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ABSTRACT

Change point detection (CPD) identifies abrupt and significant changes in se-
quential data, with applications in human activity recognition, financial markets,
cybersecurity, manufacturing, and autonomous systems. While traditional methods
often struggle with the computational demands of high-dimensional data, they also
fail to provide explanations for detected change points, limiting their practical us-
ability. This paper introduces a CPD framework that enhances both interpretability
and scalability by leveraging the Sliced Wasserstein (SW) distance. Our con-
tributions are fourfold: (1) we present a method to transform multivariate data
into one-dimensional time series using the SW distance, enabling compatibility
with existing CPD methods; (2) we derive theoretical insights, demonstrating that
random slices of the SW distance follow a Gamma distribution, which facilitates
statistical hypothesis testing for CPD; (3) we propose a novel self-adapting online
CPD algorithm based on an adaptive threshold for a given significance level «;
and (4) we propose a model-specific framework for generating contrastive explana-
tions for annotated change points. We find that our method outperforms popular
(online/offline) change point detection methods by reducing false positives by
at least 63% while also providing interpretable change points and maintaining
competitive or superior detection performance, making it practical for deployment
in high-stakes applications.

1 INTRODUCTION

Change point detection (CPD) is a fundamental problem in statistical analysis, focusing on identifying
abrupt and significant changes in the underlying data-generating processes of sequential data. These
changes can signal shifts in critical properties, such as distributions, relationships, or trends, making
CPD pivotal in fields where timely detection of such shifts is crucial. Closely related to concept drift
detection|Gama et al.|(2014)); Harel et al.|(2014); |Lu et al.| (2018)), CPD encompasses scenarios of
both abrupt and gradual changes, with a direct impact on the accuracy and reliability of machine
learning models and deployed systems. However, existing CPD methods are insufficient in both
scaling to high dimensions and providing meaningful explanations, which poses a significant gap
addressed by our approach.

The significance of CPD becomes evident in its multitude of real-world applications. In human
activity recognition, it can identify transitions between states, such as detecting when a person moves
from walking to running |Xia et al.[(2020). In financial markets, CPD is essential for spotting regime
shifts, such as the transition from a bull to a bear market, enabling traders and algorithms to adjust
strategies Kim et al.|(2022); (Carvalho & Lopes| (2007); Chen & Guptal (1997)); Nystrup et al.| (2016).
In cybersecurity, CPD helps detect anomalies, such as cyberattacks or data breaches, by identifying
abrupt deviations in network traffic [Kurt et al.| (2018); [Polunchenko et al.| (2012). Similarly, in
manufacturing quality control, CPD can pinpoint defects or process anomalies to minimize waste
and downtime. Furthermore, in autonomous driving, detecting changes in environmental conditions
or sensor data ensures safe operation under dynamic conditions [Ferguson et al.| (2014); (Galceran
et al.|(2017). These examples underscore the critical role of CPD in enhancing decision-making and
ensuring the safety, efficiency, and reliability of systems across domains.
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Despite its utility, CPD faces significant challenges when applied to high-dimensional data, where
both scalability and explainability are becoming increasingly challenging. Traditional methods
often rely on comparing probability distributions or distances between data segments to detect
changes |/Aminikhanghahi & Cook] (2017); Lu et al.|(2018)). While effective in lower-dimensional
settings, these methods struggle with computational efficiency and scalability in higher-dimensional
spaces. For instance, the exact computation of the Wasserstein distance for multivariate data scales
as O(n3log(n)), making it impractical for large datasets. Similarly, the computation of U- and
V -statistics for the Maximum Mean Discrepancy (MMD) also scales quadratically in time. Alongside
the computational aspects, most CPD methods fail to provide interpretable change points, narrowing
down the root cause of the drifts.

To address the lack of explainable change point detection tailored for high-dimensional data, the Sliced
Wasserstein (SW) distance/Bonneel et al.|(2015) offers a promising alternative. Instead of computing a
high-dimensional optimal transport directly, we can repeatedly project onto a single dimension, where
Wasserstein distance has a closed form, and then average the results. By leveraging the closed-form
expression of the Wasserstein distance for one-dimensional distributions, the SW distance reduces
the computational complexity to O(nlog(n)) by averaging over the Wasserstein distances of random
one-dimensional projections. Additionally, by leveraging the geometric properties of the random
projections, we can provide contrastive explanations for detected change points.

In this work, we bridge this gap by introducing a novel CPD framework that leverages the Sliced
Wasserstein distance. Our contributions are as follows:

1. A Self-Adapting Online CPD Algorithm with Adaptive Thresholding (3.2). We propose
a new self-adapting online CPD algorithm that dynamically adjusts its threshold based on a
given significance level a.. This enables robust and adaptive detection of change points in
streaming high-dimensional data without manual tuning.

2. Theoretical Insight: SW Distance Slices Follow a Gamma Distribution (3). We derive
a novel theoretical result showing that random slices of the SW distance follow a Gamma
distribution. This allows for a principled statistical hypothesis testing framework, enabling
more rigorous and interpretable change detection.

3. Contrastive Explanations for Change Points Using Geometric Properties of SW Dis-
tance (3.1). We develop a novel, model-specific framework for generating contrastive
explanations of detected change points. By leveraging the geometric properties of ran-
dom projections, we provide fine-grained insights into which features contribute most to
distributional shifts, enhancing interpretability.

4. Competitive Performance with Interpretability Our approach achieves competitive
or superior performance compared to leading online and offline CPD methods across
multiple real-world datasets while providing interpretable change points, making it practical
for deployment in high-stakes applications such as finance, cybersecurity, and autonomous
systems.

2 RELATED WORK

Online change point detection. Change point detection can be grouped into parametric and
nonparametric methods [Truong et al.[(2020). Parametric methods assume that the data is drawn
from some parametric family of probability distributions. Nonparametric approaches do not impose
distributional assumptions. One of the most prominently known parametric approaches is the
cumulative sum (CUSUM) method [Page| (1954). Over the last years, several extensions of CUSUM
were introduced Alippi & Roveri| (2006); | Romano et al.|(2023). Another popular parametric branch
of change point detection are Bayesian methods including [Fearnhead & Liul (2007); Knoblauch et al.
(2018). Nonparametric methods are often based on test statistics derived by distances, including
Euclidean distances |Matteson & James| (2014); Madrid Padilla et al.[(2019) or divergence measures
e.g. MMD |Gretton et al.| (2012); [Harchaoui et al.| (2013)); [Li et al.| (2019). More recently, deep
generative models were also used for sequential change point detection (Chang et al.[(2019); De Ryck
et al.[|(2021)).

Optimal transport based change detection. Over the past few years, optimal transport has become
a popular choice for comparing two distributions. Naturally, optimal transport-based metrics, such as
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the Wasserstein distance or Sliced Wasserstein distance, can also be applied for sequential change
point detection. This includes |(Cheng et al.| (2020a), which proposes a change point detection
framework computing the Wasserstein distance between a sliding window relying on a fixed threshold
to detect changes. In|Cheng et al.| (2020b)), this framework was refined using a matched filter test
statistic. Furthermore, one of the proposed test statistics is the Sliced Wasserstein distance, which is
combined with a fixed threshold. Our work differs by introducing an adaptive threshold and primarily
investigating the Sliced Wasserstein distance as a tool for interpretability.

Interpretability through random projections. The motivation behind utilizing random projection
is the lower computational cost for the Wasserstein distance. In|Wang et al.| (2021)), a projected
Wasserstein distance was introduced, which finds a k-dimensional subspace through linear projections
and calculates the Wasserstein distance in the lower-dimensional space. Analogously, in|Wang et al.
(2022), the kernel projected Wasserstein distance was motivated as a non-linear alternative to Wang
et al.| (2021). Both approaches reduce the computational complexity and facilitate interpretability in a
two-sample test. Our proposed framework goes beyond a single iteration to find a specific projection
direction, maximizing the Wasserstein distance between projected samples. We propose an iterative
approach to identify the most discriminative feature, leading to a more comprehensive and detailed
explanation of the underlying drift.

3 PROBLEM SETUP

The general problem of CPD involves determining abrupt changes in a time series. We denote the
time series D = {z, € R? : ¢t € [T]} with [T] = {1,2,...,T} and assume that the time series
follows some unknown underlying distribution P. The goal is to identify all timestamps ¢, € [T
where the underlying distribution changes from P to @, such that

t<ti:zg~P

t>t,:x ~ Q.
Many CPD methods rely on a windowing approach and split the observations into a reference window
X! = {xt—g,..., o1} and current/test window X7 = {z¢,..., x4} with k observations and

deploy a hypothesis test or calculate a distance between the two windows and compare it against a
threshold at each timestamp.

Consider P, QQ to be two probability distributions with p finite moments. The Wasserstein distance,
denoted as, W;j(IP’, Q) has a closed expression for univariate distributions,

Wr(P,Q) = / F () — G () Pdu ()

where F~!, G~ are the inverse CDF of P and Q respectively. The sliced Wasserstein distance (SW)
exploits this closed expression by averaging over the Wasserstein distance between infinitely many
random one-dimensional projections of P and Q. In particular, for any direction § € S%~1, we define
the projection of z € R% as T(x) = (x, #) and denote the projected distribution with P? = TP,
where # is the push-forward operator, defined as Ty P(A) = P(T~1(A)) for any Borel set A € R.
Let us denote \ the uniform measure on S¥~1 = {§ € R? : ||0||> = 1}, then the p Sliced Wasserstein
distance between [P and Q is defined as

SWP(P,Q) = /S W (P’ Q%)dA(6). )

In practice, the computation of the SW boils down to a Monte Carlo approximation by uniformly
sampling projection parameters {Gl}le on S%1! and average over the one-dimensional Wasserstein

distances obtained. Let us denote the slice w : 6 — Wg(}P’e, Q") as a function mapping a projection

direction to the p Wasserstein distance. Then, we have the Monte Carlo approximation, SW} (P, Q) =

L=t Zle wb(6;) accordingly. The accuracy of this estimator heavily relies on the variance of w}
Nietert et al.|(2022)). Based on the following result, we derive the adaptive threshold, which is based

on the MoM estimated parameters of a Gamma distribution.

Theorem 3.1. Let P, Q denote two probability distributions on R® with finite p’th moments then
w2(0)[P?, Q% ~ T asd — oo



Under review as a conference paper at ICLR 2026

The following Proposition allows us to consider the uncertainty of the Method of Moments (MoM)
estimates based on the observed samples for the adaptive threshold.

Proposition 3.2. Suppose some i.i.d. samples X,, = (x1,...,2,) with xl ~ I'(a, B) for i =
1,...,n with sample mean X, = LY | x; and sample variance S? = - >""  (2; — n)2.
Then the two-tailed confidence mtervals for confidence level p of the Method of Moments (MoM)
estimates Ql, 3 are

Cp(a) = [a —za -/ Var(Q),a + 2q - Var(a)}

~ ~ —~ . = 3)
Cp(B) = {ﬂ —zg -/ Var(B), B + zg - Var(ﬁ)]

where Za IS the z-value of a standard normal distribution for confidence level q, and

. 6a? A 2 + 2082
Var(&) = — Var(f) ~ %

3.1 EXPLAINABILITY

We denote the collection of random slices between P,,,Q,, with S (Pn,(@n) = {w3(0)},.

the empirical mean of Sy, is the Monte Carlo approximation of SW2 (]P’n, Qn) We can interpret
w3(6;) as the loss for projection direction ;. In this case, the loss quantifies the Wasserstein dis-
tance of the corresponding projection. Assume we observe two sample sets X; and X» from the
same underlying process with a sudden change in the mean. Let X = {x;}l_; ~ N(ux, I4)
and X; = {z;},,; ~ N(0,1;) denote two sample sets with ux = (1,0,...,0)” mod-
elling an abrupt change in the first feature dimension. The maximum distance is achieved when
0 = H;ﬁlﬁ This means the distributions are completely projected onto the first feature dimen-
sion, which is also the root cause of the drift. However, the probability of sampling a projec-
tion parameter 6 such that (6, ﬁ> ~ 1 vanishes as the feature dimension grows. Never-

theless, we can use the linkage between projection direction and Wasserstein loss w3 to derive
a feature importance. We propose to average over the absolute projections parameters corre-
sponding to the slices above the g-quantile of S;. The procedure is illustrated in Algorithm [I]
We use a hierarchical approach to
obtain contrastive explanations for
change points. We start to identify the
feature dimension achieving the high-
est feature contribution according to
algorithm E} Then, we eliminate the

Algorithm 1 Calculate Feature Contribution
Input: Slices Sy, Projection parameters 6, Wasserstein
order: p, Quantile level: q

dissimilarity for this feature dimen- 1: S7" = [wp(0r(1)), wp(Or(2)), - -, wp(Or(r))] > Sort
sion by replacing the values with the St in ascending order

mean of the same feature of the refer-  2: 077, = [0r(1),0r(2), - - -, 0x(1)] > Sorted 6 according
ence set, and validate the feature re- to S L

moval step by calculating random pro-  3: ¢ [qﬂ > Compute quantile index

jections Sy, between the updated sam- 4. I = L - Zf 10
ple sets. This step indicates whether 5. potin Iq ¢

the reduced sample sets still contain
drifted feature dimensions since under
Hy, both samples arise from the same underlying process, and the SW between the empirical distri-
butions approaches 0. We repeat this procedure iteratively and use the parameter estimation of 3 as a
validation and stopping criterion. Our proposed model-specific explanation procedure is illustrated in
Algorithm 2]

3.2 PROPOSED DETECTION METHOD

The main observation is that S7,(, Q) follows a Gamma distribution with SWP (P, Q) = E[S]. We
process the data in an online manner with a sliding window of w observations and write

w
Dt = {J}t,@m cee >$t—w+t%j7xt—w+L%J+la s 7xt}7

P Q
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Algorithm 2 Hierarchical validated explanations
Input: Data: X,Y, Wasserstein order: p, Quantile level: q, Number of projections: L

I cl«[1,...,N] > Track which features are left
20 cr 0 > Removed features
3: while 8 < tol and |cl| > 0 do
4: Calculate random projections Sy,
5: B < MoM(Sy) (eq. l)
6: Calculate Feature Contributions I > Algorithm
7: 1, < argmax [ > Find feature with highest contribution
8: cr < add(i, cr)
9: Y[, 0] < E[X[:,44]] > Update feature
10: end while
11: Return cr

for t > w which means the change point detection procedure is initiated after observing w data
samples. Furthermore, we denote the probability distribution of the first half of the sliding window
with P’ = 2]t ZZLZOJ 0z, and the second half with Q = ([ 5] + 1)~ ZL AR 0, After
observing k samples, we calculate Sy, (P,Q) = S.(D;’) and initially fit the data to a Gamma
distribution. Using the Method of Moments (MoM), we obtain a parameter estimation with

5. 5 S
V(SL)’ V(SL)
where S}, denotes the sample mean of S, implying SW(IP’ Q) = Q and V(Sp) denotes the sample

“

a:

variance of S. Proposition|3.2|enables us to calibrate confidence mtervals for MoM estimated ¢, Bt
for each time step ¢. In the following, we propose an adaptive online detection method (SWCPD) that
monitors the cumulative Sliced Wasserstein distances against a dynamic threshold. At each time step
t, the procedure consists of the following steps:

(1) UPDATE CUMULATIVE SUM: We compute the expected value of the test statistic
Cy = Ci—1 + E[SL(Dy)],

(2) PROPAGATE MOM ESTIMATES: In a sliding window, there are dependencies between successive
data windows. We smooth past MoM estimates using a moving average over the most recent
m = min{ Kz, t} steps with

1 & .
E[d;11|Ct] = &; E[Bi|C] = — Bi-
% th m l:;m
Despite temporal correlations, the i.i.d. nature of the random projections ensures the validity of our
statistical bounds. (3) BOUND CUMULATIVE SUM: We use the smoothed MoM estimates to bound
the next step in the cumulative sum via the quantile of the corresponding Gamma distribution:

E[Ci11]C] = C + E {Oftﬂ ’Ct} < Cy + k(p)
Bt+1

where £(p) denotes the p-quantile of T'(dy41, Brs1).

(4) VALIDATE DEVIATIONS: After observing D;" b1, We update C'y41, and compare it against the
upper bound. If it exceeds the bound, a change point is detected. The MoM estimates are then
updated using the new data.

4 EXPERIMENTS

We first evaluate the alignment of feature explanations obtained with the SW distance and Algorithm[2]
to SoTA feature explanation methods. We demonstrate that Algorithm [2]leads to informative insights
that enable contrastive explanations for change detection. In the second part of this section, we
show the feasibility of our method against various popular offline and online change point detection
methods, achieving comparable or better results.
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Table 1: Mean alignment (eq. @) of SWD explanations with IG, GS, and DL explanations for
dimensions d = 10, 20 and various number of drifted components k = 1, 3, 7,9 over 5 different runs.

d=10 d=20
1G GS DL 1G GS DL
0.959 £0.048 0.962+0.045 0.965+£0.041 0.99440.001 0.994 £0.001  0.994 £ 0.002
0.940 £0.048 0.940 £0.046 0.9394+0.040 0.950+£0.039 0.950 £0.040 0.947 £ 0.042

0.900 £0.027  0.90240.028 0.900 £0.043 0.924+0.022 0.923+0.020 0.923 £0.024
0.885£0.031 0.885 £ 0.030 0.85540.027 0.924+£0.022 0.924£0.020 0.936 £ 0.015

x> T
© W

4.1 EXPLAINABILITY

We evaluate feature explanations using the SW distance (SWD) and compare it to SoTA feature
explanations obtained with Integrated Gradients (IG) |Sundararajan et al.| (2017), Gradient Shap
(GS)|Lundberg & Lee (2017), and DeepLIFT (DL) Shrikumar et al.|(2017) for synthetic data and
real-world data.

Synthetic Data. We generate data X1,y ~N (g, Xg) for N = 5000 and d = 10, 20, with mean p4
and covariance 4. Each component of y/; follows a normal distribution and is sampled independently.
We randomly select £ < d indices in p4 and
sample an individual severity ¢; ~ N (2, 1) for
each selected index, which is added to the mean
prior to the drift i = p + €. This ensures that
some feature dimensions are more important for
the total drift and should show a higher contribu-
tion to the explanation scores. We generate data
after the drift X;.ny ~ N (jiq, 24), throughout
the experiments, we vary the number of drifted
components £k = 1,3,7,9 and set X3 = 1.
For a binary classification of samples before
and after the drift, we train a simple fully con-
nected neural network with three hidden layers
with 128, 64, and 32 units, respectively. We use
IG, GS, and DL to calculate feature attributions .
d(X), ¢(X) for data before and after the drift ground truths (drifts).

occurred. For SWD, we follow Algorithm E] to

assign explanation vector eswp. To quantify how severe the differences in the attribution scores for IG,
GS, and DL are, we assign some explanation scores by calculating the absolute differences between
both attributions

Explanation scores

Figure 1: Explanation scores for each feature ob-
tained with IG, GS, DL, and SWD (higher score
indicates a higher importance). Red boxes indicate

e = [p(X) — ¢(X)|. (5)

In Figure[I] we visualize the explanation scores for each feature for some data with d = 10 and k = 3.
The red boxes indicate the drifted features and mark the ground truths. We see that all reference
methods show similar explanation scores, and SWD-based explanations have a strong alignment with
the reference methods. We use the cosine similarity to quantify the alignment between SWD and the
reference explanation vectors,

_ <€> eswn>

[lellzlleswol 2

We investigate the alignment for different scenarios by varying d = 10,20 and £ = 1, 3,7,9. For
each parameter pair, we simulate data and calculate alignment between SWD explanation scores and

IG, GS, and DL for five different runs. In Table 1| we report the average alignment between SWD
explanations and explanations obtained by IG, GS, and DL.

(6)

8(6, eswo)

Real World Data. We employ a Vision Transformer (ViT) model Dosovitskiy et al.|(2021)) for image
classification on the MNIST |[LeCun et al. (2010} dataset. Details on the model architecture can be
found in section[B.I.1] We simulate a streaming behavior of samples from a particular class, which
then abruptly changes to another class. The feature attributions before and after the drift will differ
w.r.t. to the underlying feature characteristics of each class. We split the test dataset for each class
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Mean adv. example  Differences Before Drift After Drift Grad SHAP DeeplLift

o
Tl

Figure 2: Shows the average adv. example and its corresponding differences for three different drifts
(left). On the right-hand side, we see the average example of each class before and after the drift
alongside the highlighted feature attributions with SWD, IG, GS, and DL.

and calculated the feature attribution respectively. The average feature attribution per class shows
the most important features for a given concept, e.g., number 7 has distinct characteristics (edges,
curvature) to number 0. However, the general representation of number 1 should be similar to 7
on a feature level, such that the classification model indicates a substantial overlap in the feature
attributions. We calculate the absolute differences of the average feature attributions for two classes
using IG, GS, and DL, which we use as a qualitative measure to explain the drift. We modify the
projection procedure in Algorithm [2]by using the unit vectors to obtain a pixelwise importance for
the attributions obtained using SWD. Figure 2] shows the results for three challenging drifts. IG and
GS show similar results, which is plausible since GS computes expected gradients and can be seen
as an extension of IG. Sparsity is especially important for adversarial attacks, which aim to alter
the model output with minimal perturbations of the inputs. The fast gradient sign method (FGSM)
Goodfellow et al.|(2014)) is a prominent adversarial attack method that alters the input by the sign
of the gradient of the loss function w.r.t the input to fool a model making incorrect predictions. We
simulated adversarial attacks on the ViT model using FGSM with ¢ = 5 x 10~* and compared the
average adversarial example to the average non-adversarial example, which can be seen in Figure 2]
This illustrates which features are likely to be liable under attacks, thus principal to the model, which
should also be reflected in the feature attributions.

4.2 CHANGE POINT DETECTION

In this part, we evaluate our proposed method on a synthetic dataset and three real-world datasets,
namely MNIST, Human Activity Recognition (HAR) Ermshaus et al.| (2023a), and Occupancy
Candanedo & Feldheim| (2016). While MNIST is challenging in the number of dimensions, the
HAR dataset combines drifts in variance and mean of each feature. We report Area under Curve
(AUC) scores, segmentation covering scores, average detection delay, and the average number of false
positives. For a detailed description and motivation for the used metrics, we refer the reader toVan den
Burg & Williams| (2020) and |[Ermshaus et al.|(2023b). We compare our method against four popular
change point detection methods (BOCPD |[Adams & MacKay|(2007), e-divisive [Matteson & James
(2014), KCP|Arlot et al.|(2019), OT-CPD |Cheng et al.| (2020a))) and one time series segmentation
method (ClaSP [Ermshaus et al.| (2023b)). In the following, we briefly describe the datasets on which
we conducted experiments and highlight subsequent results.

Synthetic Data: We construct a data stream of d = 50 exponential distributions x; ~ Exp(\) + ¢;,
where ¢; is randomly sampled within (—3, 3) for¢ = 1,...,d. We simulate 3 segments, where each
segment consists of 500 samples. We randomly select a total of 3 features for which we inject a drift
by offsetting the mean ¢; randomly sampled within (—3, 3) for each drifted feature. Additionally,
we generated a mixture distribution consisting of 20 Exponential distributions and 30 Gaussian
distributions. In Section [C.2.1] we provide a detailed description of the sampling procedure. For
all experiments on synthetic data, we set the window length w = 50, the lookback window for the
estimation of shape- and rate parameters K,.x = 50, p = 2, and L = 5000. Table [2| shows the
average AUC scores, number of false positives, and detection delay for Exponential- and mixture
distributions for different distributional parameters A, o, and different detection thresholds 7 in the
calculation of AUC scores, false positives.
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Table 2: Shows average AUC scores with standard deviation, and average number of false positives
and detection delay with min-max values for synthetic data

Exponential Mixture
A FP Al FP
ue (1) B D) ue (1) B D)
A T=10 T=20 7=10 T=20 o /X T=10 T=20 T=10 T=20

05 06+013 093+£0.13 12(1;2) 02(0;1) 148 (11;185) 025 10400  1.0£00  0(0;0) 00(0;0) 56 (3.57.5)
0.1 047+0.1 055+0.17 0.8(0;1) 0.6(0;1) 16.6(0;22) 05 0.53+0.16 087+0.16 1.4(1;2) 0.4 (0;1) 14.9 (10.5;20.5)

Window Length Lookback Monte Carlo Samples Wasserstein Order Sig Level
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Figure 3: Boxplots of AUC and Covering scores for each parameter variation while keeping the other
parameters fixed.

MNIST: In order to mimic a streaming behavior, we uniformly sample
an initial class (without replacement) and
select K instances from the current class.

We repeat this procedure and annotate N

the samples to introduce abrupt changes. il I I I '
Within the scope of the experiments for \

this paper, we generated 5 distinct data 2 @ A 8 S
sequences with 2, 3,and 4 change points, "

where each class has 200 samples. In our o j j j
experiments, SWCPD is able to deliver : i
competitive AUC scores while delivering " 2 S S S
minimal false positives on average. Addi- - - N
tionally, we conducted an ablation study = s o
to investigate the influence of each pa- = o

rameter on the AUC and Covering score.
We observe that SWCPD’s performance
is mostly liable to proper specification of
significance level and window length, see
Figure 3] We report detailed results in Figure 4: Sensitivity of false positives w.r.t. 7 for Occu-
Section[C.I] For results in Table[3} we set pancy (first row), HAR (second row), and MNIST (third
7 =20, w = 50, Kiax = 25, L = 5000, row).

p=4,and a = 0.1.

20
0

n
—
T

HAR: The dataset consists of distinct multimodal multivariate time series monitoring human motion
during various daily activities. The data was collected as part of the Human Activity Segmentation
Challenge [Ermshaus et al.| (2023a)) using built-in smartphone sensors. In total, the dataset has 250
time series consisting of 12 different measurements sampled at 50 Hz, where the ground truth change
points were independently annotated using video and sensor data. We selected 25 instances covering
indoor and outdoor activities for various numbers of segments, ranging from 1 to 6. We specifically
considered instances with a single segment to assess each method’s robustness to false positives. We
refer to [Ermshaus et al.| (2023a)) for a thorough description of the data and cover some insights on
the selected data in Section [C.2.3] We set w = 500, Kpax = 20, L = 500,p = 2, and o = 0.05.
We used a margin of 100, which corresponds to a maximum tolerated delay of two seconds in the
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calculation of precision and recall, and average number of false positives for Table[3] We illustrate
the sensitivity of false positives for various margins 7 in Figure ]

Table 3: Shows the average AUC & Covering scores, average detection delay (DD), and false
positives (FP) together with the standard deviation of SWCPD and comparison methods over real-
world datasets.

Occupancy MNIST HAR

Method AUC(f) COV (1) DD(}) FP(}) AUC(f)  COV (1) DD (1) FP(l)  AUC(1)  COV (1) DD (1) FP (1)

e-divisive 0.34 0.64 53 12 0.96+0.05 0.95+0.05 9.41(0;23) 04 (0;1) 0.73+£0.12 0.57+£0.19 357 (0;1264) 3.8 (0;8)
KCP 0.52 0.64 T 11 0.91£0.06 0.93+£0.05 21.7(0;71) 0.66 (0;2) 0.66+0.14 0.59+0.32 334 (0;1540) 14 (0:47)
BOCPD 0.57 0.73 105 11 0.69+0.15 0.78+0.11 17.8 (11;27) 093 (0;2) 0.65+£0.10 0.66+£0.24 445 (0;1866) 9.0 (0;46)
CLasP 0.58 0.19 - - 0.63£0.03 0.26 £ 0.06 = (== - (= ) 0.84+0.15 0.79£0.18 180 (0;1054)  0.78 (0:4)
OT-CPD 0.40 0.73 129 11 0.95+£0.05 096+0.10 6.2 (0:26) 04 (0:1)  0.79£0.2 0.75+£0.25 233(0;1342) 3.7 (0;18)
SWCPD (ours) 0.59 0.81 52 4 097 £0.07 0.89+£0.07 11.8(8:14.5) 013 (0:1) 0.85+0.12 0.78+0.19 39 (0:683)  0.09 (0:1)

Occupancy: This dataset is designed for the task of detecting changes in office occupancy levels
based on various room condition measurements, and is commonly used for the evaluation of change
point detection methods|Van den Burg & Williams|(2020). Originally, it was introduced in|Candanedo
& Feldheim|(2016)) and captures four different measurements: 1) temperature, 2) humidity level, 3)
light, and 4) CO,. While SWCPD and ClaSP show the best results for the AUC scores, SWCPD
additionally delivers strong Covering scores, and minimal false Positives. For the results in Table 3}
we set 7 = 30, w = 500, K,.x = 500, L = 1000, p = 2, and o = 0.05.

5 LIMITATIONS

Despite the demonstrated effectiveness of SWCPD, several limitations merit attention. First, the
reliance on random one-dimensional projections can reduce sensitivity to subtle, local changes in
high-dimensional spaces, as these may not always be captured by a limited sampling of directions.
Future refinements might involve adaptive or learned projection strategies that more selectively probe
feature dimensions most likely to exhibit drift. Second, our adaptive thresholding scheme is based on
the theoretically derived Gamma-distribution of Sliced Wasserstein distances; in practice, however,
for smaller datasets or heavy-tailed data can undermine our theoretical approximation.

6 CONCLUSION

We introduced SWCPD, a novel framework for explainable online change point detection in high-
dimensional data streams, leveraging Sliced Wasserstein (SW) distance. By transforming multivariate
time series into a one-dimensional signal, our method circumvents the computational bottlenecks
of traditional CPD techniques. We integrated three key innovations: (1) a statistically grounded
SW-based transformation that enables CPD on high-dimensional data with minimal overhead, (2)
a self-adaptive thresholding mechanism that dynamically calibrates detection sensitivity using a
Gamma-based statistical hypothesis test, and (3) a contrastive explainability module that identifies
the most influential feature dimensions contributing to detected changes.

We demonstrated SWCPD’s superiority across multiple benchmarks, achieving competitive detection
performance while maintaining interpretability. SWCPD outperforms existing online and offline
CPD techniques, particularly in dynamic, high-dimensional settings where both reliability and
explainability are critical. The proposed feature attribution mechanism offers actionable insights
by revealing the root causes of distributional shifts, ensuring that detected changes are not only
statistically significant but also interpretable.

SWCPD is a practical bridge between modern data streams and the social-technical systems that
rely on them. Interpretable, distribution-level telemetry is quickly becoming as mission-critical
as traditional point-estimate monitoring. As interpretable, distribution-level telemetry becomes
as critical as point-estimate monitoring, SWCPD combines statistical rigor with human-centered
explanations. This enables downstream Al systems, from LLMs to sensor stacks, to be wrapped in
transparent “change firewalls,” promoting a future where real-time models both detect and justify
shifts, setting a new standard for safer, fairer, and more accountable Al.
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A APPENDIX

B ADDITIONAL EXPERIMENTS

All experiments were conducted on a machine equipped with an AMD Ryzen 7 5700X CPU, 32 GB
of RAM, and a RTX 3060 GPU.
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Table 4: Parameter setting ViT

BATCH SIZE EPOCHS LR PATCHSIZE DIM DEPTH HEADS MLP
64 15 1x107* 4 64 6 8 128
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Figure 5: Illustrates Train and validation curves of loss and accuracy over 15 epochs for ViT model.

B.1 EXPLAINABILITY

B.1.1 MNIST

Vision Transformer. We employ a Vision Transformer (ViT) model for image classification on the
MNIST dataset. The model processes input images of size 28 x 28 pixels, which are divided into
non-overlapping patches of size 4 x 4, resulting in 49 patches. Each patch is linearly embedded into
a 64-dimensional feature space. The transformer consists of 6 layers, each employing multi-head
self-attention with 8 heads and a feed-forward network with a hidden dimension of 128. We apply a
dropout rate of 0.1 during the embedding and transformer layers to prevent overfitting. Since MNIST
images are grayscale, the model is configured to accept single-channel input. The data was split into

90% training set of which 10% into the validation set, while we used the additional 10% for testing.

We use Adam with A = 0.001 for training over 15 epochs with a batch size of 64.

CNN. We use a simple LeNet-5 |[LeCun et al.| (1998) as a benchmark CNN to investigate model
explanations under drifts on MNIST. We use the same train-test split as for the ViT model and Adam
optimizer with step size A = 0.001. We repeat the same procedure as for the ViT and introduce drifts
and investigate the differences in the feature attrituions using SWD, and SoTA explanations methods
IG, GS, and DL. From fig. @ we see that all reference methods align with feature attributions, and
hence show the same pattern for differences of before and after drift. Although, all explanation
methods align with the most significant feature changes, the pixelwise distance based approach
(SWD) narrows them down the most. This can also be seen in fig. [7} which highlights the differences
of adversarial examples changing the model output between two given classes, as SWD shows a
strong alignment.

B.2 UNCERTAINTY QUANTIFICATION

We investigate the asymptotic behaviour of the confidence intervals obtained by theorem [3.2] for
X ~ T'(2,1) for various sample sizes and calculate the average confidence intervals for 30 different
random samples X,, with sample size n. For an increasing sample size, the confidence intervals for
both parameters shrinks and is centered around the true parameters as expected since sample mean
and variance are consistent, see fig.
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Before Drift After Drift Grad SHAP DeeplLift

Figure 6: Shows the absolute difference of mean feature attributions for three different drifts and
reference methods IG, GS, and DL.

€:0.005 €:0.01 €:0.05

5->6
7->1
9->3

Figure 7: Shows mean adversarial examples (left) which changes the model (CNN) output from
5—6,7— 1,and 9 — 3 using FGSM for different ¢, and L4-norm between mean adversarial
example and non-adversarial example
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Figure 8: Shows the lower and upper bound of confidence interval (eq. ) for MoM estimator &, B
averaged over 30 experiments for equidistant sample sizes from n = 100, ..., 5000.

Table 5: Average p-values obtained using Sharpio-Wilk test

L
d 100 500 1000

10 044 () 0.065() 0.005(-)
20 05(v) 03() 02()
30 05(v)  04(Y)  03(V)
60 05(v) 05() 05()
100 05(v) 05() 05()

B.3 DISTRIBUTION OF RANDOM PROJECTIONS

For the numerical study of the distribution of w3(6) : 6 +— Wo(P?, Q?), we consider two sample
sets X, Y each consisting of 200 MNIST samples with gray-scaled images from the same class
respectively. For this example we set the class of each sample from X to 1, and Y to 7. We
calculated the SWD between both samples for different numbers of random projections ranging from
L =100, 500, 1000, 5000. We then constructed the MoM esitmates of a Gamma distribution based
on the set of random projection obtained. Furthermore, we calculated a Kernel density estimation
for the random projections itself. This shows that using a Gamma distribution indeed fits the data
obtained. Additionally, we complared the sampled quantiles and the theoretical quantiles of the
random projections and MoM fitted Gamma distribution to asses the goodness of fit. The result is
summarize in fig. [9] as expected, we see that as the number of projection increases, we obtain a
better fit. While fig.[0] shows the asymptotic behaviour given by Theorem 3.1] of the linear random
projections of the Sliced Wasserstein distance, we observed that it also holds for lower-dimensional
data, e.g. simulated synthetic data. Consider z € R?, we fix a projection direction 8; ~ U(S%~1)
and consider a sample set X = (z1, 2, ...,z,). We set z; = (X, 6;), where z; is normal due to the
CLT for d — oo. We simulated = according to d independent exponential distributions A = 1 and
applied the Sharpio-Wilk test|Shapiro & Wilk|(1965) to asses wheter the projected samples can be
considered normal distributed. In table[5] we report the average p-values projections obtained using
L € [100, 500, 1000] for various dimensions d.
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Figure 9: Shows a Kernel density estimation of a gamma density using the MoM estimated parameters
(red line) for the random projection for various number of projections L = 100, 500, 1000, 5000, and
the KDE of random projections (blue line) itself between two samples from MNIST.
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Figure 10: Shows boxplots of the AUC and Covering scores for each parameter variations while
keeping the other parameters fixed.

C CHANGE DETECTION

C.1 ABLATION STUDY

In the following we are going to investigate the sensitivity and influence of SWCPD for variations in
its key hyperparameters. Our proposed method relies on the following hyperparameter:

* L = 500: Number of random projections (Monte Carlo samples)
* w = 50: Window length

* p = 2: Order of Wasserstein distance

* a = 0.05 : Significance level

* Kpax = k: Maximum length of lookback window (for moving average calculation)

We conducted experiments using the same MINIST datasets as in the experimental section of the
paper, hence the number of change points varies from 2 to 4 with 200 samples for each sub-sequence
forming one segment. We defined the following parameter sets, w € [5, 20,50, 70, 100], Kpax €
[5,10, 20,50, 100], L. € [100, 200, 500, 1000, 5000}, p € [1,2, 3,4, 6], and « € [0.01,0.05,0.1,0.2].
Across all simulation on all 15 datasets, we fixed the random seed for the Monte Carlo samples to
obtain reproducible results. We choose the default parameter L = 5000, p = 4, w = 50, Kjyax = 50,
a = 0.05 which we fixed, only varying one parameter within its parameter set respectively. Figure[I0]
shows the parameter sensitivity of SWCPD for this exemplary dataset. This shows, that the most
sensitive parameter are the window length, and lookback window, whereas the number of Monte
Carlo samples may be sufficiently large if chosen L ~ d. The Wasserstein order should be set above
2, depending on the severity of the drifts, since it amplifies low signals (small distances). The same
holds for the significance level as it may be irrelevant if the abrupt changes are significant itself. To
further emphasize the influence of the Wasserstein order and significance level, we run additional
experiments on synthetic datasets with low drift severities. We used the sampling scheme described
in section [C.2.1] where we set N = 1500, d = 10 with initial base center ¢y € [—4,4]'* and 10
different segments. We selected V = {1, 2, 3} and drift severity was set to §; ~ Uniform(—1) for
each feature index in V. In contrast we sampled the remaining data with i.i.d. Gaussian distribution
with mean at each base center respectively and o = 0.5 for each component. The result highlights
the influence of the significance level for the propagated upper bound as increasing the variable leads
to a decrease in the AUC and Covering score since the number of false negatives increases when
the upper bound is to close to the cumulative sum. In this example, the Wasserstein order was of
secondary importance as changing it lead to similar scores across the datasets, however increasing
the Wasserstein order has a smoothing effect on the cumulative sum as small Wasserstein distances
nearly vanishes. This can be benefiting for noisy signals. For weak signals, where the abrupt changes
are small, we suggest decreasing the Wasserstein order amplifying small changes in the underlying
data. Additionally, we performed a Grid Search on MNIST and Occupancy. For both experiments,
we fixed p = 4, L = 5000 while varying the significance level o, window size w, and Lookback K.
We limited the possible parameter values for MNIST to w € [20, 30, 40, 50, 100], Kyyax = [0.5w, W],

17



Under review as a conference paper at ICLR 2026

Sig Level Wasserstein Order
1.0 0.95 4
0.9 0.90
S 0.8
0.7 o
0.80 4
0.6

0.65 011 012 O.éS

1.0 1

PR

g 0.9

3 9
0.8

g o

2 0.7 + 0.8

o

O
0.6 1 0.74

0.05 01 02 025 2

Figure 11: Summary of AUC and Covering scores for varying significance level and Wasserstein order
on 10 different synthetic datasets with d = 10, N = 1500 and 10 drifts in 3 features simultaneously.
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Figure 12: Average AUC scores for various parameter combinations using SWCPD on MNIST
sequences.

and o = [0.01,0.05,0.1]. We report the average AUC scores for each parameter combination in
fig.[I2] we see multiple parameter sets achieving high AUC scores. For Occupancy, we limited
the possible parameter values to w € [200, 300, 400, 500, 600], Kimax = [0.25w, 0.5w, 0.75w, w], and
a = [0.01,0.05,0.1]. We report the AUC scores for each parameter combination in fig. we see
multiple parameter sets achieving high AUC scores in comparison to the baseline methods.
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Figure 13: AUC scores for various parameter combinations using SWCPD on Occupancy.
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C.2 METHODS

In the following part, we will describe the reference methods used within the Change Point Detection
experiments. Alongside its main parameters and their default values, we also describe the setting for
each dataset. We provide an overview of the computational complexity in Table 6]

Table 6: Overview of reference methods and respective time complexity for online and offline change
point detection, K: number of change points, d: dimension, N: total samples, w: sliding window.

Method parametric non parametric online offline Offline Complexitym Online ComplexityE]
e-divisive ) W) O(KN?) O(KN?Y)

KCP ) ) O(KdN?) O(KdN*)
ClaSP ) ) O(KN?) O(KN*%)
BOCPD ) ) (-) O(Nd)
OT-CPD W) )  ON(w?log(w) +w?d)) O(N(w?log(w) + w?d))
SWCPD (ours) W) W) (=) O(N(wdL + Lwlogw))

BOCPD (online): Bayesian Online Change Point Detection (BOCPD)/Adams & MacKay|(2007) is
a method used to detect change points in streaming data in real time. It has some desirable properties,
such that it can be applied online, is applicable to multivariate data, and quantifies uncertainty
Knoblauch & Damoulas| (2018). The underlying concept of this approach is to monitor the probability
of a change point occurring at each time step by maintaining and updating the posterior distribution
over potential segmentations of the data. It assumes that data within a segment follows a consistent
probabilistic model (e.g., Gaussian), and a change point indicates a shift in the underlying model.
There exist many implementation, we use the implementation that comes with the ocp package
Pagotto|(2019). The key parameters for this method are:

* prob_model: the underlying probability model of the posterior distribution
* init_params: the initial parameters for the probability model consiting of m, k, a, b

* hazard_function: normally set to a constant function with certain hazard rate A
We run the experiments with the following parameter sets:

« HAR

— prob_model : " gaussian”
— init_params:m =0,k = 10,a = 0.1,b = 0.01
— hazard_function : type=constant, A = 100

¢ MNIST

— prob_model : " gaussian”

— init_params:m = 0.3,k =0.01,a =0.01,b=1e — 4

— hazard_function : type=constant, A = 100

* Occupancy

— We additionally applied z-score normalization of the data beforehand to obtain a
reasonable distributional setting and obtain change points

— prob_model : " gaussian”

— init_params:m =0,k =0.01,a =0.01,b=1e — 4

— hazard_function : type=constant, A = 100

!Complexity for offline change point detection for a multivariate time series with d dimensions and N
observations

2Accrued complexity for change point detection at time step ¢ = N for a multivariate time series with d
dimensions and in total /N observations
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E-divisive (offline): The e-divisive combines binary bisection together with a permutation test
based on an energy divergence measure Matteson & James| (2014)). It is a non-parametric offline
change point detection method for multivariate data, making it applicable to a wide range of complex
data. We use the implementation from the ecp package [Nicholas A. James et al.[(2019). The method
relies on the following parameters with default specification:

* R =199 : specifies the number of permutations test applied
* sig.1vl = 0.05 : the significance level of the permutation test

* min.size = 30 : the minimum observations between two subsequent change points
We run the experiments with the following parameter sets:

* HAR: R =199, sig.1lvl = 0.05, min.size = 500
e MNIST: R =199, sig.1vl = 0.05, min.size = 30
* Occupancy: R = 30, sig.1lvl = 0.05, min.size = 400

KCP (offline): Kernel change-point detection (KCP) transforms the data into a RKHS with an
associated kernel, which is used to calculate the dissimilarity (cost). The goal is to obtain an optimal
segmentation of the input data in the sense of a minimized averaged cost within each segment obtained
Arlot et al.| (2019). An efficient implementation of this method can be found in|Truong et al.|(2020)),
we assume that the number of change points is unknown, hence we rely on KerneCPD with PELT.
The methods relies on the following parameter:

* kernel = "linear”: specifies the kernel, cost function

* min_size = 1: minimum segmentation length

* pen: penalty or regularization of number of change points identified
The penalty value needs to be specified if the number of change point is unknown. Usually a higher
value will lead to fewer change points identified, while a lower value encourages the method to
annotate more change point with a more fine grained segmentation. We used the following parameter
settings:

* HAR: kernel ="rbf", min_size = 2, pen = 10

e MNIST: kernel ="rbf", min_size =2, pen=1

* Occupancy: kernel ="rbf", min_size = 2, pen = 50

ClaSP (offline): ClaSP (Classification Score Profile) is a self-supervised time series segmentation
method |[Ermshaus et al.| (2023b). The implementation is available at https://github.com/
ermshaua/claspy. Itis a dynamic windowing approach which creates a binary classification
problem across different split points of the time series using k-Nearest Neighbors (k-NN) which is
evaluated using corss validation. The score obtained from k-NN is used to evaluate the similarity of
both segments, where higher scores indicate a stronger dissimilarity. The main parameters to choose
are:

* windwo_size = "suss”: size of the sliding window, default Summary Statistics Subse-
quence (suss)
* k_neighours = 3: number of nearest neighbours for k-NN

e distance = "znormed_euclidean_distance”: distance used for k-NN
We used the following parameters:

e HAR: windwo_size = 50
e MNIST: windwo_size = 100

* Occupancy: windwo_size = 30
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OT-CPD (offline): OT-CPD|Cheng et al.|(2020a)) is a optimal transport based change point detection
method which calculates the Wasserstein distance between two sliding windows. After obtaining all
available data, it applies a matched filter on the Wasserstein test statistic to obtain a more persistent
test statistic reducing false positives. OT-CPD annotates a change if the filtered test statistic exceeds
a pre-defined threshold. In our experiments, we relied on the implementation available at https: //
github.com/kevin-c—-cheng/OtChangePointDetection/tree/master. The main
parameters for the change point detection method to choose are:

* window: size of the sliding window
We used the following parameters:

e HAR: window = 1000
e MNIST: window = 150

* Occupancy: window = 750

C.2.1 SYNTHETIC DATA

The proposed sampling scheme generates synthetic data with customizable cluster centers and variable
feature dimensions. The process begins by defining an initial base center ¢y € R%, where d is the
number of features. This base center serves as the reference point for all subsequent cluster centers.

To generate additional cluster centers, a perturbation process is applied to cy. Specifically, for each

new cluster center c;, ¢ = 1,...,k — 1, the following transformation is applied:
o Co7j+Aj ifjeV,
Y eoy otherwise,
where ¢; ; is the j-th feature of the i-th cluster center, V C {1, 2, ..., d} is the set of varying feature

indices, and A; ~ Uniform(—d, d) is a random offset sampled from a uniform distribution with
range [, d].

The sampling process ensures that only the features indexed by V are modified, while other features

remain constant across all cluster centers. After generating the cluster centers, the data points
(n)

%

are sampled from a multivariate Gaussian distribution. For each cluster 7, the samples x
1,..., N;, are drawn as:

» =

Xz('n) ~ N(Ci7 E)’

where ¥ € R%*? is the covariance matrix (diagonal for simplicity) and N; is the number of samples
assigned to cluster ¢. The total number of samples [V is distributed evenly across clusters, i.e.,
N; = N/k.

This scheme allows for precise control over the features that vary between groups V, the degree of
variation §, and the variance of data points within each cluster with 3. By adjusting these parameters,
synthetic datasets can be tailored for specific experimental purposes, such as evaluating clustering
algorithms or analyzing feature-specific effects. In Table [7] we report AUC scores for different
variances and drift severities for Gaussian synthetic data with d = 10 and 1500 samples with 3
segments. Additionally, Figure[T4]illustrates the contrastive explanations for the obtained change
points by SWCPD. We set the window length w = 50, the lookback window for the estimation of
shape- and rate parameters K ,,x = 50, p = 2, and L = 5000.

Table 7: AUC for different variances o2 and drift severity |J]|

Source Value T=5 7=10 7T=20
0.1 1.0£0.0 1.0+ 0.0 1.0£0.0
Variance (02) 0.5 0.8+0.28 0.93+0.14 1.0+ 0.0

1.0 0.65+0.32 0.75£0.29 0.91+0.13

1 044015 06£0.26 0.94+0.08
Drift Severity (|d]) 2 0.6+022 08£0.27 0.97+0.06
3 0.71£0.28 0.87£0.24 0.98+0.05
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Figure 14: Interpretable change points obtained with SWCDP. Two right plots show feature attribu-
tions obtained using Algorithm E], showing alignment with ground truth root causes of the drifts.
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Figure 15: Visualizes our proposed detection method for MNIST data with two change points at
t = 200, 400. Change points are indicated when the cumulative sum exceed the upper bound which
is derived based on past SWDs.

C.2.2 MNIST

In order mimic a streaming behaviour, we uniformly sample an initial class (without replacement)
and select K instances from the current class. We repeat this procedure and annotate the samples
to introduce abrupt changes. Within the scope of the experiments for this paper, we generated 5
distinct data sequences with 2, 3,and 4 change points, where each class has 200 samples. We illustrate
SWCPDs detection procedure for a sampled MNIST sequence with two change points at ¢ = 200, 400
in fig.[I5] By calculating tracking the SW distance using a rolling window of & = 50 observations, we
obtain a one-dimensional signal with two significant spikes at t; = 225 and ¢ = 425 since the within
similarity of the rolling window will be the largest when the first half samples belong to class prior to
the drift and the second half to the class after the drift. We see, that using a propagated upper bound
given the current state instead of purely relying on the distance as a signal, we can anticipate changes
more reliable and faster. Moreover, the upper bound is adaptive such that there is no fine tuning or
manually shifting the rolling window involved. SWCPD is based on the Sliced Wasserstein distance
which is a metric from Optimal Transport (OT). To contextualize the computational performance
of our proposed method for other OT-based detection methods such as OT-CPD, and e-divisive, we
report the average wall-clock time and standard deviation in Table [§]

C.2.3 HAR

The dataset consists of distinct multimodal multivariate time series monitoring human motion of
different daily activities. The data was collected as part of the Human Activity Segmentation
Challenge Ermshaus et al.|(2023a) using built-in smartphone sensors. In total, the dataset has 250
time series consisting of 12 different measurements sampled at 50 Hz, where the ground truth change
points were independently annotated using video and sensor data. We selected 25 instances covering
17 indoor and 8 outdoor activities for various numbers of segments ranging from 1 to 6. We selected
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Table 8: Runtime comparison of SWCPD and OT-based CPD methods

(a) Average runtimes and AUC scores (b) Average runtimes and AUC scores of SWCPD for different
for OT-baseline methods numbers of projections L

Method Runtime (s) AUC L Runtime (s) AUC vs. OT-CPD  vs. e-divisive

OT-CPD  425+£150  0.95+0.05 100 1.02+0.2 087+0.1 +41,979%  +478%

e-divisive 5.9+ 3.1 0.96 +0.05 500 2.81+0.6 0.95+0.1 +415,024% +109%
1000 3.33+0.74 095+0.1 +12,662% +77%
5000 6.21+1.3 0.97+0.07 +46,743% -5%

owdoor
)
s

2 4 6 & 10 12 14 16
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Figure 16: Summary of the data used for the change point detection experiments of HAR dataset.

8 instances with one segment, thus zero change points to asses the sensitivity and robustness of each
method when the unknown underlying distribution does not change over time. Furthermore, we see
that the average number of observations increases with more segments in the selected data see fig.[16]
We specifically considered instances with a single segment to assess each method’s robustness to
false positives. Figure[T7]illustrates the time series of an outdoor activity of a person. In this case,
the person is performing three different stretches (standing adductor left, squat stretch for adductors,
hamstring stretch right) Figure ] shows AUC scores of our proposed method and baseline methods
for five different annotation margins 7 € [25, 50, 100, 150, 200], such that if the annotated change
point is at least 7 instances away, it is classified as true positive thus contribution to the AUC score.
We see that SWCPD shows superior AUC scores for any 7, see Figure 8]

C.2.4 OCCUPANCY

WCPD is based on the Sliced Wasserstein distance which is a metric from Optimal Transport (OT).
To contextualize the computational performance of our proposed method for other OT-based detection
methods such as OT-CPD, and e-divisive, we report the average wall-clock time and standard deviation
in Table O]

Table 9: Runtime comparison of SWCPD and OT-based CPD methods

(a) Average runtimes and AUC scores (b) Average runtimes and AUC scores of SWCPD for different

for OT-baseline methods numbers of projections L
Method Runtime (s)  AUC L Runtime (s) AUC vs. OT-CPD  vs. e-divisive
OL-CPD  96.2+0.23  0.41£0.00 100 282408 048+0.0 +241% +519%
e-divisive 175.3 £0.19 0.34 +0.00 500 594 +1.25 0.58 + 0.0 +62% +195%
1000 66.6+1.55 0.59+0.0 +45% +163%
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Figure 17: Comparison of Test scores obtained using SWCPD and ClaSP on subject number 243 (left
hand side), and corresponding time series (right hand side).
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Figure 18: Shows average AUC scores for proposed method and baseline methods on the selected
HAR data for different annotation margins 7.
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D OMITTED PROOFS

Lemma D.1. Let X and Y be two independent random variable such that X ~ T'(aq, ) and
Y ~T(ag, B) witha;, > 0fori=1,2. Let Z := X + Y, then Z ~ (a1 + a2, 8)

Proof. We consider independent Gamma random variables X, with different shape parameters oy,
and fixed rate parameters j3 for k € [N]. Given the probability density function of X,

-
ka(LI}) - F(Olk) eXp( B.Z‘)
we have the characteristic function

o = meitXe] = B [T a1 —(8-iteg
<)0Xk()_ [6 ]_F(Ozk) 0 4 € €L

AN
- (1 B 6)

for k = 1,2 and a1, @2 > 0. Finally, we denote Z = "5, X3 and e = S5, ), and use

t) :ﬁ%(ﬂ = (1—@_

O

Lemma D.2. Let X ~ N (0,02), then | X|* ~ (1, 513) follows a Gamma distribution with shape

— 1 —
parameter o = 5 and rate parameter 3 = 5 .

Proof. We will first show that | X| follows a half-normal distribution with scale o. By definition, the

probability density function of X is fx(z) = \/2170 exp (— 550 ) Let us define Y = | X|, then each

realization of Y denoted as y € [0, o), such that,
Fy(y) =Pr(Y <y) =Pr(|X] < y)
:Pr(y<X<y)—2 Pr(0 < X <y)

=2 [ o (5a)

d 2 1 y?
fy(y):@Fy() \/;0 exp<%‘2)7 fory >0,

which concludes that Y = | X| follows a half normal distribution. Similar, we set Z := Y2 and have,
Fy(z) =Pr(Z < 2) =Pr(Y </2) = Fy(v2),

since Y > 0. Subsequently, differentiating the CDF F;(z) w.r.t. z and using I'(3) = /7, we obtain
the following probability density function,

fa(z) = Q—\Iﬁfy(\/%) =

o (-a)

=————exp|(—= for z > 0.

F(%) 2022 P\ 202 B

which concludes the claim | X |2 ~ T'(1, 515). O

21 202
Theorem D.3. [Berry-Esseen \Berry, (1941); Jacod & Protter (2012)] Let (X;)j>0 be an i.id.
sequence of random variables with E[X ;| = 0, E[XJQ] = o2, and finite third moments E[| X ;> < o,
if we set S, = %\'%JFX" then there exists a positive constant C' such that

X;
sup 2(5, < 1) — a(1) < 2L

where ®(t) denotes the cdf of a standard normal distribution.

Finally, we obtain

1 z
exp [ ——=
V2rzo P ( 202 )
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Proof. We refer the reader toJacod & Protter| (2012). O
Lemma D.4. Let 0 ~ U(S*) and S € R¥*? p.s.d, then Q = 0750 4 N (’“f), 2”(%2)).
Proof. Letx ~ N(0,1;), we set 0 = || I such that the quadratic form Q@ = 720 = HTﬁI We
write

d
TYr = E w2,
i=1

where A1, ..., \q are the eigenvalues obtained after diagonalizing ¥ = UAU” . Let us set
d
Sa=Y_ Az} 1),
i=1

such that @ = "% A\ + 9y = (%) + Sq, where Sy is a sum of independent random variables. We
apply Theoremwhere X; = Ni(22 = 1), Var(X;) = 2)2, and E[| X3| = N E[|2? — 1]3] = Mc,
then we have
2N

sup [P (S, <t)—®(t)| < C—="—+

teR OIPHE
which gives a uniform bound of the differences between the distribution of the random projections
and a standard normal distribution which is dependent on the spectrum of 3. Moreover, since

E[||2]]?] = d, and Var(||z||2) = 2d, we have Q = 67560 = ") 4 A/(0, 22) = V(B2 2eE0))

d ° d?
Such that =) ( 2)
d tr(X) 2tr(2
Q—>N( R E )

O

Theorem D.5. Let P, Q denote two probability distributions on R® with finite p’th moments then
w2(0)[P?, Q% ~ T as d — oo.

Proof. We denote the probability distribution of X, Y with P, Q respectively. We write Z = (X, 0),

W = (Y, ) modeling the projections Ti}P’, Ti@. First, we consider the projection for a specific
sample x; denoted z; = (x;,6). Thus, for a fixed sample, we have

E[z] = E[(z;,0 ZmlkE [0x] =0,

Var(z0) = BI22] ~ B[ = 3 o308 = Ll

leading to z; ~ N(0, 4 |z;]|?) for large d.

Now, we fix some projection direction §; ~ U(S%!) and consider a sample set X =
(x1,2a,...,2,), we set z; = (X, 6;), then,

2] = Z E[Xik]0u,

d d
Var(z) = E[#7] =3 EX05+2 > E[XpXp0ikb0im — Elz]?
k=1 k,m=1
d d d
=Y EXRN65 - > EXi?65 +2 > B[XpXn0ikb0im — E[X4E[X 601 01m
=1 k=1 km=1
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after rearanging the terms, we have Var(z;) =  0;YXx HZT, such that z; ~
N (22:1 E[ X101k, GZEXGIT) Analogously, we consider a sample set Y = (y1,y2,- .., Yyn) and

write w; := (Y, 6;), subsequently, we see w; ~ N (22:1 E[Yik)0:k, 012y0lT).

The main step in the calculation of the Sliced Wasserstein distance is the utilization of the closed
expression of the Wasserstein distance between two univariate distributions, which reads that for two
probability distributions with p finite moments, the Wasserstein distance boils down to

1
WE(P, Q) = / \Ft(u) — Fy(u)|Pdu, ™

where F'~1 denote the inverse CDF of P, Q indicated by the subscript. Note, if we plug in z;, w; for
P and Q in eq. (7), we obtain the p Wasserstein distance for the projection direction 6;. Since we
derived that the distributions for a fixed projection behave Gaussian, we consider

Fo ' (u) = 1/20,5x0] - erf ' (2u — 1) + pz,

where erf ~* denotes the inverse of the Gauss error function. We have D(u) := F. ) — Fyt(w),

D(u) = <\/2elzxelT - \/2912y9?> Cerf M (2u — 1) + fia, — fiuy-

Let us fix u and consider all possible projections 6, we see Eg[0%6%] = L1tr(X), while E[u.] =

E[pw] = 0, therefore E[D(u)] = (\/%tr(EX) - \/%U‘(Ey)) ~erf ' (2u — 1), with Theo-
rem m we have Var(720) = %‘?2) for large d. Thus o2 = Var(D(u)) = erf '(2u —
1)%Var( (\/ 20, x HlT - \/ 2912y9lT) which is convex in u. This means that the variance increases in

the tails. For each u the differences of the inverse CDF are Gaussian for large d with similar variance
o2 with D(u) ~ N (g, 02). Therefore, |D(u)|?> ~ x3(\y), note that the mean has a fixed value
scaled by the error function, such that we can factor this term out. Normalizing the random variables
will lead to a sum of Gamma random variables Lemma[D.2] which is also Gamma distributed Lemma
however the exact shape and rate parameter are not directly obtainable as approximation with
the normalization is applied. O

Proof of Proposition[3.2] Suppose, we have i.i.d. samples z1,...,z, ~ I'(a, 3) which we denote
as X,,. For a Gamma distribution with shape « and rate 3, we have y = % and 02 = % We write

X, = 13" | x; for the sample mean and S? = 15 3" | (x; — X,,)? for the sample variance.

Then, we have the following Method of Moment estimates for « and 3
2
Xn
527

n
By the Central Limit Theorem, we know that for large n, the sample mean and variance converges to
a normal distribution, with

a:

~ X,
5:?%'

vn (&3_1 - ,u) AN (0,07)
Vi (87 = 0%) =% N (0, Var(s?))

where, with Theorem I from|Cho & Cho| (2008), Var(52) ~ n=1(302 + 20212 — o*) = % for
n — oo. We use the asymptotic normality of sample mean and variance and apply the delta method
to derive an approximation of the variance of &, 3. For a smooth differentiable function g(0) and
a sequence of random variables 6,,, if \/n(6, — 6) N N(0,%), then \/(n)(g(6,) — () N
N (0,Vg(6)TEVg(6)). Beginning with the estimate for o, we set

2

_ )(7
g(Xna S?L) = S2L,
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with

— —2
+2 2\ _ [, Xn X,
Vg(Xn,Sn) _<QS%’ (53)2)

The covariance matrix ¥ consists of Var(X,,) and Var(S2) on the diagonal and 0 on the off diagonal
have

elements due to the fact that for large n sample mean and variance are uncorrelated. Therefore, we

— 2 —9 2
Var(&) ~ (2;(2") - Var(X,,) + < X, ) - Var(S2),

(57)?
and plugging the estimator for sample mean and variance in, we may simplify the expression to
4 2
Var(d) ~ —

6 2

~ = 4 BY Var(S2) = 2
n

For the estimator of 3, we set
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