein order was of
secondary importance as changing it lead to similar scores across the datasets, however increasing
the Wasserstein order has a smoothing effect on the cumulative sum as small Wasserstein distances
nearly vanishes. This can be benefiting for noisy signals. For weak signals, where the abrupt changes
are small, we suggest decreasing the Wasserstein order amplifying small changes in the underlying
data. Additionally, we performed a Grid Search on MNIST and Occupancy. For both experiments,
we fixed p = 4, L = 5000 while varying the significance level α, window size w, and Lookback Kmax.
We limited the possible parameter values for MNIST to w ∈ [20, 30, 40, 50, 100], Kmax = [0.5w, w],
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Figure 11: Summary of AUC and Covering scores for varying significance level and Wasserstein order
on 10 different synthetic datasets with d = 10, N = 1500 and 10 drifts in 3 features simultaneously.
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Figure 12: Average AUC scores for various parameter combinations using SWCPD on MNIST
sequences.

and α = [0.01, 0.05, 0.1]. We report the average AUC scores for each parameter combination in
fig. 12, we see multiple parameter sets achieving high AUC scores. For Occupancy, we limited
the possible parameter values to w ∈ [200, 300, 400, 500, 600], Kmax = [0.25w, 0.5w, 0.75w, w], and
α = [0.01, 0.05, 0.1]. We report the AUC scores for each parameter combination in fig. 13, we see
multiple parameter sets achieving high AUC scores in comparison to the baseline methods.
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Figure 13: AUC scores for various parameter combinations using SWCPD on Occupancy.
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C.2 METHODS

In the following part, we will describe the reference methods used within the Change Point Detection
experiments. Alongside its main parameters and their default values, we also describe the setting for
each dataset. We provide an overview of the computational complexity in Table 6.

Table 6: Overview of reference methods and respective time complexity for online and offline change
point detection, K: number of change points, d: dimension, N : total samples, w: sliding window.

Method parametric non parametric online offline Offline Complexity1 Online Complexity2

e-divisive (✓) (✓) O(KN2) O(KN4)
KCP (✓) (✓) O(KdN2) O(KdN4)
ClaSP (✓) (✓) O(KN2) O(KN4)
BOCPD (✓) (✓) (−) O(Nd)
OT-CPD (✓) (✓) O(N(w3 log(w) + w2d)) O(N(w3 log(w) + w2d))
SWCPD (ours) (✓) (✓) (−) O(N(wdL+ Lw logw))

BOCPD (online): Bayesian Online Change Point Detection (BOCPD) Adams & MacKay (2007) is
a method used to detect change points in streaming data in real time. It has some desirable properties,
such that it can be applied online, is applicable to multivariate data, and quantifies uncertainty
Knoblauch & Damoulas (2018). The underlying concept of this approach is to monitor the probability
of a change point occurring at each time step by maintaining and updating the posterior distribution
over potential segmentations of the data. It assumes that data within a segment follows a consistent
probabilistic model (e.g., Gaussian), and a change point indicates a shift in the underlying model.
There exist many implementation, we use the implementation that comes with the ocp package
Pagotto (2019). The key parameters for this method are:

• prob_model: the underlying probability model of the posterior distribution

• init_params: the initial parameters for the probability model consiting of m, k, a, b

• hazard_function: normally set to a constant function with certain hazard rate λ

We run the experiments with the following parameter sets:

• HAR

– prob_model : ”gaussian”

– init_params : m = 0, k = 10, a = 0.1, b = 0.01

– hazard_function : type=constant, λ = 100

• MNIST

– prob_model : ”gaussian”

– init_params : m = 0.3, k = 0.01, a = 0.01, b = 1e− 4

– hazard_function : type=constant, λ = 100

• Occupancy

– We additionally applied z-score normalization of the data beforehand to obtain a
reasonable distributional setting and obtain change points

– prob_model : ”gaussian”

– init_params : m = 0, k = 0.01, a = 0.01, b = 1e− 4

– hazard_function : type=constant, λ = 100

1Complexity for offline change point detection for a multivariate time series with d dimensions and N
observations

2Accrued complexity for change point detection at time step t = N for a multivariate time series with d
dimensions and in total N observations
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E-divisive (offline): The e-divisive combines binary bisection together with a permutation test
based on an energy divergence measure Matteson & James (2014). It is a non-parametric offline
change point detection method for multivariate data, making it applicable to a wide range of complex
data. We use the implementation from the ecp package Nicholas A. James et al. (2019). The method
relies on the following parameters with default specification:

• R = 199 : specifies the number of permutations test applied

• sig.lvl = 0.05 : the significance level of the permutation test

• min.size = 30 : the minimum observations between two subsequent change points

We run the experiments with the following parameter sets:

• HAR: R = 199, sig.lvl = 0.05, min.size = 500

• MNIST: R = 199, sig.lvl = 0.05, min.size = 30

• Occupancy: R = 30, sig.lvl = 0.05, min.size = 400

KCP (offline): Kernel change-point detection (KCP) transforms the data into a RKHS with an
associated kernel, which is used to calculate the dissimilarity (cost). The goal is to obtain an optimal
segmentation of the input data in the sense of a minimized averaged cost within each segment obtained
Arlot et al. (2019). An efficient implementation of this method can be found in Truong et al. (2020),
we assume that the number of change points is unknown, hence we rely on KerneCPD with PELT.
The methods relies on the following parameter:

• kernel = ”linear”: specifies the kernel, cost function

• min_size = 1: minimum segmentation length

• pen: penalty or regularization of number of change points identified

The penalty value needs to be specified if the number of change point is unknown. Usually a higher
value will lead to fewer change points identified, while a lower value encourages the method to
annotate more change point with a more fine grained segmentation. We used the following parameter
settings:

• HAR: kernel ="rbf", min_size = 2, pen = 10

• MNIST: kernel ="rbf", min_size = 2, pen = 1

• Occupancy: kernel ="rbf", min_size = 2, pen = 50

ClaSP (offline): ClaSP (Classification Score Profile) is a self-supervised time series segmentation
method Ermshaus et al. (2023b). The implementation is available at https://github.com/
ermshaua/claspy. It is a dynamic windowing approach which creates a binary classification
problem across different split points of the time series using k-Nearest Neighbors (k-NN) which is
evaluated using corss validation. The score obtained from k-NN is used to evaluate the similarity of
both segments, where higher scores indicate a stronger dissimilarity. The main parameters to choose
are:

• windwo_size = ”suss”: size of the sliding window, default Summary Statistics Subse-
quence (suss)

• k_neighours = 3: number of nearest neighbours for k-NN

• distance = ”znormed_euclidean_distance”: distance used for k-NN

We used the following parameters:

• HAR: windwo_size = 50

• MNIST: windwo_size = 100

• Occupancy: windwo_size = 30
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OT-CPD (offline): OT-CPD Cheng et al. (2020a) is a optimal transport based change point detection
method which calculates the Wasserstein distance between two sliding windows. After obtaining all
available data, it applies a matched filter on the Wasserstein test statistic to obtain a more persistent
test statistic reducing false positives. OT-CPD annotates a change if the filtered test statistic exceeds
a pre-defined threshold. In our experiments, we relied on the implementation available at https://
github.com/kevin-c-cheng/OtChangePointDetection/tree/master. The main
parameters for the change point detection method to choose are:

• window: size of the sliding window

We used the following parameters:

• HAR: window = 1000

• MNIST: window = 150

• Occupancy: window = 750

C.2.1 SYNTHETIC DATA

The proposed sampling scheme generates synthetic data with customizable cluster centers and variable
feature dimensions. The process begins by defining an initial base center c0 ∈ Rd, where d is the
number of features. This base center serves as the reference point for all subsequent cluster centers.

To generate additional cluster centers, a perturbation process is applied to c0. Specifically, for each
new cluster center ci, i = 1, . . . , k − 1, the following transformation is applied:

ci,j =

{
c0,j +∆j if j ∈ V,
c0,j otherwise,

where ci,j is the j-th feature of the i-th cluster center, V ⊆ {1, 2, . . . , d} is the set of varying feature
indices, and ∆j ∼ Uniform(−δ, δ) is a random offset sampled from a uniform distribution with
range [−δ, δ].
The sampling process ensures that only the features indexed by V are modified, while other features
remain constant across all cluster centers. After generating the cluster centers, the data points
are sampled from a multivariate Gaussian distribution. For each cluster i, the samples x(n)

i , n =
1, . . . , Ni, are drawn as:

x
(n)
i ∼ N (ci,Σ),

where Σ ∈ Rd×d is the covariance matrix (diagonal for simplicity) and Ni is the number of samples
assigned to cluster i. The total number of samples N is distributed evenly across clusters, i.e.,
Ni = N/k.

This scheme allows for precise control over the features that vary between groups V , the degree of
variation δ, and the variance of data points within each cluster with Σ. By adjusting these parameters,
synthetic datasets can be tailored for specific experimental purposes, such as evaluating clustering
algorithms or analyzing feature-specific effects. In Table 7 we report AUC scores for different
variances and drift severities for Gaussian synthetic data with d = 10 and 1500 samples with 3
segments. Additionally, Figure 14 illustrates the contrastive explanations for the obtained change
points by SWCPD. We set the window length w = 50, the lookback window for the estimation of
shape- and rate parameters Kmax = 50, p = 2, and L = 5000.

Table 7: AUC for different variances σ2 and drift severity |δ|

Source Value τ = 5 τ = 10 τ = 20

0.1 1.0± 0.0 1.0± 0.0 1.0± 0.0
Variance (σ2) 0.5 0.8± 0.28 0.93± 0.14 1.0± 0.0

1.0 0.65± 0.32 0.75± 0.29 0.91± 0.13

1 0.4± 0.15 0.6± 0.26 0.94± 0.08
Drift Severity (|δ|) 2 0.6± 0.22 0.8± 0.27 0.97± 0.06

3 0.71± 0.28 0.87± 0.24 0.98± 0.05
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Figure 14: Interpretable change points obtained with SWCDP. Two right plots show feature attribu-
tions obtained using Algorithm 2, showing alignment with ground truth root causes of the drifts.
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Figure 15: Visualizes our proposed detection method for MNIST data with two change points at
t = 200, 400. Change points are indicated when the cumulative sum exceed the upper bound which
is derived based on past SWDs.

C.2.2 MNIST

In order mimic a streaming behaviour, we uniformly sample an initial class (without replacement)
and select K instances from the current class. We repeat this procedure and annotate the samples
to introduce abrupt changes. Within the scope of the experiments for this paper, we generated 5
distinct data sequences with 2, 3,and 4 change points, where each class has 200 samples. We illustrate
SWCPDs detection procedure for a sampled MNIST sequence with two change points at t = 200, 400
in fig. 15. By calculating tracking the SW distance using a rolling window of k = 50 observations, we
obtain a one-dimensional signal with two significant spikes at t1 = 225 and t2 = 425 since the within
similarity of the rolling window will be the largest when the first half samples belong to class prior to
the drift and the second half to the class after the drift. We see, that using a propagated upper bound
given the current state instead of purely relying on the distance as a signal, we can anticipate changes
more reliable and faster. Moreover, the upper bound is adaptive such that there is no fine tuning or
manually shifting the rolling window involved. SWCPD is based on the Sliced Wasserstein distance
which is a metric from Optimal Transport (OT). To contextualize the computational performance
of our proposed method for other OT-based detection methods such as OT-CPD, and e-divisive, we
report the average wall-clock time and standard deviation in Table 8.

C.2.3 HAR

The dataset consists of distinct multimodal multivariate time series monitoring human motion of
different daily activities. The data was collected as part of the Human Activity Segmentation
Challenge Ermshaus et al. (2023a) using built-in smartphone sensors. In total, the dataset has 250
time series consisting of 12 different measurements sampled at 50 Hz, where the ground truth change
points were independently annotated using video and sensor data. We selected 25 instances covering
17 indoor and 8 outdoor activities for various numbers of segments ranging from 1 to 6. We selected
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Table 8: Runtime comparison of SWCPD and OT-based CPD methods

(a) Average runtimes and AUC scores
for OT-baseline methods

Method Runtime (s) AUC

OT-CPD 425± 150 0.95± 0.05
e-divisive 5.9± 3.1 0.96± 0.05

(b) Average runtimes and AUC scores of SWCPD for different
numbers of projections L

L Runtime (s) AUC vs. OT-CPD vs. e-divisive

100 1.02± 0.2 0.87± 0.1 +41, 979% +478%
500 2.81± 0.6 0.95± 0.1 +15, 024% +109%
1000 3.33± 0.74 0.95± 0.1 +12, 662% +77%
5000 6.21± 1.3 0.97± 0.07 +6, 743% −5%
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Figure 16: Summary of the data used for the change point detection experiments of HAR dataset.

8 instances with one segment, thus zero change points to asses the sensitivity and robustness of each
method when the unknown underlying distribution does not change over time. Furthermore, we see
that the average number of observations increases with more segments in the selected data see fig. 16.
We specifically considered instances with a single segment to assess each method’s robustness to
false positives. Figure 17 illustrates the time series of an outdoor activity of a person. In this case,
the person is performing three different stretches (standing adductor left, squat stretch for adductors,
hamstring stretch right) Figure 4 shows AUC scores of our proposed method and baseline methods
for five different annotation margins τ ∈ [25, 50, 100, 150, 200], such that if the annotated change
point is at least τ instances away, it is classified as true positive thus contribution to the AUC score.
We see that SWCPD shows superior AUC scores for any τ , see Figure 18.

C.2.4 OCCUPANCY

WCPD is based on the Sliced Wasserstein distance which is a metric from Optimal Transport (OT).
To contextualize the computational performance of our proposed method for other OT-based detection
methods such as OT-CPD, and e-divisive, we report the average wall-clock time and standard deviation
in Table 9.

Table 9: Runtime comparison of SWCPD and OT-based CPD methods

(a) Average runtimes and AUC scores
for OT-baseline methods

Method Runtime (s) AUC

OT-CPD 96.2± 0.23 0.41± 0.00
e-divisive 175.3± 0.19 0.34± 0.00

(b) Average runtimes and AUC scores of SWCPD for different
numbers of projections L

L Runtime (s) AUC vs. OT-CPD vs. e-divisive

100 28.2± 0.8 0.48± 0.0 +241% +519%
500 59.4± 1.25 0.58± 0.0 +62% +195%
1000 66.6± 1.55 0.59± 0.0 +45% +163%
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Figure 17: Comparison of Test scores obtained using SWCPD and ClaSP on subject number 243 (left
hand side), and corresponding time series (right hand side).
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Figure 18: Shows average AUC scores for proposed method and baseline methods on the selected
HAR data for different annotation margins τ .
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D OMITTED PROOFS

Lemma D.1. Let X and Y be two independent random variable such that X ∼ Γ(α1, β) and
Y ∼ Γ(α2, β) with αi, β ≥ 0 for i = 1, 2. Let Z := X + Y , then Z ∼ Γ(α1 + α2, β)

Proof. We consider independent Gamma random variables Xk with different shape parameters αk

and fixed rate parameters β for k ∈ [N ]. Given the probability density function of Xk,

fXk
(x) =

βαk

Γ(αk)
xαk−1 exp (−βx),

we have the characteristic function

φXk
(t) = E[eitXk ] =

βαk

Γ(αk)

∫ ∞

0

xαk−1e−(β−it)xdx

=

(
1− it

β

)−αk

for k = 1, 2 and α1, α2 ≥ 0. Finally, we denote Z =
∑N

k=1 Xk and α =
∑N

k=1 αk and use

φZ(t) =

N∏
k=1

φXk
(t) =

(
1− it

β

)−α

.

Lemma D.2. Let X ∼ N (0, σ2), then |X|2 ∼ Γ( 12 ,
1

2σ2 ) follows a Gamma distribution with shape
parameter α = 1

2 and rate parameter β = 1
2σ2 .

Proof. We will first show that |X| follows a half-normal distribution with scale σ. By definition, the
probability density function of X is fX(x) = 1√

2πσ
exp (− x2

2σ2 ). Let us define Y = |X|, then each
realization of Y denoted as y ∈ [0,∞), such that,

FY (y) = Pr(Y ≤ y) = Pr(|X| ≤ y)

= Pr(−y ≤ X ≤ y) = 2 · Pr(0 ≤ X ≤ y)

= 2 ·
∫ y

0

1√
2πσ

exp
(
− x

2σ2

)
dx

Finally, we obtain

fY (y) =
d

dy
FY (y) =

√
2

π
σ−1 exp

(
− y2

2σ2

)
, for y ≥ 0,

which concludes that Y = |X| follows a half normal distribution. Similar, we set Z := Y 2 and have,
FZ(z) = Pr(Z ≤ z) = Pr(Y ≤

√
z) = FY (

√
z),

since Y ≥ 0. Subsequently, differentiating the CDF FZ(z) w.r.t. z and using Γ( 12 ) =
√
π, we obtain

the following probability density function,

fZ(z) =
1

2
√
z
fY (
√
z) =

1√
2πzσ

exp
(
− z

2σ2

)
=

1

Γ( 12 )
√
2σ2z

exp
(
− z

2σ2

)
for z ≥ 0.

which concludes the claim |X|2 ∼ Γ( 12 ,
1

2σ2 ).

Theorem D.3. [Berry-Esseen Berry (1941); Jacod & Protter (2012)] Let (Xj)j>0 be an i.i.d.
sequence of random variables with E[Xj ] = 0,E[X2

j ] = σ2, and finite third moments E[|Xj |3 <∞,
if we set Sn = X1+X2+···+Xn

σ
√
n

, then there exists a positive constant C such that

sup
t∈R
|P (Sn ≤ t)− Φ(t)| ≤ C

E[|Xj |3]
σ3
√
n

,

where Φ(t) denotes the cdf of a standard normal distribution.
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Proof. We refer the reader to Jacod & Protter (2012).

Lemma D.4. Let θ ∼ U(Sd−1) and Σ ∈ Rd×d p.s.d., then Q = θTΣθ
d−→ N

(
tr(Σ)
d , 2tr(Σ2)

d2

)
.

Proof. Let x ∼ N (0, Id), we set θ = x
||x|| such that the quadratic form Q = θTΣθ = xTΣx

||x||2 . We
write

xTΣx =

d∑
i=1

λix
2
i ,

where λ1, . . . , λd are the eigenvalues obtained after diagonalizing Σ = UΛUT . Let us set

Sd =

d∑
i=1

λi(x
2
i − 1),

such thatQ =
∑d

i=1 λi +Sd = tr(Σ)+Sd, where Sd is a sum of independent random variables. We
apply Theorem D.3 where Xi = λi(x

2
i −1), Var(Xi) = 2λ2

i , and E[|X3
i | = λ3

iE[|x2
i −1|3] = λ3

i c,
then we have

sup
t∈R
|P (Sn ≤ t)− Φ(t)| ≤ C

∑
i λ

3
i

(
∑

i λ
2
i )

3
2

which gives a uniform bound of the differences between the distribution of the random projections
and a standard normal distribution which is dependent on the spectrum of Σ. Moreover, since
E[||x||2] = d, and Var(||x||2) = 2d, we have Q = θTΣθ = tr(Σ)

d +N (0, σ2

d2 ) = N ( tr(Σ)
d , 2tr(Σ2)

d2 ).
Such that

Q d−→ N
(

tr(Σ)
d

,
2tr(Σ2)

d2

)

Theorem D.5. Let P,Q denote two probability distributions on Rd with finite p’th moments then
w2

2(θ)[Pθ,Qθ] ∼ Γ as d→∞.

Proof. We denote the probability distribution of X,Y with P,Q respectively. We write Z = ⟨X, θ⟩,
W = ⟨Y, θ⟩ modeling the projections T θ

#P, T θ
#Q. First, we consider the projection for a specific

sample xi denoted zi = ⟨xi, θ⟩. Thus, for a fixed sample, we have

E[zi] = E[⟨xi, θ⟩] =
d∑

k=1

xikE[θk] = 0,

Var(zi) = E[z2i ]− E[zi]2 =

d∑
k=1

x2
ikE[θ2k] =

1

d
||xi||2

leading to zi ∼ N (0, 1
d ||xi||2) for large d.

Now, we fix some projection direction θl ∼ U(Sd−1) and consider a sample set X =
(x1, x2, . . . , xn), we set zl = ⟨X, θl⟩, then,

E[zl] =
d∑

k=1

E[Xik]θlk,

Var(zl) = E[z2l ]− E[zl]2 =

d∑
k=1

E[X2
k ]θ

2
lk + 2

d∑
k,m=1

E[XkXm]θlkθlm − E[zl]2

=

d∑
k=1

E[X2
k ]θ

2
lk −

d∑
k=1

E[Xk]
2θ2lk + 2

d∑
k,m=1

E[XkXm]θlkθlm − E[Xk]E[Xm]θlkθlm
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after rearanging the terms, we have Var(zl) = θlΣXθTl , such that zl ∼
N
(∑d

k=1 E[Xik]θlk, θlΣXθTl

)
. Analogously, we consider a sample set Y = (y1, y2, . . . , yn) and

write wl := ⟨Y, θl⟩, subsequently, we see wl ∼ N
(∑d

k=1 E[Yik]θlk, θlΣY θ
T
l

)
.

The main step in the calculation of the Sliced Wasserstein distance is the utilization of the closed
expression of the Wasserstein distance between two univariate distributions, which reads that for two
probability distributions with p finite moments, the Wasserstein distance boils down to

Wp
p(P,Q) =

∫ 1

0

|F−1
P (u)− F−1

Q (u)|pdu, (7)

where F−1 denote the inverse CDF of P,Q indicated by the subscript. Note, if we plug in zl, wl for
P and Q in eq. (7), we obtain the p Wasserstein distance for the projection direction θl. Since we
derived that the distributions for a fixed projection behave Gaussian, we consider

F−1
zl

(u) =
√

2θlΣXθTl · erf−1(2u− 1) + µzl

where erf−1 denotes the inverse of the Gauss error function. We have D(u) := F−1
zl

(u)− F−1
wl

(u),

D(u) =

(√
2θlΣXθTl −

√
2θlΣY θTl

)
· erf−1(2u− 1) + µzl − µwl

.

Let us fix u and consider all possible projections θ, we see Eθ[θΣθ
2] = 1

d tr(Σ), while E[µz] =

E[µw] = 0, therefore E[D(u)] =
(√

2
d tr(ΣX)−

√
2
d tr(ΣY )

)
· erf−1(2u − 1), with Theo-

rem D.4 we have Var(θTΣθ) = 2tr(Σ2)
d for large d. Thus σ2

u = Var(D(u)) = erf−1(2u −
1)2Var(

(√
2θlΣXθTl −

√
2θlΣY θTl

)
which is convex in u. This means that the variance increases in

the tails. For each u the differences of the inverse CDF are Gaussian for large d with similar variance
σ2
u with D(u) ∼ N (µu, σ

2
u). Therefore, |D(u)|2 ∼ χ2

1(λu), note that the mean has a fixed value
scaled by the error function, such that we can factor this term out. Normalizing the random variables
will lead to a sum of Gamma random variables Lemma D.2 which is also Gamma distributed Lemma
D.1, however the exact shape and rate parameter are not directly obtainable as approximation with
the normalization is applied.

Proof of Proposition 3.2. Suppose, we have i.i.d. samples x1, . . . , xn ∼ Γ(α, β) which we denote
as Xn. For a Gamma distribution with shape α and rate β, we have µ = α

β and σ2 = α
β2 . We write

Xn = 1
n

∑n
i=1 xi for the sample mean and S2

n = 1
n−1

∑n
i=1(xi −Xn)

2 for the sample variance.
Then, we have the following Method of Moment estimates for α and β

α̂ =
X

2

n

S2
n

, β̂ =
Xn

S2
n

.

By the Central Limit Theorem, we know that for large n, the sample mean and variance converges to
a normal distribution, with

√
n
(
α̂β̂−1 − µ

)
d−→ N

(
0, σ2

)
√
n
(
S2
n − σ2

) d−→ N
(
0,Var(S2

n)
)

where, with Theorem 1 from Cho & Cho (2008), Var(S2
n) ≈ n−1(3σ2 + 2σ2µ2 − σ4) = 2α2

nβ4 for
n→∞. We use the asymptotic normality of sample mean and variance and apply the delta method
to derive an approximation of the variance of α̂, β̂. For a smooth differentiable function g(θ) and
a sequence of random variables θn, if

√
n(θn − θ)

d−→ N (0,Σ), then
√
(n)(g(θn) − g(θ))

d−→
N
(
0,∇g(θ)TΣ∇g(θ)

)
. Beginning with the estimate for α, we set

g(Xn, S
2
n) =

X
2

n

S2
n

,
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with

∇g
(
X

2

n, S
2
n

)T
=

(
2
Xn

S2
n

,− X
2

n

(S2
n)

2

)
.

The covariance matrix Σ consists of Var(Xn) and Var(S2
n) on the diagonal and 0 on the off diagonal

elements due to the fact that for large n sample mean and variance are uncorrelated. Therefore, we
have

Var(α̂) ≈
(
2Xn

S2
n

)2

· Var(Xn) +

(
X

2

n

(S2
n)

2

)2

· Var(S2
n),

and plugging the estimator for sample mean and variance in, we may simplify the expression to

Var(α̂) ≈ 4α2

n
+ β4 · Var(S2

n) =
6α2

n
.

For the estimator of β, we set

g(Xn, S
2
n) =

Xn

S2
n

,

repeating the steps from above leads to,

Var(β̂) ≈
(

1

S2
n

)2

· Var(Xn) +

(
Xn

(S2
n)

2

)2

· Var(S2
n),

which we simplify to

Var(β̂) ≈ β2

n · α
+

β6

α2
· Var(S2

n).
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