

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HIGH-DIMENSIONAL ONLINE CHANGE POINT DETECTION WITH ADAPTIVE THRESHOLDING AND INTERPRETABILITY

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Change point detection (CPD) identifies abrupt and significant changes in sequential data, with applications in human activity recognition, financial markets, 014 cybersecurity, manufacturing, and autonomous systems. While traditional methods 015 often struggle with the computational demands of high-dimensional data, they also 016 fail to provide explanations for detected change points, limiting their practical 017 usability. This paper introduces a CPD framework that enhances both interpretability 018 and scalability by leveraging the Sliced Wasserstein (SW) distance. Our 019 contributions are fourfold: (1) we present a method to transform multivariate data 020 into one-dimensional time series using the SW distance, enabling compatibility 021 with existing CPD methods; (2) we derive theoretical insights, demonstrating that 022 random slices of the SW distance follow a Gamma distribution, which facilitates 023 statistical hypothesis testing for CPD; (3) we propose a novel self-adapting online 024 CPD algorithm based on an adaptive threshold for a given significance level q ; and 025 (4) we propose a model-specific framework for generating contrastive explanations 026 for annotated change points. We find that our method outperforms popular (online/offline) 027 change point detection methods by reducing false positives by at least 48% on average while also providing interpretable change points and maintaining 028 competitive or superior detection performance, making it practical for deployment 029 in high-stakes applications.

032 1 INTRODUCTION

035 Change point detection (CPD) is a fundamental problem in statistical analysis, focusing on identifying 036 abrupt and significant changes in the underlying data-generating processes of sequential data. These 037 changes can signal shifts in critical properties, such as distributions, relationships, or trends, making 038 CPD pivotal in fields where timely detection of such shifts is crucial. Closely related to concept drift 039 detection Gama et al. (2014); Harel et al. (2014); Lu et al. (2018), CPD encompasses scenarios of 040 both abrupt and gradual changes, with a direct impact on the accuracy and reliability of machine 041 learning models and deployed systems. However, existing CPD methods are insufficient in both 042 scaling to high dimensions and providing meaningful explanations, which poses a significant gap 043 addressed by our approach.

044 The significance of CPD becomes evident in its multitude of real-world applications. In *human* 045 *activity recognition*, it can identify transitions between states, such as detecting when a person moves 046 from walking to running Xia et al. (2020). In *financial markets*, CPD is essential for spotting regime 047 shifts, such as the transition from a bull to a bear market, enabling traders and algorithms to adjust 048 strategies Kim et al. (2022); Carvalho & Lopes (2007); Chen & Gupta (1997); Nystrup et al. (2016). 049 In *cybersecurity*, CPD helps detect anomalies, such as cyberattacks or data breaches, by identifying 050 abrupt deviations in network traffic Kurt et al. (2018); Polunchenko et al. (2012). Similarly, in 051 *manufacturing quality control*, CPD can pinpoint defects or process anomalies to minimize waste 052 and downtime. Furthermore, in *autonomous driving*, detecting changes in environmental conditions 053 or sensor data ensures safe operation under dynamic conditions Ferguson et al. (2014); Galceran 054 et al. (2017). These examples underscore the critical role of CPD in enhancing decision-making and 055 ensuring the safety, efficiency, and reliability of systems across domains.

Despite its utility, CPD faces significant challenges when applied to high-dimensional data, where both scalability and explainability are becoming increasingly challenging. Traditional methods often rely on comparing probability distributions or distances between data segments to detect changes Aminikhahgahi & Cook (2017); Lu et al. (2018). While effective in lower-dimensional settings, these methods struggle with computational efficiency and scalability in higher-dimensional spaces. For instance, the exact computation of the Wasserstein distance for multivariate data scales as $\mathcal{O}(n^3 \log(n))$, making it impractical for large datasets. Similarly, the computation of U - and V -statistics for the Maximum Mean Discrepancy (MMD) also scales quadratically in time. Alongside the computational aspects, most CPD methods fail to provide interpretable change points, narrowing down the root cause of the drifts.

To address the lack of explainable change point detection tailored for high-dimensional data, the Sliced Wasserstein (SW) distance Bonneel et al. (2015) offers a promising alternative. Instead of computing a high-dimensional optimal transport directly, we can repeatedly project onto a single dimension, where Wasserstein distance has a closed form, and then average the results. By leveraging the closed-form expression of the Wasserstein distance for one-dimensional distributions, the SW distance reduces the computational complexity to $\mathcal{O}(n \log(n))$ by averaging over the Wasserstein distances of random one-dimensional projections. Additionally, by leveraging the geometric properties of the random projections, we can provide contrastive explanations for detected change points.

In this work, we bridge this gap by introducing a novel CPD framework that leverages the Sliced Wasserstein distance. Our contributions are as follows:

1. **A Self-Adapting Online CPD Algorithm with Adaptive Thresholding (3.2).** We propose a new self-adapting online CPD algorithm that dynamically adjusts its threshold based on a given significance level α . This enables robust and adaptive detection of change points in streaming high-dimensional data without manual tuning.
2. **Theoretical Insight: SW Distance Slices Follow a Gamma Distribution (3).** We derive a novel theoretical result showing that random slices of the SW distance follow a Gamma distribution. This allows for a principled statistical hypothesis testing framework, enabling more rigorous and interpretable change detection.
3. **Contrastive Explanations for Change Points Using Geometric Properties of SW Distance (3.1).** We develop a novel, model-specific framework for generating contrastive explanations of detected change points. By leveraging the geometric properties of random projections, we provide fine-grained insights into which features contribute most to distributional shifts, enhancing interpretability.
4. **Competitive Performance with Interpretability (4.2)** Our approach achieves competitive or superior performance compared to leading online and offline CPD methods across multiple real-world datasets while providing interpretable change points, making it practical for deployment in high-stakes applications such as finance, cybersecurity, and autonomous systems.

2 RELATED WORK

Online change point detection. Change point detection can be grouped into parametric and nonparametric methods Truong et al. (2020). Parametric methods assume that the data is drawn from some parametric family of probability distributions. Nonparametric approaches do not impose distributional assumptions. One of the most prominently known parametric approaches is the cumulative sum (CUSUM) method Page (1954). Over the last years, several extensions of CUSUM were introduced Alippi & Roveri (2006); Romano et al. (2023); Yu et al. (2023). Another popular parametric branch of change point detection are Bayesian methods including Fearnhead & Liu (2007); Knoblauch et al. (2018). Nonparametric methods are often based on test statistics derived by distances, including Euclidean distances Matteson & James (2014); Madrid Padilla et al. (2019) or divergence measures e.g. MMD Gretton et al. (2012); Harchaoui et al. (2013); Li et al. (2019) or test-statistics based on density-ratio estimation Sugiyama et al. (2008); Kanamori et al. (2009); Yamada et al. (2013); Liu et al. (2013b). More recently, deep generative models Chang et al. (2019); De Ryck et al. (2021) and density-ratio estimation based on deep neuronal networks Hushchyn et al. (2020); Hushchyn & Ustyuzhanin (2021) were also used for sequential change point detection.

108 **Optimal transport based change detection.** Over the past few years, optimal transport has become
 109 a popular choice for comparing two distributions. Naturally, optimal transport-based metrics, such as
 110 the Wasserstein distance or Sliced Wasserstein distance, can also be applied for sequential change
 111 point detection. This includes Cheng et al. (2020a), which proposes a change point detection
 112 framework computing the Wasserstein distance between a sliding window relying on a fixed threshold
 113 to detect changes. [Similar approaches were introduced in Faber et al. \(2021; 2022\)](#). In Cheng
 114 et al. (2020b), this framework was refined using a matched filter test statistic. Furthermore, one
 115 of the proposed test statistics is the Sliced Wasserstein distance, which is combined with a fixed
 116 threshold. Our work differs by introducing an adaptive threshold and primarily investigating the
 117 Sliced Wasserstein distance as a tool for interpretability.

118 **Interpretability through random projections.** The motivation behind utilizing random projection
 119 is the lower computational cost for the Wasserstein distance. In Wang et al. (2021), a projected
 120 Wasserstein distance was introduced, which finds a k -dimensional subspace through linear projections
 121 and calculates the Wasserstein distance in the lower-dimensional space. Analogously, in Wang et al.
 122 (2022), the kernel projected Wasserstein distance was motivated as a non-linear alternative to Wang
 123 et al. (2021). Both approaches reduce the computational complexity and facilitate interpretability in a
 124 two-sample test. Our proposed framework goes beyond a single iteration to find a specific projection
 125 direction, maximizing the Wasserstein distance between projected samples. We propose an iterative
 126 approach to identify the most discriminative feature, leading to a more comprehensive and detailed
 127 explanation of the underlying drift.

128 3 PROBLEM SETUP

130 The general problem of CPD involves determining abrupt changes in a time series. We denote the
 131 time series $\mathcal{D} = \{x_t \in \mathbb{R}^d : t \in [T]\}$ with $[T] = \{1, 2, \dots, T\}$ and assume that the time series
 132 follows some unknown underlying distribution \mathbb{P} . The goal is to identify all timestamps $t_* \in [T]$
 133 where the underlying distribution changes from \mathbb{P} to \mathbb{Q} , such that

$$134 \begin{aligned} t &\leq t_* : x_t \sim \mathbb{P} \\ 135 \quad t &> t_* : x_t \sim \mathbb{Q}. \end{aligned}$$

137 Many CPD methods rely on a windowing approach and split the observations into a reference window
 138 $X_t^r = \{x_{t-k}, \dots, x_{t-1}\}$ and current/test window $X_t^c = \{x_t, \dots, x_{t+k}\}$ with k observations and
 139 deploy a hypothesis test or calculate a distance between the two windows and compare it against a
 140 threshold at each timestamp.

141 Consider \mathbb{P}, \mathbb{Q} to be two probability distributions with p finite moments. The Wasserstein distance,
 142 denoted as, $W_p^p(\mathbb{P}, \mathbb{Q})$ has a closed expression for univariate distributions,

$$143 \quad W_p^p(\mathbb{P}, \mathbb{Q}) = \int_0^1 |F^{-1}(u) - G^{-1}(u)|^p du \quad (1)$$

146 where F^{-1}, G^{-1} are the inverse CDF of \mathbb{P} and \mathbb{Q} respectively. The sliced Wasserstein distance (SW)
 147 exploits this closed expression by averaging over the Wasserstein distance between infinitely many
 148 random one-dimensional projections of \mathbb{P} and \mathbb{Q} . In particular, for any direction $\theta \in \mathbb{S}^{d-1}$, we define
 149 the projection of $x \in \mathbb{R}^d$ as $T^\theta(x) = \langle x, \theta \rangle$ and denote the projected distribution with $\mathbb{P}^\theta = T_\#^\theta \mathbb{P}$,
 150 where $\#$ is the push-forward operator, defined as $T_\# \mathbb{P}(A) = \mathbb{P}(T^{-1}(A))$ for any Borel set $A \in \mathbb{R}^d$.
 151 Let us denote λ the uniform measure on $\mathbb{S}^{d-1} = \{\theta \in \mathbb{R}^d : \|\theta\|_2 = 1\}$, then the p Sliced Wasserstein
 152 distance between \mathbb{P} and \mathbb{Q} is defined as

$$153 \quad SW_p^p(\mathbb{P}, \mathbb{Q}) = \int_{\mathbb{S}^{d-1}} W_p^p(\mathbb{P}^\theta, \mathbb{Q}^\theta) d\lambda(\theta). \quad (2)$$

155 In practice, the computation of the SW boils down to a Monte Carlo approximation by uniformly
 156 sampling projection parameters $\{\theta_l\}_{l=1}^L$ on \mathbb{S}^{d-1} and average over the one-dimensional Wasserstein
 157 distances obtained. Let us denote the slice $w_p^p : \theta \mapsto W_p^p(\mathbb{P}^\theta, \mathbb{Q}^\theta)$ as a function mapping a projection
 158 direction to the p Wasserstein distance. Then, we have the Monte Carlo approximation, $\widehat{SW_p^p}(\mathbb{P}, \mathbb{Q}) =$
 159 $L^{-1} \sum_{l=1}^L w_p^p(\theta_l)$ accordingly. The accuracy of this estimator heavily relies on the variance of w_p^p
 160 Nietert et al. (2022). Based on the following result, we derive the adaptive threshold, which is based
 161 on the MoM estimated parameters of a Gamma distribution.

162 **Theorem 3.1.** Let \mathbb{P}, \mathbb{Q} denote two probability distributions on \mathbb{R}^d with finite p 'th moments then
 163 $w_2^2(\theta)[\mathbb{P}^\theta, \mathbb{Q}^\theta] \sim \Gamma$ as $d \rightarrow \infty$
 164

165 The following Proposition allows us to consider the uncertainty of the Method of Moments (MoM)
 166 estimates based on the observed samples for the adaptive threshold.

167 **Proposition 3.2.** Suppose some i.i.d. samples $X_n = (x_1, \dots, x_n)$ with $x_i \sim \Gamma(\alpha, \beta)$ for $i =$
 168 $1, \dots, n$ with sample mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n x_i$ and sample variance $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{X}_n)^2$.
 169 Then, the two-tailed confidence intervals for confidence level q of the Method of Moments (MoM)
 170 estimates $\hat{\alpha}, \hat{\beta}$ are

$$171 \quad C_p(\hat{\alpha}) = \left[\hat{\alpha} - z_{\frac{q}{2}} \cdot \sqrt{\text{Var}(\hat{\alpha})}, \hat{\alpha} + z_{\frac{q}{2}} \cdot \sqrt{\text{Var}(\hat{\alpha})} \right] \quad (3)$$

$$173 \quad C_p(\hat{\beta}) = \left[\hat{\beta} - z_{\frac{q}{2}} \cdot \sqrt{\text{Var}(\hat{\beta})}, \hat{\beta} + z_{\frac{q}{2}} \cdot \sqrt{\text{Var}(\hat{\beta})} \right]$$

175 where $z_{\frac{q}{2}}$ is the z-value of a standard normal distribution for confidence level q , and

$$177 \quad \text{Var}(\hat{\alpha}) \approx \frac{6\alpha^2}{n}, \quad \text{Var}(\hat{\beta}) \approx \frac{\beta^2 + 2\alpha\beta^2}{n\alpha}$$

179 3.1 EXPLAINABILITY

181 We denote the collection of random slices between $\hat{\mathbb{P}}_n, \hat{\mathbb{Q}}_n$ with $S_L(\hat{\mathbb{P}}_n, \hat{\mathbb{Q}}_n) = \{w_2^2(\theta_l)\}_{l=1}^L$, the
 182 empirical mean of S_L is the Monte Carlo approximation of $\text{SW}_2^2(\hat{\mathbb{P}}_n, \hat{\mathbb{Q}}_n)$. We can interpret $w_2^2(\theta_l)$
 183 as the loss for projection direction θ_l . In this case, the loss quantifies the Wasserstein distance of the
 184 corresponding projection. We can use the linkage between projection direction and Wasserstein loss
 185 w_2^2 to derive a feature importance. We propose to average over the absolute projections parameters
 186 corresponding to the slices above the q -quantile of S_L . The procedure is illustrated in Algorithm 1.
 187 We use a hierarchical approach to
 188 obtain contrastive explanations for
 189 change points. We start to identify the
 190 feature dimension achieving the highest
 191 feature contribution according to
 192 algorithm 1. Then, we eliminate the
 193 dissimilarity for this feature dimension
 194 by replacing the values with the
 195 mean of the same feature of the reference
 196 set, and validate the feature re-
 197 moval step by calculating random pro-
 198 jections S_L between the updated sam-
 199 ple sets. This step indicates whether
 200 the reduced sample sets still contain
 201 drifted feature dimensions since under
 202 H_0 , both samples arise from the same underlying process, and the SW between the empirical distri-
 203 butions approaches 0. We propose a stopping criterion based on the norm of the mean differences
 204 which is upper bounded by some constant given in terms of d, N , and the covariance matrix. We
 205 derive the stopping criterion in Appendix B.4. Our proposed model-specific explanation procedure is
 206 illustrated in Algorithm 2.

207 3.2 PROPOSED DETECTION METHOD

208 The main observation is that $S_L(\mathbb{P}, \mathbb{Q})$ follows a Gamma distribution with $\text{SW}_p^p(\mathbb{P}, \mathbb{Q}) = \mathbb{E}[S_L]$. We
 209 process the data in an online manner with a sliding window of w observations and write

$$211 \quad \mathcal{D}_t^w = \underbrace{\{x_{t-w}, \dots, x_{t-w+\lfloor \frac{w}{2} \rfloor}\}}_{\mathbb{P}}, \underbrace{\{x_{t-w+\lfloor \frac{w}{2} \rfloor+1}, \dots, x_t\}}_{\mathbb{Q}},$$

213 for $t \geq w$ which means the change point detection procedure is initiated after observing w data
 214 samples. Furthermore, we denote the probability distribution of the first half of the sliding window
 215 with $\mathbb{P} = \lfloor \frac{w}{2} \rfloor^{-1} \sum_{i=0}^{\lfloor \frac{w}{2} \rfloor} \delta_{x_{t-w+i}}$ and the second half with $\mathbb{Q} = (\lfloor \frac{w}{2} \rfloor + 1)^{-1} \sum_{i=0}^{\lfloor \frac{w}{2} \rfloor + 1} \delta_{x_{t-i}}$. After

216 **Algorithm 2** Hierarchical validated explanations
217 **Input:** Data: \mathbf{X}, \mathbf{Y} , Wasserstein order: \mathbf{p} , Quantile level: \mathbf{q} , Number of projections: \mathbf{L}
218

```

219 1:  $cl \leftarrow [1, \dots, d]$                                  $\triangleright$  Track which features are left
220 2:  $cr \leftarrow \emptyset$                                  $\triangleright$  Removed features
221 3:  $C \leftarrow \sqrt{\frac{2}{N} \text{tr}(\Sigma_X)}$ 
222 4: while  $\|D\| \geq C$  and  $|cl| > 0$  do
223 5:   Calculate random projections  $\mathbf{S}_L$ 
224 6:   Calculate Feature Contributions  $I_s$                    $\triangleright$  Algorithm 1
225 7:    $i_* \leftarrow \arg \max I_s$                              $\triangleright$  Find feature with highest contribution
226 8:    $cr \leftarrow \text{add}(i_*, cr)$ 
227 9:    $\mathbf{Y}[:, i_*] \leftarrow \mathbb{E}[\mathbf{X}[:, i_*]]$                  $\triangleright$  Update feature
228 10:   $D \leftarrow \frac{1}{N} \sum_{i=1}^N X_i - \frac{1}{N} \sum_{i=1}^N Y_i$ 
229 11: end while
230 12: Return  $cr$ 
231
```

232 observing k samples, we calculate $S_L(\mathbb{P}, \mathbb{Q}) = S_L(\mathcal{D}_t^w)$ and initially fit the data to a Gamma
233 distribution. Using the Method of Moments (MoM), we obtain a parameter estimation with

$$\hat{\alpha} = \frac{\overline{S}_L^2}{\mathbb{V}(S_L)}, \quad \hat{\beta} = \frac{\overline{S}_L}{\mathbb{V}(S_L)} \quad (4)$$

234 where \overline{S}_L denotes the sample mean of S_L , implying $\widehat{\text{SW}}(\mathbb{P}, \mathbb{Q}) = \frac{\hat{\alpha}}{\hat{\beta}}$, and $\mathbb{V}(S_L)$ denotes the sample
235 variance of S_L . Proposition 3.2 enables us to calibrate confidence intervals for MoM estimated $\hat{\alpha}_t, \hat{\beta}_t$
236 for each time step t . In the following, we propose an adaptive online detection method (SWCPD) that
237 monitors the cumulative Sliced Wasserstein distances against a dynamic threshold. At each time step
238 t , the procedure consists of the following steps:

239 (1) UPDATE CUMULATIVE SUM: We compute the expected value of the test statistic
240

$$C_t = C_{t-1} + \mathbb{E}[S_L(\mathcal{D}_t^w)],$$

241 (2) PROPAGATE MOM ESTIMATES: In a sliding window, there are dependencies between successive
242 data windows. We smooth past MoM estimates using a moving average over the most recent
243 $m = \min\{K_{\max}, t\}$ steps with

$$\mathbb{E}[\hat{\alpha}_{t+1}|C_t] = \frac{1}{m} \sum_{i=t-m}^t \hat{\alpha}_i \quad \mathbb{E}[\hat{\beta}_{t+1}|C_t] = \frac{1}{m} \sum_{i=t-m}^t \hat{\beta}_i.$$

244 Despite temporal correlations, the i.i.d. nature of the random projections ensures the validity of our
245 statistical bounds. (3) BOUND CUMULATIVE SUM: We use the smoothed MoM estimates to bound
246 the next step in the cumulative sum via the quantile of the corresponding Gamma distribution:

$$\mathbb{E}[C_{t+1}|C_t] = C_t + \mathbb{E} \left[\frac{\hat{\alpha}_{t+1}}{\hat{\beta}_{t+1}} \mid C_t \right] \leq C_t + \kappa(q)$$

247 where $\kappa(q)$ denotes the q -quantile of $\Gamma(\hat{\alpha}_{t+1}, \hat{\beta}_{t+1})$.
248

249 (4) VALIDATE DEVIATIONS: After observing \mathcal{D}_{t+1}^w , we update C_{t+1} , and compare it against the
250 upper bound. If it exceeds the bound, a change point is detected. The MoM estimates are then
251 updated using the new data.
252

253 4 EXPERIMENTS

254 We first evaluate the alignment of feature explanations obtained with the SW distance and Algorithm 2
255 to SoTA feature explanation methods. We demonstrate that Algorithm 2 leads to informative insights
256 that enable contrastive explanations for change detection. In the second part of this section, we
257 show the feasibility of our method against various popular offline and online change point detection
258 methods, achieving comparable or better results.

270
271 Table 1: Mean alignment (eq. (6)) of SWD explanations with IG, GS, and DL explanations for
272 dimensions $d = 10, 20$ and various number of drifted components $k = 1, 3, 7, 9$ over 5 different runs.
273
274

	$d = 10$			$d = 20$		
	IG	GS	DL	IG	GS	DL
$k = 1$	0.959 ± 0.048	0.962 ± 0.045	0.965 ± 0.041	0.994 ± 0.001	0.994 ± 0.001	0.994 ± 0.002
$k = 3$	0.940 ± 0.048	0.940 ± 0.046	0.939 ± 0.040	0.950 ± 0.039	0.950 ± 0.040	0.947 ± 0.042
$k = 7$	0.900 ± 0.027	0.902 ± 0.028	0.900 ± 0.043	0.924 ± 0.022	0.923 ± 0.020	0.923 ± 0.024
$k = 9$	0.885 ± 0.031	0.885 ± 0.030	0.855 ± 0.027	0.924 ± 0.022	0.924 ± 0.020	0.936 ± 0.015

281 4.1 EXPLAINABILITY

282
283 We evaluate feature explanations using the SW distance (SWD) and compare it to SoTA feature
284 explanations obtained with Integrated Gradients (IG) Sundararajan et al. (2017), Gradient Shap
285 (GS) Lundberg & Lee (2017), and DeepLIFT (DL) Shrikumar et al. (2017) for synthetic data and
286 real-world data.

287 **Synthetic Data.** We generate data $X_{1:N} \sim \mathcal{N}(\mu_d, \Sigma_d)$ for $N = 5000$ and $d = 10, 20$, with mean μ_d
288 and covariance Σ_d . Each component of μ_d^i follows a normal distribution and is sampled independently.
289 We randomly select $k \leq d$ indices in μ_d and
290 sample an individual severity $\epsilon_i \sim \mathcal{N}(2, 1)$ for
291 each selected index, which is added to the mean
292 prior to the drift $\tilde{\mu} = \mu + \epsilon$. This ensures that
293 some feature dimensions are more important for
294 the total drift and should show a higher contribu-
295 tion to the explanation scores. We generate data
296 after the drift $\tilde{X}_{1:N} \sim \mathcal{N}(\tilde{\mu}_d, \Sigma_d)$, throughout
297 the experiments, we vary the number of drifted
298 components $k = 1, 3, 7, 9$ and set $\Sigma_d = \mathbb{I}_d$.
299 For a binary classification of samples before
300 and after the drift, we train a simple fully con-
301 nected neural network with three hidden layers
302 with 128, 64, and 32 units, respectively. We use
303 IG, GS, and DL to calculate feature attributions
304 $\phi(X), \phi(\tilde{X})$ for data before and after the drift
305 occurred. For SWD, we follow Algorithm 2 to
306 assign explanation vector e_{SWD} . To quantify how
307 severe the differences in the attribution scores for IG,
308 GS, and DL are, we assign some explanation scores by calculating the absolute differences between
309 both attributions

$$e := |\phi(X) - \phi(\tilde{X})|. \quad (5)$$

310 In Figure 1, we visualize the explanation scores for each feature for some data with $d = 10$ and $k = 3$.
311 The red boxes indicate the drifted features and mark the ground truths. We see that all reference
312 methods show similar explanation scores, and SWD-based explanations have a strong alignment with
313 the reference methods. We use the cosine similarity to quantify the alignment between SWD and the
314 reference explanation vectors,

$$s(e, e_{\text{SWD}}) = \frac{\langle e, e_{\text{SWD}} \rangle}{\|e\|_2 \|e_{\text{SWD}}\|_2}. \quad (6)$$

315 We investigate the alignment for different scenarios by varying $d = 10, 20$ and $k = 1, 3, 7, 9$. For
316 each parameter pair, we simulate data and calculate alignment between SWD explanation scores and
317 IG, GS, and DL for five different runs. In Table 1, we report the average alignment between SWD
318 explanations and explanations obtained by IG, GS, and DL [after the first iteration of Algorithm 2](#).

319 **Real World Data.** We employ a Vision Transformer (ViT) model Dosovitskiy et al. (2021) for image
320 classification on the MNIST LeCun et al. (2010) dataset. Details on the model architecture can be
321 found in section B.1.1. We simulate a streaming behavior of samples from a particular class, which
322 then abruptly changes to another class. The feature attributions before and after the drift will differ
323 w.r.t. to the underlying feature characteristics of each class. We split the test dataset for each class

Figure 2: Shows the average adv. example and its corresponding differences for three different drifts (left). On the right-hand side, we see the average example of each class before and after the drift alongside the highlighted feature attributions with SWD, IG, GS, and DL.

and calculated the feature attribution respectively. The average feature attribution per class shows the most important features for a given concept, e.g., number 7 has distinct characteristics (edges, curvature) to number 0. However, the general representation of number 1 should be similar to 7 on a feature level, such that the classification model indicates a substantial overlap in the feature attributions. We calculate the absolute differences of the average feature attributions for two classes using IG, GS, and DL, which we use as a qualitative measure to explain the drift. We modify the projection procedure in Algorithm 2 by using the unit vectors to obtain a pixelwise importance and terminate after 250 iterations. We found that for two distinct digits, there are 245.08 pixels on average, which show an absolute deviation above 0.1. Changes below this are generally indistinguishable, such that this reduced set captures the most important pixels which are a valid representation of the original class, therefore 250 is a conservative qualitative stopping criterion. Figure 2 shows the results for three challenging drifts. IG and GS show similar results, which is plausible since GS computes expected gradients and can be seen as an extension of IG. Sparsity is especially important for adversarial attacks, which aim to alter the model output with minimal perturbations of the inputs. The fast gradient sign method (FGSM) Goodfellow et al. (2014) is a prominent adversarial attack method that alters the input by the sign of the gradient of the loss function w.r.t the input to fool a model making incorrect predictions. We simulated adversarial attacks on the ViT model using FGSM with $\epsilon = 5 \times 10^{-4}$ and compared the average adversarial example to the average non-adversarial example, which can be seen in Figure 2. This illustrates which features are likely to be liable under attacks, thus principal to the model, which should also be reflected in the feature attributions.

4.2 CHANGE POINT DETECTION

In this part, we evaluate our proposed method on a synthetic dataset and four real-world datasets, namely MNIST, [Human Activity Recognition \(HAR\)](#) Anguita et al. (2013), [Human Activity Segmentation Challenge \(HASC\)](#) Ermshaus et al. (2023a), and Occupancy Candanedo & Feldheim (2016). While MNIST is challenging in the number of dimensions, the sensor data from HAR and HASC combines drifts in variance and means. We report Area under Curve (AUC) scores, segmentation covering scores, average detection delay, and the average number of false positives. For a detailed description and motivation for the used metrics, we refer the reader to Van den Burg & Williams (2020) and Ermshaus et al. (2023b). We compare our method against five popular change point detection methods (BOCPD Adams & MacKay (2007), e-divisive Matteson & James (2014), KCP Arlot et al. (2019), OT-CPD Cheng et al. (2020a), RuLIFS Liu et al. (2013a)), one time series segmentation method (ClaSP Ermshaus et al. (2023b)), and two deep learning based methods (ONNR,ONNC from Hushchyn et al. (2020); Hushchyn & Ustyuzhanin (2021) here called DeepRuLIFS, DeepCLF). Generally, an appropriate hyperparameter choice includes w smaller than the average segment length, K_{\max} the same size as w or smaller fractions for a more adaptive threshold with a smaller autoregressive lag, $p = 2, 4$, sufficiently large $L > 500$, and $q < 0.15$ for a robust detection threshold. In the following, we briefly describe the datasets on which we conducted experiments and highlight subsequent results.

Synthetic Data: We construct a data stream of $d = 50$ exponential distributions $x_i \sim \text{Exp}(\lambda) + c_i$, where c_i is randomly sampled within $(-3, 3)$ for $i = 1, \dots, d$. We simulate 3 segments, where each

378 Table 2: Shows average AUC scores with standard deviation, and average number of false positives
 379 and detection delay with min-max values for synthetic data
 380

Exponential										Mixture					
λ	AUC (\uparrow)		FP (\downarrow)		DD (\downarrow)	σ / λ	AUC (\uparrow)		FP (\downarrow)		DD (\downarrow)				
	$\tau = 10$	$\tau = 20$	$\tau = 10$	$\tau = 20$			$\tau = 10$	$\tau = 20$	$\tau = 10$	$\tau = 20$					
0.5	0.6 \pm 0.13	0.93 \pm 0.13	1.2 (1; 2)	0.2 (0; 1)	14.8 (11; 18.5)	0.25	1.0 \pm 0.0	1.0 \pm 0.0	0 (0; 0)	0.0 (0; 0)	5.6 (3.5; 7.5)				
0.1	0.47 \pm 0.1	0.55 \pm 0.17	0.8 (0; 1)	0.6 (0; 1)	16.6 (0; 22)	0.5	0.53 \pm 0.16	0.87 \pm 0.16	1.4 (1; 2)	0.4 (0; 1)	14.9 (10.5; 20.5)				

385
 386
 387
 388 segment consists of 500 samples. We randomly select a total of 3 features for which we inject a drift
 389 by offsetting the mean c_i randomly sampled within $(-3, 3)$ for each drifted feature. Additionally,
 390 we generated a mixture distribution consisting of 20 Exponential distributions and 30 Gaussian
 391 distributions. In Section C.2.1, we provide a detailed description of the sampling procedure. For
 392 all experiments on synthetic data, we set the window length $w = 50$, the lookback window for the
 393 estimation of shape- and rate parameters $K_{\max} = 50$, $p = 2$, and $L = 5000$. Table 2 shows the
 394 average AUC scores, number of false positives, and detection delay for Exponential- and mixture
 395 distributions for different distributional parameters λ , σ , and different detection thresholds τ in the
 396 calculation of AUC scores, false positives.

409 Figure 3: Boxplots of AUC and Covering scores for each parameter variation while keeping the other
 410 parameters fixed.

411
 412
 413 **Faithfulness:** Additionally, we investigate the faithfulness of *discriminative features* derived using
 414 Algorithm 2. For this matter, we simulate a 50/50 mixture distribution of Gaussian and Exponential
 415 random variables with $d = 50$ with 500 observations. We randomly select 10 features for which we
 416 inject a mean shift at $t = 250$ with a magnitude uniformly sampled in $[-\delta, \delta]$. We let our method
 417 identify the 10 most discriminative features and mask the time series by removing the identified
 418 features. We use an independent oracle (KCP) with an AUC and covering score of 1.0 on the original
 419 data, and evaluate it on the masked data. We report the True Positive change $\Delta_{\text{TP}} = \text{TP}_{\text{clean}} - \text{TP}_{\text{masked}}$
 420 and covering change $\Delta_{\text{Cov}} = \text{Cov}_{\text{clean}} - \text{Cov}_{\text{masked}}$. Since, $\text{TP}_{\text{clean}} = 1.0$, the desired $\Delta_{\text{TP}} = 1.0$
 421 which indicates that without the discriminative features, the oracle no longer detects any change point.
 422 Thus, the desired covering change is $\Delta_{\text{Cov}} = 0.5$ as no segmentation leads to $\text{Cov} = 0.5$. Additionally,
 423 we calculate the discriminative accuracy as the fraction of identified discriminative features and
 424 ground truth discriminative features.

425 Table 3: Shows the average discriminative accuracy of Algorithm 2 and the influence on the detection
 426 ability measured by the change of true positives and covering score.

δ	0.2	0.3	0.5	0.7	1.0	2.0
Acc	0.68 \pm 0.11	0.77 \pm 0.08	0.87 \pm 0.08	0.90 \pm 0.08	0.90 \pm 0.08	0.95 \pm 0.08
Δ_{TP}	1.0 \pm 0.0					
Δ_{Cov}	0.49 \pm 0.01	0.49 \pm 0.01	0.50 \pm 0.0	0.50 \pm 0.0	0.50 \pm 0.0	0.50 \pm 0.0

MNIST: In order to mimic a streaming behavior, we uniformly sample an initial class (without replacement) and select K instances from the current class. We repeat this procedure and annotate the samples to introduce abrupt changes. Within the scope of the experiments for this paper, we generated 5 distinct data sequences with 2, 3, and 4 change points, where each class has 200 samples. In our experiments, SWCPD is able to deliver competitive AUC scores while delivering minimal false positives on average. Additionally, we conducted an ablation study to investigate the influence of each parameter on the AUC and Covering score. We observe that SWCPD’s performance is mostly liable to proper specification of significance level and window length, see Figure 3. We report detailed results in Section C.1. For results in Table 4, we set $\tau = 20$, $w = 50$, $K_{\max} = 25$, $L = 5000$, $p = 4$, and $q = 0.1$.

HASC & HAR: Datasets consists of distinct multimodal multivariate time series monitoring human motion during various daily activities denoted as HASC and HAR. HASC data was collected as part of the Human Activity Segmentation Challenge Ermshaus et al. (2023a) using built-in smartphone sensors. In total, the dataset has 250 time series consisting of 12 different measurements sampled at 50 Hz, where the ground truth change points were independently annotated using video and sensor data. We selected 25 instances covering indoor and outdoor activities for various numbers of segments, ranging from 1 to 6. We specifically considered instances with a single segment to assess each method’s robustness to false positives. We refer to Ermshaus et al. (2023a) for a thorough description of the data and cover some insights on the selected data in Section C.2.3. We set $w = 500$, $K_{\max} = 20$, $L = 500$, $p = 2$, and $q = 0.05$. We used a margin of 100, which corresponds to a maximum tolerated delay of two seconds in the calculation of precision and recall, and average number of false positives for Table 4. HAR Anguita et al. (2013) was collected from 30 volunteers who performed six daily activities (walking, sitting, etc.) while wearing a smartphone on their waist to record 3–axis acceleration and angular velocity at 50 Hz using embedded sensors. Naturally, the change points are given when an activity changes. In total, there are 10.299 observation of $d = 561$ features. We set $\tau = 10$, $w = K_{\max} = 20$, $L = 5000$, $p = 2$, and $q = 0.075$.

Table 4: Shows the average AUC & Covering scores, average detection delay (DD), and false positives (FP) together with the standard deviation of SWCPD and comparison methods over real-world datasets. **Bold** numbers indicate best performance; underlined values are statistically equal to best results ¹.

Dataset	Method								
	e-divisive	KCP	BOCPD	ClasP	RuLSIF	DeepRuLSIF	DeepCLF	OT-CPD	SWCPD
Occupancy	AUC (↑)	0.34 ± 0.0	0.52 ± 0.0	0.57 ± 0.0	<u>0.58</u> ± 0.0	0.38 ± 0.0	0.44 ± 0.0	0.40 ± 0.0	0.40 ± 0.0
	COV (↑)	0.64 ± 0.0	0.64 ± 0.0	0.73 ± 0.0	0.19 ± 0.0	0.79 ± 0.0	0.78 ± 0.0	0.76 ± 0.0	0.73 ± 0.0
	DD (↓)	53 (–; –)	77 (–; –)	105 (–; –)	– (–; –)	85 (–; –)	102 (–; –)	98 (–; –)	129 (–; –)
	FP (↓)	12 (–; –)	11 (–; –)	11 (–; –)	– (–; –)	8 (–; –)	8 (–; –)	7 (–; –)	11 (–; –)
MNIST	AUC (↑)	0.96 ± 0.05	0.91 ± 0.06	0.69 ± 0.15	0.63 ± 0.03	0.63 ± 0.03	0.91 ± 0.17	0.93 ± 0.1	0.95 ± 0.05
	COV (↑)	0.95 ± 0.05	0.93 ± 0.05	0.78 ± 0.11	0.26 ± 0.06	0.26 ± 0.05	0.92 ± 0.04	0.94 ± 0.02	0.96 ± 0.10
	DD (↓)	9.41 (0; 23)	21.7 (0; 71)	17.8 (11; 27)	– (–; –)	– (–; –)	7.5 (3; 23)	6.5 (2; 16)	6.2 (0; 26)
	FP (↓)	0.4 (0; 1)	0.66 (0; 2)	0.93 (0; 2)	– (–; –)	– (–; –)	0.4 (0; 2)	0.33 (0; 1)	0.4 (0; 1)
HASC	AUC (↑)	0.73 ± 0.12	0.66 ± 0.14	0.65 ± 0.10	0.84 ± 0.15	0.75 ± 0.16	0.81 ± 0.13	<u>0.85</u> ± 0.12	0.79 ± 0.2
	COV (↑)	0.57 ± 0.19	0.59 ± 0.32	0.66 ± 0.24	0.79 ± 0.18	0.66 ± 0.26	0.75 ± 0.10	0.78 ± 0.13	0.75 ± 0.25
	DD (↓)	357 (0; 1264)	334 (0; 1540)	445 (0; 1866)	180 (0; 1054)	559 (3.5; 4040)	496 (0; 3678)	454 (0; 4006)	233 (0; 1342)
	FP (↓)	3.8 (0; 8)	14 (0; 47)	9.0 (0; 46)	0.78 (0; 4)	4.7 (0; 24)	1.5 (0; 5)	1.3 (0; 4)	3.7 (0; 18)
HAR	AUC (↑)	0.82 ± 0.07	0.85 ± 0.06	0.76 ± 0.06	0.53 ± 0.05	0.72 ± 0.09	0.81 ± 0.1	0.80 ± 0.06	0.73 ± 0.06
	COV (↑)	0.76 ± 0.12	0.82 ± 0.07	0.53 ± 0.09	0.11 ± 0.04	0.54 ± 0.06	0.67 ± 0.08	0.66 ± 0.07	0.52 ± 0.07
	DD (↓)	4.7 (1.25; 9.3)	3.7 (1.0; 7.7)	2.8 (1.8; 4.2)	10.3 (9; 12)	7.1 (4.9; 9.1)	3.2 (1.1; 6.5)	3.4 (1; 5.9)	1.8 (0.5; 4.2)
	FP (↓)	4.9 (1; 14)	2.5 (0; 8)	0.1 (0; 1)	0.33 (0; 1)	2.2 (0; 4)	0.7 (0; 3)	0.8 (0; 2)	0.2 (0; 1)

Occupancy: This dataset is designed for the task of detecting changes in office occupancy levels based on various room condition measurements, and is commonly used for the evaluation of change point detection methods Van den Burg & Williams (2020). Originally, it was introduced in Candanedo & Feldheim (2016) and captures four different measurements: 1) temperature, 2) humidity level, 3) light, and 4) CO₂. While SWCPD and ClasP show the best results for the AUC scores, SWCPD additionally delivers strong Covering scores, and minimal false Positives. For the results in Table 4, we set $\tau = 30$, $w = 500$, $K_{\max} = 500$, $L = 1000$, $p = 2$, and $q = 0.05$.

¹Best performance is determined after applying a paired t-test, bold numbers indicate best absolute performance, underlined numbers indicate equal performance with a smaller reported metric.

486 5 LIMITATIONS
487488 Despite the demonstrated effectiveness of SWCPD, several limitations merit attention. First, the
489 reliance on random one-dimensional projections can reduce sensitivity to subtle, local changes in
490 high-dimensional spaces, as these may not always be captured by a limited sampling of directions.
491 Future refinements might involve adaptive or learned projection strategies that more selectively probe
492 feature dimensions most likely to exhibit drift. Second, our adaptive thresholding scheme is based on
493 the theoretically derived Gamma-distribution of Sliced Wasserstein distances; in practice, however,
494 for smaller datasets or heavy-tailed data can undermine our theoretical approximation.
495496 6 CONCLUSION
497498 We introduced SWCPD, a novel framework for explainable online change point detection in high-
499 dimensional data streams, leveraging Sliced Wasserstein (SW) distance. By transforming multivariate
500 time series into a one-dimensional signal, our method circumvents the computational bottlenecks
501 of traditional CPD techniques. We integrated three key innovations: (1) a statistically grounded
502 SW-based transformation that enables CPD on high-dimensional data with minimal overhead, (2)
503 a self-adaptive thresholding mechanism that dynamically calibrates detection sensitivity using a
504 Gamma-based statistical hypothesis test, and (3) a contrastive explainability module that identifies
505 the most influential feature dimensions contributing to detected changes.506 We demonstrated SWCPD’s superiority across multiple benchmarks, achieving competitive detection
507 performance while maintaining interpretability. SWCPD outperforms existing online and offline
508 CPD techniques, particularly in dynamic, high-dimensional settings where both reliability and
509 explainability are critical. The proposed feature attribution mechanism offers actionable insights
510 by revealing the root causes of distributional shifts, ensuring that detected changes are not only
511 statistically significant but also interpretable.512 SWCPD is a practical bridge between modern data streams and the social-technical systems that
513 rely on them. Interpretable, distribution-level telemetry is quickly becoming as mission-critical
514 as traditional point-estimate monitoring. As interpretable, distribution-level telemetry becomes
515 as critical as point-estimate monitoring, SWCPD combines statistical rigor with human-centered
516 explanations. This enables downstream AI systems, from LLMs to sensor stacks, to be wrapped in
517 transparent “change firewalls,” promoting a future where real-time models both detect and justify
518 shifts, setting a new standard for safer, fairer, and more accountable AI.519
520 REFERENCES

- 521
-
- 522 Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection.
- arXiv preprint*
-
- 523
- arXiv:0710.3742*
- , 2007.
-
- 524 Cesare Alippi and Manuel Roveri. An adaptive cusum-based test for signal change detection. In
-
- 525
- 2006 IEEE international symposium on circuits and systems*
- , pp. 4–pp. IEEE, 2006.
-
- 526
-
- 527 Samaneh Aminikhanghahi and Diane J. Cook. A survey of methods for time series change point
-
- 528 detection.
- Knowledge and information systems*
- , 51(2):339–367, 2017. ISSN 0219-3116. doi:
-
- 529 10.1007/s10115-016-0987-z.
-
- 530 Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
-
- 531 domain dataset for human activity recognition using smartphones. In
- Esann*
- , volume 3, pp. 3–4,
-
- 532 2013.
-
- 533
-
- 534 Sylvain Arlot, Alain Celisse, and Zaid Harchaoui. A kernel multiple change-point algorithm via
-
- 535 model selection.
- Journal of machine learning research*
- , 20(162):1–56, 2019.
-
- 536 Andrew C Berry. The accuracy of the gaussian approximation to the sum of independent variates.
-
- 537
- Transactions of the american mathematical society*
- , 49(1):122–136, 1941.
-
- 538
-
- 539 Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasserstein
-
- barycenters of measures.
- Journal of Mathematical Imaging and Vision*
- , 51:22–45, 2015.

- 540 Luis M. Ibarra Candanedo and Veronique Feldheim. Accurate occupancy detection of an office room
 541 from light, temperature, humidity and co2 measurements using statistical learning models. *Energy*
 542 and *Buildings*, 112:28–39, 2016.
- 543
- 544 Carlos M. Carvalho and Hedibert F. Lopes. Simulation-based sequential analysis of markov switching
 545 stochastic volatility models. *Computational Statistics & Data Analysis*, 51(9):4526–4542, 2007.
- 546
- 547 Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, and Barnabás Póczos. Kernel change-point detection
 548 with auxiliary deep generative models. *International Conference on Learning Representations*
 (ICLR), 2019.
- 549
- 550 Jie Chen and A. K. Gupta. Testing and locating variance changepoints with application to stock
 551 prices. *Journal of the American Statistical Association*, 92(438):739–747, 1997. ISSN 0162-1459.
 552 doi: 10.1080/01621459.1997.10474026.
- 553
- 554 Kevin C Cheng, Shuchin Aeron, Michael C Hughes, Erika Hussey, and Eric L Miller. Optimal
 555 transport based change point detection and time series segment clustering. In *ICASSP 2020–
 556 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
 557 6034–6038. IEEE, 2020a.
- 558
- 559 Kevin C Cheng, Eric L Miller, Michael C Hughes, and Shuchin Aeron. On matched filtering for
 560 statistical change point detection. *IEEE Open Journal of Signal Processing*, 1:159–176, 2020b.
- 561
- 562 Eungchum Cho and Moon Jung Cho. Variance of sample variance. *Section on Survey Research
 Methods–JSM*, 2:1291–1293, 2008.
- 563
- 564 Tim De Ryck, Maarten De Vos, and Alexander Bertrand. Change point detection in time series data
 565 using autoencoders with a time-invariant representation. *IEEE Transactions on Signal Processing*,
 69:3513–3524, 2021.
- 566
- 567 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 568 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 569 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 570 *ICLR*, 2021.
- 571
- 572 Arik Ermshaus, Patrick Schäfer, Anthony Bagnall, Thomas Guyet, Georgiana Ifrim, Vincent Lemaire,
 573 Ulf Leser, Colin Leverger, and Simon Malinowski. Human activity segmentation challenge @
 574 ecml/pkdd’23. In *8th Workshop on Advanced Analytics and Learning on Temporal Data*, 2023a.
- 575
- 576 Arik Ermshaus, Patrick Schäfer, and Ulf Leser. Clasp: parameter-free time series segmentation. *Data
 Mining and Knowledge Discovery*, 2023b.
- 577
- 578 Kamil Faber, Roberto Corizzo, Bartłomiej Sniezynski, Michael Baron, and Nathalie Japkowicz.
 579 Watch: Wasserstein change point detection for high-dimensional time series data. In *2021 IEEE
 International Conference on Big Data (Big Data)*, pp. 4450–4459. IEEE, 2021.
- 580
- 581 Kamil Faber, Roberto Corizzo, Bartłomiej Sniezynski, Michael Baron, and Nathalie Japkowicz.
 582 Lifewatch: Lifelong wasserstein change point detection. In *2022 International joint conference on
 neural networks (IJCNN)*, pp. 1–8. IEEE, 2022.
- 583
- 584 Paul Fearnhead and Zhen Liu. On-line inference for multiple changepoint problems. *Journal of the
 Royal Statistical Society Series B: Statistical Methodology*, 69(4):589–605, 2007. ISSN 1369-7412.
- 585
- 586 Sarah Ferguson, Brandon Luders, Robert C. Grande, and Jonathan P. How. Real-time predictive
 587 modeling and robust avoidance of pedestrians with uncertain, changing intentions, 2014.
- 588
- 589 Enric Galceran, Alexander G. Cunningham, Ryan M. Eustice, and Edwin Olson. Multipolicy decision-
 590 making for autonomous driving via changepoint-based behavior prediction: Theory and experiment.
 591 *Autonomous Robots*, 41(6):1367–1382, 2017. ISSN 0929-5593. doi: 10.1007/s10514-017-9619-z.
- 592
- 593 João Gama, Indrē Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
 594 survey on concept drift adaptation. *ACM Computing Surveys*, 46(4):1–37, 2014. ISSN 0360-0300.
 doi: 10.1145/2523813.

- 594 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 595 examples. *arXiv preprint arXiv:1412.6572*, 2014.
 596
- 597 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
 598 kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012.
 599
- 600 Zaid Harchaoui, Francis Bach, Olivier Cappe, and Eric Moulines. Kernel-based methods for hypothe-
 601 sis testing: A unified view. *IEEE Signal Processing Magazine*, 30(4):87–97, 2013.
 602
- 603 Maayan Harel, Shie Mannor, Ran El-Yaniv, and Koby Crammer. Concept drift detection through
 604 resampling. In *International Conference on Machine Learning*, 2014.
 605
- 606 Mikhail Hushchyn and Andrey Ustyzhanin. Generalization of change-point detection in time series
 607 data based on direct density ratio estimation. *Journal of Computational Science*, 53:101385, 2021.
 608
- 609 Mikhail Hushchyn, Kenenbek Arzymatov, and Denis Derkach. Online neural networks for change-
 610 point detection. *arXiv preprint arXiv:2010.01388*, 2020.
 611
- 612 Jean Jacod and Philip Protter. *Probability essentials*. Springer Science & Business Media, 2012.
 613
- 614 Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct
 615 importance estimation. *The Journal of Machine Learning Research*, 10:1391–1445, 2009.
 616
- 617 Kyungwon Kim, Ji Hwan Park, Minhyuk Lee, and Jae Wook Song. Unsupervised change point
 618 detection and trend prediction for financial time-series using a new cusum-based approach. *IEEE
 619 Access*, 10:34690–34705, 2022. doi: 10.1109/ACCESS.2022.3162399.
 620
- 621 Jeremias Knoblauch and Theodoros Damoulas. Spatio-temporal bayesian on-line changepoint
 622 detection with model selection, 2018.
 623
- 624 Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. Doubly robust bayesian inference
 625 for non-stationary streaming data with β -divergences. *Neural Information Processing Systems
 626 (NeurIPS)*, 2018.
 627
- 628 Barış Kurt, Çağatay Yıldız, Taha Yusuf Ceritli, Bülent Sankur, and Ali Taylan Cemgil. A bayesian
 629 change point model for detecting sip-based ddos attacks. *Digital Signal Processing*, 77:48–62,
 630 2018. Digital Signal Processing & SoftwareX - Joint Special Issue on Reproducible Research in
 631 Signal Processing.
 632
- 633 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 634 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 635
- 636 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*.
 637 Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.
 638
- 639 Shuang Li, Yao Xie, Hanjun Dai, and Le Song. Scan b-statistic for kernel change-point detection.
 640 *Sequential Analysis*, 38(4):503–544, 2019.
 641
- 642 Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. Change-point detection in
 643 time-series data by relative density-ratio estimation. *Neural Networks*, 43:72–83, 2013a.
 644
- 645 Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. Change-point detection in
 646 time-series data by relative density-ratio estimation. *Neural Networks*, 43:72–83, 2013b.
 647
- 648 Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under concept
 649 drift: A review. *IEEE Transactions on Knowledge and Data Engineering*, pp. 1, 2018.
 650
- 651 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon,
 652 U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
 653 *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
 654
- 655 Oscar Hernan Madrid Padilla, Alex Athey, Alex Reinhart, and James G Scott. Sequential nonparamet-
 656 ric tests for a change in distribution: an application to detecting radiological anomalies. *Journal of
 657 the American Statistical Association*, 114(526):514–528, 2019.
 658

- 648 David S Matteson and Nicholas A James. A nonparametric approach for multiple change point
 649 analysis of multivariate data. *Journal of the American Statistical Association*, 109(505):334–345,
 650 2014.
- 651 Nicholas A. James, Wenyu Zhang, and David S. Matteson. *ecp*: An R package for nonparametric
 652 multiple change point analysis of multivariate data. r package version 3.1.4, 2019. URL <https://cran.r-project.org/package=ecp>.
- 653
- 654 Sloan Nietert, Ziv Goldfeld, Ritwik Sadhu, and Kengo Kato. Statistical, robustness, and computational
 655 guarantees for sliced wasserstein distances. *Advances in Neural Information Processing Systems*,
 656 35:28179–28193, 2022.
- 657
- 658 Peter Nystrup, Bo William Hansen, Henrik Madsen, and Erik Lindström. Detecting change points in
 659 vix and s&p 500: A new approach to dynamic asset allocation. *Journal of Asset Management*, 17
 660 (5):361–374, 2016. ISSN 1470-8272. doi: 10.1057/jam.2016.12.
- 661
- 662 Ewan S Page. Continuous inspection schemes. *Biometrika*, 41(1/2):100–115, 1954.
- 663
- 664 Andrea Pagotto. *ocp: Bayesian Online Changepoint Detection*, 2019. URL <https://CRAN.R-project.org/package=ocp>. R package version 0.1.1.
- 665
- 666 Aleksey Polunchenko, Alexander Tartakovsky, and Nitis Mukhopadhyay. Nearly optimal change-
 667 point detection with an application to cybersecurity. *Sequential Analysis*, 31, 02 2012.
- 668
- 669 Gaetano Romano, Idris A Eckley, Paul Fearnhead, and Guillem Rigaill. Fast online changepoint
 670 detection via functional pruning cusum statistics. *Journal of Machine Learning Research*, 24(81):
 1–36, 2023.
- 671
- 672 Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for normality (complete
 673 samples). *Biometrika*, 52(3-4):591–611, 1965.
- 674
- 675 Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
 676 propagating activation differences. In *International conference on machine learning*, pp. 3145–
 3153. PMLR, 2017.
- 677
- 678 Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul Von Bünau, and Motoaki
 679 Kawanabe. Direct importance estimation for covariate shift adaptation. *Annals of the Institute of
 Statistical Mathematics*, 60(4):699–746, 2008.
- 680
- 681 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 682 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.
- 683
- 684 Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change point
 685 detection methods. *Signal Processing*, 167:107299, 2020.
- 686
- 687 Gerrit JJ Van den Burg and Christopher KI Williams. An evaluation of change point detection
 688 algorithms. *arXiv preprint arXiv:2003.06222*, 2020.
- 689
- 690 Jie Wang, Rui Gao, and Yao Xie. Two-sample test using projected wasserstein distance. In *2021
 691 IEEE International Symposium on Information Theory (ISIT)*. IEEE, 2021. doi: 10.1109/isit45174.
 692 2021.951816.
- 693
- 694 Jie Wang, Rui Gao, and Yao Xie. Two-sample test with kernel projected wasserstein distance. In
 695 *International Conference on Artificial Intelligence and Statistics*, pp. 8022–8055. PMLR, 2022.
- 696
- 697 Qingxin Xia, Joseph Korpela, Yasuo Namioka, and Takuya Maekawa. Robust unsupervised factory
 698 activity recognition with body-worn accelerometer using temporal structure of multiple sensor data
 699 motifs. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 4
 (3), 2020.
- 700
- 701 Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and Masashi Sugiyama.
 702 Relative density-ratio estimation for robust distribution comparison. *Neural computation*, 25(5):
 703 1324–1370, 2013.
- 704
- 705 Yi Yu, Oscar Hernan Madrid Padilla, Daren Wang, and Alessandro Rinaldo. A note on online change
 706 point detection. *Sequential Analysis*, 42(4):438–471, 2023.

Table 5: Parameter setting ViT

BATCH SIZE	EPOCHS	LR	PATCHSIZE	DIM	DEPTH	HEADS	MLP
64	15	1×10^{-4}	4	64	6	8	128

Figure 4: Illustrates Train and validation curves of loss and accuracy over 15 epochs for ViT model.

A APPENDIX

B ADDITIONAL EXPERIMENTS

All experiments were conducted on a machine equipped with an AMD Ryzen 7 5700X CPU, 32 GB of RAM, and a RTX 3060 GPU.

B.1 EXPLAINABILITY

B.1.1 MNIST

Vision Transformer. We employ a Vision Transformer (ViT) model for image classification on the MNIST dataset. The model processes input images of size 28×28 pixels, which are divided into non-overlapping patches of size 4×4 , resulting in 49 patches. Each patch is linearly embedded into a 64-dimensional feature space. The transformer consists of 6 layers, each employing multi-head self-attention with 8 heads and a feed-forward network with a hidden dimension of 128. We apply a dropout rate of 0.1 during the embedding and transformer layers to prevent overfitting. Since MNIST images are grayscale, the model is configured to accept single-channel input. The data was split into 90% training set of which 10% into the validation set, while we used the additional 10% for testing. We use Adam with $\lambda = 0.001$ for training over 15 epochs with a batch size of 64.

CNN. We use a simple LeNet-5 LeCun et al. (1998) as a benchmark CNN to investigate model explanations under drifts on MNIST. We use the same train-test split as for the ViT model and Adam optimizer with step size $\lambda = 0.001$. We repeat the same procedure as for the ViT and introduce drifts and investigate the differences in the feature attributions using SWD, and SoTA explanations methods IG, GS, and DL. From fig. 5, we see that all reference methods align with feature attributions, and hence show the same pattern for differences of before and after drift. Although, all explanation methods align with the most significant feature changes, the pixelwise distance based approach (SWD) narrows them down the most. This can also be seen in fig. 6, which highlights the differences of adversarial examples changing the model output between two given classes, as SWD shows a strong alignment.

775 Figure 5: Shows the absolute difference of mean feature attributions for three different drifts and
776 reference methods IG, GS, and DL.
777

803 Figure 6: Shows mean adversarial examples (left) which changes the model (CNN) output from
804 5 \rightarrow 6, 7 \rightarrow 1, and 9 \rightarrow 3 using FGSM for different ϵ , and L_4 -norm between mean adversarial
805 example and non-adversarial example
806
807
808
809

B.2 UNCERTAINTY QUANTIFICATION

We investigate the asymptotic behaviour of the confidence intervals obtained by theorem 3.2 for $X \sim \Gamma(2, 1)$ for various sample sizes and calculate the average confidence intervals for 30 different random samples X_n with sample size n . For an increasing sample size, the confidence intervals for both parameters shrinks and is centered around the true parameters as expected since sample mean and variance are consistent, see fig. 7.

B.3 DISTRIBUTION OF RANDOM PROJECTIONS

For the numerical study of the distribution of $w_2^2(\theta) : \theta \mapsto W_2(\mathbb{P}^\theta, \mathbb{Q}^\theta)$, we consider two sample sets X, Y each consisting of 200 MNIST samples with gray-scaled images from the same class respectively. For this example we set the class of each sample from X to 1, and Y to 7. We calculated the SWD between both samples for different numbers of random projections ranging from $L = 100, 500, 1000, 5000$. We then constructed the MoM esitmates of a Gamma distribution based on the set of random projection obtained. Furthermore, we calculated a Kernel density estimation for the random projections itself. This shows that using a Gamma distribution indeed fits the data obtained. Additionally, we comphared the sampled quantiles and the theoretical quantiles of the random projections and MoM fitted Gamma distribution to asses the goodness of fit. The result is summarize in fig. 8, as expected, we see that as the number of projection increases, we obtain a better fit. While fig. 8, shows the asymptotic behaviour given by Theorem 3.1 of the linear random projections of the Sliced Wasserstein distance, we observed that it also holds for lower-dimensional data, e.g. simulated synthetic data. Consider $x \in \mathbb{R}^d$, we fix a projection direction $\theta_l \sim \mathcal{U}(S^{d-1})$ and consider a sample set $X = (x_1, x_2, \dots, x_n)$. We set $z_l = \langle X, \theta_l \rangle$, where z_l is normal due to the CLT for $d \rightarrow \infty$. We simulated x according to d independent exponential distributions $\lambda = 1$ and applied the Sharpio-Wilk test Shapiro & Wilk (1965) to asses wheter the projected samples can be considered normal distributed. In table 6, we report the average p -values projections obtained using $L \in [100, 500, 1000]$ for various dimensions d .

Approximation Error: We now report the Mean Absolute Error (MAE) between the theoretical quantiles and observed quantiles. The theoretical quantiles are derived from a Gamma distribution based on the MoM estimates from the random projections involved in the calculation of the Sliced Wasserstein distance. The observed quantiles are calculated based on the empirical distribution of the random projections. For each dimension, we simulate two independent datastreams, each consisting of d independent Gaussian distributions with a uniformly sampled mean. We vary d and L , use fixed random seeds, and report the results for 10 trials in Table 7.

Figure 8: Shows a Kernel density estimation of a gamma density using the MoM estimated parameters (red line) for the random projection for various number of projections $L = 100, 500, 1000, 5000$, and the KDE of random projections (blue line) itself between two samples from MNIST.

918
919
920
921 Table 6: Average p -values obtained using Sharpio-Wilk test
922
923
924
925
926
927
928
929
930
931

d	L		
	100	500	1000
10	0.44 (✓)	0.065 (✓)	0.005 (-)
20	0.5 (✓)	0.3 (✓)	0.2 (✓)
30	0.5 (✓)	0.4 (✓)	0.3 (✓)
60	0.5 (✓)	0.5 (✓)	0.5 (✓)
100	0.5 (✓)	0.5 (✓)	0.5 (✓)

929
930 Table 7: Shows MAE between theoretical and observed quantiles of a Gamma distribution derived
931 from 2-Wasserstein distance between random projections.

d	$L = 100$	$L = 1.000$	$L = 10.000$
5	1.12 ± 0.17	0.35 ± 0.03	0.37 ± 0.01
10	0.345 ± 0.06	0.31 ± 0.06	0.15 ± 0.01
20	0.401 ± 0.07	0.16 ± 0.03	0.02 ± 0.01
100	0.291 ± 0.05	0.11 ± 0.01	0.04 ± 0.01
200	0.298 ± 0.05	0.13 ± 0.04	0.04 ± 0.01

932
933 B.4 STOPPING CRITERION IN ALGORITHM 2
934935
936
937
938 In Algorithm 2, we update the removed feature from Y with samples X . Suppose, we have ob-
939 servations $X_1, \dots, X_N \sim P_X$, and $Y_1, \dots, Y_N \sim P_Y$. Without any drifted components, we have
940 $P_X = P_Y$ with
941

942
943
944
$$m = \mathbb{E}[X] = \mathbb{E}[Y] \in \mathbb{R}$$
$$\Sigma = \text{Cov}(X) = \text{Cov}(Y) \in S_+^d$$

945
946
947 where $m_X = \frac{1}{N} \sum_i^N X_i$, and $m_Y = \frac{1}{N} \sum_{i=1}^N Y_i$ denote the sample means and S_+^d denotes the set of
948 symmetric p.s.d. $d \times d$ matrices. We consider
949

950
951
$$\|D\| = \|m(X) - m(Y)\|,$$

952
953 then
954

955
$$\mathbb{E}[\|D\|] \leq \sqrt{\frac{2}{N} \text{tr}(\Sigma)}$$

956
957 Since we have $D \sim \mathcal{N}(0, \frac{2}{N} \Sigma)$, we can decompose $\Sigma = U \Lambda U^T$. Then with $Z = U^T D$, it follows
958
959 $Z \sim \mathcal{N}(0, \frac{2}{N} \Lambda)$. Thus $\|D\|^2 = \sum_{i=1}^d \frac{2}{N} \lambda_i \chi_1^2$, with χ_1^2 denotes a chi-squared distribution with one
960 degree of freedom. Note that $\text{tr}(\Sigma) = \sum_{i=1}^d \lambda_i$, where λ_i is the i -th eigenvalue for $i = 1, \dots, d$.
961 Therefore, we have
962

963
964
$$\mathbb{E}\|D\|^2 = \frac{2}{N} \text{tr}(\Sigma),$$

965
966 applying Jensen inequality yields
967

968
969
$$\mathbb{E}[\|D\|] \leq \sqrt{\frac{2}{N} \text{tr}(\Sigma)}.$$

970 C CHANGE DETECTION
971972 C.1 ABLATION STUDY
973974 In the following we are going to investigate the sensitivity and influence of SWCPD for variations in
975 its key hyperparameters. Our proposed method relies on the following hyperparameter:

Figure 9: Shows boxplots of the AUC and Covering scores for each parameter variations while keeping the other parameters fixed.

- $L = 500$: Number of random projections (Monte Carlo samples)
- $w = 50$: Window length
- $p = 2$: Order of Wasserstein distance
- $q = 0.05$: Significance level
- $K_{\max} = k$: Maximum length of lookback window (for moving average calculation)

We conducted experiments using the same MNIST datasets as in the experimental section of the paper, hence the number of change points varies from 2 to 4 with 200 samples for each sub-sequence forming one segment. We defined the following parameter sets, $w \in [5, 20, 50, 70, 100]$, $K_{\max} \in [5, 10, 20, 50, 100]$, $L \in [100, 200, 500, 1000, 5000]$, $p \in [1, 2, 3, 4, 6]$, and $q \in [0.01, 0.05, 0.1, 0.2]$. Across all simulation on all 15 datasets, we fixed the random seed for the Monte Carlo samples to obtain reproducible results. We choose the default parameter $L = 5000$, $p = 4$, $w = 50$, $K_{\max} = 50$, $q = 0.05$ which we fixed, only varying one parameter within its parameter set respectively. Figure 9 shows the parameter sensitivity of SWCPD for this exemplary dataset. This shows, that the most sensitive parameter are the window length, and lookback window, whereas the number of Monte Carlo samples may be sufficiently large if chosen $L \approx d$. The Wasserstein order should be set above 2, depending on the severity of the drifts, since it amplifies low signals (small distances). The same holds for the significance level as it may be irrelevant if the abrupt changes are significant itself. To further emphasize the influence of the Wasserstein order and significance level, we run additional experiments on synthetic datasets with low drift severities. We used the sampling scheme described in section C.2.1, where we set $N = 1500$, $d = 10$ with initial base center $c_0 \in [-4, 4]^{10}$ and 10 different segments. We selected $\mathcal{V} = \{1, 2, 3\}$ and drift severity was set to $\delta_j \sim \text{Uniform}(-1)$ for each feature index in \mathcal{V} . In contrast we sampled the remaining data with i.i.d. Gaussian distribution with mean at each base center respectively and $\sigma = 0.5$ for each component. The result highlights the influence of the significance level for the propagated upper bound as increasing the variable leads to a decrease in the AUC and Covering score since the number of false negatives increases when the upper bound is to close to the cumulative sum. In this example, the Wasserstein order was of secondary importance as changing it lead to similar scores across the datasets, however increasing the Wasserstein order has a smoothing effect on the cumulative sum as small Wasserstein distances nearly vanishes. This can be benefiting for noisy signals. For weak signals, where the abrupt changes are small, we suggest decreasing the Wasserstein order amplifying small changes in the underlying data. Additionally, we performed a Grid Search on MNIST and Occupancy. For both experiments, we fixed $p = 4$, $L = 5000$ while varying the significance level q , window size w , and Lookback K_{\max} . We limited the possible parameter values for MNIST to $w \in [20, 30, 40, 50, 100]$, $K_{\max} = [0.5w, w]$, and $q = [0.01, 0.05, 0.1]$. We report the average AUC scores for each parameter combination in fig. 11, we see multiple parameter sets achieving high AUC scores. For Occupancy, we limited the possible parameter values to $w \in [200, 300, 400, 500, 600]$, $K_{\max} = [0.25w, 0.5w, 0.75w, w]$, and $q = [0.01, 0.05, 0.1]$. We report the AUC scores for each parameter combination in fig. 12, we see multiple parameter sets achieving high AUC scores in comparison to the baseline methods.

Figure 10: Summary of AUC and Covering scores for varying significance level and Wasserstein order on 10 different synthetic datasets with $d = 10$, $N = 1500$ and 10 drifts in 3 features simultaneously.

Figure 11: Average AUC scores for various parameter combinations using SWCPD on MNIST sequences.

Figure 12: AUC scores for various parameter combinations using SWCPD on Occupancy.

1080
1081

C.2 METHODS

1082
1083
1084

In the following part, we will describe the reference methods used within the Change Point Detection experiments. Alongside its main parameters and their default values, we also describe the setting for each dataset. We provide an overview of the computational complexity in Table 8.

1085
1086
1087

Table 8: Overview of reference methods and respective time complexity for online and offline change point detection, K : number of change points, d : dimension, N : total samples, w : sliding window.

Method	parametric	non parametric	online	offline	Offline Complexity ²	Online Complexity ³
e-divisive	(✓)			(✓)	$\mathcal{O}(KN^2)$	$\mathcal{O}(KN^4)$
KCP		(✓)		(✓)	$\mathcal{O}(KdN^2)$	$\mathcal{O}(KdN^4)$
ClasP		(✓)		(✓)	$\mathcal{O}(KN^2)$	$\mathcal{O}(KN^4)$
BOCPD	(✓)			(✓)	(-)	$\mathcal{O}(Nd)$
OT-CPD		(✓)		(✓)	$\mathcal{O}(N(w^3 \log(w) + w^2 d))$	$\mathcal{O}(N(w^3 \log(w) + w^2 d))$
SWCPD (ours)	(✓)	(✓)	(✓)	(✓)	(-)	$\mathcal{O}(N(wdL + Lw \log w))$

1088
1089
1090
1091
1092
1093

BOCPD (online): Bayesian Online Change Point Detection (BOCPD) Adams & MacKay (2007) is a method used to detect change points in streaming data in real time. It has some desirable properties, such that it can be applied online, is applicable to multivariate data, and quantifies uncertainty Knoblauch & Damoulas (2018). The underlying concept of this approach is to monitor the probability of a change point occurring at each time step by maintaining and updating the posterior distribution over potential segmentations of the data. It assumes that data within a segment follows a consistent probabilistic model (e.g., Gaussian), and a change point indicates a shift in the underlying model. There exist many implementation, we use the implementation that comes with the ocp package Pagotto (2019). The key parameters for this method are:

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

- `prob_model`: the underlying probability model of the posterior distribution
- `init_params`: the initial parameters for the probability model consisting of m, k, a, b
- `hazard_function`: normally set to a constant function with certain hazard rate λ

1105
1106
1107
1108

We run the experiments with the following parameter sets:

1109
1110
1111
1112
1113
1114
1115

- **HASC**

- `prob_model` : "gaussian"
- `init_params` : $m = 0, k = 10, a = 0.1, b = 0.01$
- `hazard_function` : type=constant, $\lambda = 100$

1116
1117
1118
1119

- **HAR**

- `prob_model` : "gaussian"
- `init_params` : $m = 0, k = 0.01, a = 0.01, b = 1e - 4$
- `hazard_function` : type=constant, $\lambda = 100$

1120
1121
1122
1123

- **MNIST**

- `prob_model` : "gaussian"
- `init_params` : $m = 0.3, k = 0.01, a = 0.01, b = 1e - 4$
- `hazard_function` : type=constant, $\lambda = 100$

1124
1125
1126
1127
1128
1129
1130

- **Occupancy**

- We additionally applied z-score normalization of the data beforehand to obtain a reasonable distributional setting and obtain change points
- `prob_model` : "gaussian"
- `init_params` : $m = 0, k = 0.01, a = 0.01, b = 1e - 4$
- `hazard_function` : type=constant, $\lambda = 100$

1131
1132

²Complexity for offline change point detection for a multivariate time series with d dimensions and N observations

1133

³Accrued complexity for change point detection at time step $t = N$ for a multivariate time series with d dimensions and in total N observations

1134 **E-divisive (offline):** The e-divisive combines binary bisection together with a permutation test
 1135 based on an energy divergence measure Matteson & James (2014). It is a non-parametric offline
 1136 change point detection method for multivariate data, making it applicable to a wide range of complex
 1137 data. We use the implementation from the `ecp` package Nicholas A. James et al. (2019). The method
 1138 relies on the following parameters with default specification:

- 1139
 - `R` = 199 : specifies the number of permutations test applied
 - `sig.level` = 0.05 : the significance level of the permutation test
 - `min.size` = 30 : the minimum observations between two subsequent change points

1143 We run the experiments with the following parameter sets:

- 1145
 - **HASC:** `R` = 199, `sig.level` = 0.05, `min.size` = 500
 - **HAR:** `R` = 199, `sig.level` = 0.05, `min.size` = 30
 - **MNIST:** `R` = 199, `sig.level` = 0.05, `min.size` = 30
 - **Occupancy:** `R` = 30, `sig.level` = 0.05, `min.size` = 400

1150 **KCP (offline):** Kernel change-point detection (KCP) transforms the data into a RKHS with an
 1151 associated kernel, which is used to calculate the dissimilarity (cost). The goal is to obtain an optimal
 1152 segmentation of the input data in the sense of a minimized averaged cost within each segment obtained
 1153 Arlot et al. (2019). An efficient implementation of this method can be found in Truong et al. (2020),
 1154 we assume that the number of change points is unknown, hence we rely on `KerneCPD` with PELT.
 1155 The methods relies on the following parameter:

- 1156
 - `kernel` = "linear": specifies the kernel, cost function
 - `min_size` = 1: minimum segmentation length
 - `pen`: penalty or regularization of number of change points identified

1161 The penalty value needs to be specified if the number of change point is unknown. Usually a higher
 1162 value will lead to fewer change points identified, while a lower value encourages the method to
 1163 annotate more change point with a more fine grained segmentation. We used the following parameter
 1164 settings:

- 1165
 - **HASC:** `kernel` = "rbf", `min_size` = 2, `pen` = 10
 - **HAR:** `kernel` = "rbf", `min_size` = 2, `pen` = 1
 - **MNIST:** `kernel` = "rbf", `min_size` = 2, `pen` = 1
 - **Occupancy:** `kernel` = "rbf", `min_size` = 2, `pen` = 50

1170 **ClaSP (offline):** ClaSP (Classification Score Profile) is a self-supervised time series segmentation
 1171 method Ermshaus et al. (2023b). The implementation is available at <https://github.com/ermshaus/claspy>. It is a dynamic windowing approach which creates a binary classification
 1172 problem across different split points of the time series using k -Nearest Neighbors (k-NN) which is
 1173 evaluated using cross validation. The score obtained from k-NN is used to evaluate the similarity of
 1174 both segments, where higher scores indicate a stronger dissimilarity. The main parameters to choose
 1175 are:

- 1177
 - `window_size` = "suss": size of the sliding window, default Summary Statistics Subse-
 1178 quence (suss)
 - `k_neighbours` = 3: number of nearest neighbours for k-NN
 - `distance` = "znormed_euclidean_distance": distance used for k-NN

1182 We used the following parameters:

- 1184
 - **HASC:** `window_size` = 50
 - **HAR:** `window_size` = 30
 - **MNIST:** `window_size` = 100
 - **Occupancy:** `window_size` = 30

1188 **OT-CPD (offline):** OT-CPD Cheng et al. (2020a) is a optimal transport based change point detection
 1189 method which calculates the Wasserstein distance between two sliding windows. After obtaining all
 1190 available data, it applies a matched filter on the Wasserstein test statistic to obtain a more persistent
 1191 test statistic reducing false positives. OT-CPD annotates a change if the filtered test statistic exceeds
 1192 a pre-defined threshold. In our experiments, we relied on the implementation available at <https://github.com/kevin-c-cheng/OtChangePointDetection/tree/master>. The main
 1193 parameters for the change point detection method to choose are:
 1194

- **window:** size of the sliding window

1197 We used the following parameters:
 1198

- **HASC:** `window = 1000`
- **HAR:** `window = 25`
- **MNIST:** `window = 150`
- **Occupancy:** `window = 750`

1205 **RuLIFS:** Relative unconstrained least-squares importance fitting (RuLSIF) estimates a relative
 1206 density ratio that mixes the two distributions using a parameter α . The relative ratio is approximated
 1207 using a kernel model, and its parameters are obtained by solving a simple least-squares problem
 1208 with a closed form solution. From this estimated ratio, the method computes a divergence score that
 1209 becomes large when the two windows differ. In a sliding window approach this scores is computed
 1210 for which peaks indicate change points. The main parameters for the change point detection method
 1211 to choose are:
 1212

- α : mixture coefficient in α -relative density ratio
- **window:** size of the sliding window
- **kernel_num:** number of kernels used
- **steps:** stride of sliding window

1219 We used the following parameters:
 1220

- **HASC:** `window = 200, alpha = 0.1, kernel_num = 10`
- **HAR:** `window = 20, alpha = 0.1, kernel_num = 10`
- **MNIST:** `window = 100, alpha = 0.1, kernel_num = 10`
- **Occupancy:** `window = 250, alpha = 0.1, kernel_num = 10`

1227 **DeepRuLIFS:** DeepRuLIFS Hushchyn et al. (2020); Hushchyn & Ustyuzhanin (2021) follows the
 1228 framework of RuLIFS where the α relative density ratio is estimated using a deep neuronal network.
 1229 We rely on the implementation given by ⁴. The main parameter for the change point detection method
 1230 which we varied where:
 1231

- **lag_size :** the gap between batches

1234 All other hyperparameter were kept as default. We used the following parameters:
 1235

- **HASC:** `lag = 250`
- **HAR:** `lag = 20`
- **MNIST:** `lag = 100`
- **Occupancy:** `lag = 250`

⁴<https://gitlab.com/lambda-hse/change-point/online-nn-cpd>

1242 **DeepCLF:** This method trains a neuronal network to distinguish a reference window from a more
 1243 test window based on a divergence metric. By sliding the windows forward in time and measuring
 1244 their divergence, peaks in the score curve reveal where the underlying data distribution has changed
 1245 Hushchyn et al. (2020). The main parameter for the change point detection method which we varied
 1246 where:

- 1247
 - 1248 • `lag_size` : the gap between batches

1249 All other hyperparameter were kept as default. We used the following parameters:

- 1250
 - 1251 • **HASC:** `lag` = 250
 - 1252 • **HAR:** `lag` = 20
 - 1253 • **MNIST:** `lag` = 100
 - 1254 • **Occupancy:** `lag` = 250

1255 **C.2.1 SYNTHETIC DATA**

1256 The proposed sampling scheme generates synthetic data with customizable cluster centers and variable
 1257 feature dimensions. The process begins by defining an initial base center $\mathbf{c}_0 \in \mathbb{R}^d$, where d is the
 1258 number of features. This base center serves as the reference point for all subsequent cluster centers.

1259 To generate additional cluster centers, a perturbation process is applied to \mathbf{c}_0 . Specifically, for each
 1260 new cluster center \mathbf{c}_i , $i = 1, \dots, k - 1$, the following transformation is applied:

$$c_{i,j} = \begin{cases} c_{0,j} + \Delta_j & \text{if } j \in \mathcal{V}, \\ c_{0,j} & \text{otherwise,} \end{cases}$$

1261 where $c_{i,j}$ is the j -th feature of the i -th cluster center, $\mathcal{V} \subseteq \{1, 2, \dots, d\}$ is the set of varying feature
 1262 indices, and $\Delta_j \sim \text{Uniform}(-\delta, \delta)$ is a random offset sampled from a uniform distribution with
 1263 range $[-\delta, \delta]$.

1264 The sampling process ensures that only the features indexed by \mathcal{V} are modified, while other features
 1265 remain constant across all cluster centers. After generating the cluster centers, the data points
 1266 are sampled from a multivariate Gaussian distribution. For each cluster i , the samples $\mathbf{x}_i^{(n)}$, $n =$
 1267 $1, \dots, N_i$, are drawn as:

$$\mathbf{x}_i^{(n)} \sim \mathcal{N}(\mathbf{c}_i, \Sigma),$$

1268 where $\Sigma \in \mathbb{R}^{d \times d}$ is the covariance matrix (diagonal for simplicity) and N_i is the number of samples
 1269 assigned to cluster i . The total number of samples N is distributed evenly across clusters, i.e.,
 1270 $N_i = N/k$.

1271 This scheme allows for precise control over the features that vary between groups \mathcal{V} , the degree of
 1272 variation δ , and the variance of data points within each cluster with Σ . By adjusting these parameters,
 1273 synthetic datasets can be tailored for specific experimental purposes, such as evaluating clustering
 1274 algorithms or analyzing feature-specific effects. In Table 9 we report AUC scores for different
 1275 variances and drift severities for Gaussian synthetic data with $d = 10$ and 1500 samples with 3
 1276 segments. Additionally, Figure 13 illustrates the contrastive explanations for the obtained change
 1277 points by SWCPD. We set the window length $w = 50$, the lookback window for the estimation of
 1278 shape- and rate parameters $K_{\max} = 50$, $p = 2$, and $L = 5000$.

1279 **Table 9: AUC for different variances σ^2 and drift severity $|\delta|$**

Source	Value	$\tau = 5$	$\tau = 10$	$\tau = 20$
Variance (σ^2)	0.1	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
	0.5	0.8 ± 0.28	0.93 ± 0.14	1.0 ± 0.0
	1.0	0.65 ± 0.32	0.75 ± 0.29	0.91 ± 0.13
Drift Severity ($ \delta $)	1	0.4 ± 0.15	0.6 ± 0.26	0.94 ± 0.08
	2	0.6 ± 0.22	0.8 ± 0.27	0.97 ± 0.06
	3	0.71 ± 0.28	0.87 ± 0.24	0.98 ± 0.05

Figure 13: Interpretable change points obtained with SWCDP. Two right plots show feature attributions obtained using Algorithm 2, showing alignment with ground truth root causes of the drifts.

Figure 14: Visualizes our proposed detection method for MNIST data with two change points at $t = 200, 400$. Change points are indicated when the cumulative sum exceed the upper bound which is derived based on past SWDs.

C.2.2 MNIST

In order to mimic a streaming behaviour, we uniformly sample an initial class (without replacement) and select K instances from the current class. We repeat this procedure and annotate the samples to introduce abrupt changes. Within the scope of the experiments for this paper, we generated 5 distinct data sequences with 2, 3, and 4 change points, where each class has 200 samples. We illustrate SWCPDs detection procedure for a sampled MNIST sequence with two change points at $t = 200, 400$ in fig. 14. By calculating and tracking the SW distance using a rolling window of $k = 50$ observations, we obtain a one-dimensional signal with two significant spikes at $t_1 = 225$ and $t_2 = 425$ since the within similarity of the rolling window will be the largest when the first half samples belong to class prior to the drift and the second half to the class after the drift. We see, that using a propagated upper bound given the current state instead of purely relying on the distance as a signal, we can anticipate changes more reliable and faster. Moreover, the upper bound is adaptive such that there is no fine tuning or manually shifting the rolling window involved. SWCPD is based on the Sliced Wasserstein distance which is a metric from Optimal Transport (OT). To contextualize the computational performance of our proposed method for other OT-based detection methods such as OT-CPD, and e-divisive, we report the average wall-clock time and standard deviation in Table 10.

C.2.3 HASC

The dataset consists of distinct multimodal multivariate time series monitoring human motion of different daily activities. The data was collected as part of the Human Activity Segmentation Challenge Ermshaus et al. (2023a) using built-in smartphone sensors. In total, the dataset has 250 time series consisting of 12 different measurements sampled at 50 Hz, where the ground truth change points were independently annotated using video and sensor data. We selected 25 instances covering 17 indoor and 8 outdoor activities for various numbers of segments ranging from 1 to 6. We selected

Table 10: Runtime comparison of SWCPD and OT-based CPD methods

(a) Average runtimes and AUC scores for OT-baseline methods			(b) Average runtimes and AUC scores of SWCPD for different numbers of projections L				
Method	Runtime (s)	AUC	L	Runtime (s)	AUC	vs. OT-CPD	vs. e-divisive
OT-CPD	425 ± 150	0.95 ± 0.05	100	1.02 ± 0.2	0.87 ± 0.1	+41, 979%	+478%
e-divisive	5.9 ± 3.1	0.96 ± 0.05	500	2.81 ± 0.6	0.95 ± 0.1	+15, 024%	+109%
			1000	3.33 ± 0.74	0.95 ± 0.1	+12, 662%	+77%
			5000	6.21 ± 1.3	0.97 ± 0.07	+6, 743%	-5%

Figure 15: Summary of the data used for the change point detection experiments of HASC dataset.

8 instances with one segment, thus zero change points to asses the sensitivity and robustness of each method when the unknown underlying distribution does not change over time. Furthermore, we see that the average number of observations increases with more segments in the selected data see fig. 15. We specifically considered instances with a single segment to assess each method’s robustness to false positives. Figure 16 illustrates the time series of an outdoor activity of a person. In this case, the person is performing three different stretches (standing adductor left, squat stretch for adductors, hamstring stretch right) Figure 17 shows AUC scores of our proposed method and baseline methods for five different annotation margins $\tau \in [25, 50, 100, 150, 200]$, such that if the annotated change point is at least τ instances away, it is classified as true positive thus contribution to the AUC score. We see that SWCPD shows superior AUC scores for any τ , see Figure 17.

C.2.4 OCCUPANCY

WCPD is based on the Sliced Wasserstein distance which is a metric from Optimal Transport (OT). To contextualize the computational performance of our proposed method for other OT-based detection methods such as OT-CPD, and e-divisive, we report the average wall-clock time and standard deviation in Table 11.

Table 11: Runtime comparison of SWCPD and OT-based CPD methods

(a) Average runtimes and AUC scores for OT-baseline methods			(b) Average runtimes and AUC scores of SWCPD for different numbers of projections L				
Method	Runtime (s)	AUC	L	Runtime (s)	AUC	vs. OT-CPD	vs. e-divisive
OT-CPD	96.2 ± 0.23	0.41 ± 0.00	100	28.2 ± 0.8	0.48 ± 0.0	+241%	+519%
e-divisive	175.3 ± 0.19	0.34 ± 0.00	500	59.4 ± 1.25	0.58 ± 0.0	+62%	+195%
			1000	66.6 ± 1.55	0.59 ± 0.0	+45%	+163%

Figure 16: Comparison of Test scores obtained using SWCPD and ClasPy on subject number 243 (left hand side), and corresponding time series (right hand side).

Figure 17: Shows average AUC scores for proposed method and baseline methods on the selected HAR data for different annotation margins τ .

1458 **D OMITTED PROOFS**
1459

1460 **Lemma D.1.** *Let X and Y be two independent random variable such that $X \sim \Gamma(\alpha_1, \beta)$ and*
1461 *$Y \sim \Gamma(\alpha_2, \beta)$ with $\alpha_i, \beta \geq 0$ for $i = 1, 2$. Let $Z := X + Y$, then $Z \sim \Gamma(\alpha_1 + \alpha_2, \beta)$*

1463 *Proof.* We consider independent Gamma random variables X_k with different shape parameters α_k
1464 and fixed rate parameters β for $k \in [N]$. Given the probability density function of X_k ,

1465
$$f_{X_k}(x) = \frac{\beta^{\alpha_k}}{\Gamma(\alpha_k)} x^{\alpha_k-1} \exp(-\beta x),$$

1466

1467 we have the characteristic function

1469
$$\varphi_{X_k}(t) = \mathbb{E}[e^{itX_k}] = \frac{\beta^{\alpha_k}}{\Gamma(\alpha_k)} \int_0^\infty x^{\alpha_k-1} e^{-(\beta-it)x} dx$$

1470
1471
$$= \left(1 - \frac{it}{\beta}\right)^{-\alpha_k}$$

1472

1473 for $k = 1, 2$ and $\alpha_1, \alpha_2 \geq 0$. Finally, we denote $Z = \sum_{k=1}^N X_k$ and $\underline{\alpha} = \sum_{k=1}^N \alpha_k$ and use

1475
$$\varphi_Z(t) = \prod_{k=1}^N \varphi_{X_k}(t) = \left(1 - \frac{it}{\beta}\right)^{-\underline{\alpha}}.$$

1476
1477

□

1479 **Lemma D.2.** *Let $X \sim \mathcal{N}(0, \sigma^2)$, then $|X|^2 \sim \Gamma(\frac{1}{2}, \frac{1}{2\sigma^2})$ follows a Gamma distribution with shape*
1480 *parameter $\alpha = \frac{1}{2}$ and rate parameter $\beta = \frac{1}{2\sigma^2}$.*

1482 *Proof.* We will first show that $|X|$ follows a half-normal distribution with scale σ . By definition, the
1483 probability density function of X is $f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{x^2}{2\sigma^2})$. Let us define $Y = |X|$, then each
1484 realization of Y denoted as $y \in [0, \infty)$, such that,

1486
$$\begin{aligned} F_Y(y) &= \Pr(Y \leq y) = \Pr(|X| \leq y) \\ 1487 &= \Pr(-y \leq X \leq y) = 2 \cdot \Pr(0 \leq X \leq y) \\ 1488 &= 2 \cdot \int_0^y \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx \end{aligned}$$

1489

1490 Finally, we obtain

1492
$$f_Y(y) = \frac{d}{dy} F_Y(y) = \sqrt{\frac{2}{\pi}} \sigma^{-1} \exp\left(-\frac{y^2}{2\sigma^2}\right), \quad \text{for } y \geq 0,$$

1493

1494 which concludes that $Y = |X|$ follows a half normal distribution. Similar, we set $Z := Y^2$ and have,

1495
$$F_Z(z) = \Pr(Z \leq z) = \Pr(Y \leq \sqrt{z}) = F_Y(\sqrt{z}),$$

1496

1497 since $Y \geq 0$. Subsequently, differentiating the CDF $F_Z(z)$ w.r.t. z and using $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, we obtain
1498 the following probability density function,

1499
$$\begin{aligned} 1500 f_Z(z) &= \frac{1}{2\sqrt{z}} f_Y(\sqrt{z}) = \frac{1}{\sqrt{2\pi} z \sigma} \exp\left(-\frac{z}{2\sigma^2}\right) \\ 1501 &= \frac{1}{\Gamma(\frac{1}{2}) \sqrt{2\sigma^2 z}} \exp\left(-\frac{z}{2\sigma^2}\right) \quad \text{for } z \geq 0. \end{aligned}$$

1502

1503 which concludes the claim $|X|^2 \sim \Gamma(\frac{1}{2}, \frac{1}{2\sigma^2})$. □

1505 **Theorem D.3.** [Berry-Esseen Berry (1941); Jacod & Protter (2012)] Let $(X_j)_{j \geq 0}$ be an i.i.d.
1506 sequence of random variables with $\mathbb{E}[X_j] = 0$, $\mathbb{E}[X_j^2] = \sigma^2$, and finite third moments $\mathbb{E}[|X_j|^3] < \infty$,
1507 if we set $S_n = \frac{X_1 + X_2 + \dots + X_n}{\sigma\sqrt{n}}$, then there exists a positive constant C such that

1509
$$\sup_{t \in \mathbb{R}} |\mathbb{P}(S_n \leq t) - \Phi(t)| \leq C \frac{\mathbb{E}[|X_j|^3]}{\sigma^3 \sqrt{n}},$$

1510

1511 where $\Phi(t)$ denotes the cdf of a standard normal distribution.

1512 *Proof.* We refer the reader to Jacod & Protter (2012). \square

1514 **Lemma D.4.** Let $\theta \sim \mathcal{U}(\mathbb{S}^{d-1})$ and $\Sigma \in \mathbb{R}^{d \times d}$ p.s.d., then $\mathcal{Q} = \theta^T \Sigma \theta \xrightarrow{d} \mathcal{N}\left(\frac{\text{tr}(\Sigma)}{d}, \frac{2\text{tr}(\Sigma^2)}{d^2}\right)$.

1516 *Proof.* Let $x \sim \mathcal{N}(0, \mathbf{I}_d)$, we set $\theta = \frac{x}{\|x\|}$ such that the quadratic form $\mathcal{Q} = \theta^T \Sigma \theta = \frac{x^T \Sigma x}{\|x\|^2}$. We
1517 write
1518

$$1519 \quad x^T \Sigma x = \sum_{i=1}^d \lambda_i x_i^2,$$

1522 where $\lambda_1, \dots, \lambda_d$ are the eigenvalues obtained after diagonalizing $\Sigma = U \Lambda U^T$. Let us set

$$1523 \quad S_d = \sum_{i=1}^d \lambda_i (x_i^2 - 1),$$

1526 such that $\mathcal{Q} = \sum_{i=1}^d \lambda_i + S_d = \text{tr}(\Sigma) + S_d$, where S_d is a sum of independent random variables. We
1527 apply Theorem D.3 where $X_i = \lambda_i(x_i^2 - 1)$, $\text{Var}(X_i) = 2\lambda_i^2$, and $\mathbb{E}[|X_i^3|] = \lambda_i^3 \mathbb{E}[|x_i^2 - 1|^3] = \lambda_i^3 c$,
1528 then we have
1529

$$1530 \quad \sup_{t \in \mathbb{R}} |\mathbb{P}(S_n \leq t) - \Phi(t)| \leq C \frac{\sum_i \lambda_i^3}{(\sum_i \lambda_i^2)^{\frac{3}{2}}}$$

1532 which gives a uniform bound of the differences between the distribution of the random projections
1533 and a standard normal distribution which is dependent on the spectrum of Σ . Moreover, since
1534 $\mathbb{E}[\|x\|^2] = d$, and $\text{Var}(\|x\|^2) = 2d$, we have $\mathcal{Q} = \theta^T \Sigma \theta = \frac{\text{tr}(\Sigma)}{d} + \mathcal{N}(0, \frac{\sigma^2}{d^2}) = \mathcal{N}(\frac{\text{tr}(\Sigma)}{d}, \frac{2\text{tr}(\Sigma^2)}{d^2})$.
1535 Such that

$$1536 \quad \mathcal{Q} \xrightarrow{d} \mathcal{N}\left(\frac{\text{tr}(\Sigma)}{d}, \frac{2\text{tr}(\Sigma^2)}{d^2}\right)$$

1538 \square

1539 **Theorem D.5.** Let \mathbb{P}, \mathbb{Q} denote two probability distributions on \mathbb{R}^d with finite p 'th moments then
1540 $w_2^2(\theta)[\mathbb{P}^\theta, \mathbb{Q}^\theta] \sim \Gamma$ as $d \rightarrow \infty$.
1541

1542 *Proof.* We denote the probability distribution of X, Y with \mathbb{P}, \mathbb{Q} respectively. We write $Z = \langle X, \theta \rangle$,
1543 $W = \langle Y, \theta \rangle$ modeling the projections $T_\#^\theta \mathbb{P}, T_\#^\theta \mathbb{Q}$. First, we consider the projection for a specific
1544 sample x_i denoted $z_i = \langle x_i, \theta \rangle$. Thus, for a fixed sample, we have
1545

$$1546 \quad \mathbb{E}[z_i] = \mathbb{E}[\langle x_i, \theta \rangle] = \sum_{k=1}^d x_{ik} \mathbb{E}[\theta_k] = 0,$$

$$1549 \quad \text{Var}(z_i) = \mathbb{E}[z_i^2] - \mathbb{E}[z_i]^2 = \sum_{k=1}^d x_{ik}^2 \mathbb{E}[\theta_k^2] = \frac{1}{d} \|x_i\|^2$$

1552 leading to $z_i \sim \mathcal{N}(0, \frac{1}{d} \|x_i\|^2)$ for large d .
1553

1554 Now, we fix some projection direction $\theta_l \sim \mathcal{U}(S^{d-1})$ and consider a sample set $X = (x_1, x_2, \dots, x_n)$, we set $z_l = \langle X, \theta_l \rangle$, then,
1555

$$1556 \quad \mathbb{E}[z_l] = \sum_{k=1}^d \mathbb{E}[X_{ik}] \theta_{lk},$$

$$1560 \quad \text{Var}(z_l) = \mathbb{E}[z_l^2] - \mathbb{E}[z_l]^2 = \sum_{k=1}^d \mathbb{E}[X_k^2] \theta_{lk}^2 + 2 \sum_{k,m=1}^d \mathbb{E}[X_k X_m] \theta_{lk} \theta_{lm} - \mathbb{E}[z_l]^2$$

$$1563 \quad = \sum_{k=1}^d \mathbb{E}[X_k^2] \theta_{lk}^2 - \sum_{k=1}^d \mathbb{E}[X_k]^2 \theta_{lk}^2 + 2 \sum_{k,m=1}^d \mathbb{E}[X_k X_m] \theta_{lk} \theta_{lm} - \mathbb{E}[X_k] \mathbb{E}[X_m] \theta_{lk} \theta_{lm}$$

1566 after rearranging the terms, we have $\text{Var}(z_l) = \theta_l \Sigma_X \theta_l^T$, such that $z_l \sim$
 1567 $\mathcal{N}\left(\sum_{k=1}^d \mathbb{E}[X_{ik}] \theta_{lk}, \theta_l \Sigma_X \theta_l^T\right)$. Analogously, we consider a sample set $Y = (y_1, y_2, \dots, y_n)$ and
 1568 write $w_l := \langle Y, \theta_l \rangle$, subsequently, we see $w_l \sim \mathcal{N}\left(\sum_{k=1}^d \mathbb{E}[Y_{ik}] \theta_{lk}, \theta_l \Sigma_Y \theta_l^T\right)$.
 1569

1570 The main step in the calculation of the Sliced Wasserstein distance is the utilization of the closed
 1571 expression of the Wasserstein distance between two univariate distributions, which reads that for two
 1572 probability distributions with p finite moments, the Wasserstein distance boils down to
 1573

$$1574 \quad 1575 \quad W_p^p(\mathbb{P}, \mathbb{Q}) = \int_0^1 |F_{\mathbb{P}}^{-1}(u) - F_{\mathbb{Q}}^{-1}(u)|^p du, \quad (7)$$

1577 where F^{-1} denote the inverse CDF of \mathbb{P}, \mathbb{Q} indicated by the subscript. Note, if we plug in z_l, w_l for
 1578 \mathbb{P} and \mathbb{Q} in eq. (7), we obtain the p Wasserstein distance for the projection direction θ_l . Since we
 1579 derived that the distributions for a fixed projection behave Gaussian, we consider

$$1580 \quad 1581 \quad F_{z_l}^{-1}(u) = \sqrt{2\theta_l \Sigma_X \theta_l^T} \cdot \text{erf}^{-1}(2u - 1) + \mu_{z_l}$$

1582 where erf^{-1} denotes the inverse of the Gauss error function. We have $D(u) := F_{z_l}^{-1}(u) - F_{w_l}^{-1}(u)$,
 1583

$$1584 \quad 1585 \quad D(u) = \left(\sqrt{2\theta_l \Sigma_X \theta_l^T} - \sqrt{2\theta_l \Sigma_Y \theta_l^T} \right) \cdot \text{erf}^{-1}(2u - 1) + \mu_{z_l} - \mu_{w_l}.$$

1586 Let us fix u and consider all possible projections θ , we see $\mathbb{E}_{\theta}[\theta \Sigma \theta^T] = \frac{1}{d} \text{tr}(\Sigma)$, while $\mathbb{E}[\mu_z] =$
 1587 $\mathbb{E}[\mu_w] = 0$, therefore $\mathbb{E}[D(u)] = \left(\sqrt{\frac{2}{d} \text{tr}(\Sigma_X)} - \sqrt{\frac{2}{d} \text{tr}(\Sigma_Y)} \right) \cdot \text{erf}^{-1}(2u - 1)$, with Theorem D.4 we have $\text{Var}(\theta^T \Sigma \theta) = \frac{2\text{tr}(\Sigma^2)}{d}$ for large d . Thus $\sigma_u^2 = \text{Var}(D(u)) = \text{erf}^{-1}(2u - 1)^2 \text{Var}\left(\sqrt{2\theta_l \Sigma_X \theta_l^T} - \sqrt{2\theta_l \Sigma_Y \theta_l^T}\right)$ which is convex in u . This means that the variance increases in
 1591 the tails. For each u the differences of the inverse CDF are Gaussian for large d with similar variance
 1592 σ_u^2 with $D(u) \sim \mathcal{N}(\mu_u, \sigma_u^2)$. Therefore, $|D(u)|^2 \sim \chi_1^2(\lambda_u)$, note that the mean has a fixed value
 1593 scaled by the error function, such that we can factor this term out. Normalizing the random variables
 1594 will lead to a sum of Gamma random variables Lemma D.2 which is also Gamma distributed Lemma
 1595 D.1, however the exact shape and rate parameter are not directly obtainable as approximation with
 1596 the normalization is applied. \square
 1597

1598 *Proof of Proposition 3.2.* Suppose, we have i.i.d. samples $x_1, \dots, x_n \sim \Gamma(\alpha, \beta)$ which we denote
 1599 as X_n . For a Gamma distribution with shape α and rate β , we have $\mu = \frac{\alpha}{\beta}$ and $\sigma^2 = \frac{\alpha}{\beta^2}$. We write
 1600 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n x_i$ for the sample mean and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{X}_n)^2$ for the sample variance.
 1601 Then, we have the following Method of Moment estimates for α and β

$$1602 \quad 1603 \quad \hat{\alpha} = \frac{\bar{X}_n^2}{S_n^2}, \quad \hat{\beta} = \frac{\bar{X}_n}{S_n^2}.$$

1604 By the Central Limit Theorem, we know that for large n , the sample mean and variance converges to
 1605 a normal distribution, with

$$1606 \quad 1607 \quad \begin{aligned} \sqrt{n} \left(\hat{\alpha} \hat{\beta}^{-1} - \mu \right) &\xrightarrow{d} \mathcal{N}(0, \sigma^2) \\ \sqrt{n} (S_n^2 - \sigma^2) &\xrightarrow{d} \mathcal{N}(0, \text{Var}(S_n^2)) \end{aligned}$$

1608 where, with *Theorem 1* from Cho & Cho (2008), $\text{Var}(S_n^2) \approx n^{-1}(3\sigma^2 + 2\sigma^2\mu^2 - \sigma^4) = \frac{2\alpha^2}{n\beta^4}$ for
 1609 $n \rightarrow \infty$. We use the asymptotic normality of sample mean and variance and apply the delta method
 1610 to derive an approximation of the variance of $\hat{\alpha}, \hat{\beta}$. For a smooth differentiable function $g(\theta)$ and
 1611 a sequence of random variables θ_n , if $\sqrt{n}(\theta_n - \theta) \xrightarrow{d} \mathcal{N}(0, \Sigma)$, then $\sqrt{n}(g(\theta_n) - g(\theta)) \xrightarrow{d} \mathcal{N}(0, \nabla g(\theta)^T \Sigma \nabla g(\theta))$. Beginning with the estimate for α , we set
 1612

$$1613 \quad 1614 \quad g(\bar{X}_n, S_n^2) = \frac{\bar{X}_n^2}{S_n^2},$$

1620 with

$$\nabla g \left(\bar{X}_n^2, S_n^2 \right)^T = \left(2 \frac{\bar{X}_n^2}{S_n^2}, - \frac{\bar{X}_n^2}{(S_n^2)^2} \right).$$

1624 The covariance matrix Σ consists of $\text{Var}(\bar{X}_n)$ and $\text{Var}(S_n^2)$ on the diagonal and 0 on the off diagonal
 1625 elements due to the fact that for large n sample mean and variance are uncorrelated. Therefore, we
 1626 have

$$\text{Var}(\hat{\alpha}) \approx \left(\frac{2\bar{X}_n}{S_n^2} \right)^2 \cdot \text{Var}(\bar{X}_n) + \left(\frac{\bar{X}_n^2}{(S_n^2)^2} \right)^2 \cdot \text{Var}(S_n^2),$$

1630 and plugging the estimator for sample mean and variance in, we may simplify the expression to

$$\text{Var}(\hat{\alpha}) \approx \frac{4\alpha^2}{n} + \beta^4 \cdot \text{Var}(S_n^2) = \frac{6\alpha^2}{n}.$$

1633 For the estimator of β , we set

$$g(\bar{X}_n, S_n^2) = \frac{\bar{X}_n}{S_n^2},$$

1637 repeating the steps from above leads to,

$$\text{Var}(\hat{\beta}) \approx \left(\frac{1}{S_n^2} \right)^2 \cdot \text{Var}(\bar{X}_n) + \left(\frac{\bar{X}_n^2}{(S_n^2)^2} \right)^2 \cdot \text{Var}(S_n^2),$$

1641 which we simplify to

$$\text{Var}(\hat{\beta}) \approx \frac{\beta^2}{n \cdot \alpha} + \frac{\beta^6}{\alpha^2} \cdot \text{Var}(S_n^2).$$

□

1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673