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Abstract001

While large language models demonstrate re-002
markable capabilities at task-specific applica-003
tions through fine-tuning, extending these ben-004
efits across diverse languages is essential for005
broad accessibility. However, effective cross-006
lingual transfer is hindered by LLM perfor-007
mance gaps across languages and the scarcity008
of fine-tuning data in many languages. Through009
analysis of LLM internal representations from010
over 1,000+ language pairs, we discover that011
middle layers exhibit the strongest potential012
for cross-lingual alignment. Building on this013
finding, we propose a middle-layer alignment014
objective integrated into task-specific training.015
Our experiments on slot filling, machine trans-016
lation, and structured text generation show con-017
sistent improvements in cross-lingual transfer,018
especially to lower-resource languages. The019
method is robust to the choice of alignment020
languages and generalizes to languages unseen021
during alignment. Furthermore, we show that022
separately trained alignment modules can be023
merged with existing task-specific modules, im-024
proving cross-lingual capabilities without full025
re-training. The code is provided in the supple-026
mentary materials.027

1 Introduction028

Decoder-only large language models (LLMs) have029

emerged as the dominant paradigm in NLP. While030

these models exhibit promising zero-shot capabil-031

ities (Wei et al., 2022; Chowdhery et al., 2023),032

further task-specific fine-tuning remains crucial for033

optimal performance in many applications (Shen034

et al., 2024; Xu et al., 2024; Alves et al., 2024).035

During fine-tuning, a practical challenge is that036

the available training data rarely covers all lan-037

guages supported by LLMs. This highlights the038

importance of cross-lingual transfer to extend task-039

specific performance gains across languages.040

While cross-lingual transfer has been extensively041

studied (Wang and Zheng, 2015; Ruder et al., 2019;042

Artetxe and Schwenk, 2019b), achieving it on gen- 043

erative tasks with variable-length outputs remains 044

challenging (Vu et al., 2022; Li and Murray, 2023) 045

compared to classification tasks. This challenge is 046

especially relevant for LLMs, which formulate all 047

tasks as next-token prediction problems. 048

The theoretical foundation of cross-lingual trans- 049

fer lies in the analogous relationships between con- 050

cepts across languages. This intuition was first 051

demonstrated in cross-lingual word embeddings 052

(Mikolov et al., 2013; Lample et al., 2018; Xu and 053

Koehn, 2021), where these vector representations 054

exhibit isometric relationships, i.e., the geometric 055

structure of semantically equivalent items is pre- 056

served across different languages. This isometry 057

property has proven crucial for transferring learned 058

models across languages (Schuster et al., 2019; 059

Wang et al., 2024b). Subsequent encoder-decoder 060

models (Ha et al., 2016) and decoder-only models 061

(Wu et al., 2024a) also exhibit similar properties in 062

their internal representations. 063

While pretrained multilingual models naturally 064

develop some degree of unified multilingual rep- 065

resentations (Pires et al., 2019; Conneau et al., 066

2020; Muller et al., 2021), explicitly strengthening 067

the relationships between semantically equivalent 068

content has shown benefits in various downstream 069

tasks: cross-lingual retrieval (Yu et al., 2018), par- 070

allel text mining (Schwenk et al., 2021), zero-shot 071

classification (Hu et al., 2021; Gritta and Iacobacci, 072

2021) and translation (Arivazhagan et al., 2019; 073

Pham et al., 2019; Duquenne et al., 2022). Despite 074

different approaches, these works share a common 075

objective: aligning representations of semantically 076

equivalent content across languages while preserv- 077

ing overall expressiveness. 078

Cross-lingual alignment approaches have been 079

successfully applied to models preceding LLMs. 080

For encoder-only models, outputs can be aligned 081

by e.g., minimizing distances between parallel 082

sentence representations (Feng et al., 2022) or 083
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(a) Cross-lingual semantic alignment (measured by average
retrieval accuracy over 35 languages and 1190 language di-
rections) varies by layer, with the middle layer showing the
highest score. Lower-resource languages are poorly aligned.
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(b) Positive correlation between base model cross-lingual se-
mantic alignment and downstream transfer performance.

Figure 1: Two observations (§2) motivating our ap-
proach of aligning multilingual representations (§3).

cross-lingual masked language modeling objectives084

(Conneau and Lample, 2019). These techniques085

are largely applicable to encoder-decoder models,086

where alignment is typically enforced to the en-087

coder outputs (Duquenne et al., 2023). In contrast,088

decoder-only models lack such clear separation be-089

tween input processing and output generation. This090

makes it less obvious where and how to optimize091

for cross-lingual alignment, as also highlighted in092

the survey by Hämmerl et al. (2024).093

In this work, we start by quantifying the degree094

of cross-lingual alignment present in two promi-095

nent LLMs, Llama 3 (AI @ Meta et al., 2024) and096

Qwen 2.5 (Qwen Team et al., 2025). We then apply097

these insights to improve cross-lingual transfer in098

task-specific fine-tuning. By alternatively training099

on alignment and task-specific data, we aim to im-100

prove the cross-lingual generalization to languages101

without fine-tuning data. We demonstrate trans-102

fer improvements across diverse tasks: slot filling,103

machine translation, and structured text generation.104

Our main findings include:105

• Applying alignment objectives to middle layers106

during LLM task-specific fine-tuning improves107

cross-lingual transfer (§5.1) and enhances align-108

ment across all network depths (§5.2).109

• The transfer improvements extend beyond those110

languages seen in alignment (§5.1).111

• Our approach is robust to the choice of languages112

used for alignment training (§6.1, 6.2).113

• Task-specific and alignment modules trained sep-114

arately can be combined post-hoc to improve115

transfer performance (§6.3).116

2 Analyzing Cross-Lingual Alignment 117

To understand how well LLM representations cap- 118

ture semantic equivalence across languages, we 119

use translation retrieval as a diagnostic task. We 120

choose this retrieval task over other metrics like 121

cosine similarity or SVCCA score (Raghu et al., 122

2017) because it better captures relative semantic 123

relationships. That is, if a model’s representations 124

enable us to identify a sentence’s translation from 125

a set of candidates, the exact numerical distance 126

between the query and the retrieved translation is 127

less important than the ability to rank translations 128

as the most semantically similar. 129

Specifically, we first extract model activations 130

at each network layer for all language variants of 131

the input text. To handle variable-length sequences, 132

we create fixed-size sentence embeddings by mean- 133

pooling the activations over the sequence length 134

dimension. For translation retrieval, given a query 135

sentence in one language, we compare its embed- 136

ding to the embeddings of candidate sentences in 137

the target language using ratio-based margin sim- 138

ilarity (Artetxe and Schwenk, 2019a)1. For N 139

languages, we evaluate retrieval accuracy across 140

all N(N − 1) possible language pairs. We use 141

the FLORES-200 dataset (NLLB Team, 2024), 142

which provides high-quality multiway parallel texts 143

across diverse languages (detailed setup in §4.2). 144

Our investigation of LLama 3 and and Qwen 2.5 145

models2 reveals three key findings: 146

Overall weak semantic alignment, with peak in 147

middle layers: As shown in Figure 1a, the aver- 148

age translation retrieval accuracy across 1,190 lan- 149

guage pairs remains below 50%, with Llama 3 out- 150

performing Qwen 2.5. Low-resource languages3 151

show especially weak alignment, achieving less 152

than half of the overall average accuracy. In partic- 153

ular, the middle layers of both models demonstrate 154

the strongest retrieval performance. This suggests 155

stronger potential for cross-lingual transfer at these 156

intermediate representations. 157

Strong correlation between base LLM semantic 158

alignment and downstream task transfer: To 159

what extent can the semantic alignment present in 160

the base LLM predict cross-lingual transfer perfor- 161

mance after supervised fine-tuning? Using multi- 162

1shown to outperform cosine similarity for cross-lingual
retrieval tasks (Artetxe and Schwenk, 2019a)

2specifically the 8B-Instruct and 7B-Instruct variants
3resource levels as defined by NLLB Team (2024)
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Figure 2: Illustration of our approach, alternating training between task-specific (left) and alignment (right)
objectives. The alignment objective operates on middle-layer representations.
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Figure 3: Task-specific fine-tuning shows minimal im-
pact on semantic alignment.

lingual slot filling as a case study, we train models163

on 5 high-resource languages jointly and evaluate164

transfer performance on 25 additional languages165

(detailed setup in §4.1). As shown in Figure 1b,166

for both Llama 3 and Qwen 2.5, we observe strong167

positive correlations (p < 0.01) between middle-168

layer retrieval accuracy and downstream task per-169

formance. This correlation suggests that increasing170

cross-lingual alignment in LLM intermediate rep-171

resentations may improve cross-lingual transfer.172

Task-specific fine-tuning preserves but does not173

enhance semantic alignment: After analyzing174

the base LLMs, we examine how supervised fine-175

tuning affects the models’ internal semantic align-176

ment. Using the same multilingual slot filling task177

as before, we study both English-only and multilin-178

gual fine-tuning. Despite multilingual fine-tuning179

being an established method for improving cross-180

lingual transfer (Li and Murray, 2023; Chirkova181

and Nikoulina, 2024), we observe that neither train-182

ing configuration alters the models’ cross-lingual183

semantic alignment (Figure 3). This preservation184

of baseline alignment patterns, even under mul-185

tilingual training, indicates that pure fine-tuning186

does not sufficiently strengthen cross-lingual align-187

ment. This further motivates us towards explicit188

cross-lingual alignment during fine-tuning.189

3 Explicit Alignment in fine-tuning190

We propose an alternating training strategy to en-191

courage cross-lingual alignment while maintaining192

task performance. As illustrated in Figure 2, we193

optimize either the task-specific objective or the194

alignment objective in each training step. 195

Task Objective: We follow standard causal lan- 196

guage modeling, using a cross-entropy loss over 197

the predicted text conditioned on the input prefix. 198

Alignment Objective: We use a contrastive loss 199

motivated by its successful applications in sen- 200

tence embedding (Feng et al., 2022), dense retrieval 201

(Karpukhin et al., 2020) and modality alignment 202

(Ye et al., 2022; Girdhar et al., 2023). The loss max- 203

imizes the similarity between translations while 204

minimizing similarity between non-translations. 205

Given a batch B of n pairs of parallel sentences, 206

the alignment loss for a sentence pair (s, t) is: 207

Lalign = − log
exp(sim(hi

s,h
i
t))∑

v∈B exp(sim(hi
s,h

i
v))

(1) 208

where hi
s is the mean-pooled4 hidden states at the 209

ith LLM layer for input s and sim(·, ·) is a simi- 210

larity function. Motivated our finding that middle 211

layers have the strongest cross-lingual alignment 212

potential, we select i as the middle layer and com- 213

pare its performance to other layer positions. We 214

use cosine similarity following prior works (Gao 215

et al., 2021; Ye et al., 2022). The similarity score 216

is optionally scaled by a temperature parameter τ , 217

which controls the peakiness of the softmax distri- 218

bution and in turn determines the relative impor- 219

tance of non-translation pairs. This temperature 220

parameter is tuned on the development sets. 221

Activating Individual Objectives: Note that the 222

task and alignment losses can be activated sepa- 223

rately. Deactivating the alignment loss degener- 224

ates to standard task-only training. Conversely, 225

deactivating the task loss trains the model only for 226

alignment. This modularity enables us to subse- 227

quently combine separately-trained task and align- 228

ment models. 229

4Initial experiments with attention pooling degraded per-
formance. We also tried a stop-gradient operator on English
representations to align non-English representations towards
English, but it did not give consistent gains.
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Dataset Languages

Slot Filling
Task - train MASSIVE {ar, en, es, ru, zh}

Task - test MASSIVE supervised + {af, az, cy, de, el,
fr, hi, is, ja, jv, sw, th, tl, tr, ur}

Alignment Tatoeba
low-res.: {cy, jv, jp, sw, tl}-en

mid-res.: {el, hi, th, tr}-en
high-res.: {ar, es, ru, zh}-en

Machine Translation
Task - train ALMA {cs, de, is, ru, zh}↔ en
Task - test WMT 23 supervised + {he, ja, uk} ↔ en
Alignment (same as “Task - train”)

JSON Generation (challenge task)
Task - train UNER {en, pt, zh}
Task - test UNER supervised + {da, hr, sk, sr, sv}
Alignment Tatoeba {da, sv}-en

Semantic Alignment Evaluation
Alignment FLoRes-200 N(N − 1) pairs for N lang.

Table 1: Dataset overview. More details in Appendix B.

4 Experimental Setup230

4.1 Data231

In general, we fine-tune on several high-resource232

languages and then evaluate transfer performance233

on additional languages. We do not focus on234

English-only fine-tuning, since our initial ex-235

periments demonstrated that multilingual fine-236

tuning substantially outperforms English-only fine-237

tuning5, thus establishing it as a stronger baseline.238

Table 1 presents a dataset overview. Descriptions239

of the language codes are in Appendix C.240

Main Task Data: We evaluate our approach on241

slot filling and machine translation, both modeled242

as generative tasks with templates shown in Ap-243

pendix D.2. For slot filling, we use the MASSIVE244

dataset (FitzGerald et al., 2023). We train on 5245

high-resource languages, and evaluate transfer per-246

formance on 15 additional diverse languages, 5 of247

which have non-Latin writing systems. This task248

presents a challenge due to the 60 possible slots,249

requiring strictly following the output format for250

correct parsing. For machine translation, we use251

ALMA (Xu et al., 2024)’s training and test data,252

and additionally test on 6 zero-shot directions from253

WMT 23 (Kocmi et al., 2023).254

Challenge Task Data: To assess performance on255

long-sequence processing and structured text gener-256

ation, we include JSON generation as a challenge257

task. We use the UNER dataset (Mayhew et al.,258

2024) from the Aya collection (Singh et al., 2024),259

5These English-only FT results are in Appendix A.

which requires following example instructions and 260

extracting named entities into JSON format. A 261

challenge not present in the previous tasks is the 262

longer inputs, with an average input length exceed- 263

ing 150 tokens in English. For this task, we train on 264

3 high-resource languages (en, pt, zh) and transfer 265

to the 5 remaining languages. 266

Alignment Data: For alignment, we mainly use 267

parallel data to English from Tatoeba (Tiedemann, 268

2020), except for machine translation, where the 269

training sentences are inherently parallel. For slot 270

filling, our main experiments align the five lan- 271

guages with the weakest baseline6 transfer perfor- 272

mance (cy, jv, jp, sw, tl) reported by the dataset cre- 273

ators (FitzGerald et al., 2023). We choose them be- 274

cause their weak baseline performance suggests a 275

lack of effective transfer, providing a strong testbed 276

for evaluating the potential benefits of our align- 277

ment approach. For ablation, we alter the following 278

factors of the alignment data: 279

• Resource level (low, medium, high-resource) 280

• Language coverage 281

• Domain (oracle data, different, very distant) 282

For machine translation, given the inherent se- 283

mantic equivalence of translation pairs, we di- 284

rectly leverage the translation data for alignment. 285

For JSON generation, we align the two lowest- 286

resourced in UNER (da and sv)7 to English. For 287

lower-resource languages, the alignment data are a 288

few hundreds as detailed in Appendix B. 289

4.2 Evaluation 290

Semantic Alignment Evaluation: As described 291

in §2, we evaluate cross-lingual semantic align- 292

ment by retrieval accuracy. Given N languages, we 293

perform many-to-many retrieval and average the 294

accuracy over the N(N − 1) language pairs. For 295

the initial analyses (§2), the 35 languages are listed 296

in Appendix C. We use the FLoRes-200 (NLLB 297

Team, 2024) development set with 997 parallel 298

sentences. While FLoRes partially overlaps with 299

ALMA’s training data, it remains the only reliable 300

massively multilingual multiway corpus to the best 301

of our knowledge. Alternative such as Tatoeba 302

have been advised against due to data imbalance 303

and noise (Heffernan et al., 2022; Janeiro et al., 304

2024). We also demonstrate that this overlap does 305

6their baseline is an XLM-R model trained on English
7While Serbian (sr) is also low-resourced in UNER, we

exclude it from alignment due to data quality. Running lan-
guage identification reveals that many sentences in the Serbian
alignment data are not actually in Serbian.
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ID Model Slot Filling (MASSIVE) Machine Translation (WMT23)

Supervised Transfer Transfer Retrieval Supervised Transfer Retrieval
(5 lang.) (15 lang.) (aligned) (all 20 lang.) (5 lang.↔En) (3 lang.→En) (En→3 lang.) (all 9 lang.)

F1 F1 F1 Acc. BLEU COMET BLEU COMET BLEU COMET Acc.

(1) LLAMA 3 – – – 39.1 25.8 75.5 27.8 75.8 14.8 71.3 51.5
(2) + SFT 76.6 60.2 51.7 39.4 30.0 81.5 31.8 82.8 15.5 79.6 (55.3)
(3) + alignment 77.0 61.7 55.5 73.2 29.9 81.5 32.3 83.0 17.0 80.7 (84.5)
(4) QWEN 2.5 – – – 21.4 23.0 74.5 28.5 81.3 12.6 71.2 36.5
(5) + SFT 76.3 53.5 41.6 20.9 27.4 78.4 29.7 82.7 14.6 76.9 (38.8)
(6) + alignment 77.0 55.3 46.5 20.5 27.2 77.6 30.8 82.7 14.7 76.9 (75.6)

Table 2: Overall supervised and transfer results. Retrieval accuracy averaged over all language pairs and layers.
Bold: highest task scores which outperforms the other setups. (Results in brackets): potentially inflated scores due
to partial overlap between retrieval and translation data. Language-specific results in Appendix E.

not result in memorization effects (§6.2). When306

reporting an aggregated retrieval accuracy for a307

model, we average over all language pairs at even-308

numbered layers’ retrieval accuracy, excluding the309

input embedding layer.310

Task Performance Evaluation: For slot filling, we311

report F1 scores using the original evaluation script312

by FitzGerald et al. (2023). For machine transla-313

tion, we report BLEU8 (Papineni et al., 2002) and314

COMET-22 (Rei et al., 2022) scores. For JSON315

generation, we parse the generated outputs back to316

named entity tuples and then evaluate F1 scores.317

4.3 Model, Training, and Inference318

We build upon Llama (AI @ Meta et al.,319

2024) and Qwen (Qwen Team et al., 2025),320

specifically Meta-Llama-3-8B-Instruct9 and321

Qwen2.5-7B-Instruct. We use LoRA (Hu et al.,322

2022) adapters with a rank of 8 for all attention323

components and linear projections. The effective324

batch size is 128 for both objectives, with mini-325

batches of 32 examples considered for the con-326

trastive objective10. Alignment data from different327

languages are re-sampled to an approximately uni-328

form distribution. More details are in Appendix D.329

5 Main Results330

The main results are summarized in Table 2. Before331

assessing our proposed approach, we first estab-332

lish the necessity of supervised FT by comparing333

8nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.2
sacreBLEU (Post, 2018) signature, with "tok:ja-mecab-0.996-
IPA" for Japanese and "tok:zh" for Chinese.

9chosen over more recent versions to limit test set con-
tamination, as its knowledge cutoff (March 2023) predates our
translation test set (WMT 23).

10While contrastive learning typically benefits from larger
batch sizes (Chen et al., 2022), our initial experiments with
increased batch sizes did not give consistent improvements.

it with zero-shot usage of the LLMs (rows (2, 5) 334

vs. (1, 4)). On slot filling, the zero-shot perfor- 335

mance of Llama 3 is very poor, achieving only 336

6.6% F1 on English due to difficulties in adhering 337

to task-specific formats. We therefore do not evalu- 338

ate its zero-shot performance on all languages. In 339

machine translation, supervised fine-tuning shows 340

substantial gains of 4-6 COMET over zero-shot. 341

5.1 Overall Performance Comparison 342

Gains in cross-lingual transfer with supervised 343

performance preserved: Our approach improves 344

cross-lingual transfer across different tasks and 345

models. For slot filling, we observe gains in 346

both supervised and transfer (F1 +0.4 and +1.5 347

respectively) settings on Llama fine-tuning, with 348

similar improvements on Qwen (F1 +0.7 super- 349

vised, +1.8 transfer). In machine translation with 350

Llama in row (3), our approach brings substan- 351

tial gains when transferring to out-of-English di- 352

rections (+1.5 BLEU, +1.1 COMET). For into- 353

English directions, there is a modest improvement 354

in +0.5 BLEU and +0.2 COMET. The larger 355

gains on out-of-English directions suggest the ap- 356

proach is more beneficial for non-English gener- 357

ation in this case. For Qwen in row (6), our ap- 358

proach shows minor gains in into-English transla- 359

tion (+1.1 BLEU but no change in COMET), and 360

does not influence out-of-English scores. It also 361

leads to a degradation (−0.8 COMET) on super- 362

vised directions. This is potentially due to Qwen’s 363

non-English-centric pretraining combined with our 364

English-centric alignment data. With this excep- 365

tion, our approach maintains or improves super- 366

vised performance while enhancing transfer. 367

Aligned languages improve the most, but gains 368

extend to other languages: The diverse language 369

coverage in the slot filling dataset allows us to com- 370
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pare how the alignment objective benefits trans-371

fer to both aligned and non-aligned languages.372

While aligned languages show the strongest im-373

provements (F1 +4.2 and +4.9 for Llama and374

Qwen respectively), the benefits extend to other375

languages. Over the remaining 10 non-aligned lan-376

guages, there is an average F1 improvement of 0.4377

(per-language results in Appendix E). This suggest378

that the alignment step enhances the model’s gen-379

eral cross-lingual transfer capabilities rather than380

optimizing for specific language pairs.381

Smaller gains on non-Latin script languages:382

Beyond overall performance improvements, we ob-383

serve smaller gains on typologically diverse lan-384

guages. Specifically, for the non-Latin script trans-385

fer languages in the slot filling task (Greek, Hindi,386

Japanese, Thai, Urdu), the average improvement387

is only 0.5 F1 in contrast to the overall average388

gain of 1.5. This reduced gain is likely related389

to suboptimal tokenization for these languages in390

multilingual models (Rust et al., 2021; Petrov et al.,391

2023; Hong et al., 2024). When tokens poorly align392

with linguistic units, the mean-pooled sentence rep-393

resentations may poorly capture semantics, thereby394

impacting our alignment objective.395

5.2 Alignment Loss Placement396

To validate our choice of middle-layer alignment397

motivated by the analysis in §2, we compare per-398

formance when applying the alignment loss at dif-399

ferent network depths: bottom (8th), middle (16th),400

and top (32nd) layers of Llama.401

Middle layer placement achieves more balanced402

improvements in transfer languages: As shown403

in Table 3, compared to the "middle" configura-404

tion, the "bottom" configuration clearly leads to405

poor overall performance in both supervised and406

transfer settings, with a particularly strong degra-407

dation on the slot filling task. While top-layer408

alignment maintains overall strong performance,409

it shows more unbalanced gains across transfer410

languages, as evidenced by the higher standard de-411

viation of performance gains on transfer languages.412

Middle layer placement achieves better align-413

ment across network depths: To better under-414

stand the effects of different loss placements, we415

run the translation retrieval task over model acti-416

vations at from different intermediate layers. As417

shown in Figure 4, When the alignment loss is418

applied at the middle (16th) layer, semantic align-419

ment is enhanced not only at that layer but also in420

multiple preceding layers. In contrast, top-layer421

Supervised↑ Transfer↑ Transfer SD↓

Slot filling (MASSIVE): F1

Middle (layer 16) 77.0 61.7 2.6
Top (layer 32) 76.6 62.0 3.3
Bottom (layer 8) 76.8 58.0 2.9

Machine translation (WMT23): COMET
Middle (layer 16) 81.5 80.7 3.7
Top (layer 32) 82.0 80.2 4.2
Bottom (layer 8) 81.2 80.1 5.6

Table 3: Impact of alignment loss placement on super-
vised and transfer performance. "Top" leads to more
uneven gains across languages, while "bottom" degrades
both supervised and transfer performance.

0 4 8 12 16 20 24 28 32
Layer ID

0
25
50
75

100

Av
g.

 re
tri

ev
al

ac
cu

ra
cy

 (%
)

Standard FT
Align @ layer 8
Align @ layer 16
Align @ layer 32

Figure 4: Retrieval accuracy over model depths when
adding alignment loss on different layers. Middle layer
placement (layer 16) results in overall better alignment.

alignment primarily affects only the final layer, 422

and bottom-layer alignment shows limited improve- 423

ment in alignment quality across all layers. This 424

is likely because the lower layers are occupied 425

with processing more fundamental text features 426

(Belinkov et al., 2017; Peters et al., 2018) rather 427

than abstract semantic meanings. 428

5.3 Impact on Representation Retrieval 429

To assess the impact of the alignment loss on the 430

learned model representations, we also report the 431

retrieval accuracy for all languages involved in each 432

task (20 for slot filling and 9 for machine transla- 433

tion) after fine-tuning in Table 2. For Llama on 434

the slot filling task, the alignment loss substantially 435

improves retrieval accuracy from 39.4% to 73.2%. 436

For Qwen, the alignment loss does not improve re- 437

trieval among the 20 slot filling languages, possibly 438

due to the lower accuracy of the base model with 439

many low-resource languages with 0% accuracy, 440

making improvement more challenging. For ma- 441

chine translation, as noted earlier §4.2, the retrieval 442

test data overlaps with part of the task training data, 443

potentially inflating accuracy (marked in brackets 444

in Table 2). However, we verify that this overlap 445

does not lead to perfect retrieval accuracy: Specif- 446

ically, at the 16th layer where the alignment loss 447

is applied, English-source retrieval accuracies for 448

supervised languages show varying accuracy: cs 449

6



Resource Super. Transfer Gain on Aligned
(5 lang.) (15 lang.) (4/5 lang.)

SFT (row (2) Table 2) 76.6 60.2 –
Low (row (3) Table 2) 77.0 61.7 +3.8
Medium 77.8 61.4 +1.1
High 77.6 60.4 +0.7

Table 4: Ablation of using alignment languages from
different resource levels on slot filling with Llama.

(98.1%), de (96.5%), is (66.9%), ru (90.6%), and450

zh (94.8%). This suggests that the overlap does not451

make the retrieval diagnostic task trivial.452

6 Analyses453

6.1 Resource Level of Alignment Languages454

In our main experiments, we selected the 5 lan-455

guages with the weakest performance from the456

MASSIVE baseline (FitzGerald et al., 2023) for457

alignment. We now vary the resource level of458

the alignment languages using a medium-resource459

group with {el, hi, th, tr}−en and a high-resource460

group with {ar, es, ru, zh}−en, which also have461

supervised task training data. As shown in Table 4,462

all three configurations improve F1 scores for the463

languages involved in alignment. However, the low-464

resource group exhibit the largest gains (+3.8 F1),465

indicating that our approach is most beneficial to466

languages with weaker initial performance. More-467

over, overall transfer gains relative to the SFT base-468

line diminish when using high-resource languages469

for alignment, likely because these languages al-470

ready have well-aligned representations and align-471

ing them provides little benefit to lower-resource472

languages in the transfer set. Overall, the results473

show that our approach is robust to the choice of474

alignment languages, but selecting initially poorly475

aligned languages could provide broader benefits476

across different languages.477

6.2 Generalization of Learned Alignment478

Table 5 examines the language and domain gener-479

alization of our alignment component. To isolate480

the effects of task-specific joint training, we train481

the models using only the alignment loss, follow-482

ing the same setup as our previous experiments but483

without optimizing on task-specific data. We then484

evaluate retrieval accuracy as described in §4.2.485

Language Generalization: While our main ex-486

periments align multiple language pairs, we now487

use single languages for alignment. As shown488

in Table 5 (upper portion), that single-language489

Alignment Data Overall (20 lang.)

Multi {ar,es,ru,zh,sw}-en 80.2
Only de-en 71.9
Only es-en 72.9
Only zh-en 72.7

de-en FLoRes (oracle) 77.7
Tatoeba (different) 71.9
IWSLT (very distant) 68.5

Table 5: Retrieval accuracy when alignment data come
from different languages and domains on Llama.

Resource Supervised Transfer

Slot filling (MASSIVE): F1

SFT (row (2) Table 2) 76.6 60.2
Joint (row (3) Table 2) 77.0 (+0.4) 61.7 (+1.5)
Merge 76.9 (+0.3) 61.3 (+1.1)

Machine translation (WMT23): COMET
SFT (row (4) Table 2) 81.5 79.6
Joint (row (5) Table 2) 81.5 (+0.0) 80.7 (+1.1)
Merge 82.0 (+0.5) 80.2 (+0.6)

Table 6: Result of merging separately-trained task and
alignment modules on Llama.

alignment training leads to diminished performance 490

compared to multilingual training. Interestingly, 491

we see comparable accuracy drops regardless of 492

which individual language is used for alignment, 493

suggesting that the gains of multilingual alignment 494

come from the diversity of the training data rather 495

than characteristics of individual languages. 496

Domain Generalization: To isolate the effects of 497

multilinguality, we focus on alignment between a 498

single language pair (English-German). In Table 5 499

(lower portion), we first establish an oracle setup 500

using models trained on FLoRes data (Wikipedia 501

domain, overlapping with retrieval data). We then 502

compare to two setups where the alignment data 503

come from other domains: Tatoeba (short sen- 504

tences for language learning; different) and IWSLT 505

2017 (public speaking transcriptions; very distant). 506

While we observe a decrease in retrieval accuracy 507

compared to the oracle setup, the results suggest 508

that, to enforce alignment into the model, it is not 509

strictly necessary to source alignment data from 510

the same domain as the task-specific data. 511

6.3 Merging Alignment and Task Modules 512

Our previous experiments focused on models 513

jointly trained on both task and alignment objec- 514

tives. However, in practice, it may be necessary to 515

enhance existing task-specific models with cross- 516

lingual capabilities, where joint re-training is infea- 517
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Supervised Transfer Transfer
(en, pt, zh) (da, sv) (5 lang.)

Llama SFT 83.4 82.1 79.3
+ alignment 82.4 83.1 79.8

Table 7: Results on JSON generation evaluated with F1

after parsing the output.

sible due to computational constraints or unavail-518

ability of the original task training data. Inspired519

by recent advances in model merging (Matena and520

Raffel, 2022; Ilharco et al., 2023), we explore the521

feasibility of combining separately-trained task and522

alignment modules. We merge two sets of trained523

LoRA adapters by averaging their weights11: the524

alignment module trained in isolation (§6.2), and525

task-specific modules (rows (2) and (5) in Table 2).526

Table 6 shows that this post-hoc merging brings527

comparable improvements comparable to joint528

training. Moreover, the improvements are more529

evenly distributed across languages compared to530

the larger gains observed on languages used di-531

rectly in alignment. These results demonstrate that532

our alignment approach is modular and can be com-533

bined with existing task-specific models.534

6.4 Long Sequence Processing535

We investigate a more challenge task requiring536

longer input and output generation using UNER537

(§4.1). As shown in Table 7, while aligned lan-538

guages still show improvements, the gains are more539

modest compared to previous experiments, with an540

F1 increase of 1.0 on aligned languages and 0.5541

across all transfer languages. Moreover, there is542

an average degradation of 1.0 F1 on supervised543

languages, mainly due to the decline in Chinese544

(−2.2 F1). A potential reason is the mismatch be-545

tween our sentence-level alignment objective and546

the requirements of processing longer sequences.547

7 Related Works548

Multilingual Capabilities of LLMs: LLM per-549

formance varies across languages due to imbal-550

anced pre-training data volume. However, even pre-551

dominantly English-centric models (Touvron et al.,552

2023) exhibit some degree of multilingual capabil-553

ity (Aycock and Bawden, 2024; Yuan et al., 2024),554

potentially due to the unintentional ingestion of555

multilingual data during pretraining (Briakou et al.,556

11We use a weighted average tuned on the development set
(details in Appendix D.3)

2023). Meanwhile, many recent LLMs have ex- 557

panded their language coverage (AI @ Meta et al., 558

2024; Qwen Team et al., 2025). Despite these in- 559

herent multilingual capabilities, extending them to 560

downstream tasks in low-resource settings (Adelani 561

et al., 2024; Iyer et al., 2024) remains challenging. 562

Multilingual Representation Alignment: En- 563

hancing meaningful cross-lingual relationships be- 564

tween model representations has been a well- 565

studied area in the context of many tasks, including 566

intermediate tasks such as bilingual lexicon induc- 567

tion (Zhang et al., 2017) and sentence embeddings 568

(Feng et al., 2022; Li et al., 2023), as well as more 569

direct applications like information retrieval (Izac- 570

ard et al., 2022) and translation (Pham et al., 2019; 571

Pan et al., 2021). In the context of LLMs, Wang 572

et al. (2024b) use linear projections learned offline 573

to align non-English representations with English 574

ones during decoding. Our work differs in that 575

our alignment objective is parameterized by the 576

same weights as task-specific fine-tuning, and is 577

directly applicable to multilingual fine-tuning. Wu 578

et al. (2024a) align LLM top-layer representations 579

specifically for the task of semantic textual simi- 580

larity (STS). Different from this work, they do not 581

consider cross-lingual transfer in downstream tasks 582

or explore intermediate LLM layers for alignment. 583

LLM Representation Analysis: Several recent 584

works have analyzed LLM internal representations 585

with geometric analysis of representation spaces 586

(Razzhigaev et al., 2024; Lee et al., 2024), probing 587

classifiers (Wang et al., 2024a; Li et al., 2025), or 588

logit lens analysis (Wu et al., 2024b). In particular, 589

Wu et al. (2024b) identify “semantic hubs” in LLM 590

middle layers, which integrate information from 591

various data types. Our findings are orthogonal to 592

their work on multi-modality. 593

8 Conclusion 594

We presented a simple yet effective approach for 595

enhancing cross-lingual transfer in LLMs through 596

middle-layer representation alignment during fine- 597

tuning. Our experimental results lead to several 598

practical recommendations: 1) Aligning a few 599

weakly-performing languages yields broad transfer 600

benefits. A few hundreds of parallel sentences as 601

alignment data are sufficient. 2) Alignment data 602

can be sourced from different domains as the task. 603

3) Existing task-specific models can be enhanced 604

with our approach via parameter merging without 605

the need of full re-training. 606
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Limitations607

Typologically diverse languages: As discussed608

in §5.1, our approach shows smaller gains on lan-609

guages non-Latin scripts. This limitation is likely610

related to fundamental tokenization challenges,611

where suboptimal token segmentation negatively612

impacts the quality of mean-pooled representations.613

While our initial experiments on attention pooling614

did not lead to improvements, exploring more so-615

phisticated pooling mechanisms could potentially616

address this challenge in future work.617

Computational overhead during training: The618

alternating optimization between task and align-619

ment objectives doubles the computational cost620

during training compared to standard fine-tuning.621

In computationally constrained settings, our merg-622

ing approach, which separates task-specific and623

alignment training, should be prioritized. Given624

that alignment can be effectively performed using625

only a small number of parallel sentences (a few626

hundred per language), this modular approach can627

significantly reduce the overall computational cost.628

Trade-offs between supervised and transfer per-629

formance in challenging scenarios: While our630

approach generally maintains or improves super-631

vised task performance while improving transfer,632

we observe degradation in supervised performance633

in two specific scenarios. First, in structured text634

generation (§6.4), the method shows reduced ef-635

fectiveness and can impair supervised performance636

(−1.0 F1), suggesting that our sentence-level align-637

ment may interfere with the processing of longer,638

structured sequences. Second, when applying the639

method to models with weak initial cross-lingual640

alignment (§5.1), there could be a trade-off be-641

tween improved transfer and supervised perfor-642

mance.643
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ar en es ru zh cy ja jv sw tl af az de el fr hi is th tr ur

English-only 59.8 82.5 82.4 65.8 61.6 60.3 39.7 37.8 39.8 57.5 60.3 39.6 71.1 64.8 68.2 62.1 39.2 75.3 52.9 49.9
Multilingual 75.5 81.7 74.5 77.6 73.8 44.0 65.8 41.0 42.8 65.0 66.0 49.0 75.0 69.4 71.9 70.0 45.0 79.9 60.4 57.1

Table 8: Per-languages F1 results on slot filling of English-only finetuning compared to multilingual fine-tuning on
{ar, en, es, ru, zh}. Multilingual fine-tuning shows stronger transfer performance.

Code FLoRes Code Full Name Slot Filling Machine Translation JSON Generation

af afr_Latn Afrikaans ✓
az azj_Latn North Azerbaijani ✓
ar arb_Arab Modern Standard Arabic ✓
cs ces_Latn Czech ✓
cy cym_Latn Welsh ✓
da dan_Latn Danish ✓
de deu_Latn German ✓ ✓
el ell_Grek Greek ✓
en eng_Latn English ✓ ✓ ✓
es spa_Latn Spanish ✓
fr fra_Latn French ✓
he heb_Hebr Hebrew ✓
hi hin_Deva Hindi ✓
hr hrv_Latn Croatian ✓
is isl_Latn Icelandic ✓ ✓
ja jpn_Jpan Japanese ✓ ✓
jv jav_Latn Javanese ✓
pt por_Latn Portuguese ✓
ru rus_Cyrl Russian ✓ ✓
sk slk_Latn Slovak ✓
sr srp_Cyrl Serbian ✓
sv swe_Latn Swedish ✓
sw swh_Latn Swahili ✓
th tha_Thai Thai ✓
tl tgl_Latn Tagalog ✓
tr tur_Latn Turkish ✓
uk ukr_Cyrl Ukrainian ✓
ur urd_Arab Urdu ✓
zh zho_Hans Chinese (Simplified) ✓ ✓ ✓

Table 9: List of languages evaluated on different downstream tasks.

A English-Only Fine-Tuning Results1171

Table 8 compares English-only and multilin-1172

gual fine-tuning on MASSIVE. Multilingual fine-1173

tuning substantially outperforms English-only in1174

cross-lingual transfer performance.1175

B Dataset Details1176

All our task training data are retrieved from Hug-1177

gingFace12. The translation test sets are hosted1178

by WMT13. The alignment data are sourced from1179

12MASSIVE: https://huggingface.co/datasets/
AmazonScience/massive
ALMA: https://huggingface.co/datasets/haoranxu/
ALMA-Human-Parallel
UNER: https://huggingface.co/datasets/
CohereForAI/aya_collection/viewer/templated_
uner_llm

13https://github.com/wmt-conference/
wmt23-news-systems/tree/master/txt

Tatoeba14 with its default version of v2021-07-22 1180

at the time of writing. We filter out transla- 1181

tions that are empty or include multiple sentences. 1182

The lowest-resource alignment languages have a 1183

few hundred parallel sentences: Javanese (264), 1184

Swahili (371), Welsh (823). The ablation de-en 1185

alignment data is from IWSLT 201715 (Cettolo 1186

et al., 2017). 1187

C List of Languages 1188

The languages involved in our downstream tasks 1189

are listed in Table 9. The 35 languages in the ini- 1190

tial analyses in §2 include all languages in slot fill 1191

and machine translation. They additionally include 1192

the following languages: am (Amharic), bn (Ben- 1193

14https://huggingface.co/datasets/
Helsinki-NLP/tatoeba

15https://huggingface.co/datasets/IWSLT/
iwslt2017

14
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https://huggingface.co/datasets/AmazonScience/massive
https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel
https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel
https://huggingface.co/datasets/CohereForAI/aya_collection/viewer/templated_uner_llm
https://huggingface.co/datasets/CohereForAI/aya_collection/viewer/templated_uner_llm
https://huggingface.co/datasets/CohereForAI/aya_collection/viewer/templated_uner_llm
https://github.com/wmt-conference/wmt23-news-systems/tree/master/txt
https://github.com/wmt-conference/wmt23-news-systems/tree/master/txt
https://huggingface.co/datasets/Helsinki-NLP/tatoeba
https://huggingface.co/datasets/Helsinki-NLP/tatoeba
https://huggingface.co/datasets/IWSLT/iwslt2017
https://huggingface.co/datasets/IWSLT/iwslt2017


gali), it (Italian), hu (Hungrian), hy (Armenian),1194

id (Indonesian), kn (Kannada), ka (Georgian ), mn1195

(Mongolian), km (Khmer), ko (Korean), and lv1196

(Latvian).1197

D Training and Inference Details1198

D.1 Training Hyperparameters1199

Fine-tuning is performed using LoRA (Hu et al.,1200

2022) adapters with a rank of 8 for all attention1201

components and linear projections (query, key,1202

value, output, gate, up, down). We set LoRA’s1203

α parameter to 16 and dropout to 0.1. The number1204

of trainable parameter is 20,971,520 on Llama 3,1205

and 20,185,088 on Qwen 2.5. We train at most1206

5 epochs on the task data. Training on all our1207

tasks converged before reaching the max number1208

of epochs. The learning rate is set to 5e-4 with1209

inverse square root schedule and warmup up ra-1210

tio 0.03. We save checkpoints and evaluate every1211

200 optimization steps, and early stop if the devel-1212

opment loss does not improve for 5 consecutive1213

evaluations. For the temperature parameter τ in1214

the contrastive loss, we searched among {0.1, 1.0,1215

1.5, 2.0} based on development loss on machine1216

translation. For Llama we 0.1, for Qwen we use1217

1.5.1218

D.2 Prompt Format1219

Slot Filling The system prompt is shortened from1220

He and Garner (2023).1221

• System: Given a command from the user, a voice1222

assistant will extract entities essential for carry1223

out the command. Your task is to extract the1224

entities as words from the command if they fall1225

under a predefined list of entity types.1226

• User: wake me up at five am this week1227

• Assistant: time: five am; date: this week1228

• User (de): wecke mich in dieser woche um fünf1229

uhr auf1230

• Assistant (de): date: dieser woche; time: fünf1231

uhr1232

For zero-shot slot filling experiments, we need1233

to specify more requirements in the system prompt1234

with the template also following He and Garner1235

(2023):1236

Given a command from the user, a voice assis-1237

tant like Siri or Olly will extract entities from the1238

command that are essential for carry out the the1239

command. For example, for a command about1240

playing a specific song, the name of the song men-1241

tioned by the user would be an entity, falling under1242

the type of “song name”. 1243

Your task is to extract the entities as words from 1244

the command if they fall under any of the types 1245

given below according to the following description: 1246

transport_descriptor house_place mu- 1247

sic_album sport_type playlist_name movie_name 1248

song_name place_name radio_name cooking_type 1249

weather_descriptor person email_folder busi- 1250

ness_type audiobook_author transport_type 1251

general_frequency meal_type game_name de- 1252

vice_type transport_name time_zone joke_type 1253

drink_type email_address food_type date rela- 1254

tion currency_name ingredient player_setting 1255

movie_type definition_word game_type list_name 1256

artist_name personal_info audiobook_name time- 1257

ofday transport_agency media_type podcast_name 1258

coffee_type business_name news_topic app_name 1259

podcast_descriptor color_type music_genre 1260

event_name time change_amount alarm_type 1261

order_type music_descriptor 1262

Please give answers like: 1263

1. person: john; contact_field: phone number 1264

2. transport_app: uber; time_of_day: tonight; 1265

time: ten pm 1266

3. None 1267

4. music_genre: jazz 1268

etc., each taking a single line. The entity type 1269

must be one of the types given above, and the en- 1270

tity must be copied verbatim from the command. 1271

There could be zero, one, or multiple entities in a 1272

command. 1273

Machine Translation 1274

• System: Translate the following sentences from 1275

English to German. 1276

• User: Police arrest 15 after violent protest out- 1277

side UK refugee hotel. 1278

• Assistant: Polizei verhaftet 15 Menschen nach 1279

gewalttätigen Protesten vor einer Flüchtlingsun- 1280

terkunft in Großbritannien 1281

JSON Generation 1282

• User: Please identify all the named entities men- 1283

tioned in the input sentence provided below. Use 1284

only the categories: PER - person, ORG - organi- 1285

zation, and LOC - location. Remember, national- 1286

ities are neither locations nor organizations, and 1287

organizations can represent other groups of peo- 1288

ple. Pay attention to the provided example. You 1289

should only output the results in JSON format, 1290

following a similar structure to the example result 1291

provided. Example sentence and results: Where 1292

in the world is Iguazu? "Results": [ "TypeName": 1293

15



Supervised Transfer (aligned) Transfer (other)
ar en es ru zh cy ja jv sw tl af az de el fr hi is th tr ur

Llama 3 SFT 75.5 81.7 74.5 77.6 73.8 44.0 65.8 41.0 42.8 65.0 66.0 49.0 75.0 69.4 71.9 70.0 45.0 79.9 60.4 57.1
+ align 75.1 82.0 74.9 78.0 74.9 49.4 66.5 48.2 47.7 65.5 66.2 47.9 74.7 72.4 72.1 69.6 48.0 79.1 62.2 56.1
Qwen 2.5 SFT 74.7 81.1 74.0 77.5 74.1 27.0 67.3 32.9 23.5 57.4 58.9 45.9 74.6 63.3 70.8 60.0 34.4 79.9 59.9 46.5
+ align 74.9 82.5 74.8 78.0 75.1 36.5 68.3 39.6 30.4 57.8 63.1 42.5 74.6 63.3 70.9 61.3 35.8 80.2 58.1 47.2

Table 10: Per-languages F1 results on slot filling.

Supervised X→En Supervised En→X Transfer X→En Transfer En→X
cs de is ru zh cs de is ru zh he ja uk he ja uk

BLEU
Llama 3 SFT 37.8 43.0 28.3 32.0 22.5 25.9 35.5 10.6 25.2 38.9 39.3 17.5 38.7 14.5 14.2 17.7
+ align 38.4 43.1 29.1 32.4 23.0 24.7 34.7 10.9 24.4 38.1 39.8 18.8 38.4 16.0 15.6 19.5
Qwen 2.5 SFT 36.1 40.8 20.5 30.6 23.2 21.5 33.7 6.8 25.3 45.3 34.6 18.9 35.6 13.3 17.6 13.0
+ align 36.6 41.4 21.2 30.9 24.0 20.5 32.7 4.8 25.0 45.3 36.3 19.4 36.8 12.7 17.8 13.5

COMET
Llama 3 SFT 85.2 84.9 81.0 82.4 79.7 84.3 81.8 68.7 83.3 84.2 83.6 79.8 85.1 75.7 83.5 79.7
+ align 85.5 84.9 81.1 82.4 79.8 83.8 81.6 69.0 83.3 84.0 83.6 80.1 85.2 77.1 84.2 80.8
Qwen 2.5 SFT 84.8 84.7 74.1 82.6 80.2 80.8 80.6 52.0 83.3 86.1 82.3 81.3 84.5 70.7 85.5 74.6
+ align 85.1 84.7 74.4 82.6 80.4 79.5 80.1 46.5 83.1 85.8 82.2 81.4 84.6 70.7 85.7 74.4

Table 11: Per-languages BLEU and COMET results on machine translation.

"LOC", "Text": "Iguazu", "Start": 22, "End": 281294

] Considering the input sentence below, what is1295

the output result? Widely considered to be one1296

of the most spectacular waterfalls in the world,1297

the Iguazu Falls on the border of Argentina and1298

Brazil, are a certainly must see attraction in the1299

area.1300

• Assistant: "Results": [ "TypeName": "LOC",1301

"Text": "Iguazu Falls", "Start": 81, "End": 931302

, "TypeName": "LOC", "Text": "Argentina",1303

"Start": 111, "End": 120 , "TypeName": "LOC",1304

"Text": "Brazil", "Start": 125, "End": 131 ]1305

D.3 Inference Details1306

We use greedy decoding in all experiments for eas-1307

ily reproducible results. For the model merging1308

experiments, we searched among weights {0.5, 0.7,1309

0.9} for the task-specific LoRA modules on the1310

MASSIVE development set and chose 0.9 for our1311

experiments.1312

D.4 Details for Retrieval1313

To evaluate cross-lingual retrieval performance,1314

we adapt the implementation from LASER161315

(Schwenk et al., 2021) to process representations1316

extracted offline.1317

16https://github.com/facebookresearch/LASER/
tree/main/tasks/xsim

E Results for Individual Languages 1318

The detailed results for Table 2 are in Table 10 (slot 1319

filling) and Table 11 (machine translation). 1320

16
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