Published in Transactions on Machine Learning Research (05/2024)

Mildly Constrained Evaluation Policy
for Offline Reinforcement Learning

Linjie Xu linjie.xu@gmul.ac.uk
Queen Mary University of London

Zhengyao Jiang z.jiang@cs.ucl.ac.uk
University College London

Jinyu Wang, Lei Song and Jiang Bian {wang.jinyu, lei.song, jiang.bian}@microsoft.com
Microsoft Research Asia

Reviewed on OpenReview: |https: //openreview. net/ forum? id=tmAROs79Pb

Abstract

Offline reinforcement learning (RL) methodologies enforce constraints on the policy to ad-
here closely to the behavior policy, thereby stabilizing value learning and mitigating the
selection of out-of-distribution (OOD) actions during test time. Conventional approaches
apply identical constraints for both value learning and test time inference. However, our
findings indicate that the constraints suitable for value estimation may in fact be excessively
restrictive for action selection during test time. To address this issue, we propose a Mildly
Constrained Evaluation Policy (MCEP) for test time inference with a more constrained tar-
get policy for value estimation. Since the target policy has been adopted in various prior ap-
proaches, MCEP can be seamlessly integrated with them as a plug-in. We instantiate MCEP
based on TD3BC (Fujimoto & Gu, 2021), AWAC (Nair et al.l|2020) and DQL (Wang et al.,
2023)) algorithms. The empirical results on D4RL MuJoCo locomotion, high-dimensional
humanoid and a set of 16 robotic manipulation tasks show that the MCEP brought signifi-
cant performance improvement on classic offline RL methods and can further improve SOTA
methods. The codes are open-sourced at https://github.com/egg-west/MCEP.git.

1 Introduction

Offline reinforcement learning (RL) extracts a policy from data that is pre-collected by unknown policies.
This setting does not require interactions with the environment thus it is well-suited for tasks where the
interaction is costly or risky. Recently, it has been applied to Natural Language Processing (Snell et al.
2022; [Sodhi et al., |2023)), e-commerce (Degirmenci & Jones| [2022) and real-world robotics (Kalashnikov
et al., |2021; Rafailov et al} |2021; [Kumar et al.| [2022; [Shah et al., 2022 Bhateja et al., [2023) etc. Compared
to the standard online setting where the policy gets improved via trial and error, learning with a static
offline dataset raises novel challenges. One challenge is the distributional shift between the training data and
the data encountered during deployment. To attain stable evaluation performance under the distributional
shift, the policy is expected to stay close to the behavior policy. Another challenge is the "extrapolation
error” (Fujimoto et al., 2019; Kumar et al.l |2019)) that indicates value estimate error on unseen state-action
pairs or Out-Of-Distribution (OOD) actions. Worsely, this error can be amplified with bootstrapping and
cause instability of the training, which is also known as deadly-triad (Van Hasselt et al., 2018]). Majorities
of model-free approaches tackle these challenges by either constraining the policy to adhere closely to the
behavior policy (Wu et al.,[2019; Kumar et al.,|2019; [Fujimoto & Gul 2021; |Wang et al.,[2023)) or regularising
the Q to pessimistic estimation for OOD actions (Kumar et al., 2020; [Lyu et al., |2022)). In this work, we
focus on policy constraint methods.

https://openreview.net/forum?id=imAROs79Pb
https://github.com/egg-west/MCEP.git

Published in Transactions on Machine Learning Research (05/2024)

Policy constraint methods minimize the disparity between the policy distribution and the behavior distribu-
tion. Meanwhile, the strength of policy constraints introduces a tradeoff between stabilizing value estimates
and attaining better inference performance. While various policy constraints have been developed to ad-
dress this tradeoff, it remains a common problem for them that an excessively constrained policy enables
stable value estimate but degrades the evaluation performance (Kumar et al. |2019} [Singh et al., [2022; [Yu
et all [2023)). In particular, the unstable value training may pose the exploding gradient problem. Under
this limitation, the valid constraint strengths may not support the best exploitation of the learned value
function. In other words, the learned value function may imply a better solution that the overly contained
policy fails to learn (See Figure|2|and more details in Section|5.1)). To reveal this, we investigate the strength
ranges of stable value learning and of better inference performance. However, the investigation into the
latter question is impeded by the existing tradeoff, as it requires tuning the constraint without influencing
the value learning. To conduct this investigation, we circumvent the tradeoff and seek solutions through the
learned value function.

The idea of our approach is inspired by (Czarnecki et al., 2019), which has shed light on the potential
of distilling a student policy that improves over the teacher using the teacher’s learned value function.
Therefore, we propose to derive an extra evaluation policy from the value function. The evaluation policy
does not join the policy evaluation step thus tunning its constraint does not influence value learning. The
actor from the actor-critic is now called target policy as it is used only to stabilize the value estimation.
With the help of evaluation policy, we empirically investigate the constraint strengths for 1) stabilizing
value learning and 2) better evaluation performance. The results find that a milder constraint improves the
evaluation performance but may fall beyond the constraint space of stable value estimation. This finding
indicates that the optimal evaluation performance may not be found under the tradeoff, especially when
stable value learning is the priority. Therefore, we propose to separate the problems of value learning and
evaluation performance, instead of solving them by tradeoff. Consequently, we propose a novel approach of
using a Mildly Constrained Evaluation Policy (MCEP) derived from the value function to avoid solving the
above-mentioned tradeoff and to achieve better evaluation performance. As the target policy is commonly
used in previous approaches, our MCEP can be integrated with them seamlessly.

The contributions of this work are concluded as following:

e A novel understanding to the policy constraint methods, showing that the learned value function
is not well exploited under the tradeoff between value learning and policy performance. With this
insight, we propose to separate the problems of value learning and policy performance instead of
solving the tradeoff.

o We propose to use an extra mildly constrained evaluation policy with a more constrained target
policy, to achieve better policy performance and stable value learning simultaneously.

e The performance evaluation on D4RL MuJoCo locomotion, high-dimentional humanoid and a set of
16 robotic manipulation tasks show that the MCEP obtains significant performance improvement
for policy constraint methods. Moreover, a comparison to inference-time action selection methods
and 3 groups of ablation study verifies the significance of the proposed method.

2 Related Work

policy constraint method (or behavior-regularized policy method) (Wu et al.| 2019; |Kumar et al., [2019; [Siegel
et al. 12020; [Fujimoto & Gul, |2021)) forces the policy distribution to stay close to the behavior distribution.
Different discrepancy measurements such as KL divergence (Jaques et al |2019; 'Wu et al.| [2019), reverse KL
divergence (Cai et al., |2022) and Maximum Mean Discrepancy (Kumar et al.,|2019) are applied in previous
approaches. (Fujimoto & Gu,|2021)) simply adds a behavior-cloning (BC) term to the online RL method Twin
Delayed DDPG (TD3) (Fujimoto et all 2018)) and obtains competitive performances in the offline setting.
While the above-mentioned methods calculate the divergence from the data, (Wu et al., 2022)) estimates the
density of the behavior distribution using VAE, and thus the divergence can be directly calculated. Except
for explicit policy constraints, implicit constraints are achieved by different approaches. E.g. (Zhou et al.

Published in Transactions on Machine Learning Research (05/2024)

Qz, »°T5
ny,_ O, 73 PE
' N./j:fzv /\
QT‘!O T, .4' \Qﬁ2

e 3
ity / @z

Restrictive Constrained Policies —> Policy Improvement

Evaluation Policy Space — Policy Evaluation

Figure 1: Left: diagram depicts policy trajectories for target policy # and MCEP 7¢. Right: policy
evaluation steps to update Q7 and policy improvement steps to update 7 and 7€.

2021)) ensures the output actions stay in support of the data distribution by using a pre-trained conditional
VAE (CVAE) decoder that maps latent actions to the behavior distribution. In all previous approaches, the
constraints are applied to the learning policy that is queried during policy evaluation (value learning) and is
evaluated in the environment during deployment. Our approach does not count on this learning policy for
the deployment, instead, it is used as a target policy only for the value learning.

The policy constraint, well-known to be efficient to reduce extrapolation errors, can degrade the policy
performance when it is overly restrictive. (Kumar et al.| [2019) reveals a tradeoff between reducing errors
in the Q estimate and reducing the suboptimality bias that degrades the evaluation policy. A constraint
is designed to create a policy space that ensures the resulting policy is under the support of the behavior
distribution for mitigating bootstrapping error. (Singh et al., [2022) discussed the inefficiency of policy
constraints on heteroskedastic dataset where the behavior varies across the state space in a highly non-uniform
manner, as the constraint is state-agnostic. A reweighting method is proposed to achieve a state-aware
distributional constraint to overcome this problem. Instead of study this well-known trade-off, we propose
to separate the problem of value learning and policy performance and devise a solution of circumventing the
tradeoff by using an extra evaluation policy.

There are methods that extract an evaluation policy from a learned Q estimate. One-step RL (Brandfon-
brener et all 2021} [Li et al., |2023) first estimates the behavior policy and its Q estimate, which is later
used for extracting the evaluation policy. Although its simplicity, one-step RL is found to perform badly in
long-horizon problems due to a lack of iterative dynamic programming (Kostrikov et al., [2022). (Kostrikov!
et al.l 2022) proposed Implicity Q learning (IQL) that avoids query of OOD actions by learning an upper
expectile of the state value distribution. No explicit target policy is modeled during their QQ learning. With
the learned Q estimate, an evaluation policy is extracted using advantage-weighted regression (Wang et al.|
2018; [Peng et al., 2019). Our approach has a similar form of extracting an evaluation policy from a learned
Q estimate. However, one-step RL aims to avoid distribution shift and iterative error exploitation during
iterative dynamic programming. 1QL avoids error exploitation by eliminating OOD action queries and aban-
doning policy improvement (i.e. the policy is not trained against the Q estimate). Our work instead tries to
address the error exploitation problem and evaluation performance by using policies of different constraint
strengths.

3 Background

We model the environment as a Markov Decision Process (MDP) (S, A, R, T, po(s),7,), where S is the state
space, A is the action space, R is the reward function, T'(s|s, a) is the transition probability, po(s) is initial

Published in Transactions on Machine Learning Research (05/2024)

state distribution and v is a discount factor. In the offline setting, a static dataset Dg = {(s,a,7,s')} is
pre-collected by a behavior policy mg. The goal is to learn a policy 74(s) with the dataset D that maximizes
the discounted cumulated rewards in the MDP:

o0

¢" = arg m(;;ix ESONPO(')vatNﬂ'dJ(St)75t+1NT('|St7at) [Z /th(st’ a)] (1)
t=0

Next, we introduce the general policy constraint method, where the policy 7, and an off-policy Q estimate
Qg are updated by iteratively taking policy improvement steps and policy evaluation steps, respectively. The
policy evaluation step minimizes the Bellman error:

‘CQ (9) = E3t7atND7at+lN7Td)(5t+l) [(Q9 (Stv at) - (T + ’YQG/(St, at+1)))2] . (2)

where the ¢’ is the parameter for a delayed-updated target Q network. The Q value for the next state is
calculated with actions a¢41 from the learning policy that is updated through the policy improvement step:

£7T(¢) =]ESND,(LN'rrd)(s) [_Qﬁ (57 (L) + 'LUC(WQ7 7T¢)}, (3)

where C' is a constraint measuring the discrepancy between the policy distribution 74 and the behavior
distribution mg. The w € (0,00] is a weighting factor. Different kinds of constraints were used such as
Maximum Mean Discrepancy (MMD), KL divergence, and reverse KL divergence.

4 Method

In this section, we first introduce the generic algorithm that can be integrated with any policy constraint
method. Next, we introduce three examples based on offline RL methods TD3BC, AWAC and DQL. With a
mildly constrained evaluation policy, we name these three instances as TD3BC-MCEP, AWAC-MCEP and
DQL-MCEP.

4.1 Offline RL with mildly constrained evaluation policy

The proposed method is designed to overcome the tradeoff between stable value learning and a perfor-
mant evaluation policy. In previous constrained policy methods, a restrictive policy constraint is ap-
plied to obtain stable value learning. We retain this benefit but use this policy (actor) 7, as a tar-
get policy only to obtain stable value learning. To achieve better evaluation performance, we introduce
an MCEP 7 that is updated by taking policy improvement steps with the value function Qz,. Dif-
ferent from 7y, 5 does not participate in the policy evaluation procedure. Therefore, a mild policy
constraint can be applied, which helps T 80 further away from the behavior distribution without influ-
encing the stability of value learning. We demonstrate the policy spaces and policy trajectories for 7y
and 7¢ in the Lhs. diagram of Figure where 77 is updated in the wider policy space using Qx,-
The overall algorithm is shown as pseudo-codes

(Alg. . At each step, the Q,, Ty and ﬂg are up-

dated iteratively. A policy evaluation step updates Algorithm 1 MCEP Training

Q#, by minimizing the TD error (line [6), i.e. the
deviation between the approximate and its target
value. Next, a policy improvement step updates 7y
(line [8] These two steps form the actor-critic algo-
rithm. After that, g, is extracted from the Qz,, by
taking a policy improvement step with a policy con-
straint that is likely milder than the constraint for
7y (line E[) Many approaches can be taken to ob-
tain a milder policy constraint. For example, tuning
down the weight factor w® for the policy constraint
term or replacing the constraint measurement with

1: Hyperparameters:

2: LR aq, oz, a2, EMA 7, @ and w*

3: Initialize: 0,0’,1, and ¢

4: for i=1, 2, ..., Ndo

B; ~D

0+ 0 —agVLy(H,B;) (Equation

0+~ (1—n)0" +nb

1 — azVL:z(;w, B;) (Equation
@+ ¢ — aeVLe(p;we, B;) (Equation

Published in Transactions on Machine Learning Research (05/2024)

a less restrictive one. Note that the constraint for g is necessary (the constraint term should not be dropped)
as the Qz, has large approximate errors for state-action pairs that are far from the data distribution.

As the evaluation policy g, is not involved in the actor-critic updates, one might want to update L after
the convergence of the Qz,. An experiment to compare these design options can be found in the Appendix
Section Algorithm |1 that simultaneously updates two policies and these updates (line [8{ and E[) can be
parallelized to achieve little extra training time based on the base algorithm.

4.2 Three Examples: TD3BC-MCEP, AWAC-MCEP and DQL-MCEP

TD3BC with MCEP TD3BC takes a minimalist modification on the online RL algorithm TD3. To keep
the learned policy to stay close to the behavior distribution, a behavior-cloning term is added to the policy
improvement objective. TD3 learns a deterministic policy therefore the behavior cloning is achieved by di-
rectly regressing the data actions. For TD3BC-MCEP, the target policy 7, has the same policy improvement
objective as TD3BC:

La(¥) = E(s ayn[~AQa (5, 7y (5)) + (a — 7y ()], (4)

where the \ = is a normalizer for () values with a hyper-parameter &: The @)y is updated

(o3
~ Zs“ai [Qo(si,ai)]
with the policy evaluation step similar to Eq. |Z| using 7y, The MCEP 77 is updated by policy improvement
steps with the Q# taking part in. The policy improvement objective function for 7 is similar to Eq. E| but
with a higher-value a® for the Q-value normalizer A°. The final objective for 7§ is

Lo (6) = Eaayon[-AQ(5,75(5)) + (a — w5(s))). (5)

AWAC with MCEP AWAC (Nair et al.| |2020) is an advantage-weighted behavior cloning method. As the
target policy imitates the actions from the behavior distribution, it stays close to the behavior distribution
during learning. In AWAC-MCEP, the policy evaluation follows the Eq. |2| with the target policy 7y that
updates with the following objective:

£4(0) = Beayon | - exp(5450) Togo(als) (6)

where the advantage A(s,a) = Qo(s,a) — Qo(s, Ty (s)). This objective function solves an advantage-weighted
maximum likelihood. Note that the gradient will not be passed through the advantage term. As this objective
has no policy improvement term, we use the original policy improvement with KL divergence as the policy
constraint and construct the following policy improvement objective:

Lre(9) = Eganp,amme(fs)[—A(5,8) + X Drr (ma(-Is)l|7g ([5))] (7)

= Es7a~D,d~7r“(-\s) [_A(S’ CAl) — A 10g ﬂ-(eb(a|5)]a (8)

where the weighting factor A\¢ is a hyper-parameter. Although the Eq. [f] is derived by solving Eq. [8]in a
parametric-policy space, the original problem (Eq. is less restrictive even with A\ = A\® as the gradient

back-propagates through the —A(s, 7¢(s)) term. This difference means that even with a A® > X, the policy
constraint for 7¢ could still be more relaxed than the policy constraint for 7.

DQL with MCEP Diffusion Q-Learning (Wang et al, |2023) is one of the SOTA offline RL methods
that applied a highly expressive conditional diffusion model as the policy to handle multimodal behavior
distribution. Its policy improvement step is

L) = Egup.amiz[-AQ(s,a) + C(mp, 7)), (9)

where C(mg,7) is a behavior cloning term and X is the Q normalizer, similar to TD3BC. The policy improve-
ment step for the evaluation policy has the same manner as the target policy, except for using a different
constraint strength.

L (9) = Egup,anne [-AQ(s,0) + C(m5, 7). (10)

Published in Transactions on Machine Learning Research (05/2024)

10

(a) Toy maze MDP (b) V*, o™ (c) Vz, 7@ (d) Vz,argmax Qx

Figure 2: Evaluation of policy constraint method on a toy maze MDP In other figures, the color of
a grid represents the state value and arrows indicate the actions from the corresponding policy. 2B shows
the optimal value function and one optimal policy. shows a constrained policy trained from the above-
mentioned offline data, with its value function calculated by V; = E,Q(s,w(a|s)). The policy does not
perform well in the low state-value area but its value function is close to the optimal value function.
indicates that an optimal policy is recovered by deriving the greedy policy from the off-policy Q estimate
(the critic).

5 Experiments

In this section, we present experiment results aiming to answer the following research questions. RQ1.
Does the learned value function imply better solutions than the constrained policy? RQ2. Can the solution
implied by the value function achievable under current policy constraint methods? RQ3. How significantly
can the MCEP improve the performance? RQ4. How does MCEP perform compared with other action
selection methods that also utilize the value function? Additionally, we adopt 2 groups of ablation studies
to verify the benefit of an extra evaluation policy and milder constraints.

Environments D4RL is an offline RL benchmark consisting of many task sets. Our exper-
iments select 3 versions of MuJoCo locomotion (-v2) datasets: data collected by rolling out a medium-
performance policy (medium), the replay buffer during training a medium-performance policy (medium-
replay), a 50% — 50% mixture of the medium data and expert demonstrations (medium-expert). To in-
vestigate more challenging high-dimensional tasks, we additionally collect 3 datasets for Humanoid-v2
tasks following the same collecting approach of D4RL: humanoid-medium-v2, humanoid-medium-replay-v2,
humanoid-medium-expert-v2. The humanoid-v2 task has an observation space of 376 dimension and an ac-
tion space of 17 dimension. This task is not widely used in offline RL research. (Wang et al.,[2020; Bhargava|
considers this task but our data is independent of theirs. Compared to (Bhargava et al., 2023),
we do not consider pure expert data but include the medium-replay to study the replay buffer. The statistics
of humanoid datasets are listed in Table[§] Finally, we consider a set of 16 complex Robotic Manipulation
tasks from (Hussing et all,[2023). Their dataset-collecting strategy is similar to the locomotion tasks, hence
they are named manipulation-medium and manipulation-medium-replay in this work.

Evaluation Protocol As the offline RL training does not depend on the environment, all the reported
results (except for the training process visualization) are produced by evaluating the learned policy on the
environment where the data is collected. For visualizing the training process, we save the checkpoints of the
policy from different training steps and evaluate them in the environment where the data is collected.

5.1 An illustrative example

To investigate the policy constraint under a highly suboptimal dataset, we set up a toy maze MDP that is
similar to the one used in (Kostrikov et al) [2022). The environment is depicted in Figure[2a] where the lower
left yellow grid is the starting point and the upper left green grid is the terminal state that gives a reward
of 10. Other grids give no reward. Dark blue indicates un-walkable areas. The action space is defined as 4
direction movements (arrows) and staying where the agent is (filled circles). There is a 25% probability that

Published in Transactions on Machine Learning Research (05/2024)

ha-mr

ha m

TD3BC hopper-medium TD3BC walker2d-medium-replay AWAC hopper-medium-replay — cafe § estimate

—— n® outperforms it

— a=1
— a=4

Oell— qmiomr/ T T

o -
9O 4~
2

N W s

Aa-me

normalized return

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: The training process (with standard errors) of TD3BC and Figure 5: o Vz?ulues in TD3BC
AWAC. Left: TD3BC on hopper-medium-v2. Middle: TD3BC on for value estimate and test

walker2d-medium-replay-v2. Right: AWAC on hopper-medium-replay-v2. ~ tme inference in MuJoCo lo-
comotion tasks.

a random action is taken instead of the action from the agent. For the dataset, 99 trajectories are collected
by a uniformly random agent and 1 trajectory is collected by an expert policy. Fig. shows the optimal
value function (colors) and one of the optimal policies.

We trained a constrained policy using Eq.[2land Eq.[§]in an actor-critic manner, where the actor is constrained
by a KL divergence with a weight factor of 1. Figure[2¢|shows the value function and the policy. We observe
that the learned value function is close to the optimal one in Figure However, the policy does not make
optimal actions in the lower left areas where the state values are relatively low. As the policy improvement
objective shows a trade-off between the Q and the KL divergence, in low-Q-value areas, the KL divergence
takes the majority for the learning objective, which makes the policy stay closer to the transitions in low-value
areas. However, we find that the corresponding value function indicates an optimal policy. In Figure 2d] we
recover a greedy policy underlying the learned value function (Czarnecki et al. [2019) that shows an optimal
policy. In conclusion, the constraint might degrade the evaluation performance although the learned value
function may indicate a better policy.

5.2 Milder constraints potentially improve performance but cause unstable learning

The maze experiment shows that a restrictive constraint might harm the policy performance, which motivates
us to deploy milder constraints that potentially better utilize the learned value function. We investigate
this question in MuJoCo locomotion tasks. Firstly, we relax the policy constraint on TD3BC and AWAC
by setting up different hyper-parameter values that control the strengths of the policy constraints. For
TD3BC, we set o« = {1,4,10} (in a descending order of the constraint strengths). For AWAC, we set
A ={1.0,0.5,0.3,0.1} (in a descending order of the constraint strengths). Finally, We visualize the evaluation
performance and the learned @ estimates.

In Figure [@ the left two columns show the training of TD3BC in the hopper-medium-v2 and walker2d-
medium-replay-v2. In both domains, we found that using a milder constraint by tuning the o from 1 to 4
improves the evaluation performance, which motivates us to expect better performance with a = 10. See
from the normalized return of a = 10, we do observe higher performances. However, the training is unstable
because of the dramatic change in the magnitude of the Q estimates (note the log scale used in the first row).
This experiment indicates the tradeoff between the stable QQ estimate and the evaluation performance. The
rightmost column shows the training of AWAC in hopper-medium-replay-v2, we observe higher evaluation
performance by relaxing the constraint (A > 1). Although the Q estimate keeps stable during the training in
all X values, higher A still result in unstable policy performance (the bottom row) and causes the performance
crash with A = 0.1.

Concluding on all these examples, a milder constraint can potentially improve the performance but may
cause unstable Q estimates or unstable policy performances.

Published in Transactions on Machine Learning Research (05/2024)

Task Name | BC CQL IQL EQL TD3BC AWAC DQL

100% 10% original ~MCEP original ~MCEP original ~MCEP
halfcheetah-m |42.4 43.1 44.0 47.4 46.5 48.7+0.2 55.5+0.4 45.1+£0 46.9+0 49.840.2 53.240.2
hopper-m 54.1 56.9 58.5 65 67 56.1+1.2 91.84+0.9 58.9+1.9 98.1+0.6 81.7+6.6 95.542.2

walker2d-m 71 73.3 725 80.4 81.8 85.2+£0.9 88.84£0.5 79.6+1.5 81.4%+1.6 85.56£0.8 75.3£3.6
halfcheetah-m-r | 37.8 39.9 45.5 43.2 43.1 44.840.3 50.6+£0.2 43.3+0.1 44.94+0.1 47+0.2 47.84+0.1
hopper-m-r 225 T2 95.0 74.2 879 55.24+10.8 100.9£0.4 64.8+6.2 101.140.2 100.64+0.2 100.9%+0.3
walker2d-m-r 144 56.6 772 627 714 50.9+16.1 86.3+£3.2 84.1£0.6 83.4%£0.8 93.6£2.5 92.6£2.1
halfcheetah-m-e |62.3 93.5 91.6 91.2 89.4 87.1+1.4 71.5+3.7 77.6£2.6 69.5£3.8 95.7+£0.4 93.4+0.8
hopper-m-e 52.5 108.9 1054 110.2 97.3 91.7£10.5 80.1+12.7 52.4+8.7 84.3%+16.4 102.1+3.0 107.7£1.5
walker2d-m-e 107 111.1 108.8 111.1 109.8 110.4+0.5 111.7+0.3 109.5+0.2 110.1+0.2 109.5+£0.1 109.7£0.0
Average 51.5 72.8 776 76.1 771 70.0 81.9 68.3 79.9 85 86.2

Table 1: Normalized episode returns on D4RL benchmark. The results (except for CQL) are means and
standard errors from the last step of 5 runs using different random seeds. Performances that are higher than
corresponding baselines are bolded and task-wise best performances are underlined.

5.3 The Evaluation policy allows milder constraints under a stable learning

In this section, we systematically study the constraint strengths on the learning stability and the policy
performance. For policy constraint method such as TD3BC, only constraint strengths that do not cause
unstable value estimate are valid. To reveal the range of valid strengths, we tune the a for TD3BC within
S ={2.5,5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For each « (a®), we deploy 5 training with different random
seeds. In Figure[5] we visualize the unveiled "safe Q estimate" zone, where the constraint strength enables a
stable Q estimate for all seeds. The edge of blue area shows the lowest « value that causes Q value explosion.
We found that in 4 of the 9 environments, unstable learning doesn’t show up with all constraint strength
considered. However, in the remaining 5 environments, the valid strengths is relative narrow.

Next, we are interested in the constraint strengths for the policy performance. We investigate it with the help
of evaluation policy. We tune the o€ for the evaluation policy (TD3BC-EP) within S, with a fixed & = 2.5.
The orange area in Figure [5| shows the range of a¢ where the learned evaluation policy outperforms the
target policy. Its edge (the orange line) shows the lowest a® values where the evaluation policy performance
is worse than the target policy.

Note that o weighs the Q term and thus a larger « indicates a less restrictive constraint. Observed from the
orange area, we find that in 7 out of the 9 tasks (7 axis where the orange range is not zero), the evaluation
policy achieves better performance than the target policy (& = 2.5). In 5 tasks (5 axis where the orange
range is larger than the blue one), the evaluation policy allows milder policy constraints which cause unsafe
q estimate in TD3BC. In conclusion, evaluation policy allows milder policy constraints for potentially better
performance and does not influence the Q) estimate.

5.4 Performance evaluation on MuJoCo locomotion and Robotic Manipulation tasks

D4RL MuJoCo Locomotion We compare the proposed method to behavior cloning, classic offline
RL baselines AWAC, TD3BC, CQL and IQL, along with SOTA offline RL methods Extreme Q-Learning
(EQL) (Garg et all 2023) and DQL (Wang et al., 2023). Following (Fujimoto & Gul, 2021), each method
uses similar hyperparameters for all datasets. The full list of hyper-parameters can be found in Section [A7]]

As is shown in Table [I} we observe that the MCEP significantly outperforms their corresponding base al-
gorithm (labeled "original"). TD3BC-MCEP gains significant progress on all medium and medium-replay
datasets. Although the progress is superior, we observe a performance degradation on the medium-expert
datasets which indicates an overly relaxed constraint for the evaluation policy. Nevertheless, the TD3BC-
MCEP achieves a much better average performance than the original algorithm. We also provide a per-
formance comparison between TD3BC and TD3BC-MCEP with their hyperparameters tuned task-wise
(Section [A.4), where we find that TD3BC-MCEP outperforms TD3BC in 7 of the 9 tasks. In the AWAC-
MCEP, we observe a consistent performance improvement over the original algorithm on most tasks and
the average performance outperforms the original algorithm significantly. Additionally, evaluation policies

Published in Transactions on Machine Learning Research (05/2024)

from both TD3BC-MCEP and AWAC-MCEP outperform the CQL, IQL, and EQL while the target policies
have relatively mediocre performances. On the SOTA method, DQL, we found that the MCEP obtains
further performance improvement although the improvement is not as large as on conventional methods.
This difference may caused by an inference-time action selection method DQL uses. i.e. using the learned
value function to filter out an action of high approximate value from the policy distribution, which implicitly
loose the constraint. We compare the MCEP with inference-time action selection methods in Section [5.5]

Humanoid One of the major
challenges for offline RL is the medium-v2 medium-replay-v2 medium-expert-v2

6000
distributional shift. In high- ~--- behavior n

g /W\MN\NVM vy
A[l A

50001 ---- topl0 bc
! IHTVSY
MO

dimensional environments, this — t3be
4000{ —— td3bc-mcep
challenge is exacerbated as the
collected data is relatively more
limited. To evaluate the proposed
method on the ability to han-
dle these environments, we col- 00 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 10
lect 3 datasets from the MoJoCo
Humanoid task. Following the Figure 6: The returns with standard errors during the training on 3
naming of D4RL, we name these humanoid tasks.
datasets as medium, medium-replay and medium-expert. The details of data collection and the dataset
statistics can be found in Section

We compare the TD3BC-MCEP with BC, TD3BC, CRR [Wang et al| (2020), IQL and the behavior policy.
As seen in Figure [f} TD3BC-MCEP achieves the highest returns in medium and medium-ezpert. Both of
these datasets are collected by rolling out the learned online policy. In medium-replay, where the dataset
is the replay buffer of the online training, TD3BC-MCEP also achieves superior performance and shows a
faster convergence rate than IQL. Based on the results, we conclude that the MCEP significantly improves
the performance on the original algorithm for high-dimensional environments.

— ql

3000

——

2000 ===

1000

Robotic Manipulation Robotic manipulation Average win rates in Robotic Manipulation tasks

tasks are recognized as complex tasks for offline RL. * R
We took 16 tasks on the KUKA’s IIWA robot from ! —
the composition suite (Hussing et al., 2023)). These == TD38C

EXX TD3BC-MCEP

tasks consist of 4 basic tasks pickplace, push, shelf,
trashcan and 4 target objects box, dumbbell, hollow-
bozx, plate. We consider Medium and Medium-Replay
datasets. On these tasks, we compare TD3BC-
MCEP with BC, CRR, IQL and TD3BC. Similar
to the locomotion setting, we consider similar hy-
perparameter for all 16 tasks. The hyperparam-
eter details and full results can be found in Sec- Medium Medium-Replay

tion [AZ3] The overall results are presented in Fig-

ure 7] where we observe that while TD3BC fails to Figure 7: Evaluation (with standard errors) on 16
compete with other methods in Medium and fails Rohotic Manipulation tasks.

to outperform IQL in Medium-Replay, the MCEP

achieves the highest win rates and outperforms all the baselines in both datasets. The results show that the
MCEP is able to improve the performance from the base algorithm even in complex domains.

5.5 A comparison to Inference-time action selection methods

The inference-time action selection methods (Wang et all [2020) provides an on-the-fly action selection ap-
proach by looking into the value function outputs. As the MCEP also utilizes the learned value function to
generate the evaluation policy, one might want to know the performance difference between the MCEP and
the inference-time action selection methods. We consider two types of action selection methods. Argmax:
select the action with the highest estimated q value. Softmaz: sampling action with the probability pro-
portion to their estimated q values. We compared TD3BC and TD3BC-MCEP on the humanoid tasks. To

Published in Transactions on Machine Learning Research (05/2024)

generate action samples, we add Gaussian noise to the policy outputs. We consider standard deviation of
[0.01,0.02,0.05,0.1] and consider sample size of [20,50,100]. The best results are visualized in Figure

Average win rates in Humanoid tasks

From Figure [8] we observe that these action selec- = TD3BC
tion methods can improve the performance on both - oA
TD3BC and TD3BC-MCEP. By comparing the 0 [
TD3BC with action selection and TD3BC-MCEP B MCEP-CWP

without action selection, we note that with Argmax,
TD3BC outperforms TD3BC-MCEP on Medium
dataset. However, the Softmaz does not achieve
the same-level performance. In other datasets, even

3000

2000

Average Return

with action selection, TD3BC still fails to com- 1000

pete with TD3BC-MCEP. In conclusion, MCEP

brought more significant performance improvement ’ Medium Medium-Replay Medium-Expert

than inference-time action selection methods. The

full result can be found in the Appendix [A5] Figure 8: Comparison with Inference-time action-

selection methods.

5.6 Ablation Study

In this section, we design 2 groups of ablation studies to investigate the effect of the extra evaluation policy
and its constraint strengths. Reported results are averaged on 5 random seeds.

Performance of the extra evaluation

policy. Now, we investigate the perfor- ., TD3BC and TD3BC-MCEP AWAC and AWAC-MCEP
mance of the introduced evaluation pol- ey e

icy m¢. For TD3BC, we set the parame- § * R e o = fenares 69.664.8707
ter a = {2.5,10.0}. A large « indicates & « s 529

a milder constraint. After that, we train E Wb p24

TD3BC-MCEP with @ = 2.5 and a® = £

10.0. For AWAC, we trained AWAC with £ »

the A = {1.0,0.5} and AWAC-MCEP ,

with A = 1.0 and \¢ = 0.5. haflcheetah hopper walker2d haflcheetah hopper walker2d

The results are shown in Figure [§] The
scores for different datasets are grouped
for each domain. By comparing TD3BC
of different « values, we found a milder
constraint (v = 10.0) brought perfor-
mance improvement in hopper tasks but
degraded the performance in walker2d tasks. The degradation is potentially caused by unstable value es-
timates (see experiment at section . Finally, the evaluation policy (o = 10.0) with a target policy of
& = 2.5 achieves the best performance in all three tasks. In AWAC, a lower A\ value brought policy improve-
ment in hopper tasks but degraded performances in half-cheetah and walker2d tasks. Finally, an evaluation
policy obtains the best performances in all tasks.

Figure 9: Left: TD3BC with o = 2.5, « = 10 and TD3BC-
MCEP with & = 2.5,a° = 10. Right: AWAC with A = 1.0,
A = 0.5 and AWAC-MCEP with A = 1.0 and A* = 0.5. The
standard errors are also plotted.

In conclusion, we observe consistent performance improvement brought by an extra MCEP that circumvents
the tradeoff brought by the constraint.

Constraint strengths of the evaluation policy. We set up two groups of ablation experiments to
investigate the evaluation policy performance under different constraint strengths. For TD3BC-MCEP, we
tune the constraint strength by setting the Q normalizer hyper-parameter «. The target policy is fixed to
& = 2.5. We pick three strengths for evaluation policy a® = {1.0,2.5,10.0} to create more restrictive, similar,
and milder constraints, respectively. For AWAC-MCEP, the target policy has A = 1.0. However, it is not
straightforward to create a similar constraint for the evaluation policy as it has a different policy improvement
objective. We set A\ = {0.6,1.0,1.4} to show how performance changes with different constraint strengths.

10

Published in Transactions on Machine Learning Research (05/2024)

TD3BC-MCEP AWAC-MCEP
The performance improvements over the 04 [am1 036 Y e ool
target policy are shown in Figure[I0] For g °*]== o 0] == =08
TD3BC-MCEP, a more restrictive con- & - oo W | oo 000 o
straint (a® = 1.0) for the evaluation § - - = oo il S
causes a significant performance drop. ém 005" % - -02 oo
With a similar constraint (& = a® = 2.5), 2 - ' y
the performance is slightly improved in o3 o -06
two domains. When the evaluation pol- “* halfcheetah hopper walker2d halfcheetah hopper walker2d

icy has a milder constraint (a® = 10), sig-

nificant performance improvements are i 10; Left: TD3BC-EP with a = 1.0, = 2.5 and a = 10.0.

observed in all 3 domains. The right Right: AWAC-EP with A = 1.4, A = 1.0 and A = 0.6
column presents the results of AWAC- Y ' h

MCEP. Generally, the performance in

hopper tasks keeps increasing with milder constraints (smaller \) while the half-cheetah and walker2d tasks
show performances that are enhanced from A = 1.4 to A = 1 and similar performances between A = 1
and A = 0.6. It is worth noting that the evaluation policy consistently outperforms the target policy in
halfcheetah and hopper domains. On the walker2d task, a strong constraint (A = 1.4) causes a performance
degradation.

In conclusion, for both algorithms, we observe that on evaluation policy, a milder constraint obtains higher
performance than the target policy while a restrictive constraint may harm the performance.

Estimated Q values for the learned evaluation policies To compare the performance of the policies
on the learning objective (maximizing the Q values), we visualze Q differences between the policy action and
the data action Q(s,7(s)) — Q(s,a) in the training data (Figure in Section |A.7)). We find that both
the target policy and the MCEP have larger Q estimations than the behavior actions. Additionally, MCEP
generally has higher Q values than the target policy, indicating that the MCEP is able to move further
toward large QQ values.

6 Conclusion

This work focuses on the policy constraint methods where the constraint addresses the tradeoff between
value estimate and evaluation performance. We first investigate the constraint strength ranges for stable
value estimate and for evaluation performance. Our findings indicate that the learned value function is
not well exploited under this tradeoff. Then we propose to separate the problems of value learning and
policy performance, and devise a simple and general mildly constrained evaluation policy approach. The
novel approach circumvents the above-mentioned tradeoff thus achieves stable value learning and policy
performance simultaneously. The empirical results on locomotion, humanoid and robotic manipulation tasks
show that MCEP can obtain significant performance improvement.

Limitations. Although the MCEP is able to obtain a better performance, the evaluation policy requires
extra effort in tuning its constraint strength. We suggest starting from the strength of the target policy and
trying milder constraints. Note that an effective constraint is still indispensable to avoid too many OOD
actions that risk real-world application. Moreover, the performance of the MCEP depends on stable value
estimation. Unstable value learning may collapse both the target policy and the evaluation policy. While
the target policy may recover its performance by iterative policy improvement and policy evaluation (actor-
critic), we observe that the evaluation policy may fail to recover its performance from the collapse. Therefore,
a restrictive constrained target policy that stabilizes the value learning is essential for the proposed method.

11

Published in Transactions on Machine Learning Research (05/2024)

References

Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, and Amy Zhang. Sequence mod-
eling is a robust contender for offline reinforcement learning. arXiv preprint arXiv:2305.14550, 2023.

Chethan Bhateja, Derek Guo, Dibya Ghosh, Anikait Singh, Manan Tomar, Quan Vuong, Yevgen Chebotar,
Sergey Levine, and Aviral Kumar. Robotic offline rl from internet videos via value-function pre-training.
arXi preprint arXiv:2309.13041, 2023.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
evaluation. Advances in neural information processing systems, 34:4933-4946, 2021.

Y. Cai, C. Zhang, L. Zhao, W. Shen, X. Zhang, L. Song, J. Bian, T. Qin, and T. Liu. Td3 with reverse kl
regularizer for offline reinforcement learning from mixed datasets. In 2022 IEEE International Conference
on Data Mining (ICDM), pp. 21-30, Los Alamitos, CA, USA, dec 2022. IEEE Computer Society. doi:
10.1109/ICDM54844.2022.00012. URL https://doi.ieeecomputersociety.org/10.1109/ICDM54844.
2022.00012.

Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz Swirszcz, and Max
Jaderberg. Distilling policy distillation. In The 22nd international conference on artificial intelligence and
statistics, pp. 1331-1340. PMLR, 2019.

Soysal Degirmenci and Chris Jones. Benchmarking offline reinforcement learning algorithms for e-commerce
order fraud evaluation. In 8rd Offline RL Workshop: Offline RL as a "Launchpad”, 2022. URL https:
//openreview.net/forum?id=plpbilLbnG7.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-
driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration.
In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent RL without
entropy. In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=SJOLde3tRL!

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev, Danila
Sinopalnikov, Piotr Stariczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard Hussenot, Robert
Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino Vieillard, Seyed Kam-
yvar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani, Tamara Norman, Abbas
Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Abe Friesen, Ruba Haroun,
Alex Novikov, Sergio Gémez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Srivatsan
Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research frame-
work for distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020. URL https:
//arxiv.org/abs/2006.00979.

Marcel Hussing, Jorge A Mendez, Anisha Singrodia, Cassandra Kent, and Eric Eaton. Robotic manipulation
datasets for offline compositional reinforcement learning. arXiv preprint arXiv:2307.07091, 2023.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of implicit human
preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

12

https://doi.ieeecomputersociety.org/10.1109/ICDM54844.2022.00012
https://doi.ieeecomputersociety.org/10.1109/ICDM54844.2022.00012
https://openreview.net/forum?id=plpbiLbnG7
https://openreview.net/forum?id=plpbiLbnG7
https://openreview.net/forum?id=SJ0Lde3tRL
https://openreview.net/forum?id=SJ0Lde3tRL
https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2006.00979

Published in Transactions on Machine Learning Research (05/2024)

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at
scale. arXiv preprint arXiv:2104.08212, 2021.

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2022. URL
https://github.com/ikostrikov/jaxrl2, v2.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-learning. In
International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
68n2s9ZJWEF8.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy g-learning
via bootstrapping error reduction. Advances in Neural Information Processing Systems, 32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline model-
free robotic reinforcement learning. In Conference on Robot Learning, pp. 417-428. PMLR, 2022.

Jiachen Li, Edwin Zhang, Ming Yin, Qinxun Bai, Yu-Xiang Wang, and William Yang Wang. Offline re-
inforcement learning with closed-form policy improvement operators. In International Conference on
Machine Learning, pp. 20485-20528. PMLR, 2023.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqging Lu. Mildly conservative g-learning for offline reinforcement
learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=VYYf6S67pQc.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning from
images with latent space models. In Learning for Dynamics and Control, pp. 1154-1168. PMLR, 2021.

Dhruv Shah, Arjun Bhorkar, Hrishit Leen, Ilya Kostrikov, Nicholas Rhinehart, and Sergey Levine. Offline
reinforcement learning for visual navigation. In 6th Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=uhIfIETiWm_.

Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas
Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked: Behavior mod-
elling priors for offline reinforcement learning. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rke7geHtwH.

Anikait Singh, Aviral Kumar, Quan Vuong, Yevgen Chebotar, and Sergey Levine. Offline rl with realistic
datasets: Heteroskedasticity and support constraints. arXiv preprint arXiv:2211.01052, 2022.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural language
generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

Paloma Sodhi, Felix Wu, Ethan R Elenberg, Kilian Q Weinberger, and Ryan McDonald. On the effectiveness
of offline rl for dialogue response generation. In International Conference on Machine Learning, pp. 32088—
32104. PMLR, 2023.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

13

https://github.com/ikostrikov/jaxrl2
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=VYYf6S67pQc
https://openreview.net/forum?id=uhIfIEIiWm_
https://openreview.net/forum?id=rke7geHtwH

Published in Transactions on Machine Learning Research (05/2024)

Qing Wang, Jiechao Xiong, Lei Han, Peng Sun, Han Liu, and Tong Zhang. Exponentially weighted imita-
tion learning for batched historical data. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 6291-6300, 2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class
for offline reinforcement learning. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E Reed, Bobak
Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized regression. Advances in
Neural Information Processing Systems, 33:7768-7778, 2020.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy optimization
for offline reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=KCX(5HoM-fy.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

Lantao Yu, Tianhe Yu, Jiaming Song, Willie Neiswanger, and Stefano Ermon. Offline imitation learning with
suboptimal demonstrations via relaxed distribution matching. arXiv preprint arXiv:2305.02569, 2023.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforcement
learning. In Conference on Robot Learning, pp. 1719-1735. PMLR, 2021.

14

https://openreview.net/forum?id=AHvFDPi-FA
https://openreview.net/forum?id=KCXQ5HoM-fy
https://openreview.net/forum?id=KCXQ5HoM-fy

Published in Transactions on Machine Learning Research (05/2024)

A Appendix

A.1 The implementation details and hyper-parameters for locomotion evaluation

For CQL, we reported the results from the IQL paper (Kostrikov et al., [2022) to show CQL results on
"-v2" tasks. For IQL, we use the official implementation (Kostrikov, |2022)) to obtain a generally similar
performance as the ones reported in their paper. Our implementations of TD3BC, TD3BC-MCEP, AWAC,
and AWAC-MCEP are based on (Kostrikov, |2022)) framework. In all re-implemented /implemented methods,
clipped double Q-learning (Fujimoto et al., [2018) is used. In TD3BC and TD3BC-MCEP, we keep the state
normalization proposed in (Fujimoto & Gul 2021) but other algorithms do not use it. For EQL and DQL,
we use their official implementation and DQL-MCEP is also built upon the released codebase |[Wang et al.|
2023l

The baseline methods (TD3BC, AWAC and DQL) use the hyper-parameter recommended by their papers.
TD3BC uses o = 2.5 for its @ value normalizer, AWAC uses 1.0 for the advantage value normalizer and
DQL uses a = 1.0. In TD3BC-MCEP, the target policy uses @ = 2.5 and the MCEP uses a¢ = 10. In
AWAC-MCEP, the target policy has A = 1.0 and the MCEP has A¢ = 0.6. In DQL-MCEP, & = 1.0 for
target policy and a® = 2.5 for evaluation policy. The full list of hyper-parameters used in the experiments
can be found in Table

BC IQL AWAC | AWAC-MCEP | TD3BC | TD3BC-MCEP
actor LR le-3 3e-4 3e-5 3e-5 3e-4 3e-4
actor e LR - 3e-5 - 3e-4
critic LR - 3e-4
V LR - 3e-4 -
actor/critic network (256, 256)
discount factor 0.99
soft update 7 - 0.005
dropout 0.1 -
Policy TanhNormal Deterministic
MuJoCo Locomotion
7 for IQL - 0.7 -
A/A - 1/A=3 1.0 -
A° - \ 0.6 -
aa - 2.5
o - [10.0

Table 2: The hyper-parameters for MuJoCo locomotion tasks.

Task # of trajectories # of samples Mean of Returns

Humanoid Medium 2488 1M 1972.8
Humanoid Medium Replay 3008 0.502M 830.2
Humanoid Medium Expert 3357 1.99M 2920.5

Table 3: Dataset statistics for humanoid offline data.

A.2 Data collection and hyper-parameters tunning for humanoid tasks

Hyperparameters. In this experiment, we select Top-10 Behavior cloning, TD3BC and IQL as our base-
lines. For Top-10 Behavior cloning, only 10% data of highest returns are selected for learning. For TD3BC,
we searched the hyperparameter a = {0.1,0.5, 1.0, 2.0, 3.0,4.0,5.0}. For IQL, we searched the expectile hy-
perparameter 7 = {0.6,0.7,0.8,0.9} and the policy extraction hyperparameter A = {0.1,1.0,2.0,3.0}. For
CRR, we tune the advantage coefficiency 5 = {0.1,0.6,0.8,1.0,1.2,5.0}. For TD3BC-MCEP, we searched
the & = {0.1,0.5,1.0,2.0,3.0} and o = {3.0,4.0,5.0,10.0}. The final selected hyperparameters are listed in

15

Published in Transactions on Machine Learning Research (05/2024)

Table 4l For CRR, we implement the CRR exp version based on (Hoffman et al., 2020). This version is con-
sidered as it outperforms other baselines in (Wang et al.l [2020) in complex environments such as humanoid.
We also applied Critic Weighted Policy as well as an argmax version of it (CRR-argmax). These design
options result in CRR, CRR-CWP and CRR-Argmax variants. In Figure [6] we report the most performant
CRR variant for each task. Among all its variants, CRR-Argmax shows better performance in both the
medium and the medium-replay while CRR performs the best in the medium-ezpert task.

Humanoide Data Collection. In the Table |5 we provide statistics of the collected data.

BC IQL | TD3BC | TD3BC-MCEP
actor LR le-3 | 3e-4 3e-4 3e-4
actor e LR - - 3e-4
critic LR - 3e-4
V LR - 3e-4 | -
actor/critic network (256, 256)
discount factor 0.99
soft update 7 - 0.005
dropout 0.1 -
Policy TanhNormal ‘ Deterministic
Humanoid-medium-v2
7 for IQL - 0.6 -
A/A - 1 -
aa - 1 0.5
af - 3
Humanoid-medium-replay-v2
7 for IQL - 0.6 -
A/A - 0.1 -
al& - 0.5 1.0
a’ - 10
Humanoid-medium-expert-v2
7 for IQL - 0.6 -
A/A - 0.1 -
alé - 2 0.5
af - 3

Table 4: The hyper-parameters for Humanoid task.

A.3 The full results for the robotics manipulation experimetns

We consider similar hyperparameter for all tasks. To obtain a fair comparison, we extensively search the
hyperparameters for all baselines. The CRR is tuned among A = [0.4,0.6,0.8,1.0, 1.2] (1.0 selected) and uses
the critic weighted policy (Wang et al.l [2020). For TD3BC, we tune A = [1.0,2.0,3.0,4.0] and select 2.0.
IQL ueses 7 = 0.7, A = 3.0 as recommended in the dataset paper (Hussing et al., [2023). For TD3BC-MCEP,
we use & = 2, = [4.0,6.0,8.0,10.0] (8.0 selected).

A.4 An comparison with task-specific hyper-parameters on locomotion tasks

To investigate the task-specific optimal policy constraint strengths, we search this hyperparameter for
TD3BC and TD3BC-MCEP (with & = 2.5) in each task of the locomotion set. Their optimal values and the
corresponding performance improvement are visualized in Figure As we observed, in 7 of the 9 tasks,
the optimal policies found by TD3-MCEP outperform optimal policies found by TD3BC. In all medium
tasks, though the optimal constraint strenths are the same for TD3BC and TD3BC-MCEP, TD3BC-MCEP
outperformance TD3BC. This is benefitted by that relaxing the constraint of evaluation policy does not
influence the value estimate. However, for TD3BC, milder constraint might cause unstable value estimate

16

Published in Transactions on Machine Learning Research (05/2024)

Dataset BC CRR IQL TD3BC -MCEP
Medium
Box-PickPlace 10.8(1.3) 92.8(0.5) 93.8(2.7) 89.8(2.9) 100(0)
Box-Push 74.6(1.9) 39.2(4.2) 91.8(1.1) 93.8(1.6) 99.8(0.2)
Box-Shelf 91.8(1.2) 91.6(0.7)) 98.6(0.9) 93.2(2.8) 99.2(0.7)
Box-Trashcan 8.6(2.3) 24(2.9) 0(0) 1.2(1.1) 0(0)
Dumbbell-PickPlace ~ 38.6(2.7) 52.2(1.2) 86.8(2.0) 63.2(3.0) 70.4(9.6)
Dumbbell-Push 55.2(3.7) 20.6(1.2) 66.6(2.4) 54.0(8.6) 58.0(10.4)
Dumbbell-Shelf ~ 40.8(4.9) 50.2(1.5) 0.6(0.4) 21.0(4.3) 44.6(11.2)
Dumbbell-Trashcan ~ 5.2(0.7) 62(1.8) 87.1(3.8) 28.0(10.2) 68.2(16.1)
Hollowbox-PickPlace 42.4(3.5) 85.8(2.0) 95.2(24) 82.6(11.1) 92.2(3.6)
Hollowbox-Push ~ 0(0) 55.2(4.8) 69.4(7.5) 49.2(4.8) 98.2(1.0)
Hollowbox-Shelf 72.2(1.8) 94(0.7) 98.2(1.4) 95.4(17) 98.4(0.6)
Hollowbox-Trashcan 0(0) 29.2(2.1) 0(0) 0(0) 0(0)
Plate-PickPlace 0(0.2) 60.8(3.4) 1(0.3) 2.2(0.4) 0.4(0.2)
Plate-Push 0(0) 12.6(1.1) 0(0) 0(0) 25.0(11.9)
Plate-Shelf 24.2(7.4) 67(2.0) 99(0.4) 60.4(19.6) 99.8(0.2)
Plate-Trashcan 0.2(0.2) 74(1.1) 0.4(0.2) 0.8(0.2) 0(0)
Average 29.0 56.9 55.5 45.9 59.6
Medium-Replay
Box-PickPlace 0(0) 41.4(2.9) 50.8(11.5) 23.0(12.1) 0(0)
Box-Push 0(0) 2.8(0.8) 0(0) 60.8(5.1) 41.6(10.3)
Box-Shelf 0(0) 3.0(14) 16.6(4.6) 6.4(21) 49.8(14.6)
Box-Trashcan 0(0) 1.4(0.5) 92.3(2.6) 0(0) 76.2(6.9)
Dumbbell-PickPlace 0(0) 25.6(4.6) 34.1(2.7) 8.2(6.9) 0(0)
Dumbbell-Push ~ 4.1(2.1) 1.4(0) 32(1.6) 24.2(50) 55.8(6.0)
Dumbbell-Shelf ~ 9.8(2.3) 2.6(0.8) 11.6(6.1) 25.4(7.8) 12.0(10.1)
Dumbbell-Trashcan ~ 5.0(2.3) 17.0(4.3) 65.0(10.2) 29.0(5.6) 95.2(0.5)
Hollowbox-PickPlace 0(0) 5.6(3.3) 0(0) 6.6(5.9) 0.4(0.4)
Hollowbox-Push ~ 0(0) 18.2(3.0) 30.0(3.7) 23.0(12.2) 3.0(2.7)
Hollowbox-Shelf 0(0) 1.8(0.9) 61.4(4.7) 32.0(6.5) 58.4(12.6)
Hollowbox-Trashcan 0(0) 4.4(08) 4.8(4.6) 0(0) 0(0)
Plate-PickPlace 0(0) 31.4(22) 29.4(17.8) 2.2(2.0) 0(0)
Plate-Push 0(0) 0(0) 0(0) 0(0) 10.6(9.5)
Plate-Shelf 0(0) 0.8(0.4) 0(0) 0(0) 19.4(17.4)
Plate-Trashcan 0.8(0.4) 32.8(1.1) 1.0(0.3) 0.4(0.2) 0(0)
Average 1.2 11.9 25.0 15.0 26.4

Table 5: Win rates with standard errors for Robotic Manipulation tasks. All results are averaged among 5
random seeds. The win rates of the MCEP that outperform the base algorithm are bolded.

during training. In all medium-replay tasks, we found optimal constraints for TD3BC-MCEP are milder
than TD3BC, which verifies the requirements of milder constraints [5.2]

A.5 An investigation of other methods for inference-time action selection

The MCEP aims to improve the inference time performance without increasing the Bellman estimate
error. Previous works also propose to use the on-the-fly inference-time action selection methods. For exam-
ple, (Wang et all 2020) proposes the Critic Weighted Policy (CWP), where the critic is used to construct
a categorical distribution for inference-time action selection. Another simple method is selecting the action
of the largest Q values, namely Argmax. In this section, we compare the performance of TD3BC and
TD3BC-MCEP under different test-time action selection methods in the hidh-dimensional Humanoid tasks.

The results are presented in Table [6] and [7} Both the Argmax and the CWP methods select an action from
an action set. We generate this action set by adding Gaussian noise to the outputs of the deterministic
policy. The std is the noise scale and N is the size of this action set. From the results, we observe that

17

Published in Transactions on Machine Learning Research (05/2024)

Optimal Constraint Strengths performance Difference

0de o " A
£
i 0.3
B 8 [
: +
- o
z 6] o
E + £
L a
3 e
9] Y 0149
2 g .
g 41 b L §
k:
(=)
= 5] .+ 0.0 1
s q explosion
+ a td3bc
af td3bc-mcep, with @=2.5
T T T T T T T T T 0.1+ 4 4 T v v T T T T
ha-me ho-me wa-me ha-m ho-m wa-m ha-mr ho-mr wa-mr ha-me ho-me wa-me ha-m ho-m wa-m ha-mr ho-mr wa-mr

Figure 11: Left: Optimal o values for the evaluation policy of TD3BC-MCEP, with a fixed o = 2.5 for the
target policy. Optimal & values for TD3BC. Red areas indicate the « values for TD3BC that raise Q-value
explosion (in one or more training of a 5-seed training). Right: Performance difference (with standard
errors) between the evaluation policy of TD3BC-MCEP and the actor of TD3BC, using the of () values
shown in the left figure.

CWP and Argmax help improve the performance of both the TD3BC and TD3BC-MCEP. It is worth noting
that, in medium task, the Argmax method improves the TD3BC to the same level as TD3BC-MCEP. But
in meidum-replay and medium-expert tasks, the improved performances are still worse than the original
TD3BC-MCEP (without using action selection). On TD3BC-MCEP, applying Argmax and CWP further
improves policy performances.

In conclusion, the inference-time performance could be improved by utilizing the inference-time action se-
lection methods but MCEP shows a more significant policy improvement and does not show conflict with
these action selection methods.

Table 6: TD3BC with inference-time action selection. The original policy has returns 2483.9, 965.4 and
3898.2 for medium, medium-replay and medium-expert, respectively. Standard errors are also reported.

‘ ‘ Argmax ‘ CWP
| N\std | 0.01 0.02 0.05 0.1 | 0.01 0.02 0.05 0.1

20 | 2462.4(186.4) 2944.5(371.3) 3098.9(149.2) 3511.1(244.7) | 2441.4(217.4) 2689.8(323.2) 2755.4(303.9) 3113.2(416.5)
medium 50 | 2564.2(180.1) 2836.0(399.7) 2956.6(128.2 3156.3(272.4) | 2159.8(239.8) 2588.6(181.7) 2462.1(180.5) 2839.6(165.6)
100 | 2857.0(96.7) 2369.8(250.4) 3122.0(228.7 3266.8(314.4) | 2607.6(140.9) 2665.8(335.5) 2722.5(305.6) 2584.1(216.7)

)))
)))
)))
20 | 895.3(44.1) 1042.3(133.3) 1136.7(135.8) 1524.1(125.3) | 973.9(75.7) 931.9(61.9) 932.2(42.4) 1242.7(116.5)
medium-replay 50 | 994.6(60.3) 976.7(48.9) 1160.2(72.8) 1664.9(248.8) | 974.7(66.5) 1030.3(96.5) 1002.1(87.7) 1171.1(124.6)
)))
)))
)))
)))

Game

100 | 971.7(69.5) 1049.0(55.6) 1232.2(144.2 1574.7(179.9) | 874.2(41.9) 1023.5(85.2 973.0(74.8) 1232.9(117.2)

20 | 3861.7(345.8) 4068.4(175.7) 4131.0(299.7 4585.3(206.6) | 4181.1(255.3) 4478.3(174.2
medium-expert 50 | 4460.6(135.7) 4012.2(318.7) 4612.9(127.7 4603.0(137.5) | 3987.0(288.1) 4068.9(206.0
100 | 4130.8(301.2) 4141.7(248.4) 4158.3(302.8 4421.4(130.4) 3634.6(389.4

(

3904.0(166.1) 3636.7(253.4)
3995.1(323.6) 4214.7(157. 0)
3933.9(249.4) 3788.3(246.1)

4145.3(262.0

Table 7: TD3BC-MCEP with inference-time action selection. The original policy has returns 2962.8, 4115.6
and 4829.2 for medium, medium-replay and medium-expert, respectively. Standard errors are also reported.

Game ‘ ‘ Argmax ‘ CWP
| N\std | 0.01 0.02 0.05 0.1] 0.01 0.02 0.05 0.1
20 | 2368.2(221.2) 2871.4(334.1) 2924.1(211.8) 3392.8(319.4) | 2670.5(262.8) 2710.0(96.8) 3146.5(216.6) 2987.9(244.0)
medium 50 | 2822.1(194.0) 3046.3(287.2) 3283.9(298.3) 3861.7(225.2) | 2612.9(142.0) 2787.1(154.9) 2718.9(344.9) 2841.7(248.7)
100 | 3405.1(326.9) 2808.2(191.8) 3264.5(310.4) 3751.3(490.7) | 3003.3(312.1) 2896.8(192.2) ~ 2748.9(163.1) 2727.2(284.9)
20 | 4277.3(708.5) 4071.5(703.4) 4092.7(694.1) 4253.4(659.7) | 4033.1(689.8) 4200.0(652.1) 4254.4(703.6) 4167.0(632.7)
medium-replay 50 | 4225.5(691.8) 4159.7(681.4) 4028.4(621.6) 4210.8(710.2) | 4135.5(651.7) 4219.1(680.6) 4375.7(760.6) 4230.3(629.4)
100 | 4190.3(691.4) 3966.4(639.9) 4138.4(694.1) 4270.1(695.0) | 4328.5(733.3) 4266.9(638.9) 4275.7(671.3) 4142.5(598.7)
20 | 4752.8(232.4) 4956.7(92.6) 4880.3(229.6) 4887.1(238.3) | 4736.4(266.5) 4710.8(226.7) 4T48.7(177.5) 4942.1(163.0)
medium-expert 50 | 4930.7(157.6) 5018.2(73.6) 4614.2(150.0) 4899.9(158.7) | 5053.4(70.6) 5001.4(85.0) ~ 4808.8(183.4) 4670.6(204.2)
100 | 4616.8(217.9) 4800.9(145.4) 4700.9(179.7) ~ 4648.0(288.5) | 4588.1(237.3) 4770.6(86.3) 4934.3(176.6) 4855.3(146.9)

18

Published in Transactions on Machine Learning Research (05/2024)

A.6 The design option of how the evaluation policy update

As the evaluation policy is not involved in the actor-critic’s iterative update, one might want to update the
evaluation policy after the actor-critic converges, namely afterward updates. While this is a valid design
option, our method simultaneously updates the target policy and the evaluation policy (simultaneous
updates). In this manner, their updates can be parallelized and no further time is required based on the
actor-critic training. This parallelization can significantly reduce the training time for methods of slow policy
update (e.g. DQL). Figure and present the convergence for these two design options. From the results,
we observe a faster convergence of afterward updates in some tasks. However, there are also many tasks
where the afterward updates method converges after a million steps.

120 120 120
100 100 | Pt | 100
—r T ————yr—
80 4 80 80
60 60 1 60
40 401 40 4
204 20 4 20
o4 - . - - - 0+ - - - . - 0L+ - - . - -
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
120 1=6 120 1=6 120 125,
100 100 | e epya———ew e | 100 |
FRES Sy Te——
80 4 80 80
60 4 60 - 60 -
P —
40 4 40 40
204 20 4 20
0 T T T T T Q- T T T T T Q- T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
120 o8 120 =8 120 —_—
pawre— S —
100 100 /\ /| 100
"
80 | A 80 1 /\\J\”/J\N\ M\/ 80
6o V\J\,/‘/WAMM\ .y w0
40 1 40 40 4
—— afterward updates
20 4 204 20
simultaneous updates
0 T T T T T 0= T T T T T 0 T T : T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
medium le6 medium-replay €6 medium-expert 1€6

Figure 12: Episode returns with standard errors of simultaneous updates and afterward updates for the
evaluation for TD3BC-MCEP. First row: halfcheetah. Second row hopper. Third row: walker2d.

120 120 120
100 100 — 100
80 80 80 ,r“""""_“" e
60 1 60 60
401 T - 404 40
20 4 204 | 20
!
0 T T T T T 0= T T T T T 0 T T T T T
00 02z 04 06 08 10 00 02 04 06 08 10 00 02z 04 06 08 10
120 128 120 128 120 15
100 100 7% | 100
80 80 80 samam g
60 4 60 - 60
w0 - T 204 N 40 |
f
20 4 204 20
0 T : T T T 0 T T T T T 0= T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
120 & 120 1= 120 e,
100 100 100
80 4 80 80
Vv
60| AN 60 J\/VJ\J-A\ 60
40 1 RV 40 v 40 4
| —— afterward updates
20 201 ¢ 20 / simultaneous updates
0= - - - -

T T 0 T T T T T 0 T T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
medium 1e6 medium-replay 1¢® medium-expert €6

Figure 13: Episode returns with standard errors of simultaneous updates and afterward updates for the
evaluation for AWAC-MCEP. First row: halfcheetah. Second row hopper. Third row: walker2d.

19

Published in Transactions on Machine Learning Research (05/2024)

A.7 The full results for estimated Q values of the learned evaluation policies

Figure[14] and Figure [15| show the visualization of the estimated Q values achieved by the target policy and

evaluation policy.

-1 0 1 2 3 -1 0 1 2 -2 0 2 4 -10 0 10 20 30
-1 0 1 2 -0 -0.5 0.0 05 10 2 0 1 2 3 -50 0 50 100
== target policy

~ evaluation policy

(b) medium (c) medium-replay (d) random

(a) medium-expert

Figure 14: TD3BC-MCEP. First row: halfcheetah. Second row hopper. Third row: walker2d.

-1 0 1 2 -0 05 00 05 10 -) 1 2 20 0 20 40
w0 2 0 2 o o o 10

10 05 00 05 20 -1.00 075 -050 -0.25 0.00 025 050 075 100 -10 05 00 05

e target policy
= evaluation policy | |
-1 0 1 2 -10 -05 00 05 10 15 20 25 30

-1.00 075 050 -0.25 0.00 025 050 075 100 -2

(a) medium-expert (b) medium (¢) medium-replay) random

Figure 15: AWAC-MCEP. First row: halfcheetah. Second row: hopper. Third row: walker2d.

20

	Introduction
	Related Work
	Background
	Method
	Offline RL with mildly constrained evaluation policy
	Three Examples: TD3BC-MCEP, AWAC-MCEP and DQL-MCEP

	Experiments
	An illustrative example
	Milder constraints potentially improve performance but cause unstable learning
	The Evaluation policy allows milder constraints under a stable learning
	Performance evaluation on MuJoCo locomotion and Robotic Manipulation tasks
	A comparison to Inference-time action selection methods
	Ablation Study

	Conclusion
	Appendix
	The implementation details and hyper-parameters for locomotion evaluation
	Data collection and hyper-parameters tunning for humanoid tasks
	The full results for the robotics manipulation experimetns
	An comparison with task-specific hyper-parameters on locomotion tasks
	An investigation of other methods for inference-time action selection
	The design option of how the evaluation policy update
	The full results for estimated Q values of the learned evaluation policies

