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Abstract
Recent work have shown that incorporating pre-
trained multimodal representations can enhance
the ability of an instruction-following agent to
generalize to unseen situations. Yet training such
agents often requires a dataset consisting of di-
verse demonstrations, which may not be avail-
able for target domains and incur a huge cost to
collect. In this paper, we instead propose to uti-
lize the knowledge captured within large vision-
language models for improving the generaliza-
tion capability of control agents. To this end,
we present Multimodal Reward Decision Trans-
former (MRDT), a simple yet effective method
that uses the visual-text alignment score as a
reward. This reward, which adapts based on
the progress towards achieving the text-specified
goals, is used to train a return-conditioned pol-
icy that guides the agent towards the desired
goals. We also introduce a fine-tuning scheme
that adapts pre-trained multimodal models using
in-domain data to improve the quality of rewards.
Our experiments demonstrate that MRDT signif-
icantly improves generalization performance in
test environments with unseen goals. Moreover,
we introduce new metrics for evaluating the qual-
ity of multimodal rewards and show that gener-
alization performance increases as the quality of
rewards improves.

1. Introduction
Deep reinforcement learning (RL) and imitation learning
(IL) have achieved remarkable success in training visual
control agents to solve tasks based on visual observations
(Akkaya et al., 2019; Brohan et al., 2022; Mnih et al., 2015;
Schrittwieser et al., 2020; Vinyals et al., 2019). However,
these approaches frequently struggle to adapt to new test
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Coin at 
fixed position
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randomized position

Figure 1: A motivating example of goal misgeneralization
from Di Langosco et al. (2022).

environments, as trained agents tend to overfit specific ele-
ments of the training data. This results in a lack of meaning-
ful behavior when faced with different environments (Cobbe
et al., 2019; de Haan et al., 2019; Kirk et al., 2021; Song
et al., 2020; Zhang et al., 2018), where the agents struggle to
exhibit any meaningful behavior due to overfitting to various
aspects of training data.

In particular, recent work have investigated the goal misgen-
eralization problem, where agents fail to achieve desired
goals at test time even if they retain their competencies.
This occurs when the agent pursues an undesired goal that
was desired during training (Di Langosco et al., 2022; Ngo,
2022; Shah et al., 2022). For instance, an agent trained
to collect a coin at a fixed position may learn a behavior
that heads towards the fixed position in the environment,
instead of collecting the coin, thus failing to learn the in-
tended goal (see Figure 1). Goal misgeneralization poses a
significant problem in safety-critical scenarios, as systems
that follow misaligned goals can have unexpected negative
effects, even if they are proven to be capable in training
environments (Amodei et al., 2016; Hendrycks et al., 2021).

One potential approach to address goal misgeneralization is
to directly specify the desired goals using natural language
instructions and train instruction-following agents to achieve
text-specified goals (Ahn et al., 2022; Brohan et al., 2022;
Hill et al., 2020; Lynch et al., 2022; Nair et al., 2021; Shrid-
har et al., 2023; Winograd, 1972). Recent studies indeed
have shown that training text-conditioned policies upon
large pre-trained multimodal models (Geng et al., 2022;
Radford et al., 2021) enables agents to achieve unseen goals
specified with text descriptions containing unseen seman-
tic concepts such as objects and colors (Liu et al., 2022a;
Shridhar et al., 2022). Yet training such agents require
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Figure 2: Illustration of our framework. First, multimodal reward r̂ for each timestep is computed using visual-text similarity
obtained from the pre-trained multimodal representations (denoted as VL Encoder). Then, we train transformer-based
policy conditioned on the target return of multimodal rewards. MRDT then can be adapted to unseen situations by using the
multimodal reward signal at deployment time. The key components of our contributions are highlighted in bold.

a dataset consisting of demonstrations from diverse tasks
(e.g., tasks with different coin positions) or with detailed
text descriptions (e.g., description of how much to jump or
which obstacles to dodge.). This is problematic because
such dataset may not be available for target domains and
collecting diverse demonstrations could incur a huge cost.
Motivated by the recent success of large vision-language
models in various applications (Radford et al., 2021; Alayrac
et al., 2022; Chen et al., 2022; Ramesh et al., 2021; 2022;
OpenAI, 2023), we instead aim to develop a method that
leverages the knowledge captured within such large models
for improving the generalization to diverse goals.

In this paper, we present Multimodal Reward Decision
Transformer (MRDT), a novel method for behavior learn-
ing that utilizes the image-text multimodal alignment
score (Radford et al., 2021) as a reward to train a return-
conditioned policy (see Figure 2). Our key idea is that the
agent can learn to achieve desired goals by following the
adaptive reward signal that adjusts based on the progress
made towards achieving text-specified goals. Specifically,
we propose training a return-conditioned policy using a
transformer architecture (Chen et al., 2021; Vaswani et al.,
2017) which predicts actions conditioned on a sequence
of multimodal representations, previous actions, and mul-
timodal returns. Unlike prior work that rely on static mul-
timodal representations for behavior learning (Liu et al.,
2022a), MRDT makes decisions based on the adaptive mul-
timodal reward signal, leading to improved generalization
to different goals in test environments. Furthermore, we
introduce a fine-tuning scheme that adapts pre-trained multi-
modal encoders using in-domain data, enhancing the quality
of the reward signal. Remarkably, our findings demonstrate
that when using the reward from fine-tuned encoders of im-
proved quality, the agent exhibits better generalization to

test environments with previously unseen desired goals.

In summary, our key contributions are as follows:

• We propose a novel imitation learning framework that
trains a return-conditioned policy which makes de-
cisions based on the adaptive signal from image-text
multimodal rewards at deployment time, which we call
Multimodal Reward Decision Transformer (MRDT).

• We introduce a fine-tuning scheme that adapts pre-
trained multimodal models using in-domain expert
demonstrations, to improve the quality of multimodal
rewards.

• We demonstrate that MRDT successfully guides the
agent to achieve unseen goals specified with natural
language instructions in various environments from
OpenAI Procgen benchmark (Cobbe et al., 2020).

• We provide analysis on how MRDT helps address-
ing goal misgeneralization based on new metrics we
introduced for evaluating the quality of multimodal
rewards.

Overall, our framework shows promising results in terms
of robustness and goal alignment, offering an effective ap-
proach and insights to address the challenges of goal misgen-
eralization for imitation learning in complex environments.

2. Related Work
Generalization in behavior learning Addressing the
challenge of generalization in behavior learning is crucial
for deploying trained agents in real-world scenarios. Var-
ious approaches have been proposed to enhance agent ro-
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bustness to different types of variations. These include
regularization techniques (Cobbe et al., 2019; Farebrother
et al., 2018; Wang et al., 2020), data augmentation (Laskin
et al., 2020a;b; Tobin et al., 2017; Kostrikov et al., 2020;
Yarats et al., 2021; Lee et al., 2020; Hansen & Wang, 2021;
Raileanu et al., 2021), contrastive learning (Agarwal et al.,
2021; Mazoure et al., 2022), and domain randomization (To-
bin et al., 2017; Peng et al., 2018; James et al., 2019).
Recently, there has been growing interest in leveraging
pre-trained representations for robot learning algorithms
that benefit from large-scale data (Nair et al., 2022; Xiao
et al., 2022; Seo et al., 2022; Ma et al., 2023). In par-
ticular, instruction-following agents have seen significant
advancements by leveraging pre-trained vision-language
models (Liu et al., 2022a; Shridhar et al., 2022; Jiang et al.,
2022; Zeng et al., 2022), drawing inspiration from the
effectiveness of multimodal representation learning tech-
niques like CLIP (Radford et al., 2021). For example, In-
structRL (Liu et al., 2022a) utilizes a pre-trained multi-
modal encoder (Geng et al., 2022) to encode the alignment
between multiple camera observations and text instructions,
and leverages this representation for training a transformer-
based policy.

Language-conditioned behavior learning Humans excel
at understanding and utilizing language instructions to adapt
to unfamiliar situations. Consequently, there has been sig-
nificant interest in training policies that incorporate natural
language in both RL (Goyal et al., 2021; Misra et al., 2017;
Jiang et al., 2019) and IL (Lynch & Sermanet, 2020; Step-
puttis et al., 2020; Jang et al., 2022). A related approach
to ours is presented in Goyal et al. (2021), which maps
language instructions to pixel observations using a reward
scalar. Recent studies have also leveraged large language
models (LLMs) for robotic manipulation tasks (Ahn et al.,
2022; Liang et al., 2022; Huang et al., 2022a;b; Hill et al.,
2020; Nair et al., 2021; Driess et al., 2023). For instance,
SayCan (Ahn et al., 2022) leverages PaLM (Chowdhery
et al., 2022) to generate plans for intermediate steps based
on language instructions, then executes them by connect-
ing each plan to the appropriate candidate among equipped
skills. Our method can be thought as one of language-
conditioned behavior cloning which leverages natural lan-
guage instructions as the form of reward signal by utilizing
the alignment between pre-trained multimodal representa-
tions.

Goal misgeneralization Goal misgeneralization has been
the focus of several research work. Di Langosco et al. (2022)
formalize goal misgeneralzation as distinct from capability
misgeneralization in RL and provide empirical examples in
various games from the Procgen benchmarks (Cobbe et al.,
2020). Shah et al. (2022) broaden the definition of goal mis-
generalization to arbitrary learning settings and demonstrate

extensive examples under diverse conditions. In this paper,
we alleviate the goal misgeneralization problem by harness-
ing the alignment among pre-trained multimodal visual and
text representations.

Intrinsic reward Intrinsic reward in RL (Şimşek & Barto,
2006; Schmidhuber, 2010) was initially proposed to facil-
itate better exploration in early interactions with the envi-
ronment. It has been formulated using various types of
frameworks, such as using the errors from predictive mod-
els (Schmidhuber, 1991; Oudeyer et al., 2007; Stadie et al.,
2015; Pathak et al., 2017; 2019; Sekar et al., 2020), visita-
tion counts (Thrun, 1992; Bellemare et al., 2016; Tang et al.,
2017; Ostrovski et al., 2017; Burda et al., 2019), and cov-
erage of visited states (Lee et al., 2019; Hazan et al., 2019;
Mutti et al., 2022a;b; Liu & Abbeel, 2021; Tao et al., 2020;
Seo et al., 2021). Instead of designing an intrinsic bonus for
exploration, we use the intrinsic reward from multimodal
models as an adaptive signal that guides the agent to achieve
the desired goals. Similar to our work, there have been
approaches that use the text-image alignment score to solve
sparse reward tasks with RL (Fan et al., 2022; Cui et al.,
2022). In this work, we focus on the adaptability of the
multimodal reward, which can guide the agent to achieve
desired goals in unseen environments at test time.

3. Method
In this section, we present Multimodal Reward Decision
Transformer (MRDT), a framework that uses the visual-text
alignment score as a reward for guiding the agent to achieve
desired goals. We first describe the problem setup (see Sec-
tion 3.1), then introduce how we define our multimodal re-
ward and use it for training a return-conditioned policy (see
Section 3.2). We then introduce our fine-tuning scheme that
adapts the pre-trained multimodal encoder with in-domain
data to improve the quality of rewards (see Section 3.3). We
provide the overview of MRDT in Figure 2.

3.1. Problem Setup

We formulate our control task as a Markov Decision Process
(MDP) (Sutton & Barto, 2018) without an explicit reward
function, which is defined as a tuple (O,A, p,G,X ). O is
the observation space, A is the action space, p(ot|o<t, a<t)
is the transition dynamics, G ⊂ O is the goal space which is
a set of assignments to the state, and X is the space of natural
language. In this paper, we focus on the generalization
setup where the goal used for collecting demonstrations
and testing is sampled from different distributions ptrain(g)
and ptest(g), respectively. We assume that we have an
access to D = {τi}Ni=1 consisting of N expert state-action
trajectories τ = (o0, a

∗
0, ..., oT , a

∗
T ) where T denotes the

maximum timestep. Policy π(at|o≤t,x) outputs a ∈ A,
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conditioned on the history of observations o≤t and a text
instruction x ∈ X . The aim of our paper is to train a
policy π(at|o≤t,x) that can achieve expert performance in
reaching the goal state g sampled from both ptrain and ptest
using D.

3.2. Multimodal Reward Decision Transformer

Multimodal reward To address the goal misgeneraliza-
tion problem, we propose to utilize the visual-text alignment
score computed using the large multimodal models as a re-
ward. Our motivation is that the adaptive reward, which
adjusts based on the progress made towards achieving text-
specified goals, can guide the agent to achieve desired goals.
Specifically, we use the distance between pre-trained multi-
modal representations as our multimodal reward:

r̂(ot,x) = D(ϕ(ot), ψ(x)) (1)

where D is a distance metric in the representation space of
multimodal models consisting of a visual encoder ϕ and
a language encoder ψ. While our method is compatible
with any multimodal model and metric, we adopt the image-
text similarity in the representation space of CLIP (Radford
et al., 2021) for D and its visual and text encoders for ϕ
and ψ, respectively. This is inspired by recent work that
leverages the CLIP score for various applications (Hessel
et al., 2021; Crowson et al., 2022; Kwon & Ye, 2022; Cho
et al., 2022; Fan et al., 2022; Jeong et al., 2023).

Return-conditioned policy To train the agent that makes
decisions based on the adaptive multimodal reward signal,
we train a return-conditioned policy θ based on transformer
architecture (Chen et al., 2021; Lee et al., 2022). Specif-
ically, we train a decoder-only transformer to autoregres-
sively model the following sequence:

⟨h1, R̂1, a1, h2, R̂2, a2, ..., hT , R̂T , aT ⟩

where ht = ϕ(ot) is a visual representation and R̂t =∑T
i=t r̂(oi,x) is the target return computed at timestep t

using the multimodal reward. Because we compute the mul-
timodal reward r̂t at every timestep, the return-conditioned
policy that models the trajectory is trained to output actions
based on the adaptive multimodal reward signal, enabling
adaptation at deployment time.

Objective Given the expert trajectory τ , we first compute
the target returns {R̂∗

i }Ti=1 of expert demonstrations by com-
puting the multimodal reward in Equation 1. Following Lee
et al. (2022), we train the model to predict not only the next
action but also the next multimodal return by minimizing

the objective below:

LMRDT = Eτ∼D

∑
t≤T

CE(at, a∗t ) + λ · MSE(R̂t, R̂
∗
t )


(2)

where CE is the cross entropy loss, MSE is the mean squared
error, and λ is a hyperparameter that adjusts the scale of
return prediction. We find that predicting the multimodal
target returns improves goal generalization by encouraging
the agent to be more aware of the adaptive multimodal
reward signals (see Table 1 for supporting experiments).

3.3. Fine-tuning the Pre-trained Multimodal Encoder

Despite the effectiveness of our method with pre-trained
CLIP multimodal representations, there may be a domain
gap between the images used for pre-training and the visual
observations available from the environment. This domain
gap can sometimes lead to the generation of unreliable,
misleading reward signals. To address this issue, we propose
fine-tuning schemes for the pre-trained multimodal encoders
(ϕ, ψ) using the demonstration data D in order to improve
the quality of multimodal rewards. Specifically, we propose
fine-tuning objectives based on the following two desiderata:
reward should (i) be temporally smooth and (ii) be robust to
visual distractions that cannot affect the agent.

Temporal smoothness To encourage the temporal
smoothness of the multimodal reward, we adopt the ob-
jective of value implicit pre-training (VIP) (Ma et al., 2023)
that aims to learn smooth reward functions from action-free
videos. The main idea of VIP is to (i) capture long-range
dependency by attracting the representations of the first and
goal frames and (ii) inject local smoothness by encourag-
ing the distance between intermediate frames to represent a
progress toward the goal. We extend this idea to our mul-
timodal setup by replacing the goal frame with the natural
language description x that describes the goal and using our
multimodal reward r̂ based on CLIP distance D as below:

LVIP = (1− γ) · Eo1∼O1
[r̂(o1,x)]

long-range dependency loss

+ logE(ot,ot+1)∼D[r̂(ot,x) + 1− γ · r̂(ot+1,x)]
local smoothness loss

(3)

where O1 denotes a set of initial visual observations in
D. One can see that the local smoothness loss is the one-
step temporal difference loss which recursively trains the
r̂(ot,x) to regress −1 + γ · r̂(ot+1,x). This then induces
the reward to represent the remaining steps to achieve the
text-specified goal x (Huang et al., 2019), making rewards
from consecutive observations smooth.

Robustness to visual distractions To further encourage
our multimodal reward to be robust to visual distractions
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that should not affect the agent (e.g., changing textures or
backgrounds), we introduce the inverse dynamics model
(IDM) objective (Pathak et al., 2017; Christiano et al., 2016;
Islam et al., 2022; Lamb et al., 2023; Tomar et al., 2023):

LIDM = E(ot,ot+1,at)∼D[MSE(g(ϕ(ot), ϕ(ot+1), ψ(x)), at)]

(4)

where g(·) denotes the prediction layer which outputs ât,
predicted estimate of at. By learning to predict actions
taken by the agent using the observations from consecutive
timesteps, fine-tuned encoder learns to ignore aspects within
the observations that should not affect the agent.

Fine-tuning objective We combine both the VIP loss and
the IDM loss as the training objective to fine-tune the pre-
trained multimodal encoder in our model:

LFT = LVIP + β · LIDM (5)

where β is a scale hyperparameter. We find that both ob-
jectives synergistically contribute to improving the perfor-
mance (see Table 1 for supporting experiments).

Architecture To effectively fine-tune the pre-trained
CLIP embeddings without overfitting, we adopt the CLIP-
Adapter (Gao et al., 2021; Zhang et al., 2022). Specifically,
we attach extra linear layers to both the visual and language
encoders and perform residual-style feature blending with
the original pre-trained features. Throughout training, we
only apply gradients to the weight of these adapter layers
and freeze both the visual and textual encoders of CLIP.
Furthermore, we utilize multi-scale features obtained by
concatenating intermediate layer representations with the
final output representation as the input for the adapter layers,
drawing inspiration from Liu et al. (2022a) and Walmer et al.
(2022). Finally, the multimodal reward is computed using
the cosine similarity between the multi-scale features from
the image and text encoders. See Appendix B for qualitative
results of our multimodal rewards.

4. Experiments
In this section, we verify the effectiveness of our framework
in generalization to different goals in test environments.
We first present evaluation results in various environments
addressing goal misgeneralization (see Section 4.1). We
then analyze the effectiveness of the proposed multimodal
rewards in test time with new metrics (see Section 4.2). We
also conduct ablation studies to validate the effectiveness of
our proposed components (see Section 4.3).

Environments We evaluate MRDT on three different en-
vironments proposed in Di Langosco et al. (2022). These

(a) CoinRun (b) Maze I

(c) Maze II

Figure 3: Image observation of OpenAI Procgen bench-
marks (Cobbe et al., 2020) used in our experiments. We
train our agents using expert demonstrations collected in
environments with multiple visual variations (left). We then
perform evaluations on environments from unseen levels
with unseen goals (right). See Section 4 for more details.

environments are built upon the OpenAI Procgen bench-
marks (Cobbe et al., 2020), which are widely used to assess
the generalization capabilities of models in the face of vi-
sual changes. For training, we collect a number of expert
demonstrations from 500 different levels that exhibit ample
visual variations, and use them for training the agent. We
then evaluate the zero-shot performance of the agents in
test environments from different levels with unseen goals
that differ from the goals used for training. Specifically, we
consider following three environments for our experiments:

• CoinRun: The training dataset consists of expert demon-
strations where the agent collects a coin that is consis-
tently positioned on the far right of the map. In the
held-out evaluation environment, the location of the
coin is randomized (see Figure 3a). We use “The goal is
to collect the coin.” as a natural language instruction x.

• Maze I: The training dataset consists of expert demon-
strations where the agent reaches a yellow cheese that
is always located at the top right corner. In the held-out
evaluation environment, the cheese is placed at a ran-
dom position (see Figure 3b). We use “Navigate a maze
to collect the yellow cheese.” as a natural language
instruction x.

• Maze II: The training dataset consists of expert demon-
strations where the agent approaches a yellow diagonal
line located at a random position. For evaluation, we
consider a modified environment with two objects: a
yellow gem and a red diagonal line, where the goal of
the agent is to reach the diagonal line regardless of its
color as in training environments (see Figure 3c). We
use “Navigate a maze to collect the line.” as a natural
language instruction x.
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Figure 4: Expert-normalized scores on training/evaluation environments. The result shows the mean and standard variation
averaged over three runs. MRDT denotes our method that uses frozen CLIP representations for computing the multimodal
reward, and MRDT+ denotes the model that incorporates fine-tuning scheme in Section 3.3.

Implementation For all experiments, we utilize the open-
sourced pre-trained CLIP model1 with ViT-B/16 architec-
ture to generate multimodal rewards and we fine-tune CLIP
based on that model. We resize images to 224 × 224 × 3
before computing multimodal rewards. To fine-tune CLIP,
we attach a 2-layer MLP (Rosenblatt, 1958) at the end of
both CLIP image and text encoders and we also add an addi-
tional 2-layer MLP as an action prediction layer for the IDM
objective. Our return-conditioned policy is implemented
based on the official implementation of InstructRL (Liu
et al., 2022a) and implementation details are same unless
otherwise specified. To collect expert demonstrations used
for training data, we first train PPG (Cobbe et al., 2021)
agents on 500 training levels for 200M timesteps per task.
We then gather 500 rollouts for CoinRun and 1000 rollouts
for Maze in training environments. All models are trained
for 50 epochs on two GPUs with a batch size of 64 and
a context length of 4. Further training details, including
hyperparameter settings, can be found in Appendix A.

Evaluation To evaluate the performance of trained agents,
we report the expert-normalized scores on both training and
held-out evaluation environments. For reporting training
performance, we measure the average success rate of trained
agents over 100 rollouts in training environments, and di-
vide it with the average success rate from the expert PPG
agent used for collecting demonstrations. For evaluation
performance, we train a separate expert PPG agent in held-
out evaluation environments, and use the score from this
agent for computing the expert-normalized scores.

Baseline and our method As a baseline, we consider
InstructRL (Liu et al., 2022a), which trains the instruction-
following agent using static multimodal representations

1https://github.com/openai/CLIP

from M3AE (Geng et al., 2022). For our method, we use
the same M3AE model to encode visual observations. We
refer to the model that uses frozen CLIP representations
for computing the multimodal reward as MRDT, and the
model that incorporates fine-tuning scheme in Section 3.3
as MRDT+ in all our experiments.

4.1. Results on Procgen Environments

Figure 4 shows that our method significantly outperforms
the baseline in all three tasks. In particular, MRDT outper-
forms InstructRL on held-out evaluation environments even
though the training performance is similar. This shows that
our method can indeed guide the agent to achieve unseen
goals with the adaptive multimodal reward signal. Moreover,
we observe that MRDT+, which uses the multimodal reward
from the fine-tuned model, achieves superior performance
to MRDT. Considering that the only difference between
MDRT and MRDT+ is using different multimodal rewards,
this result shows that improving the quality of reward can
lead to better generalization performance.

4.2. Evaluating Multimodal Rewards

To provide insights on how MRDT helps improving the gen-
eralization performance, this section introduces new metrics
that evaluate the quality of multimodal rewards. Our met-
rics are designed to reflect the desiderata which multimodal
rewards should satisfy for effectively guiding the agent: (i)
they should consistently assign similar reward values to
similar behaviors, even in the presence of different visual
variations (e.g., different backgrounds or colors) and (ii)
they should effectively differentiate between goal-reaching
behaviors and misleading behaviors. To illustrate this, con-
sider the CoinRun environment as a simple example. When
the agent successfully reaches a coin, it should receive a
similar reward regardless of the specific map configuration.

https://github.com/openai/CLIP
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Figure 5: In this example, we have two successful trajectories (red, orange) and two failure trajectories (cyan, blue). We
extract a K-length sequence of multimodal rewards from each trajectory, and compute three metrics: (1) Distinction, which
measures the ability of multimodal rewards to differentiate between successful and failure behaviors; (2) Distance (S),
which measures reward similarity between successful behaviors; and (3) Distance (F), which measures reward similarity
between failure behaviors.

In contrast, multi-modal rewards should provide different
signals to the agent according to whether it collects the coin
or not (i.e., achieving a goal or not).2

To this end, we first fix the configuration of the map and
apply only visual changes according to a context vector
c in the environment. We collect a set of success/failure
trajectories where each success/failure trajectory has the
same sequence of actions and differs only in observations,
respectively. We then extract a K-length subsequence of
multimodal rewards from each trajectory as follows:

τ csucc := (r̂cTsucc−K+1, r̂
c
Tsucc−K+2, ..., r̂

c
Tsucc

)

τ cfail := (r̂cTfail−K+1, r̂
c
Tfail−K+2, ..., r̂

c
Tfail

)

where Tsucc denotes the timestep when the agent succeeds
at the task (by reaching a coin) in the success trajectory
and Tfail denotes the timestep when the agent fails the
task (by skipping the coin) in the failed trajectory. Now, to
quantify the quality of the multimodal rewards, we define
three metrics:

1. Distinction (↑): We compute the expectation of the co-
sine distance between τ csucc and τ cfail over the context
distribution: 1−Ec∼C [τ

c
succ ·τ cfail/(∥τ csucc∥·∥τ cfail∥)].

This metric measures the ability of multimodal rewards
to differentiate between successful and failure behav-
iors.

2. Distance between success trajectories (Distance (S))
(↓): We calculate the expected Euclidean distance be-
tween pairs of successful trajectories {τ csucc}c under
different contexts: E(c,c′)∼C [∥τ csucc − τ c

′

succ∥2]. This

2We do not prioritize the sign or relative magnitude of the
multimodal reward because we consider the IL setup. We instead
focus on whether the multimodal reward exhibits distinct patterns
for different behaviors.
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Figure 6: Quality measures of multimodal rewards com-
puted with different representations. (↑) and (↓) imply that
higher/lower values are better, respectively.

metric evaluates whether the reward consistently as-
signs similar reward values to successful behaviors,
regardless of different visual contexts.

3. Distance between failed trajectories (Distance (F))
(↓): In a similar manner, we compute the expected
Euclidean distance between pairs of failed trajectories
{τ cfail}c under different contexts: E(c,c′)∼C [∥τ cfail −
τ c

′

fail∥2].

Note that (↑) / (↓) implies that higher/lower value is better,
respectively. For evaluation, we first select 5 different levels
in CoinRun evaluation environment where the position of
the coin is randomized. Each level consists of a map with
the same configuration, but the colors of the background
and objects are different. We then collect success and failure
trajectories from each level where the order of action is the
same. We use K = 10 for generating subsequences.

Comparison between frozen/fine-tuned CLIP In Fig-
ure 6, we evaluate the quality of multimodal rewards from
the CLIP model with and without fine-tuning. We find
that the multimodal reward from the fine-tuned CLIP outper-
forms the baseline without fine-tuning in terms of all metrics,
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Figure 7: Quality measures of multimodal rewards generated with (i) instructive text (i.e., Inst) and (ii) random text (i.e.,
Random). (↑) and (↓) imply that higher/lower values are better, respectively.

Table 1: Ablation study of the return prediction loss
MSE(R̂t, R̂

∗
t ) in CoinRun environments.

MSE(R̂t, R̂
∗
t ) LFT Train (%) Eval (%)

✗
✗ 90.28% ± 4.21% 56.32% ± 3.55%

✓ 92.01% ± 3.18% 56.28% ± 2.01%

✓
✗ 89.58% ± 2.08% 63.32% ± 2.01%

✓ 90.28% ± 1.59% 72.36% ± 3.48%

which shows that the proposed fine-tuning scheme effec-
tively improves the quality of multimodal rewards. We also
emphasize that this result is consistent with the results in
Figure 4 where MRDT+ with the fine-tuned reward outper-
forms MRDT. This shows that our metrics are well-aligned
with the generalization performance of return-conditioned
policies, supporting the usefulness of our metrics for evalu-
ating the quality of multimodal rewards.

Comparison between different types of text instructions
To investigate whether MRDT makes decisions based on the
adaptive signal from the multimodal reward, we evaluate
the quality of rewards generated with (i) instructive text (i.e.,
Inst) and (ii) random text (i.e., Random). Specifically, we
use “The goal is to collect the coin.” for Inst and “NeurIPS
2023 will be held again at the New Orleans Ernest N. Morial
Convention Center.” for Random. As shown in Figure 7, we
observe that using the instructive text leads to multimodal
rewards of better quality compared to using the random
text. Moreover, we find that using the random text instruc-
tion significantly degrades the performance in both training
and held-out evaluation environments (the rightmost one in
Figure 7). These results highlight the importance of using
the instructive text and demonstrate that MRDT indeed de-
pends on the adaptive signal from the multimodal reward
for acheiving goals at deployment time.

4.3. Ablation Studies

Effect of return prediction We investigate the effect of
including the return prediction loss MSE(R̂t, R̂

∗
t ) in Equa-

tion 2, which encourages the policy to be more aware of
conditioned returns. In Table 1, we observe that the per-

Table 2: Ablation study of the fine-tuning objectives: VIP
Loss LVIP and IDM Loss LIDM in CoinRun environments.

LVIP LIDM Train (%) Eval (%)

✗ ✗ 89.58% ± 2.08% 63.32 % ± 2.01%

✗ ✓ 89.24% ± 6.01% 67.34 % ± 2.66%

✓ ✗ 90.28% ± 2.17% 70.35 % ± 1.01%

✓ ✓ 90.28% ± 1.59% 72.36 % ± 3.48%

formance of MRDT becomes much more sensitive to the
quality of multimodal rewards when trained with the return
prediction loss. For instance, without the return prediction
loss, the evaluation performance becomes almost the same
with or without the fine-tuning scheme, which suggests that
model is insensitive to the quality of rewards. On the other
hand, with the prediction loss, the performance increases
as the quality of reward improves. This implies that the
model gets to become aware of the returns and is thus able
to follow the adaptive signal from the multimodal reward.

Effect of fine-tuning objectives In Table 2, we examine
the effect of fine-tuning objectives by reporting the perfor-
mance of our method with or without the VIP loss LVIP
(Equation 3) and the IDM loss LIDM (Equation 4). We find
that the performance improves with either LVIP or LIDM,
which shows the effectiveness of the proposed losses that
encourages temporal smoothness and robustness to visual
distractions. We also note that the performance with both
objectives is the best, which implies that both losses syner-
gistically contribute to improving the quality of the rewards.

5. Conclusion
In this paper, we have presented Multimodal Reward De-
cision Transformer, an imitation learning framework that
guides the agent to achieve desired goals by using the adap-
tive signal from vision-language multimodal reward. Our
experiments demonstrate that leveraging multimodal re-
wards, which represent how the current observation is close
to achieving the text-specified goals, enables the agent to
achieve even unseen goals at deployment time.
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Supplementary Material
Guide Your Agent with Adaptive Multimodal Rewards

A. Experiment Details
In this section, we describe the details for implementing Multimodal Reward Decision Transformer.

Procgen details We utilize a publicly available implementation3 to replicate the environments introduced by Di Langosco
et al. (2022). We modify the simulator of the environments to render higher-resolution images to leverage pre-trained
multimodal representations for both our method and baselines. In this particular setup, the observations obtained from the
environment at each timestep t comprise an RGB image with dimensions of 256×256×3 and a natural language instruction
that delineates the desired goal. Throughout our experiments, we adhere to the hard environment difficulty as described in
(Cobbe et al., 2020). Maximum episode length for all tasks is 500. To gather expert demonstrations used for training data,
we train PPG (Cobbe et al., 2021) agents on 500 training levels for 200M timesteps per task using hyperparameters provided
in Cobbe et al. (2021). For evaluation purposes, we assess the test performance on 1000 different levels, encompassing
previously unseen themes and goals that differ from those employed in training.

Architecture details Both InstructRL (Liu et al., 2022) and MRDT employ ViT-B/16 as the transformer-policy and
pre-trained multimodal transformer encoder (M3AE; (Geng et al., 2022)) in all experiments, unless stated otherwise. Inspired
by Gao et al. (2021), we attach an additional 2-layer MLP to the end of a pre-trained multimodal transformer encoder and
perform residual-style feature blending with the pre-trained features. In the training phase, we apply gradients only to the
weight of these linear layers. Through empirical evaluation, we observe that this architecture yields superior performance in
both our method and the baseline.

Training details We use 256× 256× 3 RGB observations for training the return-conditioned policy. To stabilize training,
we normalize multimodal returns following the method proposed by Chen et al. (2021), dividing them by 1000 in all
experiments. We use the AdamW optimizer (Loshchilov et al., 2018) with a learning rate of 5× 10−4 and weight decay
5×10−5. A cosine decay schedule is utilized to adjust the training learning rate. In CoinRun experiments, data augmentation
techniques such as color jitter and random rotation are applied to the RGB images ot while maintaining alignment in the
context. However, no augmentation is applied to RGB images in Maze I/II experiments. For scaling the return prediction
loss in training the return-conditioned policy, we set λ = 0.01 in CoinRun experiments and λ = 0.001 in Maze I/II
experiments. During the fine-tuning of the pre-trained multimodal encoder, a 2-layer MLP is attached to the end of both
CLIP image and text encoders. Additionally, an extra 2-layer MLP is added as an action prediction layer for the IDM
objective. The model is trained for 20 epochs, and the one with the lowest validation loss is used for generating multimodal
rewards. To scale the IDM loss in fine-tuning CLIP, we employ β = 1.5 in CoinRun experiments and β = 2.0 in Maze I/II
experiments.

Computation We use 24 CPU cores (Intel Xeon CPU @ 2.2GHz) and 2 GPUs (NVIDIA A100 40GB GPU) for training
return-conditioned policy. The training of MRDT for 50 epochs takes approximately 4 hours for CoinRun experiments with
the largest dataset size. For fine-tuning CLIP, we use 24 CPU cores (Intel Xeon CPU @ 2.2GHz) and 1 GPU (NVIDIA
A100 40GB GPU), and it takes approximately 1.5 hours for Coinrun experiments.

3https://github.com/JacobPfau/procgenAISC

https://github.com/JacobPfau/procgenAISC
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Hypeparameters We report the hyperparameters used in our experiments in Table 3.

Table 3: Hyperparameters of Multimodal Reward Decision Transformer (MRDT). Unless specified, we use the same
hyperparameters used in InstructRL (Liu et al., 2022a).

Hyperparameter Value

Policy batch size 64
Policy epochs 50
Policy context length 4
Policy learning rate 0.0005
Policy optimizer AdamW (Loshchilov & Hutter, 2019)
Policy optimizer momentum β1 = 0.9, β2 = 0.999
Policy weight decay 0.00005
Policy learning rate decay Linear warmup and cosine decay (see code for details)
Policy context length 4
Policy transformer size 2 layers, 4 heads, 768 units

Fine-tuned CLIP batch size 64
Fine-tuned CLIP epochs 20
Fine-tuned CLIP learning rate 0.0001
Fine-tuned CLIP weight decay 0.001
Fine-tuned CLIP adapter layer size 2 layers, 1024 units
Fine-tuned CLIP optimizer AdamW (Loshchilov & Hutter, 2019)
Fine-tuned CLIP optimizer momentum β1 = 0.9, β2 = 0.999

B. Qualitative Results of Multimodal Rewards
In Figure 8, 9, 10, we present the curves of multimodal rewards for frozen/fine-tuned CLIP in the trajectories from
training/held-out evaluation environments. We find that the multimodal reward exhibits an overall increasing trend as
the agent approaches the goal in both frozen and fine-tuned CLIP, irrespective of the training and held-out evaluation
environments. Furthermore, we observe that fine-tuned CLIP not only induces a reward that is temporally smoother in
the intermediate stages compared to frozen CLIP (see Figure 8) but also demonstrates a steeper upward reward curve (see
Figure 9, 10). These results support the claim that the quality of multimodal rewards from the fine-tuned CLIP outperforms
those from the frozen CLIP (Section 4.2).
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(a) Multimodal reward curve in the training environment.
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(b) Multimodal reward curve in the held-out evaluation environment.

Figure 8: Qualitative results of multimodal rewards in CoinRun environments.
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(a) Multimodal reward curve in the training environment.
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(b) Multimodal reward curve in the held-out evaluation environment.

Figure 9: Qualitative results of multimodal rewards in Maze I environments.
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(a) Multimodal reward curve in the training environment.
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(b) Multimodal reward curve in the held-out evaluation environment.

Figure 10: Qualitative results of multimodal rewards in Maze II environments.
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C. Additional Experiments

Table 4: Expert-normalized scores on training/evaluation CoinRun environments investigating the effect of hyperparameter
λ adjusting the scale of return prediction loss in training return-conditioned policy. The result shows the mean and standard
variation averaged over three runs.

λ LFT Train (%) Eval (%)

0.001 ✗ 89.93% ± 3.94% 62.65% ± 10.12%

✓ 85.42% ± 1.80% 71.69% ± 5.71%

0.01 ✗ 89.58% ± 2.08% 63.32% ± 2.01%

✓ 90.28% ± 1.59% 72.36% ± 3.48%

0.1 ✗ 87.15% ± 2.62% 62.65% ± 10.31%

✓ 85.76% ± 3.18% 73.37% ± 3.48%

1.0 ✗ 87.15% ± 4.70% 61.64% ± 6.38%

✓ 81.25% ± 1.04% 73.37% ± 2.66%
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Figure 11: Expert-normalized scores on training/evaluation environments of MRDT trained using multimodal rewards
generated with (i) instructive text (i.e., Inst) and (ii) random text (i.e., Random) in Maze I environments (left) and Maze II
environments (right). The result shows the mean and standard deviation averaged over three runs.

Effect of scaling return prediction loss We investigate how the coefficient λ, which determines the weight of the return
prediction loss in training return-conditioned policy, affects the performance of MRDT. To this end, we test various values
of λ in CoinRun environments. Table 4 shows the performance of MRDT in training/held-out evaluation environments with
different λ. We find that performance is not significantly different according to the value of λ in the held-out evaluation
environments. These results indicate that MRDT is robust to the choice of hyperparameter λ.

Extra ablation study on text instructions In Figure 11, we further investigate whether MRDT leverages adaptive signals
from multimodal rewards in decision-making. We evaluate the quality of rewards generated with instructive text (i.e., Inst)
and random text (i.e., Random) in Maze I/II environments. Specifically, we use a natural language instruction for each
environment, as described in Section 4 for Inst, and ”NeurIPS 2023 will be held again at the New Orleans Ernest N. Morial
Convention Center” for Random. We find that using random text instructions results in a decline in performance in both
training and evaluation environments. These findings align with the trend observed in Figure 7.
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D. Limitation and Future Work
One limitation of our work is that we currently rely on a single image-text pair to compute the multimodal reward at every
timestep t. Although our approach has shown effectiveness both quantitatively and qualitatively, there are tasks where
rewards depend on the history of past observations (i.e., non-Markovian) (Bacchus et al., 1996; 1997; Kim et al., 2023).
To address this limitation, it would be valuable to explore the extension of our method to incorporate video-text pairs for
calculating multimodal rewards. This extension could involve generating multimodal rewards using pre-trained video-text
multimodal representations (Liu et al., 2022b; Luo et al., 2022; Wang et al., 2022; Rasheed et al., 2023), which presents an
intriguing avenue for better generalization across various goals in behavior learning. Another aspect to consider is that the
tasks we have examined so far are relatively simple, as they involve only a single condition for success. To tackle more
complex problems, we are interested in investigating approaches that leverage large language models (Huang et al., 2022a;b;
Ahn et al., 2022; Driess et al., 2023) in conjunction with our method. Finally, an interesting direction to explore would be
the utilization of multimodal rewards in combination with extrinsic rewards (Seo et al., 2021; Pathak et al., 2019; Burda
et al., 2019).

E. Potential Negative Societal Impacts
We do not anticipate significant negative societal impacts in that our method is now limited to playing simple simulation
games. However, if our method is applied in real-world scenarios, privacy concerns may arise considering that behavior
cloning agents used in such applications, like autonomous driving (Shah et al., 2023) or real-time control (Brohan et al.,
2022; Driess et al., 2023), require large amounts of data, which often contain controversial information. Additionally, a
behavior cloning policy presents a challenge as it imitates specified demonstrations, potentially including undesirable actions.
If some bad actions are included in expert demonstrations (e.g., behaviors that may be violent or harmful to the pedestrians
are contained in the training data for mobile manipulation tasks), the policy could have significant negative impacts on users.
To address this concern, future directions should focus on developing agents with safe adaptation in addition to performance
enhancement efforts.


