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Abstract

Representation Alignment (REPA) that aligns Diffusion Transformer (DiT) hidden-
states with ViT visual encoders has proven highly effective in DiT training, demon-
strating superior convergence properties, but it has not been validated on the
canonical diffusion U-Net architecture that shows faster convergence compared
to DiTs. However, adapting REPA to U-Net architectures presents unique chal-
lenges: (1) different block functionalities necessitate revised alignment strategies;
(2) spatial-dimension inconsistencies emerge from U-Net’s spatial downsampling
operations; (3) space gaps between U-Net and ViT hinder the effectiveness of
tokenwise alignment. To encounter these challenges, we propose U-REPA, a repre-
sentation alignment paradigm that bridges U-Net hidden states and ViT features as
follows: Firstly, we propose via observation that due to skip connection, the middle
stage of U-Net is the best alignment option. Secondly, we propose upsampling of
U-Net features after passing them through MLPs. Thirdly, we observe difficulty
when performing tokenwise similarity alignment, and further introduces a manifold
loss that regularizes the relative similarity between samples. Experiments indicate
that the resulting U-REPA could achieve excellent generation quality and greatly
accelerates the convergence speed. With CFG guidance interval, U-REPA could
reach FID < 1.5 in 200 epochs or 1M iterations on ImageNet 256 × 256, and
needs only half the total epochs to perform better than REPA under sd-vae-ft-ema.
Codes: https://github.com/YuchuanTian/U-REPA

1 Introduction

Representation Alignment (REPA) [45], a methodology that aligns features from Diffusion Trans-
formers (DiT) [30] to modern visual encoders, has been demonstrated to significantly accelerate DiT
training. This approach holds particular significance given the growing prominence of DiTs, which
have gained mainstream adoption in diffusion models and are extensively applied across image gener-
ation [4; 11; 23] and video generation domains [48; 22; 19]. However, emerging empirical evidence
suggests that U-Net [33] architectures might present a more advantageous alternative to DiTs in
certain scenarios [18; 7; 39; 38]: U-Net-based models exhibit substantially faster convergence while
achieving generation quality comparable to their transformer-based counterparts. This dichotomy mo-
tivates our core research inquiry - can modern Vision Transformer (ViT [10])-based visual encoders
be effectively adapted to guide diffusion U-Net training through alignment mechanisms similar to
REPA, thereby potentially elevating the convergence speed ceiling of diffusion models?

However, establishing effective alignment between U-Net architectures and ViT-based encoders
presents challenges. Unlike Diffusion Transformers (DiTs) that share structural similarities with
Vision Transformers, U-Net architectures exhibit fundamentally different operational characteristics.
Specifically, both DiT and ViT adopt isotropic architectures composed of uniformly stacked trans-
former blocks, which inherently facilitates straightforward parameter alignment between the two

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/YuchuanTian/U-REPA


Transformer Block

Transformer Block

Transformer Block

Linear

Transformer Block

Transformer Block

Diffusion U-Net

Transformer Block

..

Transformer Block

Transformer Block

ViT-Based Encoder

Patch Embed

M
L

P

U
p

sc
a
le

r

Patch Embed

Tokenwise Alignment Manifold Alignment

Figure 1: The proposed U-REPA framework. We investigated and found that semantic-rich
intermediate layers are the best for representation alignment, dimension and space gaps hinders
alignment efficacy. To counter these challenges, we scale-up features and propose manifold alignment.

frameworks. In contrast, U-Net’s skip connections create strong interdependencies between shallow
and deep network layers by linking them together, resulting in different feature propagation dynamics.
This architectural disparity renders conventional representation alignment strategies developed for
DiT architectures inapplicable to U-Net frameworks. Furthermore, the progressive downsampling
operations in U-Net generate feature maps with spatial dimension mismatches compared to the
fixed-scale feature representations in ViT encoders, introducing additional complexity in establishing
cross-architectural correspondence. In addition, features from high-stage U-Net and ViT have large
space gaps, forming a barrier for cosine similarities as metrics. Forcibly using tokenwise similarity
as loss is not necessarily the best option. This induces us to rethink about the optimization objective.

In order to conquer these challenges, we propose U-REPA, a framework that aligns U-Net hidden
states to features from ViT encoders. Firstly, Our analysis reveals that skip connections fundamentally
alter the functional specialization of transformer blocks in U-Net architectures. By establishing direct
dependencies between early-stage and late-stage layers, these cross-connections induce a hierarchical
redistribution of semantic information, with intermediate blocks exhibiting the highest semantic
density. This pattern was empirically verified through controlled ablation studies on DiT augmented
with skip connections, where progressive layer-wise evaluations demonstrated peak semantic richness
at median network depths.

The intermediate higher-stage layers, which contain semantically dense representations, require
precise alignment with the ViT-based visual encoder. However, these critical layers undergo spatial
downsampling in the U-Net architecture, necessitating explicit spatial dimension reconciliation
between U-Net features and ViT features during representation alignment. Through empirical
exploration of various resolution-matching strategies, we identified an optimal solution: performing
linear transformation via MLP on U-Net features prior to upsampling operations, which achieves
superior alignment performance compared to alternative approaches.

Further analysis revealed a fundamental incompatibility of measuring cosine similarity between the
feature spaces of U-Net and ViT encoders. Enforcing strict token-wise similarity constraints proves
excessively rigid due to inherent architectural discrepancies. To address this, we introduce a manifold
loss that implements soft alignment through relational regularization. This loss operates on the
relative geometric relationships between samples rather than imposing direct feature correspondence,
thereby accommodating cross-architectural variations. Comprehensive experiments demonstrate that
our proposed U-REPA framework effectively bridges the U-Net-ViT alignment gap while preserving
the distinct advantages of both architectures.

Our contributions are as follows:
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1. We identify U-Net’s representation alignment to be a challenge due to different block
functionalities, spatial-dimension inconsistencies, and larger feature space gaps.

2. We evaluate the contribution of downsampling and skips in U-Net and demonstrate U-Net’s
potential advantage over DiTs.

3. We propose U-REPA, a framework that evaluates layers, investigates the best scale-up policy,
and introduces manifold-space loss in aid of alignment.

4. We conduct experiments and verify the effectiveness of our U-REPA framework in terms of
fast convergence. Specifically, U-REPA reaches FID < 1.5 in just 200 epochs on ImageNet
256 × 256; and it reaches 1.41 FID, with only half the epochs of REPA under the same
training setting.

2 Related Work

The development of diffusion architectures. The conventional diffusion works [17; 35; 36; 9]
leverages a U-Net [33] architecture, whose basic block is a concatenation of convolution layers and
self-attention. More recent architectural innovations in diffusion models have witnessed a paradigm
shift from conventional U-Net frameworks toward transformer-based architectures. The emergence
of Diffusion Transformers [1; 30] demonstrates their competitive performance despite abandoning
the inductive biases inherent in U-Net designs. U-ViT [1] represents an intermediate architecture that
preserves U-Net’s hierarchical structure but replaces convolutional blocks with transformer layers,
notably omitting the traditional downsampling operations. Subsequent developments have further
streamlined the architecture: DiT [30] adopts a pure transformer backbone with isotropic scaling,
while SiT [26] integrates the transformer architecture into the RectifiedFlow framework. Some other
works either improve the micro-designs [6; 25], or focuses on architectural efficiency [3; 42; 40].

In contrary to these DiT works, some works still sticks to U-Net architectures and offer valuable
rethinking on this conventional architectural preference: in pixel-space image generation, works
including SimpleDiffusion [18] and HourglassDiT [7] still sticks to U-Net; in with its variants like
U-DiT [39], Playground v3 [24], and DiC [38] extending its success to latent-space diffusion through
simple Conv3×3 designs. While these implementations empirically validate U-Net’s accelerated con-
vergence and stable training dynamics compared to transformer-based alternatives, current research
predominantly focuses on proposing architectural modifications rather than uncovering the reasons of
U-Net’s superior diffusion performance.

Techniques for better DiT performance. Building upon the success of self-supervised learning [16],
MDT [13] and MaskDiT [47] pioneer masked image modeling in diffusion frameworks by adaptively
masking a good proportion of input patches during training. Other than the masking strategy, a
bunch of diffusion works refer to higher-level semantic guidance from off-the-shelf pretrained
models that significantly improves generation quality. REPA [45] establishes feature alignment
between ViT-based encoder embeddings and diffusion latent spaces through contrastive learning.
LightningDiT [44] innovates through an improved VAE distilled from MAE [16] and DINOv2 [28].
Ma et al. [27] introduces CLIP [31] and DINO [2] to verify inference-time scaling of diffusion
models. These methods demonstrate that a higher-level semantic-rich feature-map from pretrained
vision encoders is helpful to diffusion-based generation.

3 Method

3.1 Preliminaries: REPA for DiT

Representation Alignment (REPA) [45] distills Diffusion Transformers with semantic features from
off-the-shelf ViT-based vision encoders (e.g. DINOv2 [28], CLIP [31], MAE [16], et cetera).
Given a ViT-based vision encoder f and clean image x∗, let y∗ = f(x∗) ∈ RN×D denote its patch
embeddings, where N and D represent the number of patches and embedding dimension, respectively.
REPA establishes feature alignment between y∗ and the projected diffusion encoder outputs hϕ(ht),
where ht = fθ(zt) is the latent representation from the diffusion transformer at timestep t, and hϕ is
a trainable multilayer perceptron (MLP).
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Figure 2: Investigating alignment with respect to encoder depths on diffusion models with skip
connections. Left: SiT with skip connections. Due to the change of block functionalities due to
newly established skip dependencies, the most optimal encoder depth is shifted towards the middle
of the model. Right: SiT↓, the U-Net-based SiT model. Shadowed region represents higher U-Net
stage. The plot infers that stage transitions (downsampling& upsampling in U-Net) bring large block
functionality gaps. Alignment within higher U-Net stage is thus necessary for alignment performance.

The alignment is enforced by maximizing token-wise feature similarities, i.e. the similarity of a token
from DiT hidden-state with its corresponding counterpart in the ViT encoder feature:

LREPA(θ, ϕ) := −Ex∗,ϵ,t

[
1

N

N∑
n=1

sim
(
y
[n]
∗ , hϕ(h

[n]
t )

)]
, (1)

where sim(·, ·) denotes a similarity metric (e.g., cosine similarity). Typically, zt is adopted as the
output from early layers (the original work adopts layer index 8) in DiT for better alignment. This
alignment term is combined with the basic flow-based diffusion objective (i.e. SiT [26]) through a
tunable coefficient λ > 0, and the final loss for diffusion model training is formulated as follows:

L := Lvelocity + λLREPA. (2)

3.2 Evaluating the Potential of U-Net

In diffusion models, U-Net and isotropic architectures (e.g., DiT) exhibit distinct design philosophies.
While DiT achieves state-of-the-art results through scalability and integration with advanced tech-
niques, U-Net-based methods emphasize faster convergence [39]. To dissect U-Net’s efficacy, we
isolate its two core components: skip connections and downsampling.

1. Skip Connections: Provide shortcuts between encoder and decoder layers, theoretically
aiding gradient flow and feature reuse.

2. Downsampling: Reduces spatial resolution (typically by a scale factor of 2 at each stage) to
enable hierarchical, multi-scale feature learning. Critically, downsampling is always paired
with skip connections to mitigate information loss.

Toy experiments on U-Net components. On top of DiT, we perform toy experiments that reveal the
contribution of components mentioned above.

ImageNet 256×256, DiT 400K, cfg=1
Model FLOPs (G) FID↓ IS↑
DiT-XL/2 118.6 19.47 -
DiT-XL/2∗ 118.6 20.05 66.74
+ Skip Connections 114.1 19.86 67.29
+ Downsampling 108.8 13.78 88.93

DiT↓-XL/2 (+Tricks) 108.8 11.02 100.35

Table 1: Evaluating the contribution of U-Net components in terms of fast convergence. Experi-
ments are conducted using hyperparameters from [30] for 400K iterations. Model depth is changed
when a modification is made such that the overall FLOPs is kept almost the same with DiT.

This suggests that U-Net’s fast-convergence advantages primarily stem from multi-scale hierarchical
modeling via downsampling, not skip connections. Downsampling compresses features into compact,
semantically rich representations, accelerating learning while maintaining information flow through
skip-augmented decoder layers. However, skip connection is not useless as it compensates for the
information loss due to downsampling.
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Building on this insight, we propose DiT↓ (and SiT↓ for the flow-based version, following the naming
convention of [26]) by adding tricks of RoPE [37] and SwiGLU following previous work [6; 39]

3.3 Aligning U-Net to ViT Encoders

Since U-Net has good potentials to achieve excellent generation, we are motivated to investigate
whether REPA could also work on U-Net. We are first focused on the block functionality pattern and
investigates the most optimal position for alignment; then we are interested in feature size alignment
problems; lastly, we are dedicated to merging space gaps between features from U-Net and ViT,
respectively.

Position for alignment. Regarding the concern that block functionalities differ between U-Net and
DiT, the comparison of prior studies [12; 5] demonstrates divergent hierarchical specialization: U-Net
architectures typically employ mid-network layers for high-level semantic synthesis while reserving
shallow layers for low-level image refinement, whereas DiTs exhibit a totally different pattern - early
layers primarily govern semantic-rich outline formation with deeper layers handling detailed image
refinement.

These previous findings find empirical support in REPA’s experimental findings, where representation
alignment proves most effective when applied to initial transformer blocks. This phenomenon
stems from DiT’s early layers encoding semantic-rich representations that align well with the
semantically dense outputs of ViT-based visual encoders, enabling meaningful guidance. Unlike
the straightforward DiT architecture, the inherent skip connections in U-Net architectures induce
fundamentally distinct block functionality compared to Diffusion Transformers. While all blocks in
ViT or DiT maintain homogeneous computational roles, following a continuous flow of transition
from input to output, U-Net’s cross-layer shortcuts establish direct dependencies between shallow
and deep layers, fundamentally altering feature-map evolution patterns. As shown in Fig. 2 (R), DiTs
with skips indicates median layer is the best for representation alignment. The same pattern goes for
U-Net (Fig. 2 (L)) despite the downsampling stage.

Feature size alignment. The implementation of alignment between Diffusion U-Net’s median stage
and ViT encounters a critical spatial resolution dilemma stemming from architectural disparities.
While our analysis identifies mid-network U-Net features as optimal semantic carriers, their spatial
dimensions drastically differ from ViT’s full-resolution token sequence. This dimensional mismatch
obstructs REPA’s token-wise similarity computation, which requires strict cardinality matching
between compared features.

In order to align two feature-maps (i.e. from U-Net and ViT encoder, respectively), from the macro
level we advocate for upscaling the smaller-sized U-Net features rather than downscaling the larger
visual encoder features. This design principle stems from the critical observation that compressing
ViT’s high-resolution features to match U-Net’s reduced dimensions inevitably discards fine-grained
visual information, thereby degrading alignment effectiveness. Preserving ViT’s native resolution
while expanding U-Net’s bottleneck features proves essential for maintaining semantic fidelity.

At the implementation level, we empirically evaluated various upscaling strategies for U-Net features:

1. Upscale first and then MLP: feature upsampling is performed before passing the feature
into the MLP.

2. Upscale within MLP: the MLP also acts as a feature upsampler that receives a low-
resolution input and outputs a high-resolution one via linear mapping and pixel un-shuffling.

3. MLP first and then upscale: the feature from higher-stage U-Net is first passed through
MLP and then upsampled.

Among the three options, we found “MLP first and then upscale” is the best both in terms of
performance and efficiency (minimum FLOPs cost), which will be discussed in the Ablation Study in
Sec. 4.

Manifold space alignment. Though we select the most suitable U-Net feature for alignment and
keep dimensions between U-Net and ViT features aligned, challenges remain in feature space
compatibility. First, compared to the structural congruence between DiT and ViT encoders, the
architectural discrepancy of U-Net (with its skip connections and hierarchical downsampling) creates
a more pronounced feature distribution gap between U-Net hidden states and visual encoder outputs.
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Figure 3: The convergence of average tokenwise similarities. While SiT-L/2 could achieve better
tokenwise similarities, SiT↓ converges at a lower similarity value, indicating difficulties of feature
alignment.

Second, the dimensional transformation required for alignment inevitably modifies U-Net’s native
feature space characteristics.

Some recent works on Diffusion U-Net [41; 34] reveals that higher-stage U-Net features are low-
frequency subspaces that discards higher frequency compoenents, including noises. Gaps are in-
evitable when evaluating the cosine similarities of detail-rich, high-frequency-rich vectors and flat,
low-frequency-dominated vectors. In this sense, strict token-level alignment constraints like the
original REPA loss prove suboptimal under these conditions, as they assume implicit feature space
homogeneity between aligned modalities.

As is shown in Fig. 3, we conducted continuous measurements of token-wise cosine similarity
against ViT features during training. The two models that we compare are SiT-L/2 of isotropic,
standard transformer architecture and SiT↓-L/2 of U-Net architecture. Our experiments revealed a
characteristic learning trajectory: while U-Net achieves slightly faster similarity improvement in early
training phases - thanks to skip connection that helps convergence - its progress stagnates beyond this
point, ultimately plateauing at 0.60 - notably inferior to DiT’s sustained growth reaching around 0.63
similarity. The similarity gap between SiT and SiT↓ This phenomenon suggests that naively aligning
U-Net with ViT encoders through angular similarity metrics alone encounters inherent limitations
due to architectural incompatibilities.

Rather than strict token-wise regularization, we resort to looser objectives that does not require
rigid augular alignment. Inspired by manifold knowledge distillation [14], we hold that aligning
similarities between samples from the same feature space could be a promising solution. Hence, we
define Manifold Loss LML as

LML(θ, ϕ) := −Ex∗,ϵ,t,i,j [d(y∗, hϕ(ht))] , (3)

where

d := ∥sim
(
y
[i]
∗ ,y

[j]
∗

)
− sim

(
hϕ(h

[i]
t ), hϕ(h

[j]
t )

)
∥2F . (4)

In the formula, cosine similarity is adopted as the similarity metric, and F represents Frobenius
Norm of matrices. By introducing affine hyperparameter w, the overall optimization target is then
formulated as

L := Lvelocity + λ (LREPA + wLML) . (5)

3.4 Other Improvements

We also propose and evaluate some other improvements. Due to page limits, the proposed methods
and corresponding ablations are enclosed in the Appendix.
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4 Experiments

4.1 Experiment Setup

Experiment settings. Our implementation completely adheres to the training protocol established in
REPA [45]. Following the architectural configuration of latent diffusion models [32], we employ the
identical VAE variant (sd-vae-ft-ema) and adopt the AdamW optimizer. To ensure fair comparison,
we maintain identical hyperparameter settings across all experiments: a global batch size of 256,
fixed learning rate of 1e− 4, and disabled weight decay (set to 0). (β1, β2) is set as (0.9, 0.999). All
experiments are conducted on the ImageNet 2012 benchmark [8] under a controlled environment
with a fixed random seed (global seed=0). 8 NVIDIA A100 GPUs are used for main experiments.

For main experiments (Tab. 5), we apply guidance interval [21] [0, 0.7] and SDE sampling according
to the convention of REPA [45] for fair comparison. We select smaller cfg of 1.65, because we found
it is better for our architecture, different from SiT. For all ablation experiments, we train models for
100K iterations, which is sufficient to show the trend of model performance; sampling is conducted
with the default setting of the official REPA codebase, i.e. cfg = 1.8 in ODE and guidance interval
[0, 0.7].

Model settings. By aligning channel dimensions and FLOPs with standard Diffusion Transformers
(DiTs or SiTs), our U-REPA-compatible variants maintain architectural parity while introducing
critical adaptations for U-Net principles. The base model (SiT↓-B) employs a stage arrangement of
[5,5,5], achieving 199.7G FLOPs. Scaling to larger models, we have the L variant (686.6M) and XL
variant (954.4M params) that increases channel width (1024 vs. 1152 in base) through increased
stage-wise block allocation ([9,14,9] vs. [10,16,10]). Notably, when FLOPs are aligned, SiT↓ models
usually have more parameters than SiTs due to increased depth.

Model Params (M) FLOPs (G) Patch Size Channel # Heads Blocks in Stages

SiT↓-B 199.7 24.1 2 768 12 [5,5,5]
SiT↓-L 686.6 79.3 2 1024 16 [9,14,9]

SiT↓-XL 954.4 109.3 2 1152 16 [10,16,10]

Table 2: Configurations of SiT↓ architecture at different model sizes. The proposed SiT↓ in U-Net
architectures are aligned to DiTs in terms of FLOPs and channel dimension.

4.2 The Advantage of U-REPA

Comparing SiT↓ with SiT at different scales. We evaluate our U-REPA alignment method on
ImageNet 256 under a generation setting with cfg = 1 (REPA framework without classifier-free
guidance). As shown in Table 3, our approach consistently improves generation quality while
significantly reducing computational costs across model scales. For the base-size SiT-B/2 variant,
integrating U-REPA achieves a 39.3% improvement in FID (from 24.4 to 15.3) with comparable
FLOPs (24.1G vs. 23.0G) and identical training iterations (400K), demonstrating that feature
alignment enhances parameter efficiency without additional training overhead. The acceleration
effect becomes more pronounced in larger models: for SiT-L/2, U-REPA reduces required iterations
by 42.9% (700K→400K) while simultaneously lowering FLOPs (79.3G vs. 80.8G) and achieving a
30.9% FID improvement (8.4→5.8). Most notably, the XL-scale variant with U-REPA (cf. Fig. 5
for FIDs vs. Training iters) attains state-of-the-art FID (5.4) using 90% fewer iterations (400K vs.
4M) and fewer FLOPs (108.8G vs. 118.6G) compared to the baseline, proving our method’s fast
convergence.

We also demonstrate the advantage of the proposed U-REPA framework when measuring by parame-
ters (rather than computation FLOPs), as shown in Fig. 4. Though U-Net brings extra parameters
when FLOPs are aligned with DiTs, the advantage of SiT↓+U-REPA is obvious as depicted in the
Parameter versus FID plot.

Convergence performance. We also compare our method with previous State-of-the-Arts, as shown
in Tab. 5. Our proposed SiT↓+U-REPA achieves a competitive FID of 1.48 with only 200 training
epochs, significantly outperforming existing methods in training efficiency. Notably, while state-of-
the-art masked diffusion transformers like MDTv2-XL/2 require 1,080 epochs to reach 1.58 FID, our
method attains better performance (1.48) with 80% fewer iterations. Even compared to the SOTA
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ImageNet 256×256, w/o cfg
Model FLOPs (G) Iter. FID↓
SiT-B/2+REPA 23.0 400K 24.4
SiT↓-B/2+U-REPA 24.1 400K 15.3
SiT-L/2+REPA 80.8 700K 8.4
SiT↓-L/2+U-REPA 79.3 400K 5.8
SiT-XL/2+REPA 118.6 4M 5.9
SiT↓-XL/2+U-REPA 108.8 400K 5.4

Table 3: Comparing U-REPA against REPA across vari-
ous model sizes without classifier-free guidance. U-Nets
equipped with U-REPA show excellent capabilities. Notably,
U-REPA achieves 10× faster convergence compared with
REPA in terms of performance w/o CFG.

ImageNet 256×256, w/ cfg
Model Dep. Feat. Dim. FID↓ IS↑
SiT↓-XL/2 4 16 9.42 117.6
SiT↓-XL/2 (REPA) 8 16 9.35 119.5
SiT↓-XL/2 12 8 6.73 148.3
SiT↓-XL/2 16 8 6.43 154.1
SiT↓-XL/2 18 8 6.25 156.2
SiT↓-XL/2 20 8 6.36 155.8
SiT↓-XL/2 24 8 6.77 150.5
SiT↓-XL/2 28 16 8.40 130.5
SiT↓-XL/2 32 16 13.10 99.4

Table 4: Ablations on encoder depths for alignment in SiT↓.
Feat. Dim. stands for the spatial height& width at the certain
layer. Compared with the default REPA setting, aligning at the
centering layer (higher stage in U-Net) performs much better.

SiT-XL/2 + REPA baseline (800 epochs for 1.42 FID), our approach uses only 1/2 of the training
epochs (400) while achieving better generation quality (1.41 FID). The results demonstrate that the
proposed U-REPA establishs a new efficiency frontier for diffusion models.

4.3 Ablation Studies

Encoder depths. The ablation study on encoder layer depths for feature alignment (Tab. 4) coincides
with the pattern of DiT with skip connections, as we analyzed in Sec. 4: despite progressive down-
sampling operations that reduce spatial resolution, the centermost layers exhibit optimal alignment
efficacy. For the SiT↓-XL/2 model, aligning features at layer 18 (midway through the 36-layer
architecture) achieves peak performance with 6.25 FID and 156.2 IS, outperforming both shallower
and deeper alignment points. This phenomenon persists even as the spatial dimension (Feat. Dim.)
halves from 16×16 to 8×8 in the intermediate stage, indicating that semantic richness—not spatial
resolution—dominates alignment quality. Performance degradation occurs when alignment takes
place at shallower or deeper stages, even though the feature size is kept the same with DINO in these
stages.

Alignment dimension choices. The comparative results in Table 6 reveal that upsampling U-Net’s
higher-stage features (↑2) to match DINOv2’s native resolution achieves superior performance (5.72
FID, 161.6 IS), outperforming the alignment alternative in generation quality. This demonstrates that
preserving ViT encoder’s original feature granularity during alignment is beneficial for alignment.

Feature-map upscale choices. Among the three upscaling options mentioned in Sec. 4, we figure
out that upscaling U-Net hidden states after getting passed through MLP is the best option, achieving
5.72 FID and 161.6 IS. This option is also the most optimal one in terms of computation cost analysis.

8



ImageNet 256×256, w/ cfg
Model Epochs FID↓

Pixel diffusion
ADM-U [9] 400 3.94
VDM++ [20] 560 2.40
Simple diffusion [18] 800 2.77

Latent Diffusion Transformer
U-ViT-H/2 [1] 240 2.29
DiffiT [15] - 1.73
DiT-XL/2 [30] 1400 2.27
SiT-XL/2 [26] 1400 2.06

Masked Diffusion Transformer
MaskDiT [47] 1600 2.28
MDTv2-XL/2 [13] 1080 1.58

Representation Alignment
SiT-XL/2 + REPA [45] 800 1.42
SiT↓-XL/2 + U-REPA (Ours) 200 1.48
SiT↓-XL/2 + U-REPA (Ours) 400 1.41

Table 5: Comparing U-REPA against State-of-
the-Art baselines with classifier-free guidance.
U-REPA could reach FID < 1.5 in merely 200
epochs and FID = 1.41 in 400 epochs; The pro-
posed method converge 2× faster while achieving
lower FID.

ImageNet 256×256, w/ cfg
Alignment Choices FID↓ IS↑
U-Net || DINOv2↓2 5.99 158.8
U-Net↑2 || DINOv2 5.72 161.6

Table 6: Alignment dimension choices. Up-
sampling higher-stage U-Net features in align-
ment with ViT performs better due to less infor-
mation loss.

ImageNet 256×256, w/ cfg
Alignment FID↓ IS↑
Upscale before MLP 5.84 158.5
Upscale in MLP 6.36 153.4
Upscale after MLP 5.72 161.6

Table 7: Feature-map upscale choices.
Among the three options, Upscaling after pass-
ing through MLP performs best; and it has
lower cost as the small-sized feature map is
passed through MLP.

ImageNet 256×256, w/ cfg
Model w FID↓ IS↑
SiT↓-XL/2+U-REPA 0 6.25 156.2

SiT↓-XL/2+U-REPA 2 5.81 160.8
SiT↓-XL/2+U-REPA 3 5.72 161.6
SiT↓-XL/2+U-REPA 4 5.79 160.6

Table 8: Adjusting weight w in Eq. 5. Mani-
fold loss boosts U-Net’s alignment performance.
The most optimal result is taken at w = 3.

Manifold loss weight w. The ablation study on alignment weight w in Eq. 5 demonstrates a clear
performance peak at w = 3 achieving the lowest FID (5.72) and highest IS (161.6) among tested
configurations.

4.4 Higher Resolution Experiments

At the higher-resolution ImageNet 512×512 (w/ cfg) setting, U-REPA remains clearly superior to the
REPA baseline (Tab. 9). Using SiT↓-XL/2, U-REPA reduces FID from 2.44 to 2.21 and raises IS
from 247.3 to 274.7. These results indicate that U-REPA’s benefits persist at 512 resolution, yielding
better distributional fidelity and sample quality/diversity, and demonstrating strong scalability.

ImageNet 512×512, w/ cfg
Alignment Choices FID↓ IS↑
SiT-XL/2 + REPA 2.44 247.3
SiT↓-XL/2 + U-REPA (Ours) 2.21 274.7

Table 9: Comparing U-REPA against REPA on ImageNet 512×512. On higher resolution, the
proposed U-REPA still maintain a clear advantage.

4.5 The Energy Cost Advantage of U-REPA

We also assess the energy-cost advantage of U-REPA over REPA. We train on eight NVIDIA A100
GPUs and record each GPU’s power draw. Combining the measured power with the training duration,
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ImageNet 256×256
Model Avg. Pow. (W) Training Hours Est. Energy (J) FID↓
SiT-XL/2+REPA (4M iter) 373.2 302.7 3.25×10e9 1.42
SiT↓-XL/2+U-REPA (2M iter) 295.3 230.7 1.96×10e9 1.41

Table 10: Energy cost comparison. We compare the energy cost of U-REPA (at 2M iters) and REPA
(at 4M iters). U-REPA could significantly reduce the cost of training a State-of-the-Art diffusion
model.

we estimate the total energy consumed. The statistics for average power and estimated total energy
used by all 8 GPUs are summarized in Tab. 10. Results indicate that our U-REPA method is "greener",
costing far less energy.

Reducing training energy directly curbs operational CO2 emissions. Methods that achieve comparable
accuracy with lower energy, such as U-REPA vs. REPA in our study, advance both sustainability and
the economic viability of large-scale AI.

5 Conclusion

In this paper, we propose U-REPA, an adapted version of REPA on Diffusion U-Net. We identify
key challenges in U-Net hidden state alignment and show that U-REPA effectively bridges the gap
between U-Net-based diffusion models and ViT-based encoders. By aligning intermediate features,
resolving spatial mismatches via post-MLP upsampling, and enforcing manifold-aware regularization,
U-REPA achieves faster convergence and an FID score of 1.41 on ImageNet-256×256 at 2M iters.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing
issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The
papers not including the checklist will be desk rejected. The checklist should follow the references and
precede the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each
question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area
chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)
with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While
"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper
justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or
"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not
grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is
often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer
[Yes] to a question, in the justification please point to the section(s) where related material for the question can
be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract demonstrates our motivation, the proposed ideas and a brief summary of
experiment results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper has discussed the limitations of the work in the appendix due to page limits.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: The paper does not inlcude theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main experimental
results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

15



• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper will provide open access to the data and code during camera ready period.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: This paper has specified all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification: This is not relevant to this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
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Appendix

A Other Improvements

In the appendix, we address the effect of proposed "Other Improvements" (Sec. 4), including "Time-aware MLP"
and "Weight schedule of loss".

Time-aware MLP. Some works on in the diffusion task [29; 46] reveals that a channel dimension is particularly
sensitive and useful to a certain subset of time during sampling. As the time-variant feature is to be aligned to
time-invariant vision encoder features, we hold that alignment could perform better when the MLP is time-aware
and extract time-invariant information out of diffusion features for alignment.

Inspired by the conditioning of canonical Diffusion U-Net [17; 36; 9] and DiT [30], we add a module to predict a
pair of channel-wise shift& scale vector (γ (t) , β (t)). The module is in parallel to MLP and follows the design
of DiT’s AdaLN, which is a concatenation of a SiLU and a Linear layer. The shift& scale vectors are imposed
on the output MLP as follows:

ht
ϕ(h

[n]
t ) = γ (t)⊙ hϕ(h

[n]
t ) + β (t)

Weight schedule of loss. As is prompted in REPA [45], designing weight schedule is a future direction. We
try various weight schedules (i.e. make λ in Eq. 2 a function λ(t) with respect to time) but found that these
schedules bring very limited improvements on the proposed U-REPA. Hence, we stick to the original constant
weight strategy of REPA.

These improvements bring slight increases on the generation metrics. Hence, we do not include them in the
main experiments for the simplicity of the method. The effects of proposed measures are shown in Tab. 11 and
Tab. 12.

ImageNet 256×256, w/ cfg
Alignment Choices FID↓ IS↑
Ordinary MLP 5.72 161.6
Time-aware MLP 5.63 163.3

Table 11: The effect of time-aware MLPs.

ImageNet 256×256, w/ cfg
Alignment Choices FID↓ IS↑
Constant 5.72 161.6
max(1, t+ 0.5) 5.85 161.3
max(1,−t+ 1.5) 5.72 161.6
min (1,max (−2t+ 1.5, 2t− 0.5)) 5.58 164.0

Table 12: The effect of different weight schedules of loss.

B Additional Experiments

Evaluating SiT↓-XL/2. We also evaluated the proposed U-Net architecture on the Scalable Interpolant Trans-
formers (SiT) framework without the guidance of REPA. The results are shown in Tab. 13.

Notably, though the amount of FID improvement brought by U-REPA is not as great as REPA (i.e. SiT /
SiT+REPA vs. SiT↓+U-REPA), we hold that this comparison is invalid due to the following reasons:

1. As generation performance gets stronger, it is also becoming much harder to improve (especially for
FID when it gets lower).

2. Aligning SiT↓ and ViT is much harder than aligning SiT and ViT, because the backbone of SiT and
ViT encoders are very similar. Aligning SiT↓ to ViT encoder is a special case due to great architecture
difference.

However, we hold that comparing REPA and U-REPA on the same model of SiT↓ is fair. The default REPA
achieves FID 9.35 (as shown in Tab. 4) while our method achieves FID 5.72, both trained for 100K iterations
with cfg and guidance interval adopted.
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Figure 6: Samples generated by SiT↓+U-REPA at 1M iterations. The samples are generated
following the setting of REPA, at cfg = 4. Best viewed on screen.

ImageNet 256×256, w/o cfg
Model Iter. FID↓
SiT-XL/2 400K 17.2
SiT↓-XL/2 400K 9.2
SiT-XL/2+REPA 400K 7.9
SiT↓-XL/2+U-REPA 400K 5.4

Table 13: Evaluating the performance of SiT↓. SiT↓-XL/2 performs much better than SiT-XL/2,
and U-REPA further reduces the FID of SiT↓-XL/2 to 5.4 without classifier-free guidance.

Seed Sensitivity. In our paper, we take seed = 0 following the setting of REPA. We also tested other seeds
(seed = 1, 2) in training to examine the seed sensitivity of our method, shown in Tab. 14. The experiments are
run for 600K iterations with guidance interval and cfg, following REPA.

ImageNet 256×256, w/ cfg
Model seed FID↓
SiT↓-XL/2+U-REPA 0 1.618
SiT↓-XL/2+U-REPA 1 1.599
SiT↓-XL/2+U-REPA 2 1.588

SiT↓-XL/2+U-REPA mean 1.602±0.012

Table 14: Examining seed sensitivity. We selected seed = 0, 1, 2 and evaluate the performance with
cfg. The performance fluctuation is limited to a narrow interval (approximately 0.01).

Ablations on the REPA Loss. We also conduct ablations on the REPA loss (LREPA) while leaving the
proportion of manifold loss intact (keeping the multiplication λw fixed). The results are shown in Tab. 15.
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ImageNet 256×256, w/ cfg
λ 0.5 0.25 0 (No LREPA)

FID↓ 5.72 6.42 10.91

Table 15: Adjusting the hyperparameter for REPA loss λ in Eq. 5. The REPA loss is vital for the
generation performance; removing LREPA would cause a significant performance decay.

Figure 7: Comparing the visual quality of SiT+REPA (upper row) and SiT↓+U-REPA (lower
row). The samples are generated following the sampling strategy that yields the State-of-the-Art
FIDs in respective methods. Best viewed on screen.

One-on-one visualization comparison. Apart from quantitative comparisons, we also provide qualitative
comparisons in Fig. 7 by inserting the same rnadom noise into trained SiT+REPA (at 4M iterations, FID 1.42)
and SiT↓+U-REPA (at 2M iterations, FID 1.41). The samples are not cherrypicked; we directly pick the first
several samples at seed=0. Samples generated by SiT↓+U-REPA has better visual quality.

C Limitations & Impact

Limitations and Future work. The U-Net architecture is a simple one with only one intermediate stage. We
do not further refine the architecture as we want to show U-Net architectures as simple as SiT↓ could also
achieve rapid convergence. Further improvements on the U-Net architecture includes efficient attention [42; 39],
non-integer down& up scaling factors [43], and more use of convolutions [36; 38]. Besides, whether U-REPA
could be applied to downstream diffusion tasks that rely heavily on U-Nets (e.g. Low-Level Vision) remains to
be investigated.

Broader Impact. As a work centered around AIGC, it is probable that inappropriate contents may appear from
the output. We should be aware of this negative societal impact.
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