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Abstract

Understanding the prioritization of certain samples over others during neural net-1

work training is a fundamental challenge in deep learning. This prioritization is2

intrinsically linked to the network’s inductive bias—the inherent assumptions that3

enable generalization from training data to unseen data. In this study, we investigate4

the role of the diagonal elements of the Neural Tangent Kernel (NTK), k(x, x), in5

determining sample learnability. Through theoretical analysis, we demonstrate that6

higher values of k(x, x) correlate with faster convergence rates of individual sam-7

ple errors during training, indicating that such samples are learned more rapidly and8

accurately. Conversely, lower k(x, x) values are associated with slower learning9

dynamics, classifying these samples as harder to learn. Empirical evaluations con-10

ducted on standard datasets using convolutional neural networks (CNNs), validate11

our theoretical predictions. We observe that samples with higher k(x, x) values12

consistently achieve higher accuracy in fewer training epochs compared to those13

with lower values. Visual inspections further reveal that high-k(x, x) samples are14

typically clear and prototypical, whereas low-k(x, x) samples often exhibit noise15

or atypical characteristics.16

1 Introduction17

Understanding why neural networks prioritize learning certain samples over others is a fundamental18

question in deep learning. This prioritization is closely tied to the network’s inductive bias—the19

set of assumptions a model makes to generalize from training data to unseen data. The Neural20

Tangent Kernel (NTK) has emerged as a powerful theoretical tool to analyze the training dynamics of21

overparameterized neural networks [1, 2]. In this work, we focus on the diagonal elements of the22

NTK, k(x, x), and their relationship with sample learnability. Our empirical observations show that

Figure 1: Hard (left) and easy (right) to learn CIFAR-10 samples for a CNN, picked by our method.
23
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samples with higher k(x, x) values tend to be learned faster and more accurately during training.24

These samples often correspond to "easy" examples with less complexity or ambiguity. Conversely,25

samples with lower k(x, x) values are learned more slowly and are generally harder examples. We26

aim to theoretically justify this phenomenon by deriving convergence rates based on k(x, x) and27

explaining how k(x, x) affects the optimization dynamics of neural networks.28

2 Theoretical Analysis29

The NTK arises in the study of infinitely wide neural networks trained using gradient descent. For a30

neural network f(x;θ) with parameters θ, the NTK is defined as [2][3]:31

K(x,x′) = ∇θf(x;θ)
⊤∇θf(x

′;θ). (1)
The diagonal elements k(x, x) represent the inner product of the gradient of the network’s output32

with respect to its parameters at input x:33

k(x, x) = ∥∇θf(x;θ)∥2. (2)
This quantity measures the sensitivity of the output at x to changes in the parameters and thus can be34

interpreted as the influence of sample x on the training dynamics. High k(x, x) indicates that small35

parameter updates can significantly affect the output for x, potentially leading to faster learning for36

that sample.37

Consider training a neural network with mean squared error (MSE) loss on dataset {(xi, yi)}Ni=1. The38

network output at time t is ft(x). The dynamics of ft(x) during gradient descent are governed by:39

dft(x)

dt
= −η

N∑
i=1

K(x,xi)(ft(xi)− yi), (3)

where η is the learning rate. This differential equation characterizes how the network’s output evolves40

over time under gradient descent. In the infinite-width limit, K(x,x′) remains constant[2][1], and41

the solution can be expressed as:42

ft = f0 − (I − e−ηKt)(f0 − y), (4)
where f0 is the initial network output, y is the vector of target values, and K is the NTK matrix.43

2.1 Convergence Rate for Individual Samples44

To understand how the error for each individual sample evolves during training, we derive the45

Ordinary Differential Equation (ODE) governing the error dynamics within the Neural Tangent46

Kernel (NTK) framework. This derivation is foundational for analyzing the convergence rates and47

establishing the relationship between the NTK’s diagonal elements and sample learnability. Consider48

training a neural network f(x;θ) with parameters θ on a dataset {(xi, yi)}Ni=1 using gradient descent49

to minimize the mean squared error (MSE) loss:50

L =
1

2

N∑
i=1

(f(xi;θ)− yi)
2
. (5)

The continuous-time gradient descent (i.e, gradient flow) update rule is given by:51

dθ(t)

dt
= −η∇θL, (6)

where η is the learning rate. The time derivative of the network’s output for sample x is expressed as:52

df(x;θ(t))

dt
= ∇θf(x;θ(t))

⊤ dθ(t)

dt
. (7)

Substituting the gradient descent update rule into this equation yields,53

df(x;θ(t))

dt
= −η

N∑
i=1

(f(xi;θ(t))− yi)∇θf(x;θ(t))
⊤∇θf(xi;θ(t)) (8)

= −η

N∑
i=1

K(x,xi) (f(xi;θ(t))− yi) , (9)
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where the Neural Tangent Kernel (NTK) is defined as:54

K(x,x′) = ∇θf(x;θ)
⊤∇θf(x

′;θ). (10)
On defining the following vector quantities:55

f(t) =

 f(x1;θ(t))
...

f(xN ;θ(t))

 , y =

 y1
...
yN

 , e(t) = f(t)− y, (11)

We may rewrite the evolution equation more compactly, as:56

df(t)

dt
= −ηKe(t), (12)

where K is the NTK matrix with elements Kij = K(xi,xj). Substituting e(t) into the evolution57

equation, we obtain a simple ordinary differential equation governing the error dynamics:58

de(t)

dt
= −ηKe(t). (13)

Assuming that the NTK matrix K is diagonal or approximately diagonal—a reasonable assumption59

in the infinite-width limit where off-diagonal elements become negligible [4, 2, 1]—the system60

decouples into independent ODEs for each sample:61

det(xi)

dt
= −ηk(xi, xi)et(xi), =⇒ et(xi) = e0(xi)e

−ηk(xi,xi)t, (14)

where e0(xi) = et=0(xi) is the initial error for sample xi. The solution et(xi) = e0(xi)e
−ηk(xi,xi)t62

indicates that the error for each sample decays exponentially over time. The rate of convergence is63

governed by the product ηk(xi, xi).64

2.2 Bounds on Convergence Rates65

We can formalize the convergence rates by deriving bounds on the error et(xi):66

e−ηkmaxte0(xi) ≤ et(xi) ≤ e−ηkminte0(xi), (15)
These bounds indicate that the error decay rate is bounded by the minimum and maximum diagonal67

elements of the NTK. However, these bounds are loose as they do not capture the individual variability68

of each k(xi, xi). A more precise estimate considers each k(xi, xi) individually:69

et(xi) = e−ηk(xi,xi)te0(xi). (16)

This relationship implies that for higher k(xi, xi), the error et(xi) decreases faster, leading to70

quicker learning for sample xi. Lower k(xi, xi) leads to the error et(xi) decreasing slower,71

indicating that sample xi is learned more gradually. Focusing on the error et(x) = ft(x)− y(x), we72

analyze the convergence rate for each sample x. Assuming K is positive definite, the error dynamics73

for the i-th sample are:74

et(xi) = e−ηKte0(xi). (17)
If K is diagonal or approximately diagonal, the convergence rate for each sample simplifies to:75

et(xi) ≈ e−ηk(xi,xi)te0(xi). (18)
This shows that the error for sample xi decreases exponentially with a rate proportional to its k(xi, xi).76

Thus, samples with higher k(xi, xi) converge faster during training.77

3 Empirical Evaluation78

We conducted experiments to validate the theoretical findings using standard deep learning datasets.79

Specifically, we utilized a finite-width NTK [5][2][6] CNN trained on binary and multi-class classifi-80

cation and probed learnability scores (i.e, the diagonal values on the NTK matrix; for the multi-class81

case, we took the mean of the values across classes). Our findings on both MNIST and CIFAR-1082

datasets were equivalent. We also looked at how samples with high and low learnability behave83

during the training process, for which the finite-width approximation was necessary.84

We divided the dataset into distinct groups based on their k(x, x) values to analyze learning dynamics:85
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Figure 2: Left: Images sampled from CIFAR-10 with low learnability. Right: Images sampled
from CIFAR-10 with high learnability.Sampling on the basis of a 3-layer CNN trained on binary
classification to distinguish between frogs and planes.

Figure 3: From left to right, accuracy vs. epochs for ship | frog, horse | plane, bird | plane.

• High k(x, x) Samples: Top 10% of samples with the highest k(x, x) values.86

• Low k(x, x) Samples: Bottom 10% of samples with the lowest k(x, x) values.87

• Medium k(x, x) Samples: Remaining 80% of samples.88

We tracked the training accuracy of each sample group over epochs. Figure 2 illustrates that the high89

k(x, x) group achieves near-perfect accuracy within fewer epochs compared to the low k(x, x) group.90

The medium group exhibits intermediate behavior, often sheathed by the easy and hard examples.91

Visual inspection of samples from different groups reveals distinct characteristics. Figure 3 shows92

that high k(x, x) samples are clear and prototypical, whereas low k(x, x) samples often contain noise,93

distortions, or are atypical representations of their classes.94

4 Related Works and Discussion95

The Neural Tangent Kernel (NTK), introduced by Jacot et al. (2018) [1], has become a fundamental96

tool for analyzing the training dynamics of overparameterized neural networks, offering insights into97

how models behave in the infinite-width limit. Early works focused on the connection between NTK98

and the generalization properties of deep networks, including Arora et al. (2019) [2], who demon-99

strated that the NTK matrix governs learning dynamics in function space, significantly influencing100

how networks fit data over time. Several studies, such as those by Novak et al. (2019) [5] and Yang101

et al. (2020) [7], have shown how NTK can be used to analyze the convergence behavior of neural102

networks across different architectures, linking specific NTK properties to model generalization and103

performance. More recent efforts by Du et al. (2018) [3] have investigated how NTK can predict104

training outcomes in different learning environments, especially for classification tasks, by leveraging105

its kernel structure to estimate the sample complexity. Robust learning techniques, such as Jacobian106

regularization explored by Hoffman et al. (2019) [8], have also utilized NTK concepts. Finally,107

Ilyas et al. (2019) [9] demonstrated how NTK theory can help understand adversarial examples,108

showing that adversarial attacks exploit features that NTK-based networks consider salient. Our work109

builds on these foundational studies, focusing on the empirical evaluation and theoretical analysis110

of individual samples and establishing a direct relationship between NTK diagonal values and the111

learnability of training data. This novel perspective provides new insights into optimizing training112

strategies by identifying "hard" and "easy" samples based on NTK properties, contributing to the113

broader understanding of neural network training dynamics.114
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