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ABSTRACT

Deep learning-based anomaly detection models have achieved remarkably high
accuracy on commonly used benchmark datasets. However, the robustness of
those models may not be satisfactory due to the existence of adversarial examples,
which pose significant threats to the practical deployment of deep anomaly detec-
tors. To tackle this issue, we propose an adversarially robust anomaly detector
based on the diffusion model. There are two things that make diffusion models a
perfect match for our task: 1) the diffusion model itself is a reconstruction-based
modeling method whose reconstruction error can serve as a natural indicator of
the anomaly score; 2) previous studies have shown that diffusion models can help
purify the data for better adversarial robustness. In this work, we highlight that
our diffusion model based method gains the adversarial robustness for free: the
diffusion model will act both as an anomaly detector and an adversarial defender,
thus no extra adversarial training or data purification is needed as in standard ro-
bust image classification tasks. We also extend our proposed method for certified
robustness to l2 norm bounded perturbations. Through extensive experiments, we
show that our proposed method exhibits outstanding (certified) adversarial robust-
ness while also maintaining equally strong anomaly detection performance on par
with the state-of-the-art anomaly detectors on benchmark datasets.

1 INTRODUCTION

Anomaly detection aims at identifying data instances that are inconsistent with the majority of data,
which has been widely applied in various domains such as industrial defect detection (Bergmann
et al., 2019), IT infrastructure management (Sun et al., 2021), medical diagnostics (Fernando et al.,
2021), and cyber security (Feng & Tian, 2021). Recently, deep learning (DL) based anomaly de-
tection methods have achieved remarkable improvement over traditional anomaly detection strate-
gies (Ruff et al., 2021; Pang et al., 2021). DL-based methods take the advantage of neural networks
to estimate the anomaly score of a data instance which reflects how likely it is an anomaly. One com-
mon practice defines anomaly score as the reconstruction error between the original data instance
and the recovered one decoded by a symmetric neural network model (e.g., autoencoder) (Hawkins
et al., 2002; Chen et al., 2017). The insight that the reconstruction error can serve as anomaly score
is that the model trained on normal data usually cannot reproduce anomalous instances (Bergmann
et al., 2021), thus a high reconstruction error for a data instance indicates a larger probability of it
being an anomaly.

Though DL-based anomaly detection methods have achieved remarkably high accuracy on com-
monly used benchmark datasets (Yu et al., 2021; Lee et al., 2022a), the robustness of the detection
models is still unsatisfactory due to the existence of adversarial examples (Goodge et al., 2020; Lo
et al., 2022), which poses significant threats to the practical deployment of deep anomaly detectors.
Specifically, an imperceptible perturbation on the input data could cause a well-trained anomaly de-
tector to return incorrect detection results. Figure 1 shows a simple case of how such an adversarial
attack can disrupt OCR-GAN (Liang et al., 2022) which is a recent deep image anomaly detector. We
observe that an anomalous “hazelnut” in the upper row, when added with an invisible noise, could
cheat the detector to output a low anomaly score; while the normal “hazelnut” in the lower row can
also be perturbed to make the detector raise a false alarm with a high anomaly score. In fact, such
a robustness issue is not unique to OCR-GAN, but a common problem for various state-of-the-art
deep anomaly detection models (as will be seen in our later experiments in Section 3).
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Figure 1: An adversarial example on
OCR-GAN. δ refers to invisible pertur-
bations. “GT” denotes “Ground Truth”.

To tackle this issue, we explore the possibility of using the
diffusion model to achieve adversarially robust anomaly
detection. As a powerful class of generative models, dif-
fusion models (Ho et al., 2020; Nichol & Dhariwal, 2021)
are capable of generating samples with high quality, beat-
ing GANs in image synthesis (Dhariwal & Nichol, 2021).
Specifically, diffusion models first construct a diffusion
process to convert the data into standard Gaussian noise
by gradually adding random noise, and then learn the
generative process to reverse the diffusion process and
generate samples from the noise by denoising one step
at a time. There are two aspects about diffusion models
that make them a perfect match for building an adversar-
ially robust anomaly detector: 1) anomaly detection ca-
pability, as the diffusion model itself is a reconstruction-
based modeling method whose reconstruction error can
serve as a natural indicator of the anomaly score. A dif-
fusion model trained on normal data ideally can recon-
struct anomalies as normal ones through the diffusion
and reverse generative process, thus bringing high re-
construction scores for anomalies compared with normal
instances; 2) adversarial robustness, as previous studies
have shown that diffusion models can be used as a data purifier to mitigate adversarial noises for
better robustness (Nie et al., 2022) in supervised learning tasks, which suggests its potential in de-
fending adversarial examples in the anomaly detection task.

Based on the nice properties of diffusion models, we propose a novel adversarially robust anomaly
detection method, inside which the diffusion model acts both as an anomaly detector and an adver-
sarial defender. The introduction of the diffusion model enables us to gain adversarial robustness for
free, as no extra adversarial training or data purification is needed. Note that our design is fundamen-
tally different from the purification-based adversarial robust models in standard image classification
tasks (Nie et al., 2022) where an extra external purifier (e.g., diffusion model) is needed before the
actual classifier for robust classification, which is not needed in our design1.

We summarize our contributions as follows:

• We build a unified adversarial attack framework for various kinds of anomaly detectors to facili-
tate the adversarial robustness study in the anomaly detection domain, through which we system-
atically evaluate the adversarial robustness of state-of-the-art deep anomaly detection models.

• We propose an anomaly detection method based on the diffusion model, which gains adversarial
robustness for free: the diffusion model acts both as an anomaly detector and an adversarial de-
fender, without extra need for adversarial training or data purification as in standard robust image
classification tasks. We also extend our method for certified robustness to l2 norm perturbations
through randomized smoothing which provides additional robustness guarantees.

• We conduct extensive experiments and show that our method exhibits outstanding (certified)
adversarial robustness, while also maintaining equally strong anomaly detection performance on
par with the state-of-the-art anomaly detectors on benchmark datasets (Bergmann et al., 2019).

2 RELATED WORK

Anomaly Detection Methods. Existing anomaly detection methods can be roughly categorized
into two kinds: reconstruction-based and feature-based. One commonly used reconstruction-based
approach for anomaly detection is to train the autoencoder and use the lp norm distance between
input and its reconstruction as the anomaly score (Hawkins et al., 2002; Chen et al., 2017; Zhou
& Paffenroth, 2017). Bergmann et al. (2018) replace lp distance with SSIM (Wang et al., 2004) to

1In fact, the strategy of using the diffusion model as a purifier before another anomaly detector will not
work, as the purifier will break the anomaly signals.
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have a better measure for perceptual similarity. Another more advanced branch of reconstruction-
based models combines autoencoder with GAN, where the generator of the GAN is implemented
using autoencoder (Hou et al., 2021; Liang et al., 2022; Akçay et al., 2019). These methods addi-
tionally incorporate the anomaly score with the similarity between the features of the input and the
reconstructed images extracted from the discriminator to boost performance on categories that are
difficult to reconstruct accurately. Feature-based methods use pre-trained Resnet and vision trans-
former (Yu et al., 2021), or pre-trained neural networks with feature adaptation (Lee et al., 2022a) to
extract discriminative features for normal images, and estimate distribution of these normal features
by Flow-based model (Gudovskiy et al., 2022; Rudolph et al., 2022), KNN (Reiss et al., 2021), or
Gaussian distribution modeling (Li et al., 2021). These methods calculate the anomaly score using
the distance from the features of test images to the established distribution for features of normal
images.

Adversarial Attacks and Defenses for Anomaly Detectors. To the best of our knowledge, exist-
ing attack and defense strategies for anomaly detectors only focus on autoencoder-based models.
Goodge et al. (2020) consider perturbations to anomalous data that make the model to categorize
them as the normal class by reducing reconstruction error. For defense, they propose APAE using
approximate projection and feature weighting to improve adversarial robustness. Lo et al. (2022)
extend the similar attack strategy to both normal and anomalous data and propose Principal Latent
Space as a defense strategy to perform adversarially robust novelty detection (i.e., only semantic
shift anomalies are considered). While they achieve a certain level of robustness, their performances
on clean anomaly detection tasks are yet far from satisfactory.

Diffusion Models. As a class of powerful generative models, diffusion models have attracted the
most recent attention due to their high sample quality and strong mode coverage (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Nichol & Dhariwal, 2021). Recently, Nie et al. (2022) used diffusion
models to purify adversarial perturbations for downstream robust classification, and present empir-
ically strong robustness. Wolleb et al. (2022) adopt deterministic DDIM (Song et al., 2020) for
supervised anomaly localization. Wyatt et al. (2022) solve the same task under an unsupervised sce-
nario using DDPM (Ho et al., 2020) with partial diffusion strategy and simplex noise. Note that they
are pixel-level anomaly detection methods which are not directly comparable to our image-level
anomaly detection. Moreover, diffusion models have not been studied to improve the adversarial
robustness of anomaly detectors.

3 BUILDING ADVERSARIAL ATTACKS FOR ANOMALY DETECTORS
THROUGH A UNIFIED FRAMEWORK

To facilitate the adversarial robustness study on various kinds of anomaly detectors, we first build
a unified adversarial attack framework in the context of anomaly detection. We consider the adver-
sarial perturbations to be imperceptible, i.e, their existence will not flip the ground truth class of
the image (label-preserving). The general goal of the unified attack framework is to make detectors
return incorrect detection results by reducing anomaly scores for anomalous samples and increas-
ing anomaly scores for normal samples. In particular, we take commonly used Projected Gradient
Descent (PGD) attack (Madry et al., 2018) as an example to illustrate our attack formulation.

PGD Attack on Anomaly Detector. Consider a sample x ∈ Rd from the test dataset with label y ∈
{−1, 1} (where “−1” denotes the anomalous class and “1” indicates the normal class), and a well-
trained anomaly detector Aθ : Rd → R that computes an anomaly score for each data sample. We
define the optimization objective of PGD attack on the anomaly detector as: argmaxx Lθ(x, y) =
yAθ(x), where y guides the direction of perturbing x to increase or decrease its anomaly score.
Depending on the perturbation constraint, adversarial examples can be generated by l∞-norm or
l2-norm bounded PGD, respectively as:

xn+1 = P l∞
x,ϵ{xn + α · sgn(∇xnLθ(xn, y)} (3.1)

xn+1 = P l2
x,ϵ{xn + α

∇xnLθ(xn, y)
∥∇xn

Lθ(xn, y)∥
} (3.2)

where α is the step size, n ∈ [0, N − 1] is the current step of in total N iterations, and x0 = x.
P

lp
x,ϵ{·} denotes the projection on xn+1 such that ∥xn+1 − x∥p ≤ ϵ. The final adversarial example
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is generated by xadv = xN . This attacking strategy encapsulates previous works on adversarial
examples for anomaly detectors, where only autoencoder-based models were considered (Lo et al.,
2022; Goodge et al., 2020). The anomaly score can be specified as Aθ(x) = ∥D(E(x))− x∥ to
accommodate to their scenarios, where D denotes the decoder and E corresponds to the encoder.

Robustness Evaluation on Existing Anomaly Detectors. Based on the unified PGD attack, we sys-
tematically evaluate the adversarial robustness of the state-of-the-art detectors with various model
architectures. Table 1 demonstrates the efficacy of the attack in disclosing the vulnerability of exist-
ing anomaly detectors: the AUC scores of these advanced anomaly detectors drop to as low as 0%
under adversarial perturbations with l∞ norm less than 2/255 on Toothbrush dataset from bench-
mark MVTec AD (Bergmann et al., 2019). This suggests that current anomaly detectors suffer from
fragile robustness on adversarial data, which urges us to build adversarially robust anomaly detectors
that can achieve excellent detection performance and strong adversarial robustness simultaneously.

Table 1: Standard AUC and robust AUC against l∞-PGD (ϵ = 2/255) attacks on Toothbrush dataset
from benchmark MVTec AD, obtained by various anomaly detection SOTAs.

Method Standard AUC Robust AUC
OCR-GAN (Liang et al., 2022) 96.7 0
SPADE (Cohen & Hoshen, 2020) 88.9 0
CFlow (Gudovskiy et al., 2022) 85.3 0
FastFlow (Yu et al., 2021) 94.7 0
CFA (Lee et al., 2022a) 100 0

4 ADVERSARIALLY ROBUST ANOMALY DETECTION

Before we introduce our diffusion-based robust anomaly detection method, we first give a brief
review on diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhariwal, 2021).

4.1 PRELIMINARIES ON DIFFUSION MODELS

DDPM (Ho et al., 2020) defines a T steps diffusion process q(x1:T |x0) :=
∏T

t=1 q(xt|xt−1)
parameterized by a well behaved variance schedule β1, . . . , βT as q(xt|xt−1) :=
N (xt;xt−1

√
1− βt, βtI), which iteratively transforms an unknown data distribution q(x0) to

standard Gaussian q(xT ) = N (0, I). The generative process pθ(x0:T ) := p(xT )
∏T

t=1 pθ(xt−1|xt)
is learned to approximate each q(xt−1|xt) using neural networks as follows:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (4.1)

A noticeable property of the diffusion process is that it allows directly sampling xt at an arbitrary
timestep t given x0. Using the notation αt := 1− βt and αt :=

∏t
s=1 αs, we have

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∈ N (0, I) (4.2)

This property makes it possible to quickly sample xt. For training the diffusion model, motivated
by the connection to generative score matching (Song & Ermon, 2019; 2020), Ho et al. (2020) show
that directly predicting the noise term ϵ results in higher sample quality, especially when combined
with a simplified objective without learning signals for Σθ(xt, t):

Lsimple = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥]. (4.3)

In this paper, we follow Nichol & Dhariwal (2021) and train the diffusion model using a hybrid loss
for better sample quality with fewer generation steps. More details can be found in Appendix A.

4.2 FREERAD: ADVERSARIALLY ROBUST ANOMALY DETECTION FOR FREE

Based on the diffusion model, we now introduce our proposed Robust Anomaly Detection for Free
method, termed as FreeRAD. FreeRAD consists of two parts: robust reconstruction, which aims
to reconstruct the normal input in a robust manner, and anomaly score calculation, which aims to
calculate the final anomaly score based on the robust reconstruction error.
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Robust Reconstruction: Robust reconstruction is the first step for our FreeRAD method and is the
key to achieving adversarially robust anomaly detection. Since the diffusion model training proce-
dure is essentially predicting noise added in the diffusion process and then denoising, its reconstruc-
tion error can serve as a natural indicator of the anomaly score. Specifically, as shown in Figure 2,
for normal data, the reconstruction is nearly identical to the input. For anomaly data, the diffusion
model (after adding noise and denoising) could “repair” the anomaly regions, thus obtaining high
reconstruction error, which could be easily detected as anomalies. Now let’s consider adversarial
robustness in anomaly detection. Note that one basic assumption of adversarial examples is that the
perturbation is usually imperceivable, e.g., with small Lp norms. In the diffusion process, if we add
sufficiently large Gaussian noise to the input data, such adversarial perturbations would be domi-
nated by the added Gaussian and thus be invalid. After the reverse diffusion (denoising) process, the
reconstruction could still recover it to normal and thus obtain a high reconstruction error as shown
in Figure 2. This suggests that FreeRAD is indeed robust to adversarial data perturbations.
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Figure 2: Reconstruction results of normal
data, anomalous data, and adversarially per-
turbed data using our model. The observed
reconstruction is robust to adversarial noise.

Algorithm 1 summarizes the main steps for robust re-
construction. Specifically, to perform adversarially
robust reconstruction, we first choose the diffusion
steps k and apply Eq. 4.2 on x to obtain diffused im-
ages xk. Unlike the diffusion model training process,
here we do not need to diffuse the data into complete
Gaussian noise (a large k). Instead, we pick a moder-
ate number of k for noise injection and start denois-
ing thereafter, similar to Nie et al. (2022). Note that
k should be chosen such that the amount of Gaussian
noise is dominating the adversarial perturbations and
anomaly signals while the high-level features of the
input data are still preserved for reconstruction. In
terms of the denoising process, a typical full-shot set-
ting uses the full k denoising steps: in each step t,
we iteratively predict the true input x given the cur-
rent diffused data xt, termed x̃0, then sampling the
new iterate xt−1 according to the current prediction
x̃0 and the current diffused data xt.

Algorithm 1 Full-shot Robust Reconstruction in FreeRAD
Input: Test images: x, diffusion steps: k(k ≤ T )
Output: Reconstructions of x: x̃

1: x0 = x
2: ϵ ∼ N (0, I)
3: xk =

√
αkx0 +

√
1− αkϵ

4: for t = k, . . . , 1 do ▷ full-shot denoising
5: x̃0 = 1√

αt
(xt −

√
1− αtϵθ(xt, t))

6: if t > 1 then
7: z ∼ N (0, I)

8: xt−1 =

√
αt−1βt

1−αt
x̃0 +

√
αt(1−αt−1)

1−αt
xt +

√
Σθ(xt, t))z

9: end if
10: end for
11: x̃ = x̃0

Anomaly Score Calculation: To calculate the final anomaly score in a robust and stable manner,
we first calculate the Multiscale Reconstruction Error Map (denoted as Errms), which considers both
pixel-wise and patch-wise reconstruction errors. Specifically, for each scale l in L = {1, 1

2 ,
1
4 ,

1
8},

we first calculate the error map Err(x, x̃)l between the downsampled input xl and the downsampled
reconstruction x̃l with 1

C

∑C
c=1 (x

l − x̃l)
2

[c,:,:] where the square operator is abused here for element-
wise square operation, then unsampled to the original resolution. The final Errms is obtained by
averaging each scale’s error map and applying a mean filter for better stability similar to Zavrtanik
et al. (2021): Errms(x, x̃) = ( 1

NL

∑
l∈L Err(x, x̃)l)∗fs×s where fs×s is the mean filter of size s× s,
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∗ is the convolution operation. Similar to Pirnay & Chai (2022), we take the pixel-wise maximum of
the absolute deviation of the Errms(x, x̃) on normal training data as the scalar anomaly score. Due
to space limits, we leave the complete anomaly score calculation algorithm in Appendix B.2.

One-shot Denoising: One major problem with full-shot denoising (Algorithm 1) is that the denois-
ing procedure is time consuming, making it unacceptable for real-time anomaly detection in critical
situations (Sun et al., 2021). Moreover, extra reconstruction error can also be introduced due to the
multiple sampling steps in the full-shot denoising process. To overcome these challenges, we inves-
tigate the arbitrary-shot denoising process allowing fewer denoising steps, with the details shown
in Appendix B.1. Based on our results (see Appendix D.2) we observe that one-shot denoising (re-
ducing the for loop in Line 4 of Algorithm 1 into one iteration) is sufficient to produce an accurate
reconstruction result with O(1) inference-time efficiency. Under such cases, the robust reconstruc-
tion in FreeRAD reduces to the simple 3-step version shown in Algorithm 2. Such a one-shot idea
has also been adopted in Carlini et al. (2022) for robust image classification. By default, we use
one-shot robust reconstruction for all experiments in Section 5.

Algorithm 2 One-shot Robust Reconstruction in FreeRAD
Input: Test images: x, diffusion step: k(k ≤ T )
Output: Reconstructions of x: x̃

1: ϵ ∼ N (0, I)
2: xk =

√
αkx+

√
1− αkϵ

3: x̃ = 1√
αk

(xk −
√
1− αkϵθ(xk, k)) ▷ one-shot denoising process

5 EXPERIMENTS

We compare our proposed FreeRAD with five state-of-the-art anomaly detectors on both clean input
and adversarially perturbed input. FreeRAD shows a competitive robustness performance compared
with defense-enabled anomaly detector baselines, and maintains robust even under stronger adaptive
attacks. Finally, we further extend FreeRAD for certified robustness to l2 norm perturbations.

5.1 EXPERIMENTAL SETTINGS

Dataset and Model Implementation. We perform experiments on widely used MVTec Anomaly
Detection benchmark (Bergmann et al., 2019). MVTec AD comprises 15 sub-datasets with a total of
5354 high-resolution images from the real world. Among these sub-datasets, the category for 10 of
them are about specific objects (e.g., toothbrush, transistor, hazelnut), and the other 5 sub-datasets
are about specific textures (e.g., leather, wood). We resize all images to 256×256 resolution in our
experiments. We implement the diffusion model based on Nichol & Dhariwal (2021) using U-Net
backbone (Ronneberger et al., 2015). We set the total iteration step as T = 1000 for all experiments.
During inference stage, we choose the diffusion step k ∈ {50, 100, 200, 300} for different categories
(see Appendix D.1 for sensitivity test). More hyperparameters are described in Appendix C.1.

Adversarial Attacks. We adopt commonly used PGD attack (Madry et al., 2018) to compare with
the state-of-the-art anomaly detection models and defense-enabled anomaly detectors. Additionally,
we also consider the BPDA and EOT attack (Athalye et al., 2018a) for better robustness evaluations
on defense-enabled anomaly detectors. We set the attack strength ϵ = 2/255 for l∞-norm attacks
and ϵ = 0.2 for l2-norm attacks to ensure imperceptible attack perturbations.

Evaluation Metric. We use the widely-adopted AUC (area under the receiver operating character-
istic curve) to evaluate the performance of anomaly detection. Specifically, we consider standard
AUC and robust AUC. The standard AUC evaluates the performance on the clean test data, while the
robust AUC evaluates the performance on the adversarially perturbed test examples.

5.2 COMPARISON WITH THE STATE-OF-THE-ART ANOMALY DETECTORS

We compare our method FreeRAD with five state-of-the-art methods for image anomaly detection:
SPADE (Cohen & Hoshen, 2020), OCR-GAN (Liang et al., 2022), CFlow (Gudovskiy et al., 2022),
FastFlow (Yu et al., 2021), and CFA (Lee et al., 2022a), against the l∞-PGD and l2-PGD attacks.
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Table 2: Standard AUC (in parenthesis) and robust AUC against l∞-PGD attacks (ϵ = 2/255) on
MVTec AD dataset, obtained by different state-of-the-art anomaly detectors and ours.

Category OCR-GAN SPADE CFlow FastFlow CFA FreeRAD

Te
xt

ur
e

Carpet 0(76.6) 0(92.8) 0(98.6) 0(99.7) 0(99.4) 70.5(82.7)

Grid 0(97) 0(47.3) 0(96.6) 0(100) 0(99.6) 99.8(100)

Leather 0(90.7) 0(95.4) 0(100) 6.6(100) 2.0(100) 97.8(100)

Tile 0(95.6) 0(96.5) 0(99.6) 1.3(100) 0.1(99.3) 93.9(99.2)

Wood 0(95.4) 0(95.8) 0(99.7) 0(99.9) 0(99.7) 95.2(98.3)

O
bj

ec
t

Bottle 0(97.7) 0(97.2) 0(100) 0(100) 0.1(100) 88.1(100)

Cable 0(71.5) 084.8) 0(98.7) 0(67.4) 0.8(99.8) 38.9(79.5)

Capsule 0(80.4) 0(89.7) 0(93.7) 8.9(99.2) 0(97) 53.5(93.9)

Hazelnut 0(97.7) 0(88.1) 0(99.9) 0(99.5) 0.1(100) 91.5(97.5)

Metal Nut 0(82.6) 0(71) 0(100) 0(98.2) 0(100) 85.9(93.5)

Pill 0(80.8) 0(80.1) 0(93.2) 0(97.8) 0(98) 39(97.2)

Screw 0(99.4) 0(66.7) 0(79) 6.6(91.1) 0(95.5) 87.6(99.3)

Toothbrush 0(96.7) 0(88.9) 0(85.3) 0(94.7) 0(100) 95.8(100)

Transistor 0(75) 0(90.3) 0(98.3) 0(99.4) 0(100) 74.5(93.7)

Zipper 0(80.4) 0(96.6) 0(97.5) 17.5(99.6) 0(99.7) 96.2(100)

Average 0(87.8) 0(85.4) 0(96.0) 2.3(98.5) 0.2(99.2) 80.5(95.7)

Table 3: Standard AUC (in parenthesis) and Robust AUC against l2-PGD attacks (ϵ = 0.2) on
MVTec AD dataset, obtained by different state-of-the-art anomaly detectors and ours.

Category OCR-GAN SPADE CFlow FastFlow CFA FreeRAD

Te
xt

ur
e

Carpet 18.5(76.6) 27.1(92.8) 13.5(98.6) 18(99.7) 65.1(99.4) 76.6(82.7)

Grid 0(97) 4.1(47.3) 0(96.6) 0(100) 50(99.6) 99.9(100)

Leather 0(90.7) 16.5(95.4) 9.4(100) 35.4(100) 77.6(100) 99.9(100)

Tile 7.4(95.6) 45.9(96.5) 7.8(99.6) 30.5(100) 72.4(99.3) 93.1(99.2)

Wood 0(95.4) 11(95.8) 18.1(99.7) 22(99.9) 61.8(99.7) 95.5(98.3)

O
bj

ec
t

Bottle 0.1(97.7) 0(97.2) 48.5(100) 2.2(100) 74.6(100) 95.5(100)

Cable 3.2(71.5) 0.984.8) 19.2(98.7) 0.3(67.4) 69.5(99.8) 65.7(79.5)

Capsule 0(80.4) 0(89.7) 1.6(93.7) 13.8(99.2) 1.7(97) 68.1(93.9)

Hazelnut 18.5(97.7) 0(88.1) 4.9(99.9) 0.8(99.5) 47.2(100) 94.3(97.5)

Metal Nut 2.8(82.6) 0(71) 4.4(100) 1.7(98.2) 14.3(100) 87.9(93.5)

Pill 2.7(80.8) 0.4(80.1) 0(93.2) 0(97.8) 3.3(98) 80.3(97.2)

Screw 0(99.4) 0(66.7) 0(79) 6.6(91.1) 0(95.5) 91.8(99.3)

Toothbrush 0(96.7) 0(88.9) 18.3(85.3) 3.6(94.7) 38.3(100) 99.4(100)

Transistor 1.7(75) 4.8(90.3) 8.8(98.3) 0.4(99.4) 53.7(100) 84.3(93.7)

Zipper 0(80.4) 3.2(96.6) 0(97.5) 19.3(99.6) 29.2(99.7) 99.2(100)

Average 3.7(87.8) 7.59(85.4) 10.3(96.0) 9.9(98.5) 43.9(99.2) 88.8(95.7)

Table 2 presents the robustness performance against l∞-PGD attacks (ϵ = 2/255) on MVTec AD
dataset. Table 3 shows the robustness performance against l2-PGD attacks (ϵ = 0.2).

From Table 2 we observe that our method largely outperforms previous methods regarding robust
AUC against l∞-PGD attacks (ϵ = 2/255). Specifically, our method improves robust AUC on all
15 categories of MVTec AD and obtains the average robust AUC 80.5% with the improvement of at
least 78.2%. In Table 3, we can see that our method improves average robust AUC against l2-PGD
attacks (ϵ = 0.2) by 44.9% and achieves 88.8% robust AUC. In the meantime, we can observe
that in terms of anomaly detection performance on clean data, the average standard AUC obtained
by our method is on par with the state-of-the-art methods such as CFlow (Gudovskiy et al., 2022),
FastFlow (Yu et al., 2021), and CFA (Lee et al., 2022a), while beating OCR-GAN (Liang et al.,
2022) and SPADE Cohen & Hoshen (2020). These results clearly demonstrate the effectiveness
of our proposed method in defending against l∞-PGD and l2-PGD attacks, while also maintaining
strong anomaly detection performance on benchmark datasets.
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5.3 COMPARISON WITH DEFENSE-ENABLED ANOMALY DETECTORS

In this section, We compare our method FreeRAD with APAE (Goodge et al., 2020) and PLS (Lo
et al., 2022), two defense-enabled anomaly detection methods. We perform the same PGD attacks
as in Section 5.2. Additionally, since APAE has an optimization loop in their defense process which
is hard to backpropagate, we further adopt the BPDA attack (Athalye et al., 2018a) designed specif-
ically for obfuscated gradient defenses to evaluate both our FreeRAD and APAE for a fair compar-
ison. Table 4 shows the comparison between our FreeRAD method and defense-enabled baselines
against PGD and BPDA attacks. We can clearly observe that FreeRAD outperforms them under all
attacks, with a substantial improvement of 27.6% ∼ 58.3% regarding the average robust AUC over
all categories of MVTec AD. Furthermore, our method even largely improves the average standard
AUC by 31.0% on clean data compared with APAE and PLS.
Table 4: Average standard AUC and robust AUC against l∞-PGD/BPDA (ϵ = 2/255), l2-
PGD/BPDA (ϵ = 0.2) attacks on MVTec AD, obtained by PLS, APAE and ours.

Method Standard AUC Robust AUC

l∞-PGD l2-PGD l∞-BPDA l2-BPDA

PLS 46.4 16.0 40.8 - -
APAE 64.7 29.9 61.2 30 61.2

FreeRAD 95.7 80.5 88.8 88.3 89.6

5.4 DEFENDING AGAINST STRONGER ADAPTIVE ATTACKS

So far we have shown that FreeRAD is indeed robust to PGD and BPDA attacks in Section 5.2 and
5.3. To further verify its robustness in more challenging settings, we test FreeRAD against adaptive
attacks where the attacker is assumed to already know about our diffusion model-based anomaly
detection method and design attacks against our defense adaptively. Since the diffusion process
in our method introduces extra stochasticity, which plays an important role in defending against
adversarial perturbations, we consider applying EOT to PGD, which is designed for circumventing
randomized defenses. In particular, EOT calculates the expected gradients over the randomization
as a proxy for the true gradients of the inference model using Monte Carlo estimation (Athalye et al.,
2018b;a; Lee et al., 2022b). We set the number of samples n = 20 for the EOT attacks following
Nie et al. (2022).
Table 5: Robust AUC against l∞-PGD, l∞-EOT-PGD (ϵ = 2/255, EOT=20), and l2-PGD, l2-EOT-
PGD attacks (ϵ = 0.2, EOT=20) on Bottle, Grid, Toothbrush, Wood from MVTec AD. We also show
the difference between the results of PGD and EOT-PGD attacks.

Categoty Robust AUC diff Robust AUC diff
l∞-PGD l∞-EOT-PGD l2-PGD l2-EOT-PGD

Bottle 88.0 87.0 −1.0 95.5 94.3 −1.2
Grid 99.8 99.8 −0.0 99.9 100 +0.1

Toothbrush 95.8 92.5 −3.3 99.4 98.1 −1.3
Wood 95.2 86 −9.2 95.5 94.4 −1.1

Average 95.8 91.3 −4.5 97.6 96.7 −0.9

Table 5 shows the robust AUC against EOT-PGD attacks and the difference between the results
of standard PGD attacks and EOT-PGD attacks on Bottle, Grid, Toothbrush, Wood categories of
MVTec AD. We observe that the adversarial robustness is not affected too much by EOT. Specifi-
cally, the average robust AUC slightly drops 4.5% and 0.9% compared against standard l∞-PGD and
l2-PGD attacks, respectively. These results suggest that our method has empirically strong robust-
ness against adaptive attacks with EOT. Since other baselines use deterministic inference models, it
is unnecessary to apply EOT to evaluate their adversarial robustness.

5.5 EXTENSION: CERTIFIED ADVERSARIAL ROBUSTNESS

In this section, we apply randomized smoothing (Cohen et al., 2019) to our diffusion-based anomaly
detector and construct a new “smoothed” detector for certified robustness. Given a well-trained
FreeRAD detector Aθ(·) that outputs the anomaly score, we can construct a binary anomaly classi-
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fier with any defined threshold h:

f(x) =

{
normal, if Aθ(x) ≤ h

anomaly, otherwise
(5.1)

Then we can make predictions by constructing a Gaussian smoothed FreeRAD and compare with h.
The smoothed FreeRAD enjoys provable robustness, which is summarized in the following theorem:
Theorem 5.1. [Smoothed FreeRAD] Given a well-trained FreeRAD detector Aθ(x), for any given
threshold h and δ ∼ N (0, σ2I), if it satisfies P[Aθ(x + δ) > h] ≥ panomaly(h) > 1/2, then
Eδ[Aθ(x + δ)] > h for all ||δ||2 < R(h) where R(h) = σΦ−1(panomaly(h)). On the other hand, if
it satisfies P[Aθ(x + δ) < h] ≥ pnormal(h) > 1/2, then Eδ[Aθ(x + δ)] < h for all ||δ||2 < R(h)
where R(h) = σΦ−1(pnormal(h)).

Theorem 5.1 can be used to certify the robustness of a sample x given any threshold h. The es-
timation of pnormal(h) and panomaly(h) can be done using Monte Carlo sampling similar to Cohen
et al. (2019). However, the obtained certified radius is highly related to the threshold h. Thus the
certified accuracy metric cannot fully represent the quality of the anomaly detection if the inappro-
priate threshold is selected. To solve this issue, we also propose the new certified AUC metric for
measuring the certified robustness performance at multiple distinct thresholds. Specifically, for each
threshold candidate, we can make predictions by Eδ[Aθ(x+δ)] and compute certified TPR and FPR
according to prediction results and their certified radius. After iterating all possible thresholds, we
calculate final AUC scores based on the collection of certified TPRs and FPRs on various thresholds.

Table 6 shows the certified robustness achieved by FreeRAD. For example, we achieve 98.2% cer-
tified AUC at l2 radius 0.2 on gird sub-dataset, which indicates that there does not exist any adver-
sarial perturbations δ (||δ|| ≤ 0.2) that can make the AUC lower than 98.2%. One major limitation
of randomized smoothing on anomaly detection tasks is that the noise level can not be much high,
otherwise the anomalous features might be covered by the Gaussian noise such that the detector can
not distinguish anomalous samples from normal samples. For instance, there is only 12.4% certi-
fied AUC on Bottle sub-dataset under the noise level σ = 0.25. The performance gap on different
datasets (e.g., 98.2% vs. 12.4%) under the same noise level (σ = 0.25) indicates that the selection
of the noise level might depend on specific anomaly features.
Table 6: Certified AUC on Bottle, Grid, Toothbrush, Wood datasets from MVTec AD benchmark at
varying levels of Gaussion noise σ.

Noise Certified AUC at l2 radius ϵ

0 0.05 0.1 0.2

σ = 0.0625 99.9 95.7 0 0
σ = 0.125 99.9 97.8 92.0 0
σ = 0.25 66.5 47.3 28.8 12.4

Noise Certified AUC at l2 radius ϵ

0 0.05 0.1 0.2

σ = 0.0625 100 99.9 0 0
σ = 0.125 100 100 99.9 0
σ = 0.25 99.6 99.2 98.2 98.2

(a) Bottle (b) Grid

Noise Certified AUC at l2 radius ϵ

0 0.05 0.1 0.2

σ = 0.0625 100 98.2 0 0
σ = 0.125 100 99.4 97.2 0
σ = 0.25 100 99.4 98.1 91.7

Noise Certified AUC at l2 radius ϵ

0 0.05 0.1 0.2

σ = 0.0625 98.5 87.9 0 0
σ = 0.125 98.3 94 84.8 0
σ = 0.25 96 88.6 79.2 66.7

(c) Toothbrush (d) Wood

6 CONCLUSION

Adversarial robustness is a critical factor for the practical deployment of deep anomaly detection
models. In this work, we propose an adversarially robust anomaly detector based on the diffu-
sion model that leverages reconstruction error to detect anomalies and utilizes the diffusion pro-
cess to gradually remove adversarial perturbations for better robustness. We empirically show that
our method provides outstanding adversarial robustness while also maintaining strong anomaly de-
tection performance on benchmark datasets. One major advantage of our method is that it gains
adversarial robustness for free: the diffusion model functions both as an anomaly detector and an
adversarial defender, thus no extra adversarial training or data purification is needed as in standard
robust image classification tasks.
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Samet Akçay, Amir Atapour-Abarghouei, and Toby P Breckon. Skip-ganomaly: Skip connected and
adversarially trained encoder-decoder anomaly detection. In 2019 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. IEEE, 2019.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018a.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In International conference on machine learning, pp. 284–293. PMLR, 2018b.
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A TRAINING OBJECTIVE OF THE DIFFUSION MODEL

In this section, we introduce the hybrid training objective proposed by (Nichol & Dhariwal, 2021).
Specifically, training diffusion models can be performed by optimizing the commonly used varia-
tional bound on negative log-likelihood as follows (Ho et al., 2020):

Lvb := L0 + L1 + . . .+ LT−1 + LT (A.1)
L0 := − log pθ(x0|x1) (A.2)

Lt−1 := DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)) (A.3)
LT := DKL(q(xT |x0)||p(xT )) (A.4)

Ho et al. (2020) suggest that directly optimizing this variational bound Lvb would produce much
more gradient noise during training and propose a reweighted simplified objective Lsimple:

Lsimple = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥]. (A.5)

However, this Lsimple model suffers from sample quality loss when using a reduced number of
denoising steps (Nichol & Dhariwal, 2021). Nichol & Dhariwal (2021) find that training diffusion
models via a hybrid objective:

Lhybrid = Lsimple + λLvb (A.6)
greatly improves its practical applicability by generating high-quality samples with fewer denoising
steps, which is helpful for using diffusion models on applications with high-efficiency requirements
such as real-time anomaly detection (Sun et al., 2021). In particular, we parameterize the variance
term Σθ(xt, t) in Eq.4.1 as an interpolation between βt and β̃t in the log domain following (Nichol
& Dhariwal, 2021):

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t) (A.7)
where v is the model output. Following Nichol & Dhariwal (2021), we set λ = 0.001 and apply a
stop-gradient to the µθ(xt, t) output for Lvb to prevent Lvb from overwhelming Lsimple

B ADDITIONAL ALGORITHMS

B.1 ARBITRARY-SHOT ROBUST RECONSTRUCTION IN FREERAD

In this section, we attach the complete algorithm for arbitrary-shot robust reconstruction motivated
by (Nichol & Dhariwal, 2021). Given an arbitrary denoising steps S = {Sm, Sm−1, . . . , S1}(m ≤
k, k = Sm > Sm−1 > · · · > S1 >= 1), in each step t ∈ [1,m], we iteratively predict the true point
x given the current diffused data xSt

, termed x̃0, them sampling new iterate xSt−1
according to the

current prediction x̃0 and current diffused data xSt
.

Algorithm 3 Arbitrary-shot Robust Reconstruction in FreeRAD
Input: Test images: x, diffusion steps: k, arbitrary generation steps: S =

{Sm, Sm−1, . . . , S1}(m ≤ k, k = Sm > Sm−1 > · · · > S1 >= 1)
Output: Reconstructions of x: x̃

1: x0 = x
2: ϵ ∼ N (0, I)
3: xk =

√
αkx0 +

√
1− αkϵ

4: for t = m, . . . , 1 do ▷ arbitrary-shot denoising
5: x̃0 = 1√

αSt

(xSt
−
√
1− αSt

ϵθ(xSt
, St))

6: if t > 1 then
7: z ∼ N (0, I)

8: xSt−1
=

√
αSt−1

βSt

1−αSt
x̃0 +

√
αSt (1−αSt−1

)

1−αSt
xSt

+
√
Σθ(xSt

, St))z

9: end if
10: end for
11: x̃ = x̃0
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B.2 ANOMALY SCORE CALCULATION

In this section, we attach the complete algorithm for anomaly score calculation. Given test image
x ∈ RC×H×W and its reconstruction x̃ ∈ RC×H×W obtained by FreeRAD, we first calculate the
Multiscale Reconstruction Error Map. In particular, we choose a scale schedule L = {1, 1

2 ,
1
4 ,

1
8}.

For each scale l, we compute the error map Err(x, x̃)l between the downsampled input xl and the
downsampled reconstruction x̃l with 1

C

∑C
c=1 (x

l − x̃l)
2

[c,:,:] where the square operator here refers
to element-wise square operation, then unsampled to the original resolution. The final Errms is
obtained by averaging each scale’s error map and applying a mean filter for better stability similar
to Zavrtanik et al. (2021): Errms(x, x̃) = ( 1

NL

∑
l∈L Err(x, x̃)l) ∗ fs×s where fs×s is the mean

filter of size s× s, ∗ is the convolution operation. Similar to Pirnay & Chai (2022), we take the
pixel-wise maximum of the absolute deviation of the Errms(x, x̃) to the normal training data as the
scalar anomaly score.

Algorithm 4 Anomaly Score Calculation in FreeRAD
Input: Test image: x ∈ RC×H×W , Reconstructed image: x̃ ∈ RC×H×W ,
Output: Anomaly score: A(x)

1: for l in L = {1, 1
2 ,

1
4 ,

1
8} do ▷ L is a downsampling scale schedule

2: xl = downsample(l,x) ∈ RC×(l×H)×(l×W )

3: x̃l = downsample(l, x̃) ∈ RC×(l×H)×(l×W )

4: Err(x, x̃)l = upsample( 1l ,
1
C

∑C
c=1 (x

l − x̃l)
2

[c,:,:]) ∈ RH×W ▷ element-wise square
5: end for
6: Errms(x, x̃) = ( 1

NL

∑
l∈L Err(x, x̃)l) ∗ fs×s ∈ RH×W ▷ fs×s is a mean filter of size (s× s)

7: A(x) = max(|Errms(x, x̃)− 1
NZ

∑
z∈Z Errms(z, z̃)|) ▷ Z is the set of normal training images

C MORE DETAILS OF EXPERIMENTAL SETTINGS

C.1 HYPERPARAMETERS OF THE DIFFUSION MODEL

The diffusion model in our experiments uses the linear noise schedule (Ho et al., 2020). The number
of channels in the first layer is 128, and the number of heads is 1. The attention resolution is 16×16.
We adopt PyTorch as the deep learning framework for implementations. We train the model using
Adam optimizer with the learning rate of 10−4 and the batch size of 2. The model is trained for
30000 iterations for all categories of data. We set diffusion steps T = 1000 for training. We list the
choice of k for each category as follows:

Table 7: The choices of k for each category of MVTec AD dataset

k categories

50 Capsule, Pill, Bottle, Leather, Tile, Zipper
100 Grid, Screw, Toothbrush, Wood
200 Transistor, Hazelnut, Carpet, Cable
300 Metal Nut

D MORE EXPERIMENTAL RESULTS

D.1 IMPACT OF THE DIFFUSION STEP

Here we first provide anomaly detection performance of proposed FreeRAD on clean data at varying
diffusion steps k at inference time. We test with t ∈ {25, 50, 100, 200, 300}. As shown in Table
8, different datasets may not have the same optimal k. A principle for anomaly detection on clean
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data is that k should be chosen such that the amount of Gaussian noise is dominating the anomaly
signals while the high-level features of the input data are still preserved for reconstruction. In terms
of the adversarial data, k should also be large enough to add sufficient Gaussian noise to dominate
adversarial perturbation. As in Table 9, we can see that our method obtains the best performance
on clean data at k = 25. However, the robust AUC is not satisfying, since the noise added in the
diffusion process cannot dominate the adversarial perturbations. Therefore, we can choose larger k
(e.g., 50) to obtain better robust performance with slight performance loss on clean data.

Table 8: AUC results on 15 categories from MVTec AD at varying diffusion steps k at inference
time

Category k = 25 k = 50 k = 100 k = 200 k = 300

Te
xt

ur
e

Carpet 71.8 64.9 73.8 82.7 80.9
Grid 100 100 100 100 100

Leather 100 100 100 99.3 98.4
Tile 100 99.2 95.4 81.4 74.0

Wood 95.4 98.2 98.3 97.9 97.1

O
bj

ec
t

Bottle 98.9 100 99.6 99.1 97.9
Cable 78.9 78.8 79.2 79.5 77.7

Capsule 96.3 93.9 90.5 84.6 80.7
Hazelnut 95.8 96.2 97.3 97.5 96.2
Metal Nut 79.5 83.8 91.0 91.3 93.5

Pill 98 97.2 94.4 86.6 68.6
Screw 97.3 95.0 99.3 80.8 66

Toothbrush 100 100 100 99.7 99.7
Transistor 87.5 87.8 90.6 93.7 93.2

Zipper 100 100 99.7 96.4 95.0

Table 9: Standard AUC and robust AUC against l2-PGD attacks (ϵ = 0.2) at varying diffusion step
k on Capsule and Pill from MVTec AD.

Category k = 25 k = 50

Standard AUC Robust AUC Standard AUC Robust AUC

Capsule 96.3 49.5 93.9 68.1
Pill 98 53.9 97.2 80.3

D.2 REDUCING DENOISING STEPS

In this section, we provide the anomaly detection performance of FreeRAD on clean data at vary-
ing denoising steps in Table 10 by running Algorithm 3 for reconstruction and using Algorithm 4
to compute anomaly score. Specifically, we test with several denoising steps schedules from one-
shot denoising (1-step) to full-shot denoising (k-step) and intermediate settings such as 0.05k, 0.1k,
0.25k, and 0.5k. We can see that one-shot denoising obtains the highest AUC scores on all four
datasets. Moreover, we report the inference time (in seconds) at varying denoising steps in Table 11
on an NVIDIA TESLA K80 GPU, where the inference time increases linearly with denoising steps.
We show that the inference with one-shot denoising could process a single image in 0.5 seconds,
which demonstrates the applicability of our method FreeRAD on real-time tasks. These experimen-
tal results clearly indicate that FreeRAD with reconstruction by one-shot denoising achieves both
the best detection effectiveness and time efficiency.

D.3 COMPARISON WITH ROBUST ANOMALY DETECTION METHODS

In this section, we compare our method FreeRAD with robust anomaly detection methods such as
Robust Autoencoder (Zhou & Paffenroth, 2017), which was proposed to handle noise and outlier
data points, although the adversarial perturbation was not explicitly considered in their work. Table
12 clearly shows that our method still largely outperforms RAE no both clean data and adversarial
data.
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Table 10: AUC results on Screw, Toothbrush, Wood, Transistor at varying denoising steps. The
choice of k for each category follows Table 7.

Category 1−step 0.05k-step 0.1k-step 0.25k-step 0.5k-step k-step

Screw 99.3 97.3 96.8 97.2 95.1 96.4
Toothbrush 100 99.7 100 99.4 100 100
Transistor 93.7 92.3 87.2 89.5 82.1 86.2

Wood 98.3 97.1 98.2 95.9 98.2 96

Table 11: Inference time (in seconds) for a single image on Toothbrush and Transistor by varying
denoising steps, where the inference time increases over one-shot denoising is given in parenthe-
sis.The choice of k for each category follows Table 7.

Category 1-step 0.05k-step 0.1k-step 0.25k-step 0.5k-step k-step

Toothbrush 0.5 2.28(×4.6) 4.63(×9.3) 11.53(×23.6) 23.03(×46.1) 46.06(×92.1)

Transistor 0.5 4.98(×10) 10.01(×20) 25(×50) 50(×100) 99.78(×199.6)

Table 12: Average standard AUC and robust AUC against l∞-PGD(ϵ = 2/255), l2-PGD(ϵ = 0.2))
attacks on MVTec AD, obtained by RAE and ours.

Method Standard AUC Robust AUC

l∞-PGD l2-PGD

RAE 57.1 16.8 49.8
FreeRAD 95.7 80.5 88.8

D.4 DEFENDING AGAINST AUTOATTACK

We have shown that FreeRAD is robust to adaptive attacks EOT-PGD in Section 5.4. In this section,
we incorporate additional strong attack baselines, AutoAttack (Croce & Hein, 2020) which ensem-
ble multiple white-box and black-box attacks such as APGD attacks and Square attacks. Specif-
ically, we used two versions of AutoAttack: (i) standard AutoAttack and (ii) random AutoAttack
(EOT+AutoAttack), which is used for evaluating stochastic defense methods. We summarize the
standard AUC and robust AUC of our proposed FreeRAD in the following Table 13. The robust
AUC scores of FreeRAD against AutoAttack are still largely higher than other SOTAs against rel-
atively weaker PGD attacks as shown in Table 2 and 3, thus there is no need to evaluate other
methods’ robustness against stronger AutoAttack.

Table 13: Standard AUC and robust AUC against l∞-AutoAttack(ϵ = 2/255), l2-AutoAttack(ϵ =
0.2)) on Bottle, Grid, Toothbrush, Wood from MVTec AD

Category Standard AUC Robust AUC

l∞-standard AA l2-standard AA l∞-random AA l2-random AA

Bottle 100 76.5 87.8 73.4 87.6
Grid 100 98.2 99.2 98.2 98.8

Toothbrush 100 73.6 84.2 65.8 86.1
wood 99.8 72.3 75.2 64.8 75.3

Average 100 80.1 86.6 75.6 87.0
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D.5 EXPERIMENTS ON NOVELTY DETECTION DATASET

Novelty Detection (i.e., semantic anomaly detection) refers to the problem of determining if test
data is from the known class (normal) or novel class (anomalous) (Yang et al., 2021). We perform
experiments with novelty detection on the CIFAR-10 dataset (Krizhevsky et al., 2009) which has
10 categories with 60000 natural images. Under the setting of novelty detection, one category
is regarded as a known class, and other categories are considered novel classes. Hence we train
the corresponding model for each category respectively. We evaluate and compare our proposed
FreeRAD with several SOTA methods that include FastFlow (Yu et al., 2021), and CFA (Lee et al.,
2022a). We summarize the standard AUC and robust AUC against l∞-PGD and l2-PGD attacks in
Table 14. The results show that our method still largely outperforms the baselines method regarding
robust AUC while maintaining a strong novelty detection performance on clean data.

Table 14: Standard AUC (in parenthesis) and robust AUC against l∞-PGD attacks (ϵ = 2/255)
and l2-PGD attacks (ϵ = 0.2) on CIFAR-10 dataset, obtained by different state-of-the-art anomaly
detectors and ours.

Attacks l∞-PGD l2-PGD

Category FastFlow CFA FreeRAD(Ours) FastFlow CFA FreeRAD(Ours)

Bird 0.3(63.0) 0.3(68.1) 57.9(71.9) 2.1(63.0) 1.7(68.1) 62.2(71.9)

Plane 4.1(74.2) 1.2(71.8) 54.9(79.3) 10.3(74.2) 3.5(71.8) 64.8(79.3)

Car 1.9(81.7) 0.0(76.3) 50.6(70.4) 6.9(81.7) 3.9(76.3) 61.7(70.4)

Cat 0.2(45.6) 0.3(58.7) 28.7(56.7) 0.8(45.6) 1.3(58.7) 38.9(56.7)

Deer 0.5(56.1) 1.0(74.6) 60.5(71.5) 1.6(56.1) 5.4(74.6) 63.2(71.5)

Dog 1.0(72.7) 1.0(64.5) 39.1(56.4) 3.7(72.7) 3.0(64.5) 45.4(56.4)

Frog 0(79.7) 0.9(81.7) 59.6(71.3) 1.5(79.7) 5.2(81.7) 62.5(71.3)

Horse 1.2(76.4) 1.6(74.9) 47.1(60.4) 4.6(76.4) 5.0(74.9) 51.7(60.4)

Ship 1.8(81.2) 1.3(81.0) 65.2(77.5) 8.0(81.2) 5.6(81.0) 68.9(77.5)

Truck 3.7(83.7) 0.4(74.8) 23.2(45.0) 13.1(83.7) 3.9(74.8) 28.5(45.0)

Average 1.5(71.4) 0.8(72.6) 48.7(66.0) 5.3(71.4) 3.9(72.6) 54.8(66.0)

E MORE ANALYSIS OF THE ADVERSARIAL ROBUSTNESS OF DDPMS

In this section, we provide more theoretical analysis on the defense mechanism of DDPMs. Since the
adversarial perturbations would be dominated by the added noise from the diffusion process, such
that the clean data distribution and adversarially perturbed data distribution get closer. Intuitively,
after performing the full diffusion process, any data would converge to pure standard Gaussian as
mentioned in Section 4.1. This suggests that the tiny adversarial perturbations will be gradually
washed out and have little effect on the final output after denoising. Moreover, the stochasticity in-
troduced from the sampling in the diffusion process (Eq.4.2) makes it well-suited for combining with
randomized smoothing strategies and building certified robustness without much loss on anomaly
detection performances. The following theorem confirms that the diffusion process in DDPMs could
make the KL-divergence of diffused clean data distribution and diffused adversarially perturbed data
distribution decreases gradually.

Theorem E.1. Given any clean data distribution p(x) and adversarially perturbed data distribution
q(x), we denote by pt the distribution of xt derived from the t-step diffusion process in Eq. 4.2 when
x0 ∼ p(x). Accordingly, we denote by qt the distribution of xt derived from the t-step diffusion
process when x0 ∼ q(x). If t ∈ [0, T ] and T → ∞, the diffusion process in DDPM converges to a
continuous process and

∂DKL(pt||qt)
∂t

≤ 0,

i.e., the KL-divergence of pt and qt monotonically decreases during the diffusion process.
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Proof: The proof mainly follow from Song et al. (2021); Nie et al. (2022).

Following derivations from Song et al. (2021), the discrete Markov chain used in DDPM xi =√
1− βixi−1 +

√
βiϵi−1, i = 1, · · · , T , can be re-written as

xi =

√
1− βi

T
xi−1 +

√
βi

T
ϵi−1, i = 1, · · · , T (E.1)

where βi = Tβi. When T → ∞, βi becomes a function β(t) indexed by t ∈ [0, 1]. Denote βi, xi,
and ϵi as β( i

T ), x(
i
T ), and ϵ( i

T ), respectively, we can rewrite Eq. E.1 as below:

x(t+∆t) =
√

1− β(t+∆t)∆tx(t) +
√
β(t+∆t)∆tϵ(t)

≈ x(t)− 1

2
β(t+∆t)∆tx(t) +

√
β(t+∆t)∆tϵ(t)

≈ x(t)− 1

2
β(t)∆tx(t) +

√
β(t)∆tϵ(t), (E.2)

where ∆t = 1
T , t ∈ {0, 1

N , · · · , T−1
T }, and the approximate equality holds when ∆t ≪ 1. Hence in

the limit of T → ∞ and 1
T → 0, Eq. E.2 converges to a continuous time SDE:

dx = −1

2
β(t)xdt+

√
β(t)dw.

Let us denote f(x, t) := − 1
2β(t)x and g(t) :=

√
β(t). Following the same proof as in Theorem

3.1 in Nie et al. (2022), we have

∂DKL(pt||qt)
∂t

= −1

2
g2(t)DF (pt||qt),

where DF (pt||qt) :=
∫
pt(x)|| log pt(x)− log qt(x)||2dx ≥ 0 and DF (pt||qt) = 0 iff pt = qt, thus

we have
∂DKL(pt||qt)

∂t
≤ 0.
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