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Abstract

We introduce the Lennard-Jones layer (LJL) for the equalization of the density of 2D and
3D point clouds through systematically rearranging points without destroying their overall
structure (distribution normalization). LJL simulates a dissipative process of repulsive and
weakly attractive interactions between individual points by considering the nearest neighbor
of each point at a given moment in time. This pushes the particles into a potential valley,
reaching a well-defined stable configuration that approximates an equidistant sampling after
the stabilization process. We apply LJLs to redistribute randomly generated point clouds
into a randomized uniform distribution. Moreover, LJLs are embedded in the generation
process of point cloud networks by adding them at later stages of the inference process. The
improvements in 3D point cloud generation utilizing LJLs are evaluated qualitatively and
quantitatively. Finally, we apply LJLs to improve the point distribution of a score-based
3D point cloud denoising network. In general, we demonstrate that LJLs are effective for
distribution normalization which can be applied at negligible cost without retraining the
given neural network.
Source Code: Upon request, we are happy to share the source code to generate the results
presented in this paper. Please contact the first or the last author of this manuscript.
Keywords: Distribution Normalization, Generative Modeling, Lennard-Jones Potential,
Particle Simulation, Point Clouds.
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Figure 1: An overview of the integration of LJLs into the inference process of well-trained generative models.
A well-trained model generates a meaningful point cloud from random noise in a sequential way (bottom
row). LJLs are inserted after certain intermediate-generation steps with damping step size ∆tn and LJ
potential parameters ϵ and σ (top row). Embedding LJLs in generative models can improve the generation
results by normalizing the point distribution.

1 Introduction

Next to triangle meshes, point clouds are one of the most commonly used representations of 3D shapes.
They consist of an unordered set of 3D points without connections and are the native output format of
3D scanners. They also map well to the structure of neural networks, either in generative or processing
(e.g. denoising) tasks. A major problem with point clouds is, that their entropy heavily depends on the
distribution of the points. In areas with holes, not enough information about the shape is expressed, while
clustered areas waste storage without adding additional details. We introduce a so-called Lennard-Jones layer
(LJL) for distribution normalization of point clouds. We use the term distribution normalization to describe
the process of systematically rearranging the points’ positions in order to equalize their density across the
surface without changing the overall shape. More formally, distribution normalization describes the property
of maintaining a global structure while maximizing minimum distances between points. The Lennard-
Jones (LJ) potential is widely considered an archetype model describing repulsive and weakly attractive
interactions of atoms or molecules. It was originally introduced by John Lennard-Jones (Jones, 1924a;b;
Lennard-Jones, 1931) who is nowadays recognized as one of the founding fathers of computational chemistry.
Applications of LJ-based numerical simulations can be found in different scientific communities ranging
from molecular modelling (Jorgensen et al., 1996) and soft-matter physics (Al-Raeei & El-Daher, 2019)
to computational biology (Hart & Istrail, 1997). For a given point cloud, we aim for a transformation
from the initial distribution into a blue noise-type arrangement by simulating the temporal evolution of the
associated dynamical system. Each point of the point cloud is interpreted as a particle in a dynamic scene
to which the LJ potential is applied as a moving force. In each iteration of the temporal integration process,
the point cloud is decomposed into a new set of independent subsystems, each containing a single pair of
particles. Each of these subsystems is then simulated individually, which greatly increases stability. As we
also include dissipation into our system, the point configuration of the particle system will be stabilized and
form randomized uniform point distribution after a sufficient number of iterations. Learning-based point
clouds related research has been explored for years, especially in the fields of generation and denoising.
Existing models are solely trained to generate and denoise the point cloud without considering the overall
point distribution and therefore exhibit the common problems of holes and clusters. By embedding LJLs
into well-trained architectures, we are able to significantly improve their results in terms of point distribution
while at the same time introducing minimal distortion of the shape as shown in Fig. 1. We also circumvent
resource- and time-intensive retraining of these models, as LJLs are solely embedded in the inference process.
This way, LJLs are a ready-to-use plug-in solution for point cloud distribution optimization.

2 Related Work

2.1 Molecular Dynamics

Simulating molecular dynamics is an essential tool for applications such as understanding protein fold-
ing (Creighton, 1990) or designing modern drugs (Durrant & McCammon, 2011) as well as state-of-the-art
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materials (Van Der Giessen et al., 2020). While the motion of atoms and molecules can in principle be
obtained by solving the time-dependent Schrödinger equation, such a quantum mechanics approach remains
too computationally prohibitive to investigate large molecular systems in practice. Instead, classical molec-
ular dynamics uses Newtonian mechanics treating the nuclei as point particles in a force field that accounts
for both, their mutual as well as electronic interactions. This force field is derived from a potential en-
ergy function (e.g. the LJ potential) that is formulated either from expectation values of the quantum
system or using empirical laws (Rapaport, 2004). Given the typically large number of atoms and molecules
involved in molecular dynamics, an analytical solution of the resulting Newtonian mechanical system is
usually out of reach. Consequently, numerical methods that evaluate the position of each nucleus at (fixed
or adaptive) time intervals are used to find computational approximations to the solutions for given initial
conditions (Hochbruck & Lubich, 1999). Classical molecular dynamics simulators are LAMMPS Molecular
Dynamics Simulator (2014), RATTLE (Andersen, 1983) and SHAKE (Ryckaert et al., 1977), in which the
strong covalent bonds between the nuclei are handled as rigid constraints. Modern approaches allow for the
more efficient numerical simulation of large molecular structures as efficiency has further increased, either
through algorithmic improvements (Michels & Desbrun, 2015) or by leveraging specialized hardware for
parallel computing (Walters et al., 2008). Among others, Alharbi et al. (2017) provided a Eurographics tu-
torial on real-time rendering of molecular dynamics simulations. More recent work also addresses immersive
molecular dynamics simulations in virtual (Bhatia et al., 2020; Jamieson-Binnie et al., 2020) and augmented
reality (Eriksen et al., 2020).

2.2 Blue Noise Sampling

Colors of noise have been assigned to characterize different kinds of noise with respect to certain properties
of their power spectra. In visual computing, blue noise is usually used more loosely to characterize noise
without concentrated energy spikes and minimal low-frequency components. Due to its relevance in practical
applications such as rendering, simulation, geometry processing, and machine learning, the visual computing
community has devised a variety of approaches for the generation and optimization of blue noise. Several
methods can maintain the Poisson-disk property, by maximizing the minimum distance between any pair of
points (Cook, 1986; Lloyd, 1982; Dunbar & Humphreys, 2006; Bridson, 2007; Balzer et al., 2009; Xu et al.,
2011; Yuksel, 2015; Ahmed et al., 2017). Schlömer et al. (2011) introduced farthest-point optimization(FPO)
that will maximize the minimum distance of the point set by iteratively moving every point to the farthest
distance from the rest of the point set. de Goes et al. (2012) successfully generated blue noise through optimal
transport(BNOT). Their method has widely been accepted as the benchmark for best-quality blue noise,
which was recently surpassed by Gaussian blue noise(GBN) (Ahmed et al., 2022). GBN is classified as kernel-
based methods (Öztireli et al., 2010; Fattal, 2011; Ahmed & Wonka, 2021) that augment each point with a
kernel to model its influence. There are several previous works that we consider as methodologically closely
related to ours as the authors applied the physical-based particle simulation to synthesize blue noise. The
method proposed by Jiang et al. (2015), is based on smoothed-particle hydrodynamics(SPH) fluid simulation
which takes different effects caused by pressure, cohesion, and surface tension into account. This results in a
less puristic process compared to our work. Both Schmaltz et al. (2010) and Wong & Wong (2017) employ
electrical field models, in which electronically charged particles are forced to move towards an equilibrium
state after numerical integration because of the electrostatic forces. Adaptive sampling can be achieved by
assigning different amounts of electrical charge to particles.

2.3 Generative Models for 3D Point Cloud

Research related to 3D point clouds has recently gained a considerable amount of attention. Some meth-
ods aim to generate point clouds to reconstruct 3D shapes from images (Fan et al., 2016) or from shape
distributions (Yang et al., 2019). Achlioptas et al. (2017) propose an autoencoder for point cloud reconstruc-
tion, while others aim to solve point cloud completion tasks based on residual networks (Xie et al., 2020),
with multi-scale (Huang et al., 2020) or cascaded refinement networks (Wang et al., 2020) or with a focus
on upscaling (Li et al., 2019). Some methods solve shape completion tasks by operating on point clouds
without structural assumptions, such as symmetries or annotations (Yuan et al., 2018), or by predicting
shapes from partial point scans (Gu et al., 2020). 3D shape generation methods either use point-to-voxel

3



Published in Transactions on Machine Learning Research (09/2024)

representations (Zhou et al., 2021) or rely on shape latent variables to directly train on point clouds (Luo
& Hu, 2021a; Zeng et al., 2022), by either employing normalizing flows (Rezende & Mohamed, 2015; Dinh
et al., 2017) or point-voxel convolutional neural networks (Liu et al., 2019). ShapeGF (Cai et al., 2020)
is an application of score-based generative models (Song & Ermon, 2019) for 3D point cloud generation,
which uses estimated gradient fields for shape generation where a point cloud is viewed as samples of a
point distribution on the underlying surface. Therefore, with the help of stochastic gradient ascent, sampled
points are moving toward the regions near the surface. Luo & Hu (2021a) first attempt to apply denoising
diffusion probabilistic modeling (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020) in the field of point
cloud generation. Points in the point cloud are treated as particles in the thermodynamic system. During
the training process, the original point cloud is corrupted by gradually adding small Gaussian noise at each
forward diffusion step, while the network is trained to denoise and reverse this process.

2.4 Denoising Techniques for 3D Point Cloud

Approaches for denoising point clouds aim to reduce perturbations and noise in point clouds and facilitate
downstream tasks like rendering and remeshing. Similar to images, denoising for point clouds can be solved
with linear (Lee, 2000) and bilateral (Fleishman et al., 2003; Digne & de Franchis, 2017) operators, or based
on sparse coding (Avron et al., 2010). Although these methods can generate less noisy point clouds, they
also tend to remove important details. Duan et al. (2018) leverages the 3D structure of point clouds by
using tangent planes at each 3D point to compute a denoised point cloud from the weighted average of the
points. Many existing approaches employ neural network architectures for point cloud denoising purposes,
by building graphs or feature hierarchies (Pistilli et al., 2020; Hu et al., 2020), by employing differentiable
rendering for point clouds (Yifan et al., 2019), or by classifying and rejecting outliers (Rakotosaona et al.,
2020). Hermosilla et al. (2019) propose an unsupervised method for denoising point clouds, which combines
a spatial locality and a bilateral appearance prior to mapping pairs of noisy objects to themselves. The
majority of learning-based denoising methods directly predict the displacement from noisy point positions
to the nearest positions on the underlying surface and then perform reverse displacement in one denoising
step. Luo & Hu (2021b) propose an iterative method where the model is designed to estimate a score of the
point distribution that can then be used to denoise point clouds after sufficient iterations of gradient ascent.
More specifically, clean point clouds are considered as samples generated from the 3D distribution p on the
surface, while noise is introduced by convolving p with noise mode n. The score is computed as the gradient
of the log-probability function ∇log(p · n). They claim that the mode of p · n is the ground truth surface,
which means that denoising can be realized by converging samples to this mode.

3 Lennard-Jones Layer

The LJ potential V is defined as

V (r) = 4ϵ

((σ

r

)12
−
(σ

r

)6
)

, (1)

which is a function of the distance between a pair of particles simulating the repulsive and weakly attractive
interactions among them. The distance r is measured by the Euclidean metric. The first part (·)12 attributes
the repulsive interaction while the second part (·)6 attributes the soft attraction. With the help of the
parameters ϵ and σ, the LJ potential can be adjusted to different use cases. Fig. 2 illustrates the role of
these parameters: The potential depth is given by the parameter ϵ > 0 which determines how strong the
attraction effect is, and σ is the distance at which the LJ potential is zero.

The corresponding magnitude of the LJ force can be obtained by taking the negative gradient of Eq. (1)
with respect to r which is FLJ (r) = −∇rV (r). The direction of LJ force on each particle is always along
the line connecting the two particles, which point towards each other when two particles are attracted and
vice versa. Equilibrium distance rE is where FLJ (rE) = 0 and the LJ potential reaches the minimum value.
For the distance r < rE , the repulsive part dominates, while for r > rE the particles start to attract to each
other. When r gets bigger, the attractive force will decrease to zero, which means that when two particles
are far enough apart, they do not interact. If we assume a uniform mass distribution among all particles and
normalize with the mass, the corresponding equations of motion acting on a pair of particles whose positions
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Figure 2: Illustration of the LJ potential and the LJL. The strength and position of the repulsive and weakly
attractive zones in the LJ potential are controlled by the hyperparameters ϵ and σ, while ∆t controls the
damping step size of the LJL. Applying the LJL to a point cloud leads to a more uniform distribution of the
points.

are described by x1, x2 ∈ R2 or R3 can be obtained by

r = ∥x1 − x2∥ , ẍ1 = FLJ (r) · x1 − x2
r

, ẍ2 = FLJ (r) · x2 − x1
r

.

Given a 2D or 3D input point cloud in Euclidean space, we aim for a transformation from a white noise- into
a blue noise-type arrangement by simulating the temporal evolution of the associated dynamical system. In
this regard, we use a formulation of the LJ potential where pairs of particles are grouped as a pair potential
to simulate the dynamic LJL procedure. The computations within LJL are summarized in Alg. 1. Within
a system containing a number of particles, the potential energy is given by the sum of LJ potential pairs.
This sum shows several local minima, each associated with a low energy state corresponding to the system’s
stable physical configuration. It is an essential aspect of our method, that we do not compute the complete
numerical solution of the resulting N -body problem (in which N denotes the number of involved particles).
We only take into account the closest neighbor (k = 1 neighborhood) of each particle within every iteration
of the temporal integration process. Note that being the closest neighbor of a particle is not necessarily a
mutual property of two particles within the whole particle system. However, the whole system of particles
can be decomposed into several independent subsystems by iteratively assigning the closest neighbor to
each particle and, throughout the process, not considering particles which have already been assigned as a
closest neighbor. Following this approach, every subsystem just contains a single pair of particles. In each
iteration, different subsystems (i.e., new pairs) can be formed. As the subsystems are not interacting within
each iteration, the sum of the LJ potentials has just a single (global) minimum if no changes to the nearest
neighbors are present, see Appendix A.

LJL creates pairwise independent subsystems using nearest neighbor search (NNS) by assigning the nearest
points to the current point set Xi. We simulate this process by repetitively integrating forward in time using
a decaying time step ∆t which dampens exponentially according to

∆t(·) = α exp(−β (·)) , (2)

in which α > 0 refers to the initial step size, and β > 0 defines the damping intensity. For each pair,
the position update is computed independently by integrating the equation of motion numerically using a
basic Störmer–Verlet scheme. Within this numerical integration process, we intentionally do not make use
of the particles’ velocities from the previous step as this corresponds to a velocity reset (setting all velocities
identically to zero) causing a desired dissipation effect for the final convergence. Moreover, as V (r) increases
rapidly when r < σ, we clamp the LJ potential from r = 0.9σ to r = 100σ and employ the hyperbolic tangent
as an activation function restricting the gradient ∇rV (r) to the interval [−1, 1] to avoid arithmetic overflows.
Following this method, we can redistribute any randomly generated point cloud into a uniform distribution
by iteratively applying LJLs. This process stops as soon as a stable configuration is reached, which means
that the difference between the previous and current generated point clouds is below the tolerated threshold.
Consequently, this spatial rearrangement of particles prevents the formation of clusters and holes.
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ALGORITHM 1: The Lennard-Jones layer (LJL). NNS denotes the nearest neighbor search.
Input: Point cloud Xi and point cloud NNS(Xi).
Output: Point cloud Xi+1.

ti ← ∆t(i)
r ← min{max{∥Xi − NNS(Xi)∥, 0.9 σ}, 100σ}
∆x← tanh(−∇r V (r)) · t2

i / 2
Xi+1 ← Xi + ∆x · (Xi − NNS(Xi))/∥Xi − NNS(Xi)∥

Figure 3: Influence of the parameter σ. The rectangle denotes the unit square in which 1024 points are
initialized. (a) σ = 0.2σ′ leads to clusters; (b) σ = σ′ distributes points well and keeps them close to the
boundary; (c) σ = 10σ′ spreads points out of the boundary extremely; (d) σ = 10σ′ with fixed boundary
conditions. σ′ denotes the estimated optimal value of σ.

4 Applications

4.1 Numerical Examples on 2D Euclidean Plane

The LJ potential itself has two parameters: The repulsion distance σ and the attraction strength ϵ. Similar
to the time step ∆t, ϵ scales the gradient, however, it is applied before computing the tanh-function (see
Alg. 1). In practice, we find that setting ϵ = 2 results in a well-behaving LJ gradient. The repulsion distance
σ corresponds to the optimal distance that all particles strive to have from their neighbors. To derive the
proper value for σ, we take inspiration from the point configuration of the hexagonal lattice. The largest
minimum distance r between any two points is given by r =

√
2/(

√
3 N) for N points over a unit square (Lagae

& Dutré, 2005). Fig. 3 shows the result of different values of σ under identical initial conditions where points
are initialized in a unit square. An appropriate σ results in a uniform point distribution that does not
exceed the initial square too much. σ′ =

√
2/(

√
3 N) denotes the estimated optimal value of σ. Small σ’s lack

redistribution ability over the point set as they lead to a limited effect of LJL on particles. Given a large
σ, particles tend to interact with all the points nearby and are spread out of the region excessively. After
exploring the effect of σ on the point distribution over the unbounded region, we introduce fixed boundary
conditions where points will stop at the boundaries when they tend to exceed. In this constraint scenario,
LJL is robust with respect to σ as long as it is sufficiently large. When it comes to the damping step size
∆t in Eq. 2, we want LJL updates with decreasing intensity controlled by the damping parameters α and
β in order to converge samples in later iterations. Empirically, we set α = 0.5 and β = 0.01 to ensure a
proper starting step size and slow damping rate. We analyze the behavior of LJLs in different situations
such as considering different numbers of neighbors k and with or without attraction term in LJ potential,
see Appendix B.1.

4.1.1 Blue Noise Analysis

For many applications in visual computing, blue noise patterns are desirable. Because LJLs have the ability to
normalize the point distribution, we apply LJLs to redistribute samples to randomized uniform distribution
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Figure 4: Spectral analysis of different blue noise generation methods. The rows from top to bottom display
the input point set, power spectrum, radially averaged power spectrum, and anisotropy.

solely from white noise distribution and analyze the corresponding blue noise properties. Here we synthesize
the blue nose distribution in a 2D unit square with periodic boundaries. Inside the region, initial random
points are generated and iteratively rearranged by LJLs to generate blue noise. The spectral analysis for
blue noise includes the power spectrum which averages the periodogram of distribution in the frequency
domain and two corresponding 1D statistics: radial power and anisotropy. Radial power averages the power
spectrum over different radii of rings and the corresponding variance over the frequency rings is anisotropy
indicating regularity and directional bias. We use the point set analysis tool PSA (Schlömer & Deussen,
2011) for spectral evaluation of different 2D blue noise generation methods (1024 points) in Fig. 4. The blue
noise generated by the LJL closely resembles the results produced by the FPO method.

4.2 Redistribution of Point Cloud over Mesh Surfaces

As a motivating example for real applications, we use LJLs to evenly distribute points over mesh surfaces.
Initially, the point cloud is randomly generated inside a 3D cube [−1, 1]3. To ensure the generality of LJL
parameters in 3D cases, mesh sizes are normalized to fit into the cube. The LJL parameters α = 0.5,
β = 0.01, and ϵ = 2 are the same as in the previous example. We set σ = 5σ′ due to the addition of
the third dimension, with the factor of 5 determined through hyperparameter tuning. In the following four
cases illustrated in Fig. 5, we show the importance of applying surface projection in-between LJL iterations.
Without the help of LJLs, random points are directly projected on the sphere shown in Fig. 5(a). When
LJL is only used once as a pre-processing step before the projection, points are located on the surface but
still non-uniformly distributed (see Fig. 5(b)). When using LJL as a post-processing after the projection,
additional noise is introduced and points are shifted away from the surface shown in Fig. 5(c). Due to the
fact that LJLs iteratively rearrange points, in the last case, we project points to the underlying surface in
each intermediate LJL step. The resulting point configuration is not only evenly distributed, but also lies
on the sphere shown in Fig. 5(d). The computations involved in LJL-guided point cloud redistribution are
summarized in Appendix B.2.

7



Published in Transactions on Machine Learning Research (09/2024)

(a) No LJL (b) Pre-processing (c) Post-processing (d) Iterative LJL

Figure 5: Redistribution of random 3D point cloud over a unit sphere. (a) Direct projection of random points.
(b) Apply LJL before the projection as pre-processing. (c) Apply LJL after the projection as post-processing.
(d) Apply projection in between LJL iterations.

Dist Score: 0.02012

Dist Score: 0.03980

Dist Score:0.01966

Dist Score: 0.03302

Dist Score: 0.01806

Dist score: 0.03671

Figure 6: Projecting random 3D point clouds on mesh surfaces with (right) and without (left) LJLs (3000
sample points).

For geometric analysis, we use the mean value of Euclidean distances from each point Xi to its nearest
neighbor NNS π

4
denoted as DistanceScore to evaluate the point distribution of N points shown in Eq. 3.

The nearest neighbors are those who satisfy the intersection angles of their normals less than π
4 to ensure

they are on the same side of the surface. A higher distance score indicates the uniform point distribution
and fewer holes and clusters in the results. The score is computed by

DistanceScore = 1
N

N∑
i=0
∥Xi − NNS π

4
(Xi)∥ . (3)

The results of LJL-guided redistribution demonstrate significant improvements in point distribution, shown
in Fig. 6.

4.3 LJL-embedded Deep Neural Networks

Clusters and holes are consuming the limited number of points without contributing additional information
to the result. In the following two applications, LJLs are plugged into the 3D point cloud generation and
denoising networks that work in an iterative way (e.g. Langevin dynamics). With the help of LJLs, we can
enforce points to converge to a normalized distribution by embedding LJLs into refinement steps (generation
and denoising). The evaluation metric NoiseScore is defined as the mean value of the minimum Euclidean
distances from the point Xi to the underlying surface M , i.e.,

NoiseScore = 1
N

N∑
i=0

min
x∈M
∥Xi − x∥ , (4)

where x is any point on the surface. We use the mean value of Euclidean distances from each point Xi to
its nearest neighbor NNS (Schlömer et al., 2011) denoted as DistanceScore to evaluate the point distribution
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LJLs𝑬𝜽 	𝑫𝜽

Figure 7: A pipeline for searching LJL parameters through a well-trained autoencoder-decoder.

of N points in Eq. 5. We want LJL-embedded results to have as small as possible noise score increments
while having large DistanceScore increments.

DistanceScore = 1
N

N∑
i=0
∥Xi − NNS(Xi)∥ . (5)

4.3.1 LJL-embedded Generative Model for 3D Point Cloud

In this section, we show that LJLs can be applied to improve the point distribution of point cloud generative
models ShapeGF (Cai et al., 2020) and DDPM (Luo & Hu, 2021a) without the need to retrain them. It has
been shown that the aforementioned two types of probabilistic generative models are deeply correlated (Song
et al., 2021). The inference process of both models can be summarized as an iterative refinement process
shown in the bottom row of Fig. 1. Initial point cloud X0 is sampled from Gaussian noise N(0, I). The re-
cursive generation process produces each intermediate point cloud Xn according to the previously generated
point cloud Xn−1. Even though there is randomness introduced in each iteration to avoid local minima, the
generation process depends heavily on the initial point positions. Every point moves independently without
considering the neighboring points, thus generated point clouds tend to form clusters and holes.

The top row of Fig. 1 provides an overview of the integration of LJLs into the inference process of well-trained
generative models. Since the sampling procedure of these generative models is performed recursively, one
can insert LJLs into certain intermediate steps and guide the generated point cloud to have a normalized
distribution. The generator and LJLs have different goals: the former aims to converge all points to a
predicted surface ignoring their neighboring distribution, which is also can be seen as a denoising process.
The latter aims to prevent the formation of clusters and holes to improve the overall distribution. It is
therefore important to observe whether LJLs are inhibiting the quality of the generation process. The
trade-off between distribution improvement and surface distortion needs to be measured.

To find LJL parameters that achieve a favorable trade-off, we apply LJLs in the well-trained autoencoder-
decoder models. In Fig. 7, given a point cloud Y , the autoencoder Eθ encodes it into latent code Z, then
the decoder Dθ which is the generator will utilize iterative sampling algorithms to reconstruct the point
cloud conditioned on Z. We fix the encoder Eθ and insert LJLs solely in decoder Dθ. To determine proper
parameters for LJLs in generation tasks, the reconstructed results need to have a good point distribution
and preserve the original shape structures according to distance and noise scores. The computation related
to this task is summarized in Alg. 2.

During the generation process, LJLs are activated from starting steps (SS) till ending steps (T ′). This implies
that in each valid generation step, the LJL undergoes multiple iterations until convergence. A systematic
parameter searching for SS is shown in Appendix C.2.1. It is not necessarily advantageous to perform LJLs
at every iteration, since LJLs slow down the convergence of the generation in the beginning steps. LJL-
embedding starts in the second half of the generation steps. We also circumvent embedding LJLs in the last
few steps to ensure that no extra noise is introduced. Point clouds are normalized into the cube [−1, 1]3,
and we set ϵ = 2 and σ = 5σ′ due to the additional third dimension. The decaying time step ∆t in i-th
generation step is set as

∆t(i) = α

i
max∥Xi −Xi−1∥exp(−β i) ,
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ALGORITHM 2: LJL parameter searching via autoencoder Eθ and decoder Dθ.
Input: Point cloud Y , starting SS and ending T ′ < T steps.
Output: Reconstructed point cloud XT .

1 Z← Eθ(Y )
2 X0 ∼ N(0, I)
3 FOR t← 1...T
4 IF SS ≤ t ≤ T ′ :
5 Xt ← Dθ(Xt−1, Z )
6 Xt ← LJLs(Xt, NNS(Xt))
7 ELSE:
8 Xt ← Dθ(Xt−1, Z )
9 RETURN XT

Figure 8: Comparison of generation-only (red) and LJL-embedded generation (blue).

where ∆t(i) is scaled by the maximum difference between the current Xi and the previous Xi−1 point
cloud, such that each position modification ∆X caused by LJLs maintains similar scale. Furthermore, ∆t(i)
is divided by the iteration number to diminish the redistribution effect as generation steps increase. In order
to determine α and β, we perform a systematic parameter searching based on distance and noise scores,
see Appendix C.2.2. We found that α = 2.5 and β = 0.01 meet the requirements of less noise and better
distribution.

Incorporating the optimal parameters, we tested LJL-embedded generative models on ShapeNet (Chang
et al., 2015) shown in Fig. 8. We evaluate the chair and airplane datasets using DDPM model, while the
car dataset is evaluated with ShapeGF model. There is a 99.2% increase in the DistanceScore and a 7.8%
increase in the noise score for the car dataset. The point distribution is improved by 42.8% while the noise
score is only increased by 2.8% for airplanes. Finally, we get a 207.9% increase in DistanceScore, and 19.1%
increase in the noise score for the chair dataset, shown in Table 1. More details about LJL parameter settings
and generation results can be found in Appendix C.2.

4.3.2 LJL-embedded Denoising Model for 3D Point Cloud

Given a noisy point cloud X0 = {xN
i } which is normalized into the cube [−1, 1]3, the score-based model (Luo

& Hu, 2021b) utilizes stochastic gradient ascent to denoise it step by step. In each intermediate step, the
denoising network Sθ(X) predicts the gradient of the log-probability function (score) which is a vector field
depicting vectors pointing from each point position towards the estimated underlying surface. The gradient
ascent denoising process will iteratively update each point position to converge to the predicted surface,

Table 1: Evaluation of LJL-embedded shape gen-
eration by measuring the introduced error (Nois-
eScore) and improvement in distribution (Dis-
tanceScore). Smaller noise and larger distance
scores are better.

Noise Score ↓ Distance Score ↑
Airplane + 2.8% + 42.8%
Chair +19.1% +207.9%
Car + 7.8% + 99.2%

Table 2: Evaluation of LJL-embedded denoising
for two different levels of initial noise after dif-
ferent amounts of iterations of denoising steps.
Smaller noise and larger distance scores are bet-
ter.

Noise Score ↓ Distance Score ↑
Noise Level: Low High Low High
30 Iterations: +0.09% +2.63% + 8.79% +10.71%
60 Iterations: -0.42% +1.37% +13.04% +16.85%
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(a) Noisy input. (b) Denoise-only. (c) LJL-embedded denoising.

Figure 9: Comparison between denoising without and with LJLs.

Figure 10: Comparison of denoise-only (red) and LJL-embedded denoising (blue) for 30/60 denoising itera-
tions and different input noise scales.

where we can obtain the denoised result XT . The denoising step can be described as follows:

X(t) = X(t−1) + γtSθ(X(t−1)), t = 1, . . . , T ,

where γt is denoising step size for t-th iteration. LJLs are inserted after each intermediate denoising step
except the last few iterations to avoid extra perturbation to the denoised results. LJL parameter settings and
evaluation metrics used in this task are inherited from previous generation tasks, where σ = 5σ′ and ϵ = 2.
We keep β = 0.01 and choose α = 0.3 which will minimize the ratio of the noise and distance score increment
rates, see Appendix C.1.1. The only difference is that the position update scale (max ∥Xi −Xi−1∥) for the
denoising step is different from that in the generation task. The denoising results then do not only converge
to the predicted surface with less distortion but are also distributed uniformly as shown in Fig. 9.

We continue to determine appropriate denoising iterations and the performance of denoising models (with
and without LJLs) on different noise scales (more and less) shown in Fig. 10. We apply isotropic Gaussian
noise with a higher noise scale of 3% and a lower noise scale of 1% of the shape’s bounding sphere radius as
the standard deviation. This is because denoising tends to progressively smooth the surface and wash out
the details. This phenomenon is shown in Fig. 11.

It is clear that no matter the noise scales, for the denoise-only model, the noise score increases when the
number of iterations goes up. While for the LJL-embedded denoising model, the noise score remains steady

11
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Figure 11: (a) Denoising results of lower noise scale point clouds with respect to increasing denoising itera-
tions. (b) Denoising results of higher noise scale point clouds with respect to increasing denoising iterations.

for the first 60 denoising iterations and the distance scores of both models decrease when iteration times
increase regardless of noise scales. We further evaluate the LJL-embedded denoising model on the test set
from Luo & Hu (2021b) shown in Table 2. By combining LJLs with the denoising network, we find that it
improves DistanceScore with negligible increments of NoiseScore. Moreover, we boost the performance of
existing denoising models without extra training. More LJL-embedded denoising results and evaluations are
shown in Appendix C.1.

5 Conclusion

In this contribution, we have extended the concept of the LJ potential describing pairwise repulsive and
weakly attractive interactions of atoms and molecules to a variety of tasks that require equalizing the density
of a set of points without destroying the overall structure. It has been shown that LJLs are conceptually and
practically capable of generating high-quality blue noise distributions. To demonstrate the benefit of applying
LJLs in the context of the 3D point cloud generation task, we incorporated LJLs into the generative models
ShapeGF (Cai et al., 2020) and DDPM (Luo & Hu, 2021a) aiming for the generation of point clouds with an
improved point distribution. By embedding LJLs in certain intermediate-generation steps, the clusters and
holes are decreased significantly because LJLs increase the chances of points converging to cover the entire
shape. Finally, we combine LJLs with a score-based point cloud denoising network (Luo & Hu, 2021b) such
that the noisy point clouds are not only moved towards the predicted surfaces but also maintain the uniform
distribution. Consequently, this rearrangement prevents the formation of clusters and holes. Since adding
LJLs in these cases does not require retraining the network, the cost of applying LJLs is negligible.

The presented work offers several avenues for future work. From an algorithmic perspective, the k-nearest
neighbor classification performance could be improved through supervised metric learning methods such as
neighborhood components analysis and large margin nearest neighbor. The distribution normalization on
surfaces could be addressed by means of considering tangential bundles. By doing this, we force particles not
to leave tangential manifolds during LJL interactions and in a perfect case to move solely along the geodesics
of the implied surfaces. This would require that we do not distort the underlying surfaces while performing
distribution normalization. Geodesical distances between points on surfaces also refer to a uniform sampling,
which seems more adequate than Euclidean distances of embedding spaces. The reconstruction of geodesics
from point clouds has been explored by Crane et al. (2013). From an analytical point of view, the presented
LJL for distribution normalization has a discrete, piecewise character as it takes only the closest neighbors
into account which change from iteration to iteration. Most common approaches in theoretical mechanics
aim for a continuous description, e.g., based on Hamiltonians and their analytical solution or numerical
integration. It is theoretically not yet clear if it is possible to obtain a blue noise-type arrangement of
particles utilizing pure Hamiltonian mechanics. For future work, we would like to further investigate this
question. On a slightly different trajectory, we would like to explore the possibilities of relativistically moving
particles. If such particles move within a medium with a suitable refraction index, then the power density
of radiation grows linearly with the frequency. This effect is well studied in the literature and known as
Vavilov-Cherenkov radiation (Cherenkov, 1934; Jackson, 1999).
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A Convergence Properties of the Lennard-Jones Layer

The LJL’s output is computed by repetitively integrating forward in time while damping the motion of each
particle over time. As a consequence of the damping effect, we observe that almost no changes to the nearest
neighbors are present at the later stage of the process. Assuming that there are no changes to the nearest
neighbors, we can theoretically prove the convergence of the LJL to the global potential minimum as outlined
in the following theorem.

Theorem: The LJL’s output is uniquely defined matching the single (global) minimum of the corresponding
potential under the assumption that there are no changes of the nearest neighbors throughout the process.

Proof: Without loss of generality, let us consider a set which is composed of an even number of N particles.
It is processed by the LJL, i.e., the dynamical process of each pair of particles is governed by the LJ potential
defined in Eq. (1). The total potential V controlling the process carried out by the LJL is given as the sum
of the LJ potentials of the N/2 pairs, i.e.,

V(r1, . . . , rN/2) =
N/2∑
i=1

Vi with Vi := 4ϵ

((
σ

ri

)12
−
(

σ

ri

)6
)

, (6)

in which ri, i = 1, . . . , N/2 , denotes the Euclidean distance of the two particles composing the i-th pair.

The derivatives V ′
j of Eq. (6) with respect to rj , j = 1, . . . N/2 , are given by

V ′
j (rj) := d

drj
V(r1, . . . , rN/2) = 24ϵ

(
σ6

r7
j

− 2 σ12

r13
j

)
. (7)

From V ′
j (rj) != 0, we obtain the candidate r∗

j = 6
√

2 σ for a local extremum or saddle particle. The second
partial derivative test results in V ′′

j (r∗
j ) > 0 for which reason, the potential V has a local minimum at

(r∗
1 , . . . , r∗

N/2) = 6
√

2 (σ, . . . , σ) with V(r∗
1 , . . . , r∗

N/2) = −(ϵ, . . . , ϵ). This minimum is further the only local
extremum and the global minimum of V which we can easily see by considering limrj→0+ Vj(rj) = ∞ and
limrj→∞ Vj(rj) = 0, j = 1, . . . N/2.

In other words, the potential energy of each pair has only a single energy valley and as each pair is independent
by construction, the LJL converges to the unique minimum of the potential V.

□
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B Parameter Configuration of the Lennard-Jones Layer

We investigate the behavior of LJL in detail by evaluating the point configuration of point sets on 2D
Euclidean plane and 3D mesh surfaces and propose strategies for LJL parameter searching for practical
applications.

B.1 Numerical Examples on 2D Euclidean Plane

Before applying LJLs to practical applications, we now analyze the behavior of LJLs in different situations
(i.e., different numbers of neighbors k, with or without attraction term in LJ potential). We set LJL
parameters α = 0.5, β = 0.01, ϵ = 2, and σ = 5σ′. All different cases are initialized with uncorrelated
randomly distributed points inside a unit square region.

B.1.1 k-NN

The interaction acting on individual particles according to LJ potential can be summed with a varying
number of nearest neighbors. Our theoretical finding guarantees convergence only for the consideration of a
single nearest neighbor. The experiment shown in Fig. 12 indicates point configurations of LJLs considering
a different number of nearest neighbors k. Cases with more than one neighbor increase the difficulty of
reaching uniform point distribution.

(a) k = 1 (b) k = 2 (c) k = 10 (d) k = 499

Figure 12: LJL evaluated with a varying amount of nearest neighbors (500 points in total).

B.1.2 The Impact of the Attraction Term

We continue to discover the impact of attraction term in LJ potential. Two experiments, shown in Fig. 13 run
in identical settings except for the appearance of the attraction term. Intuitively, the repulsive term alone
should achieve an effect of redistribution. Without attraction term, however, particles are easily pulled out
of the initial boundaries and spread out further. LJLs with the attraction term can enable the overall control
of the point set and prevent particles from spreading out, which leads to a compact and equal distribution.

B.2 Redistribution of Point Cloud over Mesh Surfaces

𝐀′

A
𝑩

𝑩′

𝑩𝐿𝐽

𝑩𝐿𝐽
′

Surface

𝑨𝐿𝐽

𝑨𝐿𝐽
′

Figure 14: An illustration of how
LJLs perform redistribution of clus-
tered particles.

In Fig. 14, two particles A and B form a cluster when they are
directly projected on the surface (A′ and B′). With the help of
LJL rearrangement, particles are moved to new positions (ALJ and
BLJ) and further projected back on the surface with proper distance
(A′

LJ and B′
LJ). In this case, the redistributed points are not only

located on the surface but also have blue noise properties. The
computations involved in LJL-guided point cloud redistribution are
summarized in Algorithm 3, where we start with a random 3D point
cloud X0 initialized inside the cube [−1, 1]3 and a normalized mesh
surface M . In order to select nearest neighbors on the same side of
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Figure 13: LJL with activated (left) and deactivated (right) attraction term.

the surface, LJLs only act on pairs that satisfy the condition that
the intersection angle between their normals is less than π

4 . In each
LJL iteration, the redistributed points are projected back onto the surface. After a sufficient amount of
LJL iterations, random point clouds can be rearranged to a normalized distribution and efficiently avoid the
formation of clusters and holes.

ALGORITHM 3: Distribution normalization of 3D point cloud over the mesh surface M.
Input: Point cloud X0 and tolerated threshold tol.
Output: Point cloud Xn.

1 n = 0
2 repeat
3 Nn ← Normal(Xn)
4 N ′

n ← Normal(NNS(Xn))
5 if Angle(Nn, N ′

n) < π
4 :

6 Xn+1 ← LJL(Xn, NNS(Xn))
7 else:
8 Xn+1 ←Xn

9 Xn+1 ← Project-to-Mesh(Xn+1)
10 ∆X ← ∥Xn+1 −Xn∥
11 n← n + 1
12 until ∆X < tol
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C LJL-embedded Deep Neural Networks

In this section, we show more details of LJL-embedded networks’ parameter searching and results. We test
all models on NVIDIA GeForce RTX 3090 GPU if not specified otherwise. Two well-trained point cloud
generative models used in the papers are from ShapeGF (Cai et al., 2020) and DDPM (Luo & Hu, 2021a).
The well-trained point cloud denoising model is from Luo & Hu (2021b).

C.1 LJL-embedded Denoising Model for 3D Point Cloud

C.1.1 Systematic Parameter Searching for α

We keep β = 0.01 inherited from the generation task and search for α by finding the minimum ratio of noise
and distance score increment rate, shown in Fig. 15. We choose α = 0.3 for the denoising task.

Figure 15: The ratio of noise and distance score increment rate. Parameter searching for optimal α by
finding the global minima at α = 0.3.

C.1.2 More LJL-embedded Denoising Results

LJL-embedded denoising results with different denoising iterations and noise scales are shown in Fig. 16.

Figure 16: Comparison of denoise-only (red) and LJL-embedded denoising (blue) for 30/60 denoising itera-
tions and different input noise scales.
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C.2 LJL-embedded Generative Model for 3D Point Cloud

C.2.1 Systematic Parameter Searching for Starting Steps

Assuming that it takes T = 100 steps to generate point clouds, we continue to search for a good starting
steps SS to insert LJLs shown in Fig. 17. SS = 0 means LJLs are applied from the very beginning, whereas
SS = 101 means generation without LJLs. In order to balance the generation speed and LJL normalization
effects, we choose SS = 60, meaning embedding should start in the second half of the generation steps.

Figure 17: The optimal starting step (SS) to embed LJLs in the generation process (i.e. T=100). We select
SS = 60 in the actual generation task.

C.2.2 Systematic Parameter Searching for α and β

In order to determine α and β, we perform a systematic parameter searching based on distance and noise
scores, shown in Fig. 18. We found that α = 2.5 and β = 0.01 meet the requirements of less noise and better
distribution.

C.2.3 Point Cloud Generation Process with Different Numbers of Points

We especially focus on the task of using as few points as possible in generation tasks. For use cases with a
large number of points, inefficient point distributions are less of a concern since even for low-density regions,
there are sufficient points to describe the underlying surface. Fig. 19 shows how LJLs behave in the generation
process with different numbers of points N . Note that our choice of σ = 5σ′ implicitly accounts for the change
in N . In the case of generation tasks with fewer points, the LJL-embedded generator can redistribute the
limited number of points as even as possible while maintaining the global structure. Combining LJLs with
generative models enables points to have the ability to converge to the different parts of the shape.
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Figure 18: Parameter searching for decaying factors α and β, where α1 = 0.1, α2 = 2.5, α3 = 5.0 and
β1 = 0.001, β2 = 0.01, β3 = 0.1. The optimal parameters are α = 2.5 and β = 0.01.

Figure 19: Examples of generation results with regard to the increasing number of sample points N . Red:
Raw generation results. Blue: LJL-embedded generation results.

C.2.4 More LJL-embedded Generation Results

More LJL-embedded generation results are shown in Fig. 20, Fig. 21, and Fig. 22.
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Figure 20: Comparison of raw generation (red) and LJL-embedded generation (blue).
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Figure 21: Comparison of raw generation (red) and LJL-embedded generation (blue).
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Figure 22: Comparison of raw generation (red) and LJL-embedded generation (blue).
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