
Under review as a conference paper at ICLR 2023

GOING BEYOND APPROXIMATION: ENCODING CON-
STRAINTS FOR EXPLAINABLE MULTI-HOP INFERENCE
VIA DIFFERENTIABLE COMBINATORIAL SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Integer Linear Programming (ILP) provides a viable mechanism to encode ex-
plicit and controllable assumptions about explainable multi-hop inference with
natural language. However, an ILP formulation is non-differentiable and can-
not be integrated into broader deep learning architectures. Recently, Thayaparan
et al. (2022) proposed a novel methodology to integrate ILP with Transformers
to achieve end-to-end differentiability for complex multi-hop inference. While
this hybrid framework demonstrates to deliver better answer and explanation se-
lection than transformer-based and ILP solvers, the neuro-symbolic integration
still relies on a convex relaxation of the ILP formulation, which can produce sub-
optimal solutions. To improve these limitations, we propose Diff-Comb Explainer,
a novel neuro-symbolic architecture based on Differentiable BlackBox Combi-
natorial solvers (DBCS) (Pogančić et al., 2019). Unlike existing differentiable
solvers, the presented model does not require the transformation and relaxation of
the explicit semantic constraints, allowing for a direct and a more efficient integra-
tion of ILP formulations. Diff-Comb Explainer demonstrates improved accuracy
in answer and explanation selection over non-differentiable solvers, Transformers
and constraint-based differentiable multi-hop inference frameworks.

1 INTRODUCTION

Given a question expressed in natural language, ILP-based Multi-hop Question Answering (QA)
aims to construct an explanation graph of interconnected facts (i.e., natural language sentences) to
support the answer (see Figure 1). This framework provides a viable mechanism to encode explicit
and controllable assumptions about the structure of the inference (Khashabi et al., 2018; Khot et al.,
2017; Khashabi et al., 2016). For this reason, inference based on constrained optimization is gen-
erally regarded as interpretable and transparent, providing structured explanations in support of the
underlying reasoning process (Thayaparan et al., 2020).

However, ILP solvers are non-differentiable and cannot be integrated as part of a broader deep
learning architecture (Paulus et al., 2021; Pogančić et al., 2019). Moreover, these approaches are
often limited by the exclusive adoption of hard-coded heuristics for the inference and cannot be
optimised end-to-end on annotated corpora to achieve performance comparable to deep learning
counterparts (Thayaparan et al., 2022; Khashabi et al., 2018).

In an attempt to combine the best of both worlds, Thayaparan et al. (2022) proposed a novel neuro-
symbolic framework (Diff-Explainer) that integrates explicit constraints with neural representations
via Differentiable Convex Optimization Layers (Agrawal et al., 2019). Diff-Explainer combines
constraint optimization solvers with Transformers-based representations, enabling end-to-end train-
ing for explainable multi-hop inference. The non-differenitability of ILP solvers is alleviated by
approximating the constraints using semi-definite programming (Helmberg, 2000). This approxi-
mation usually requires non-trivial transformations of ILP formulations into convex optimization
problems.

Since constraint-based multi-hop inference is typically framed as optimal subgraph selection via
binary optimization (0, 1), The semi-definite relaxation employed in Diff-Explainer necessitates a
continuous relaxation of the discrete variables (from {0, 1} to [0, 1]). While this process can provide
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Figure 1: Example of question, answer and explanations as graph (Xie et al., 2020; Jansen et al.,
2018)

tight approximations for ILP problems, this relaxation can still lead to sub-optimal solutions in
practice (Yoshida, 2011; Thapper & Živnỳ, 2018) leading to errorneous answer and explanation
prediction.

To improve on these limitations, we propose Diff-Comb Explainer, a novel neuro-symbolic archi-
tecture based on Differentiable BlackBox Combinatorial solvers (DBCS) (Pogančić et al., 2019).
The proposed algorithm transforms a combinatorial optimization solver into a composable building
block of a neural network. DBCS achieves this by leveraging the minimisation structure of the com-
binatorial optimization problem, computing a gradient of continuous interpolation to address the
non-differenitability of ILP solvers. In contrast to Diff-Explainer (Thayaparan et al., 2022), DBCS
makes it possible to compute exact solutions for the original ILP problem under consideration, ap-
proximating the gradient.

Our experiments on multi-hop question answering with constraints adopted from Explana-
tionLP (Thayaparan et al., 2021) yielded an improvement of 11% over non-differentiable solvers
and 2.08% over Diff-Explainer. Moreover, we demonstrate that the proposed approach produces
more accurate and faithful explanation-based inference, outperforming non-differentiable ILP-based
solvers, Diff-Explainer and Transformer-based approaches.

2 RELATED WORK

Constraint-based multi-hop inference ILP has been applied for structured representa-
tion (Khashabi et al., 2016) and over semi-structured representation extracted from text (Khot et al.,
2017; Khashabi et al., 2018). Early approaches were unsupervised. However, recently Thayaparan
et al. (2021) proposed the ExplanationLP model optimised towards answer selection via Bayesian
optimisation. ExplanationLP was limited to fine-tuning only nine parameters and used pre-trained
neural embedding. Diff-Explainer (Thayaparan et al., 2022) was the first approach to integrate con-
straints into a deep-learning network via Differentiable Convex Optimisation Layer (Agrawal et al.,
2019) by approximating ILP constraints using Semi-definite programming. (Lovász & Schrijver,
1991).

Hybrid reasoning with Transformers Clark et al. (2021) proposed “soft theorem provers” op-
erating over explicit theories in language. This hybrid reasoning solver integrates natural language
rules with transformers to perform deductive reasoning. Saha et al. (2020) improved on top of
it, enabling the answering of binary questions along with the proofs supporting the prediction. The
multiProver (Saha et al., 2021) evolves on top of these conceptions to produce an approach that is ca-
pable of producing multiple proofs supporting the answer. While these hybrid reasoning approaches
produce explainable and controllable inference, they assume the existence of natural language rules
and have only been applied to synthetic datasets. On the other hand, our approach does not require
extensive rules set and can tackle complex scientific and commonsense QA.
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Figure 2: End-to-end architectural diagram of Diff-Comb Explainer. The integration of Differen-
tiable Blackbox Combinatorial solvers will result in better explanation and answer prediction.

Differentiable Blackbox Combinatorial Optimisation Solver Given the following bounded in-
teger problem:

min
x∈X

c · x subject to Ax ≤ b, (1)

where X ∈ Zn, c ∈ Rn, x are the variables, A = [a1, . . . , am] ∈ Rm×n is the matrix of constraint
coefficients and b ∈ Rm is the bias term. The output of the solver g(c) returns the argminx∈X of
the integer problem.

Differentiable Combinatorial Optimisation Solver (Pogančić et al., 2019) (DBCS) assumes that A,
b are constant and the task is to find the dL/dc given global loss function L with respect to solver
output x at a given point x̂ = g(ĉ). However, a small change in c is typically not going to change
the optimal ILP solution resulting in the true gradient being zero.

In order to solve this problem, the approach simplifies by considering the linearisation f of L at the
point x̂.

f(x) = L(x̂) +
dL

dx
(x̂) · (x− x̂) (2)

to derive:
df(g(c))

dc
=

dL

dc
(3)

By introducing the linearisation, the focus is now to differentiating the piecewise constant func-
tion f(g(c)). The approach constructs a continuous interpolation of f(g(c)) by function fλ(w).
Here the hyper-parameter λ > 0 controls the trade-off between informativeness of the gradient and
faithfulness to the original function.

3 Diff-COMB EXPLAINER: DIFFERENTIABLE BLACKBOX COMBINATORIAL
SOLVER FOR EXPLAINABLE MULTI-HOP INFERENCE

ILP-based QA is typically applied to multiple-choice question answering (Khashabi et al., 2018;
Khot et al., 2017; Khashabi et al., 2016; Thayaparan et al., 2021). Given Question (Q) and the set
of candidate answers C = {c1, c2, c3, . . . , cn} the aim is to select the correct answer cans.

In order to achieve this, ILP-based approaches convert question answer pairs into a list of hypothesis
H = {h1, h2, h3, . . . , hn} (where hi is the concatenation of Q with ci) and typically adopt a
retrieval model (e.g: BM25, FAISS (Johnson et al., 2017)), to select a list of candidate explanatory
facts F = {f1, f2, f3, . . . , fk}. Then construct a weighted graph G = (V,E,W ) with edge
weights W : E → R where V = {{hi} ∪ F}, edge weight Wik of each edge Eik denote how
relevant a fact fk is with respect to the hypothesis hi.

Given this premise, ILP-based Multi-hop QA can be defined as follows (Thayaparan et al., 2022):
Definition 3.1 (ILP-Based Multi-Hop QA). Find a subset V ∗ ⊆ V , h ∈ V ∗ and E∗ ⊆ E such that
the induced subgraph G∗ = (V ∗, E∗) is connected, weight W [G∗ = (V ∗, E∗)] :=

∑
e∈E∗ W (e)

is maximal and adheres to set of constraints Mc designed to emulate multi-hop inference. The
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hypothesis hi with the highest subgraph weight W [G∗ = (V ∗, E∗)] is selected to be the correct
answer cans.

As illustrated in Figure 2, Diff-Comb Explainer has 3 major parts: Graph Construction, Subgraph
Selection and Answer/Explanation Selection. In Graph Construction, for each candidate answer ci
we construct graph Gi = (V i, Ei, W i) where the V i = {hi}∪{F} and weights W i

ik of each edge
Ei

ik denote how relevant a fact fk is with respect to the hypothesis hi. These edge weights (W i
ik)

are calculated using a weighted (θ) sum of scores calculated using transformer-based (STrans)
embeddings and lexical overlap.

In the Subgraph Selection step, for each Gi Differentiable Blackbox Combinatorial Solver (DBCS)
with constraints are applied to extract subgraph G∗. In this paper, we adopt the constraints proposed
for ExplanationLP (Thayaparan et al., 2021). ExplanationLP explicit abstraction by grouping facts
into abstract and grounding facts. Abstract facts are core scientific facts that a question is attempting
to test, and grounding facts link concepts in the abstract facts to specific terms in the question/answer.
For example, in Figure 1 the core scientific fact is about the nature of convex lens and how they
refract light (F1). Facts F2, F3, F4 help to connect the abstract fact to the question/answer.

Finally, in Answer/Explanation Selection the model is to predict the correct answer cans and relevant
explanations Fexp. During training time, the loss is calculated based on gold answer/explanations
to fine-tune the transformers (STrans) and weights (θ). The rest of the section explains each of the
components in detail.

3.1 GRAPH CONSTRUCTION

In order to facilitate grounding abstract chains, the retrieved facts F are classified into grounding
facts FG = {fg

1 , f
g
2 , f

g
3 , ..., f

g
l } and abstract facts FA = {fa

1 , f
a
2 , f

a
3 , ..., f

a
m} such that F = FA ∪

FG and l +m = k.

Similarly to Diff-Explainer (Thayaparan et al., 2022), we use two relevance scores: semantic and
lexical scores, to calculate the edge weights. We use a Sentence-Transformer (STrans) (Reimers
et al., 2019) bi-encoder architecture to calculate the semantic relevance. The semantic relevance
score from STrans is complemented with the lexical relevance score. The semantic and lexical
relevance scores are calculated as follows:

Semantic Relevance (s): Given a hypothesis hi and fact fj we compute sentence vectors of
h⃗i = STrans(hi) and f⃗j = STrans(fj) and calculate the semantic relevance score using cosine-
similarity as follows:

sij = S(h⃗i , f⃗j ) =
h⃗i · f⃗j

∥h⃗i ∥∥f⃗j ∥
(4)

Lexical Relevance (l): The lexical relevance score of hypothesis hi and fj is given by the percentage
of overlaps between unique terms (here, the function trm extracts the lemmatized set of unique
terms from the given text):

lij = L(hi, fj) =
|trm(hi) ∩ trm(fj)|

max(|trm(hi)|, |trm(fj)|)
(5)

Given the above scoring function, we construct the edge weights matrix (W ) as follows:

W i
jk =



−θggljk (j, k) ∈ FG

−θaaljk (j, k) ∈ FA

θgaljk j ∈ FG, k ∈ FA

θqglljk + θqgssjk j ∈ FG, k = hi

θqalljk + θqalsjk j ∈ FA, k = hi

(6)

Here relevance scores are weighted by θ parameters which are clamped to [0, 1].

3.2 SUBGRAPH SELECTION VIA DIFFERENTIABLE BLACKBOX COMBINATORIAL SOLVERS

Given the above premises, the objective function is defined as:
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min − 1(W i · Y i) (7)

We adopt the edge variable Y i ∈ {0, 1}(n+1)×(n+1) where Y i
j,k (j ̸= k) takes the value of 1 iff edge

Ei
jk belongs to the subgraph and Y i

jj takes the value of 1 iff V i
j belongs to the subgraph.

Given the above variable, the constraints are defined as follows:

Answer selection constraint The candidate hypothesis should be part of the induced subgraph:∑
j ∈ {hi}

Y i
jj = 1 (8)

Edge and Node selection constraint If node V i
j and V i

k are selected then edges Ei
jk and Ei

kj will
be selected. If node V i

j is selected, then edge Ejj will also be selected:
Y i
jk ≤ Y i

jj ∀ (j, k) ∈ E (9)

Y i
jk ≤ Ykk ∀ (j, k) ∈ E (10)

Y i
jk ≥ Yjj + Ykk − 1 ∀ (j, k) ∈ E (11)

Abstract fact selection constraint Limit the number of abstract facts selected to M :

∑
i

Y i
jj ≤ M ∀j ∈ FA (12)

3.3 ANSWER AND EXPLANATION SELECTION

The solved adjacency variable Ŷ i represents the selected edges for each candidate answer choice ci.
Not all datasets provide gold explanations. Moreover, even when the gold explanations are available,
they are only available for the correct answer with no explanations for the wrong answer.

In order to tackle these shortcomings and ensure end-to-end differentiability, we use the softmax (σ)
of the objective score (W i · Ŷ i) as the probability score for each choice.

We multiply each objective score W i · Ŷ i value by the temperature hyperparameter (T ) to obtain
soft probability distributions γi (where γi = (W i · Ŷ i) · T ). The aim is for the correct answer cans
to have the highest probability.

In order to achieve this aim, we use the cross entropy loss lc as follows to calculate the answer
selection loss Lans as follows:

Lans = lc(σ(γ
1, γ2, · · · γn), cans) (13)

If gold explanations are available, we complement Lans with explanation loss Lexp. We employ
binary cross entropy loss lb between the selected explanatory facts and gold explanatory facts Fexp

for the explanatory loss as follows:
Lexp = lb(Ŷ

ans[f1, f2, . . . , fk], Fexp) (14)

We calculate the total loss (L) as weighted by hyperparameters λans, λexp as follows:

L = λansLans + λexpLexp (15)

4 EMPIRICAL EVALUATION

4.1 ANSWER AND EXPLANATION SELECTION

We use the WorldTree corpus (Xie et al., 2020) for training the evaluation of explanation and answer
selection. The 4,400 question and explanations in the WorldTree corpus are split into three different
subsets: train-set, dev-set and test-set. We use the dev-set to assess the explainability performance
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since the explanations for test-set are not publicly available. The background knowledge is consists
of 5000 abstract facts from the WorldTree table store (WTree) (Xie et al., 2020) and over 100,000
is-a grounding facts from ConceptNet (Speer et al., 2017).

Baselines: We use the following baselines to compare against our approach for the WorldTree
corpus:

1. BERTBase and BERTLarge (Devlin et al., 2019): To use BERT for this task, we concatenate
every hypothesis with k retrieved facts, using the separator token [SEP]. We use the Hugging-
Face (Wolf et al., 2019) implementation of BertForSequenceClassification, taking the prediction
with the highest probability for the positive class as the correct answer.

2. ExplanationLP: Non-differentiable version of ExplanationLP. Using the constraints stated in
Section 3, we fine-tune the θ parameters using Bayesian optimization and frozen STrans rep-
resentations. This baseline aims to evaluate the impact of end-to-end fine-tuning over the non-
differentiable solver.

3. Diff-Explainer: Diff-Explainer has already exhibited better performance over other explainable
multi-hop inference approaches, including ILP-based approaches including TableILP (Khashabi
et al., 2016), TupleILP (Khot et al., 2017) and graph-based neural approach PathNet (Kundu
et al., 2019). Similar to our approach, we use ExplanationLP constraints with Diff-Explainer. We
use similar hyperparameters and knowledge base used in Thayaparan et al. (2022).

Metrics The answer selection is evaluated using accuracy. For evaluation of explanation selection,
we use Precision@K. In addition to Precision@K, we introduce two new metrics to evaluate the
truthfulness of the answer selection to the underlying inference. The metrics are as follows:

Explanatory Consistency@K: Question/answer pair with similar explanations indicates similar
underlying inference (Atanasova et al., 2022). The expectation is that similar underlying inference
would produce similar explanations (Valentino et al., 2021; 2022). Given a test question Qt and
retrieved explanations Et we find set of Questions Qs

t = {Q1
t , Q2

t , . . . } with at least K overlap
gold explanations along with the retrieved explanations Es

t = {e1t , e2t , . . . }. Given this premise,
Explanatory Consistency@K is defined as follows:∑

eit∈Es
t
[eit ∈ Et]∑

eit∈Es
t
|eit|

(16)

Explanatory Consistency measures out of questions/answer pairs with at least K similar gold expla-
nations and how many of them share a common retrieved explanation.

Faithfulness: The aim is to measure how much percentage of the correct prediction is derived from
correct inference and wrong prediction is derived from wrong inference over the entire set. Let’s
say that the set of questions correctly answered as AQc

, wrongly answered questions AQw
, set of

questions with at least one correctly retrieved explanation as AQ1
and set of questions where no

correctly retrieved explanations AQ0 . Given this premise, Faithfulness is defined as follows:
|AQw ∩AQ0 |+ |AQc ∩AQ1 |

|AQc
∪AQw

|
(17)

A higher faithfulness implies that the underlying inference process is reflected in the final answer
prediction.

Table 1 illustrates the explanation and answer selection performance of Diff-Comb Explainer and
the baselines. We report scores for Diff-Comb Explainer trained for only the answer and optimised
jointly for answer and explanation selection.

Since BERT does not provide explanations, we use facts retrieved from the fact retrieval for the best
k configuration (k = 3) as explanations. We also report the scores for BERT without explanations.

We draw the following conclusions from the results obtained in Table 1 (The performance increase
here are expressed in absolute terms):

(1) Diff-Comb Explainer improves answer selection performance over the non-differentiable solver
by 9.47% with optimising only on answer selection and 10.89% with optimising on answer and
explanation selection. This observation underlines the impact of the end-to-end fine-tuning frame-
work. We can also observe that strong supervision with optimising explanation selection yields
better performance than weak supervision with answer selection.

6



Under review as a conference paper at ICLR 2023

Model
Explanation Selection (dev) Answer

Selection
(test)Precision Explanatory

Consistency Faithfulness

@2 @1 @3 @2 @1
Baselines
BERTBase - - - - - - 45.43
BERTLarge - - - - - - 49.63

Fact Retrieval (FR) Only 30.19 38.49 21.42 15.69 11.64 - -
BERTBase + FR - - - - - 52.65 58.06
BERTLarge + FR - - - - - 51.23 59.32

ExplanationLP 40.41 51.99 29.04 14.14 11.79 71.11 62.57
Diff-Explainer 41.91 56.77 39.04 20.64 17.01 72.22 71.48

Diff-Comb Explainer
- Answer selection only 45.75 61.01 49.04 29.99 18.88 73.37 72.04
- Answer and explanation
selection

47.57 63.23 43.33 33.36 20.71 74.47 73.46

Table 1: Comparison of explanation and answer selection of Diff-Comb Explainer against other
baselines. Explanation Selection was carried out on the dev set as the test explanation was not
public available.

(2) Diff-Comb Explainer outperforms the best transformer-based model by 14.14% for answer selec-
tion. This increase in performance demonstrates that integrating constraints with transformer-based
architectures leads to better performance.

(3) Diff-Comb Explainer outperform the best Diff-Explainer configuration (answer and explanation
selection) by 0.56% even in the weak supervision setting (answer only optimization). We also
outperform Diff-Explainer by 1.98% in the best setting.

(4) Diff-Comb Explainer is better for selecting relevant explanations over the other constraint-based
solvers. Diff-Comb Explainer outperforms the non-differentiable solver at Precision@K by 8.41%
(k =1) and 6.05% (k =2). We also outperform Diff-Explainer by 3.63% (k =1) and 4.55% (k =2).
The improvement of Precision@K over the Fact Retrieval only (demonstrated with BERT + FR) by
16.98% (k =1) and 24.74% (k =2) underlines the robustness of our approach to noise propagated
by the upstream fact retrieval.

(5) Our models also exhibit higher Explanatory Consistency over the other solvers. This perfor-
mance shows that the optimization model is learning and applying consistent inference across dif-
ferent instances. We also outperform the fact retrieval model which was also a transformer-based
model trained on gold explanations.

(6) Answer prediction by black-box models like BERT do not reflect the explanation provided. This
fact is indicated by the low Faithfulness score obtained by both BERTBase/BERTLarge. In contrast,
the high constraint-based solver’s Faithfulness scores emphasise how the underlying inference re-
flects on the final prediction. In particular, our approach performs better than the non-differentiable
models and Diff-Explainer.

In summary, despite the fact that Diff-Explainer and Diff-Comb Explainer approaches use the same
set of constraints, our model yields better performance, indicating that accurate predictions gener-
ated by ILP solvers are better than approximated sub-optimal results.

4.2 QUALITATIVE ANALYSIS

Table 2 illustrates some of the explanations extracted for ExplanationLP, Diff-Explainer and Diff-
Comb Explainer. Both explanations and answer predictions in Question (1) are entirely correct
for our model. In this example, both ExplanationLP and Diff-Explainer have failed to retrieve any
correct explanations or predict the correct answer. Both the approaches are distracted by the strong
lexical overlaps with the wrong answer.
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Question (1): Which measurement is best expressed in light-years?: Correct Answer: the distance between
stars in the Milky Way.
ExplanationLP
Answer: the time it takes for planets to complete their orbits. Explanations: (i) a complete revolution; orbit of
a planet around its star takes 1; one planetary year, (ii) a light-year is used for describing long distances
Diff-Explainer
Answer: the time it takes for planets to complete their orbits. Explanations: (i) a light-year is used for describ-
ing long distances, (ii) light year is a measure of the distance light travels in one year
Diff-Comb Explainer
Answer: the distance between stars in the Milky Way. Explanations: (i) light years are a astronomy unit used
for measuring length, (ii) stars are located light years apart from each other

Question (2): Which type of precipitation consists of frozen rain drops?: Correct Answer: sleet.
ExplanationLP
Answer: snow. Explanations: (i) precipitation is when snow fall from clouds to the Earth, (ii) snow falls
Diff-Explainer
Answer: sleet. Explanations: (i) snow falls, (ii) precipitation is when water falls from the sky
Diff-Comb Explainer
Answer: sleet. Explanations: (i) sleet is when raindrops freeze as they fall, (ii) sleet is made of ice

Question (3): Most of the mass of the atom consists of?: Correct Answer: protons and neutrons.
ExplanationLP
Answer: neutrons and electrons. Explanations: (i) neutrons have more mass than an electron, (ii) neutrons
have more mass than an electron
Diff-Explainer
Answer: protons and neutrons. Explanations: (i) the atomic mass is made of the number of protons and
neutrons, (ii) precipitation is when water falls from the sky
Diff-Comb Explainer
Answer: protons and neutrons. Explanations: (i) the atomic mass is made of the number of protons and
neutrons, (ii) precipitation is when water falls from the sky

Table 2: Example of predicted answers and explanations (Only CENTRAL explanations) obtained
from our model with different levels of fine-tuning.

Question (2) at least one explanation is correct and a correct answer prediction for our model. In the
example provided, Diff-Explainer provides the correct answer prediction with both the retrieved facts
not being explanatory. Diff-Explainer arrives at the correct answer prediction with no explanation
addressing the correct answer.

In Question (3) both our model and Diff-Explainer provide the correct answer but with both facts not
being explanations. The aforementioned qualitative (Question 1 and 2) and quantitative measures
(Explanatory Consistency@K, Faithfulness) indicate how the underlying explanatory inference re-
sults in the correct prediction; there are cases where false inference still leads to the correct answer
with our model as well. In this case, the inference is distracted by the strong lexical overlaps irrele-
vant to the question.

However, from the qualitative analysis, we can conclude that the explainable inference that hap-
pens with our model is more robust and coherent when compared to the Diff-Explainer and non-
differentiable models.

4.3 KNOWLEDGE AGGREGATION WITH INCREASING DISTRACTORS

One of the key characteristics identified by Thayaparan et al. (2022) is the robustness of Diff-
Explainer to distracting noise. In order to evaluate if our model also exhibits the same charac-
teristics, we ran our model for the increasing number of retrieved facts k and plotted the answer
selection accuracy for WorldTree in Figure 3.

As illustrated in the Figure, similar to Diff-Explainer, our approach performance remains stable with
increasing distractors. We also continue to outperform Diff-Explainer across all sets of k.

BERT performance drops drastically with increasing distractors. This phenomenon is in line with
existing work (Thayaparan et al., 2022; Yadav et al., 2019a). We hypothesise that with increasing
distractors, BERT overfits quickly with spurious inference correlation. On the other hand, our ap-
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Model Explainable Accuracy
BERTLarge No 35.11

IR Solver (Clark et al., 2016) Yes 20.26
TupleILP (Khot et al., 2017) Yes 23.83
TableILP (Khashabi et al., 2016) Yes 26.97
ExplanationLP
(Thayaparan et al., 2021)

Yes 40.21

DGEM (Clark et al., 2016) Partial 27.11
KG2 (Zhang et al., 2018) Partial 31.70
ET-RR (Ni et al., 2019) Partial 36.61
Unsupervised AHE (Yadav
et al., 2019b)

Partial 33.87

Supervised AHE (Yadav et al.,
2019b)

Partial 34.47

AutoRocc (Yadav et al., 2019a) Partial 41.24
Diff-Explainer
(ExplanationLP) (Thayaparan
et al., 2022)

Yes 42.95

Diff-Comb Explainer
(ExplanationLP)

Yes 43.21

Table 3: ARC challenge scores compared
with other Fully or Partially explainable ap-
proaches trained only on the ARC dataset. Figure 3: Accuracy for different number of retrieved facts.

proach circumvents this problem with the inductive bias provided by the constraint optimization
layer.

4.4 COMPARING ANSWER SELECTION WITH ARC BASELINES

Table 3 presents a comparison of publicly reported baselines on the ARC Challenge-Corpus (Clark
et al., 2018) and our approach. These questions have proven to be challenging to answer for other
LP-based question answering and neural approaches. While models such as UnifiedQA (Khashabi
et al., 2020) and AristoBERT (Xu et al., 2021) have demonstrated performance of 81.14 and 68.95,
they have been trained on other question-answering datasets, including RACE (Lai et al., 2017).
Moreover, despite its performance, UnifiedQA does not provide explanations supporting its infer-
ence.

In Table 3, to provide a rigorous comparison, we only list models that have been trained only on
the ARC corpus and provides explanations supporting its inference to ensure fair comparison. Here
the explainability column indicates if the model delivers an explanation for the predicted answer. A
subset of the models produces evidence for the answer but remains intrinsically black-box. These
models have been marked as Partial. As illustrated in the Table 3, Diff-Comb Explainer outperforms
the best non-differentiable constraint-solver model (ExplanationLP) by 2.8%. We also outperform a
transformer-only model AutoRocc by 1.97%. While our improvement over Diff-Explainer is small,
we still demonstrate performance improvements for answer selection. On top of performances ob-
tained for explanation and answer selection with WorldTree corpus, we have also established better
performances than leaderboard approaches.

5 CONCLUSION

This paper proposed a novel framework for encoding explicit and controllable assumptions as part of
an end-to-end learning framework for explainable multi-hop inference using Differentiable Black-
box Combinatorial Solvers (Pogančić et al., 2019). We empirically demonstrated improved answer
and explanation selection performance compared with the existing differentiable constraint-based
solver for multi-hop inference (Thayaparan et al., 2022). We also demonstrated performance gain
and increased robustness to noise when combining constraints with transformer-based architectures.
In this paper, we adopted the constraints of ExplanationLP, but it is possible to encode more complex
inference constraints within the model.

Diff-Comb Explainer builds on previous work by Thayaparan et al. (2022) and investigates the
combination of symbolic knowledge (expressed via constraints) with neural representations. We
hope this work will encourage researchers to encode different domain-specific priors, leading to
more robust, transparent and controllable neuro-symbolic inference models for NLP.
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imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc
/paper/2019/file/9ce3c52fc54362e22053399d3181c638-Paper.pdf.

Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and Isabelle Augenstein. Diagnostics-
guided explanation generation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10445–10453, 2022.

Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter D Turney, and
Daniel Khashabi. Combining retrieval, statistics, and inference to answer elementary science
questions. In AAAI, pp. 2580–2586. Citeseer, 2016.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over language.
In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences
on Artificial Intelligence, pp. 3882–3890, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Christoph Helmberg. Semidefinite programming for combinatorial optimization, 2000.

Peter Jansen, Elizabeth Wainwright, Steven Marmorstein, and Clayton Morrison. Worldtree: A
corpus of explanation graphs for elementary science questions supporting multi-hop inference.
In Proceedings of the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018), 2018.
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6 APPENDIX

The pseudo-code to train Diff-Comb Explainer end-to-end is summarized in Algorithm 1.

Experimental Setup: We employ the following experimental setup:

• Sentence Transformer Model: ALL-MPNET-BASE-V2 (Song et al., 2020).
• Fact retrieval representation: ALL-MPNET-BASE-V2 trained with gold explanations of WorldTree

Corpus to achieve a Mean Average Precision of 40.11 in the dev-set.
• Fact retrieval: FAISS retrieval (Johnson et al., 2017) using pre-cached representations.
• Background knowledge: 5000 abstract facts from the WorldTree table store (WTree) and over

100,000 is-a grounding facts from ConceptNet (CNet) (Speer et al., 2017).
• The experiments were carried out for k = {1, 2, 3, 5, 10, 20, 30, 40, 50} and the best configuration

for each model is selected.
• The hyperparameters λ, λans, λexp, T were fine-tuned for 50 epochs using the Adpative Experi-

mentation Platform.
• M=2 for ExplanationLP, Diff-Explainer and Diff-Comb Explainer.

6.1 EXTERNAL CODE-BASES

• Differentiable Blackbox Combinatorial Solvers Examples: https://github.com/marti
us-lab/blackbox-differentiation-combinatorial-solvers

• Sentence Transformer code-base: https://huggingface.co/sentence-transformer
s/all-mpnet-base-v2
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Algorithm 1: Training Diff-Comb Explainer
Data: A, b← Multi-hop Inference Constraints
Data: fw ← Graph weight Function
Data: λ← Hyperparameter for DBCS interpolation
epoch← 0;
while epoch ≤ max epochs do

foreach hi ∈ H do
Gi ← fact-graph-construction(hi, F );
li ← L(hi, F );
θ ← clamp([0, 1]);
F⃗ ← STrans(F );
h⃗i ← STrans(hi);
si ← S(h⃗i, F⃗ );
W i ← fw(s

i, li; θ);
Ŷ i ← DBCS(−W i, A, b;λ);
γi ← (W · Ŷ i) · T ;

end
Lans = lc(σ(γ

1, γ2, · · · γn), cans);
if Fexp is available then
Lexp = lb(Ŷ

ans[f1, f2, . . . , fk], Fexp);
L = λansLans + λexpLexp;

else
L = Lans;

end
update θ, STrans using AdamW optimizer by minimizing loss;
epoch← epoch+ 1;

end
Result: Store best θ and STrans

6.2 INTEGER LINEAR PROGRAMMING OPTIMIZATION

The components of the linear programming system is as follows:

• Solver: Gurobi Optimization https://www.gurobi.com/products/gurobi-optimizer
/

The hyperparatemers used in the ILP constraints:

• Maximum number of abstract facts (M ): 2

Infrastructures used:

• CPU Cores: 32
• CPU Model: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
• Memory: 128GB

6.3 HYPERPARAMETERS

For Diff-Comb Explainer we had to fine-tune hyperparameters λ, λans, λexp, T . We fine-tune for 50
epochs using the Adpative Experimentation Platform with seed of 42.

The bounds of the hyperparameters are as follows:

• λ: [100, 300]
• λexp: [0.0, 1.0]
• λans: [0.0, 1.0]
• T : [1e− 2, 100]

The hyperparameters adopted for our approach are as follows:

• λ: 152
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• λexp: 0.72
• λans: 0.99
• T : 8.77
• max epochs: 8
• gradient accumulation steps: 1
• learning rate: 1e-5
• weight decay: 0.0
• adam epsilon: 1e-8
• warmup steps: 0
• max grad norm: 1.0
• seed: 42

The hyperparameters adopted for BERT are as follows:

• gradient accumulation steps: 1
• learning rate: 1e-5
• weight decay: 0.0
• adam epsilon: 1e-8
• warmup steps: 0
• max grad norm: 1.0
• seed: 42

We fine-tuned using 4 Tesla V100 GPUs for 10 epochs in total with batch size 32 for Base and 16
for Large.

6.4 DATA

WorldTree Dataset: Data can be obtained from: http://cognitiveai.org/explanationbank/

ARC-Challenge Dataset: https://allenai.org/data/arc. Only used the Challenge split.
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