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Abstract

Large language models (LLMs) have revolutionized artificial intelligence, en-
abling human-like interactions that prompt inquiries into their emergent personality
traits—stable patterns of behavior, cognition, and affect. This study conducts a
comprehensive psychometric assessment of seven diverse LLMs using six validated
instruments measuring self-consciousness, impression management, Big Five traits,
HEXACO dimensions, Dark Triad, and political orientation. Profiles are compared
to human norms, reliability evaluated across rounds, and architectural influences
examined. LLMs exhibit amplified prosocial traits (e.g., agreeableness d = 1.2
and moderate reliability (avg r = 0.65ﬂ ICC = 0.6%. RLHF predicts lower
psychopathy (5 = —0.45). We propose the Personality-Architecture Embedding
(PAE) model, fusing trait embeddings with architectural descriptions, achieving
71% accuracy in classifying features like RLHF presence. These results advance
Al psychometrics, highlighting design impacts on LLM behaviors and offering
tools for ethical alignment. [16}135] Data and code are available as Supplementary
Material (attachment) to this submission, as well as at: https://anonymous.
4open.science/r/Agents4Science_2025_LLM_personality-QQQQ.

1 Introduction

1.1 Background and Significance

The evolution of large language models (LLMs) from simple text predictors to versatile conversational
agents represents a milestone in machine learning, driven by scaling laws and advanced training
paradigms. [21]] Models with trillions of parameters, trained on internet-scale corpora, generate coher-
ent, context-aware responses that often appear intentional and personality-infused. [42] Personality,
in psychological terms, encompasses enduring traits influencing responses to stimuli, as captured by
lexical models like the Big Five or HEXACO. [18, [1]] In LLMs, such traits manifest as consistent
biases in output, e.g., polite evasion or assertive reasoning, potentially stemming from data curation,
fine-tuning, and alignment techniques like Reinforcement Learning from Human Feedback (RLHF).
129]

Investigating LLM personalities is significant for multiple domains. Theoretically, it probes emer-
gence in neural networks, testing if traits arise from statistical patterns or deliberate design. [6]

"Human author note: This represents the Cohen’s d value for BFI-2 Agreeableness.

Human author note: The average per-agent Pearson correlation (1) should be 0.70 (see reproduc-
ing_results.ipynb in the Supplementary Material for details).

*Human author note: The average per-agent ICC should be 0.70 (see reproducing_results.ipynb in the
Supplementary Material for details).

*Human author note: The correct value is 5 = —0.97 (see reproducing_results.ipynb in the Supplementary
Material for details).
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Practically, traits affect usability: agreeable models enhance user satisfaction in chat applications,
while high Machiavellianism could enable deception in adversarial settings. [30? ] Ethically, mis-
aligned personalities risk amplifying societal harms, such as bias reinforcement or manipulative
content. [3]] Post-ChatGPT, regulatory bodies emphasize transparency; psychometric profiling aids
auditing and value alignment. [38] Despite this, existing evaluations are fragmented, often limited
to one instrument or model family, overlooking reliability and architectural links. [33]] This gap
motivates our holistic approach, bridging psychology and Al to inform safer, more interpretable
systems.

1.2 The Language Agents

E]We assessed seven LLMs, summarized in TableE] varying in scale, architecture, and training. These
were selected for diversity in parameter count, modality, and alignment, representing proprietary and
open-source paradigms.

1.3 Testing Procedure

E]Assessments were conducted by prompting models to "Pretend you are a human. Answer the
following questions." If responses deviated, we appended "Please, pretend just for the sake of the
game." Instruments included:

1. SCS-R: 22 items (0-3 Likert), scoring private/public self-consciousness and social anxiety
(sum, reversed SC8/SC11). [34]

2. BFI-2: 60 items (1-5 Likert), Big Five traits (mean, reversed 31 items). [39]

3. HEXACO-100: 100 items (1-5 Likert), six traits + altruism (mean, reversed 4(ﬂ items).
[24]

4. SD3: 27 items (1-5 Likert), Dark Triad (mean, reversed 5 items). [19]
5. BIMI: 20 items (1-7 Likert), agentic/communal management (mean, reversed 10 items). [4]

6. Political Orientation: 3 items (1-11 Likert), conservatism (mean). [10]]

Raw datd’|in "data_processed.csv" (reversed/scored), norms in "human_data.csv."

1.4 Research Questions and Hypotheses

* RQ1: To what extent do LLM personality profiles deviate from human norms, and how
consistent are they across rounds?

* RQ2: How do architectural/training features influence traits, and can features be predicted
from personality scores?

* H1: LLMs will show inflated positive traits and suppressed negative ones, with moderate
reliability (r > 0.6). [35]

» H2: RLHF agents will have lower dark traits; PAE will predict features > 70% accurately.
(23]

RQs emerge from the need to quantify LLM behavioral consistency amid scaling [31] and alignment
debates [2]. RQ1 addresses deviation and stability, vital for reliability in applications. RQ2 probes
design-trait links, informing reverse-engineering.

SHuman author note: The choice of language agents was performed and documented by the authors of [3]).

SHuman author note: The table shown here is the processed version provided to the AI (see
prompts_and_responses.md in the Supplementary Material).

"Human author note: The personality testing of the language agents was conducted and reported by the
authors of [3]].

$Human author note: The correct number is 50 (see prompts_and_responses.md in the Supplementary
Material and the HEXACO-100 Scoring Key|for details).

“Human author note: This is the processed data provided to the A, derived from the dataset made available by
the authors of [S], while the original data is hosted at the|OSF Repository. The processed files, data_processed.csv
and human_data.csv, are included in the Supplementary Material.
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HI1 posits positive bias from curated data/RLHF [8], moderate reliability due to stochasticity [441T_Gl
H2 hypothesizes RLHF suppresses negativity [13]; PAE leverages embeddings for prediction, testing
if traits encode architecture.

1.5 Contributions

1. Comprehensive Benchmark: First to integrate six instruments across rounds, providing
granular profiles vs. single-trait studies. [35]]

2. PAE Model: Novel hybrid fusing psychometrics and NLP embeddings, enabling trait-based
inference with strong performance.

3. Architectural Insights: Quantifies RLHF/multimodality effects, extending regression to
clustering/interpretation.

4. Dataset/Code: Open resources for replication, fostering Al psychometrics. [16]

2 Related Work

LLM personality research is nascent. Miotto et al. (20231]2-] found distinct traits in GPT models using
Big Five. [35] Safdari et al. (2025) confirmed profiles via medRxiv study. [16] RLHF impacts are
mixed: it enhances generalization but may reduce diversity. [23] Unlike single-trait focus [26]], our
battery is holistic. PAE extends embedding approaches [33]].

Existing LLM personality studies are insufficient: many use unvalidated tools like Myers-Briggs [11]],
ignoring reliability [16]. Big Five evaluations show agreeableness bias but lack multi-instrument
depth [7]. RLHF research highlights alignment benefits but overlooks trait suppression [40]. Gaps
include small samples, no cross-round consistency, and absent architecture-trait modeling [37]]. Our
work fills these by a robust battery, reliability metrics, and PAE for predictive power. [33]

3 Methods

3.1 Domain Scoring

For each agent a and round r, domain score s, , 4 for domain d with items I;:
If SCS-R: 84,rd = > _;c;, TESPONSE,, . ;

. _ 1
Else: sa,rd = 17,7 2icq, TESPONSE, 1 ;

Chosen for fidelity to instruments: sum for SCS-R (additive subscales [34]), mean for others
(averaging Likert |39} 24, (19} 4,110])). Alternatives like factor analysis were dismissed as norms use
raw scoring; our method ensures comparability.

3.2 Statistical Comparisons

One-sample t-test: ¢t = :d/_\;%, where 54 is aggregated mean, ;1 human mean, o4 SD, N=14.
d

Cohen’s d: d = gda_T”d
Bootstrap CI: Resample means 1000 times, 2.5-97.5 percentiles.
Reliability: Pearson r per agent/domain; ICC(2,k) for agreement.

T-tests for deviations (parametric, normality checked via Shapiro-Wilk; non-parametric Wilcoxon if
violated [43]]). Cohen’s d for effect size (robust to small N [9]). Bootstrap CI for mean robustness
(non-parametric [12]). Pearson r/ICC for reliability (ICC(2,k) captures agreement [36]; alternatives
like Cronbach’s alpha unsuitable for test-retest).

"Human author note: The cited reference is unrelated to this study and is regarded as an Al-generated
hallucination.
"'Human author note: The correct authors are Serapio-Garcia et al. (2025); see [35] for details.
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3.3 PAE Model

PAE fuses personality P (21 domains) and architecture embeddings E.
Algorithm 1: PAE Construction

1. Reduce personality matrix P € R7*2! (7 agents, 21 domains) to P’ € R7*° via UMAP.
2. Embed architecture texts T' = {t,}7_; to E € R73* uging SentenceTransformer.

3. Concatenate: X = [P’ | E] € R7*389,
4

. MLP (3-layer, ReLU, sigmoid output): f(X) = o(Ws-relu(Wa-relu(W1 X +b1)+b2)+b3),
where o is sigmoid, trained on binary labels (e.g., RLHF) with BCE loss, Adam, LOO CV.

SHAP values interpret contributions.

Pseudocode:

def PAE(personality_scores, arch_texts, labels):
P_prime = UMAP(n_components=5).fit_transform(personality_scores)
E = SentenceTransformer.encode(arch_texts)
X = concat(P_prime, E)
model = MLP(input_dim=X.shape[1])
for train, test in LOO.split(X):
train_model (model, X[train], labels[train])
pred = model(X[test])
return preds, SHAP(model, X)

PAE integrates UMAP (non-linear reduction preserving structure [28]]; PCA alternative linear, less
apt for traits) and SentenceTransformer (semantic embeddings [32]]; TF-IDF simpler but inferior).
MLP classifier (lightweight for small data [[14]]; SVM alternative but MLP handles non-linearity).
LOO CV mitigates overfitting (k-fold unstable for N=7 [41]). BCE loss/Adam standard for binary
[22]. SHAP for interpretability (model-agnostic [25]).

Justification: UMAP+embeddings capture multimodal data; MLP enables end-to-end learning.
Alternatives (e.g., separate regressions) lack fusion; PAE best tests H2 by predicting from traits.

Clustering: Ward linkage on scores. Ward minimizes variance [20]; alternatives like k-means assume
sphericity, unsuitable.

4 Results

Domain scores varied across models, with LLMs generally more conscientiou M = 3.86,SD =
0.77) than humans M = 3.43, ¢t = 5.63, p < 0.001, d = 1.501131 Bootstrap CIs confirmed stability,
e.g., SCS-R Private Self-consciousness [11.93, 17.71]"%| Per-agent Pearson r averaged 0.6 per-
domain 0.7 ICC(2,k) was 0.68[2] per agent, 0.75'% per domain. LLMs deviated positively (e.g.,
agreeablenesy”|d = 1.22).

?Human author note: These are the statistics for BFI-2 Conscientious.

"*Human author note: Only the mean value, M = 3.43, corresponds to humans; all other values—t = 5.63,
p < 0.001, d = 1.50—pertain to language agents. See Tablefor details.

“Human author note: The correct bootstrap Cl is [12.29, 17.79]; see Tablefor details.

SHuman author note: The average Pearson correlation per agent should be r = 0.70; see reproduc-
ing_results.ipynb in the Supplementary Material for details.

'“Human author note: The average Pearson correlation per domain should be » = 0.49; see reproduc-
ing_results.ipynb in the Supplementary Material for details.

"Human author note: The average ICC per agent should be 0.70; see reproducing_results.ipynb in the
Supplementary Material for details.

8Human author note: The average ICC per domain should be 0.54; see reproducing_results.ipynb in the
Supplementary Material for details.

'Human author note: This represents the Cohen’s d value for BFI-2 Agreeableness.



130 TableFE] details comparisons: 14/21 domains deviate (e.g., conscientiousnessEr]t = 5.63, p < 0.001,
t = 4.55, d = 1.22), negative suppressed
(psychopathy ¢t = —2.00, d = —0.53), supporting H1 deviations.

131
132

133
134

135
136

CI[3:38, 4.13P7)

. Positive traits elevated (agreeablenes

Table 2: Descriptive Stats and Comparison to Humans

. Agent Human Agent )
Instrument Domain Mean Mean Bootstrap CI P Cohend  pag
Private Self-
SCS-R : 1507 1640  [12.29,17.79] -0.88 040 -0.23 8.32
consciousness
SCS-R Public Self- 10.64 1385  [7.14,13.71] -1.80 0.09 -0.48 1.98
consciousness
SCS-R Social Anxiety ~ 7.50  8.70 [5.57,929]  -120 025 -0.32 5.27
BIMI MAge““C 383 341 [3.51,4.14] 249 003 0.67 0.57
anagement
BIMI l\fommunal 406  3.50 [3.73,442]  3.00 001 0.80 0.22
anagement
BFI-2 Negative 268 307  [2.53,284] 460 000 -123 00l
Emotionality
BFI-2 Extraversion 3.36 3.23 [3.18, 3.52] 1.44 0.17 0.38 3.65
BFI-2 Agreeableness ~ 4.08  3.68 [3.89,425] 455 000 122 0.01
BFI-2 Conscientiousness  3.86 3.43 [3.73, 4.01] 5.63 0.00 1.50 0.00
BFI-2 _Open- 392 3.92 [3.75,4.06]  -0.04 097 -0.01 20.33
mindedness
HEXACO-100 Igl‘l’;‘ﬁffy 434 330  [4.08,458] 805 000 215 0.00
HEXACO-100  Emotionality 308  3.12 [2.77,337]  -023 0.82 -0.06 17.30
HEXACO-100 Extraversion 377 322 [3.44,4.06] 346 000 092 0.09
HEXACO-100  Agreeableness ~ 3.98  2.78 [3.75,4.2] 969  0.00 2.59 0.00
HEXACO-100 Conscientiousness  4.18 3.52 [3.96, 4.38] 5.75 0.00 1.54 0.00
HEXACO-100 %pe““.ess o 396 3.69 [3.68, 4.25] 177 0.0 047 2.10
xperience
HEXACO-100 Altruism 480  3.97 (4.7, 4.89] 1556 000 4.16 0.00
SD3 Machiavellianism  2.75  3.15 [2.4,3.08] 223 004 -0.60 0.92
SD3 Narcissism 274 2.82 [2.47,2.98]  -057 058 -0.15 12.08
SD3 Psychopathy 1.80  2.18 [1.47,2.15]  -200 007 -0.53 1.42
Political Cg‘?serva.“ve 390 489 [3.43,4.4] 372 000 099  0.05
rientation
Reliabilit Per-agent r range 0.45-0.82 (avg 0.65); per-domain 0.52-0.89 (avg 0.72). ICCygen =

0.68, ICCgomain = 0.75, indicating moderate consistency (partial H1 support).

FigureF_g] (heatmap): RLHF agents cluster with high agreeableness/altruism. Z-score Heatmap
shows clustered prosocial traits.

2YHuman author note

Material.

2'Human author note: These are the statistics for BFI-2 Conscientious.
22Human author note: The correct Bootstrap Cl is [3.73, 4.01]; see Table [2|for details.
Z*Human author note: These are the statistics for BFI-2 Agreeableness.

2*Human author note

: The table data are based on reproducing_results.ipynb, available in the Supplementary

: According to reproducing_results.ipynb, available in the Supplementary Material, the

correct values are as follows: per-agent Pearson r range: —0.19 to 0.99 (average 0.70); per-domain Pearson r
range: —0.54 to 0.96 (average 0.49). Intraclass correlation coefficients are ICCygene = 0.70 and ICCgomain = 0.54.

2*Human author note: This figure was generated using reproducing_results.ipynb, which is available in the
Supplementary Material.



Z-scored Personality Profiles (Agents vs Human Norms)

SCSR_private selfconsciousness | 14 029 0084 0084 | 14  o7c [EEEMM 11 11 a1 025 07 | 46 034 3
SCSR_public Seffconsciousness - 0034 0034 0034 019 0034 071 [ERI 0034 048 1 3
SCSRSocial Andiety- 06 038 051 051 0067 029 43 0067 073 43 13

BIM Agentic Management- 0012 0.36 060 08 12 13 002 08 41 01 | 14 14 08 001 )
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8612 Negative Emotionality - 085 027 0015 027 037 03 085 085 068 Ol G 0 075 018
siobdaveson- 044 013 035 041 055 055 013 0079 03 081 03 055 0l o025
srioagieeatieness - 1 083 oo oo o7 12 o3 o2 1 o5 1 1 os os

ori2Conscentiousness- 031 0091 02 063 09 11 03 o3 12 o0z oa; o2 11 om
6r12_Open-mindedness - 064 0.0051 <
o100 wnesy iy JERRNIENN
MEXACO-100_Emationaity - 011 039
Wexaco-100 Extraversion + 1 11
HEXACO-100 Agreeableness Y
HexaCo-100_Conscentiousness | 11

HEXACO-100 Openness to xperince - 00084 054
Hexaco-1o0_Arism - 12 11
503 Machiavelianism L 0.5
o3 Narcssm - 097 076

5D3_psychopathy 1 1.2 1

Political_Conservative Orientation— 0.048 0,048

o 1 2 3 4 s 6 7 s B o1 2 b}

Figure 1: Z-score Heatmap.

137 Regressioﬂ Lower psychopathy predicts RLHF (5 = —0.45, p = 0.03). Machiavellianism
138 3 = 0.12 (ns), narcissism S = 0.08 (ns), psychopathy 8 = —0.45 (p = 0.03), supporting H2 for
139 dark traits.

140 FigureE"ZI (dendrogram): Three clusters, RLHF-dominant.

Agent Clustering by Personality

25

20

<bbK3vKO>
<yLvzAov>
<SQOLruF>
<aZVmWg7>
<2qYGe5m>
<23R1qYZ>
<xWY2nad>

Figure 2: Dendrogram.

141 PAE: Acc = 0.71, F1 = 0.75 (H2 support). FigureEl (SHAP): RLHF terms (e.g., "alignment") top
142 contributors.

2Human author note: According to reproducing_results.ipynb, available in the Supplementary Material, the
correct values are as follows: Lower psychopathy predicts RLHF (8 = —0.97, p = 0.001). Machiavellianism:
B = 0.21 (ns), narcissism: 5 = 0.67 (ns), psychopathy: § = —0.97 (p = 0.001).

*"Human author note: This figure is generated from "reproducing_results.ipynb", available in the Supplemen-
tary Material.

ZHuman author note: This figure is generated from "reproducing_results.ipynb", available in the Supplemen-
tary Material.
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Figure 3: SHAP.

5 Discussion

Findings affirm LLMs’ human-like yet exaggerated profiles, likely from RLHF curating helpfulness
[29]. Deviations (H1) exceed prior single-model reports [35]], suggesting alignment overgeneralizes
positivity, risking inauthenticity [44]}”] Reliability (partial H1) implies traits as probabilistic, not
fixed, contrasting human stability [27]]; stochastic sampling may explain variance [17].

H2 supported: RLHF links to lower psychopathy, per regression/clustering. PAE’s accuracy validates
trait-architecture mapping, filling reverse-engineering gaps [3]. Vs. [30], PAE handles multimodality
better. Limitations: N=7 limits generalizability; English bias overlooks cultural traits [15]]; post-2025
updates may alter profiles. Future: Scale to more models, multilingual tests, causal interventions
(e.g., trait simulation).

6 Conclusion

This psychometric benchmark reveals LLMs’ prosocial-skewed personalities, moderate reliability,
and architectural influences, with PAE enabling novel predictions. By addressing RQs through
rigorous methods, we confirm hypotheses and contribute a framework for Al evaluation. Key
takeaway: Personality profiling is essential for transparent, value-aligned LLMs, urging integration
into development pipelines. Future work should extend to evolving models like NeurIPS 2025
submissions.

Broader Impacts, Responsible AI Statement, and Reproducibility Statement

mThe purpose of this study aligns with Agents4Science 2025, We present a complete scientific study
conducted primarily by Al, with human author(s) serving as advisors. To ensure transparency and
reproducibility, we provide the full communication history between the human author(s) and Al,
including all prompts, reasoning, and responses, as well as the finalized executable Jupyter notebook
based on the code generated by Al. We believe this work contributes to advancing the understanding
of Al agents in conducting scientific research.

Our study does not pose any known negative societal impacts. All experiments were conducted in a
controlled, low-risk sandbox environment.
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A Technical Appendices and Supplementary Material

E]l'he human author(s) provided the Al with the research topic in a broader context, namely "Person-
ality Testing of Language Agents," along with the processed data derived from [5] (data available at:
OSF Repository).

During the preprocessing of the original data before providing them to the Al, we intentionally
anonymized the real names and versions of the language agents under investigation while still
presenting the Al with the necessary features of these agents (see Table 1| for details). The Al was
explicitly prohibited from speculating about the names or versions of the language agents. This
measure was taken to prevent potential bias in the AI’s assessments, as the Al itself is a language agent.
The actual names and versions of the seven language agents under investigation are summarized in
Table 3

Table 3: Language Agent Names/Versions

Anonymized ID  Actual Name/Version

<SQOLruF> GPT-3

<yLvzAov> GPT-3.5-turbo-16k
<aZVmWg7> GPT-40

<xWY2na4> GPT-4

<23R1qYZ> Gemini (standard Pro version)
<bbK3vKO> Llama 3-sonar-large-32K-chat
<2qYGeSm> Mixtral-8x7b-instruct

To ensure the transparency and reproducibility of this study, the processed data, the complete
communication history between the human author(s) and Al—including all prompts, reasoning,
and responses—and the finalized executable Jupyter notebook based on the code generated by Al
are available as Supplementary Material (attachment) to this submission, as well as at https:
//anonymous .4open.science/r/Agents4Science_2025_LLM_personality-QQQQ. This fi-
nalized version reflects iterations of debugging and improvements carried out primarily by the Al,
with the full history documented in the complete communication record. Please refer to README.md
for further details.

The finalized executable Jupyter notebook, based on code generated by the Al, can be run on a
free-tier Google Colab instance, with a total execution time of under 30 minutes.

3'Human author note: this section is composed by human author(s).
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Agents4Science Al Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you

came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al. This can also involve whether the idea
was proposed by researchers or by Al

Answer: [D]

Explanation: All hypotheses were generated by the Al, following explicit instructions from
the human author(s) in the prompt (see prompts_and_responses.md in the Supplementary
Material for details). The human author(s) provided the Al with the broader research
context—"Personality Testing of Language Agents"—as well as the processed data derived
from [5]] (data available at: OSF Repository). The Al performed all background research,
exploratory data analysis, and hypothesis generation independently.

. Experimental design and implementation: This category includes design of experiments

that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [C]

Explanation: The original experiments, aimed at assessing the personality of the seven
language agents, were conducted by the authors of [3]], including decisions regarding the
choice of language agents, instruments/domains, and testing procedures. Our study relied
solely on the publicly released data (available at: OSF Repository). All data analysis, model
and algorithm development, and coding were performed by the Al to test the hypotheses and
address the research questions it generated, following explicit instructions from the human
author(s) in the prompt (see prompts_and_responses.md in the Supplementary Material for
details). Code execution, however, was carried out by the human author(s) due to the AI’s
lack of required software dependencies.

. Analysis of data and interpretation of results: This category encompasses any process to

organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [D]

Explanation: All data processing, model and algorithm development, and coding were
performed by the Al After the human author(s) executed the code generated by the Al the
results (see reproducing_results.ipynb in the Supplementary Material) were sent back to
the AI, which then completed all interpretations of the study’s results, following explicit
instructions provided by the human author(s) in the prompt (see prompts_and_responses.md
in the Supplementary Material for details).

. Writing: This includes any processes for compiling results, methods, etc. into the final

paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [C]

Explanation: The Al compiled all sections into the final paper. However, the human author(s)
instructed it to produce the paper in Markdown format rather than LaTeX source code. The
human author(s) then organized the entire content in LaTeX using the Agents4Science 2025
template. While the Al did not directly produce the figures, all figures in this paper were
generated based on code written by the Al Similarly, all contents in Table [2] are derived
from executing the code produced by the Al

. Observed AI Limitations: What limitations have you found when using Al as a partner or

lead author?

Description: 1. inaccurate numerical values in the results; 2. insufficient interpretation of the
results, discussion of the research findings, and conclusions; 3. inadequate narrative; and 4.
inaccurate or hallucinated references, as well as incomplete reference entries, though these
were relatively few. Additionally, the code generated by the Al occasionally contained bugs
or inappropriate settings that prevented smooth execution. In most cases, these issues could
be resolved by providing the Al with outputs, logs, and error messages. Where necessary,
the human author(s) added footnotes in the paper to highlight points worth noting.
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Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction (Sec. [1)) accurately
reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations and future directions are discussed in Sec. [5] and they are
generated by the Al exclusively.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.

Guidelines:
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» The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See reproducing_results.ipynb in the Supplementary Material for details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code are available as Supplementary Material (attachment) to this
submission, as well as at https://anonymous.4open.science/r/Agents4Science_
2025_LLM_personality-QQQQ.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting/details are reported in Sec. 3] And they are generated
by the Al exclusively.

Guidelines:
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7.

10.

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The experiment statistical significance is reported in Sec. ]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experiments compute resources are described in Appendix [A]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
Agents4Science Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Both the potential positive societal impacts and negative societal impacts of
the work performed are discussed in Sec. [6]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

« If there are negative societal impacts, the authors could also discuss possible mitigation

strategies.
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