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Abstract

Currently, most multimodal studies are based001
on large language models (LLMs) with002
quadratic-complexity Transformer architec-003
tures. While linear models like RNNs enjoy004
low inference costs, their application has been005
largely limited to the text-only modality. This006
work explores the capabilities of modern RNN007
architectures in multimodal contexts. We pro-008
pose ModRWKV—a decoupled multimodal009
framework built upon the RWKV7 architecture010
as its LLM backbone—which achieves multi-011
source information fusion through dynamically012
adaptable heterogeneous modality encoders.013
We designed the multimodal modules in Mod-014
RWKV with an extremely lightweight architec-015
ture and, through extensive experiments, identi-016
fied a configuration that achieves an optimal017
balance between performance and computa-018
tional efficiency. ModRWKV leverages the019
pretrained weights of the RWKV7 LLM for020
initialization, which significantly accelerates021
multimodal training. Comparative experiments022
with different pretrained checkpoints further023
demonstrate that such initialization plays a cru-024
cial role in enhancing the model’s ability to025
understand multimodal signals. Supported by026
extensive experiments, we conclude that mod-027
ern RNN architectures present a viable alter-028
native to Transformers in the domain of multi-029
modal large language models (MLLMs). Fur-030
thermore, we identify the optimal configuration031
of the ModRWKV architecture through system-032
atic exploration.033

1 Introduction034

Linear complexity model (Peng et al., 2025; Gu and035

Dao, 2024; Yang et al., 2024a, 2025, 2024b) have036

emerged as an efficient alternative to the attention-037

based Transformer architecture (Vaswani et al.,038

2023; Yin et al., 2024) in Large Language Mod-039

els (LLMs) (Touvron et al., 2023; Achiam et al.,040

2023). Among various linear models, recurrent041

neural networks (RNNs) (Peng et al., 2025) have042

become a competitive approach. Characterized by 043

constant memory usage, RNNs can perform in- 044

ference at a lower cost compared to the linearly 045

increasing KV cache of Transformers. Recent re- 046

search has also enabled their parallel training ca- 047

pabilities (Yang et al., 2024a, 2025), facilitated 048

by hardware-aware designs optimized for modern 049

GPU architectures (Dao et al., 2022). 050

Currently, LLMs are undergoing a paradigm 051

shift—from single-modality processing to cross- 052

modal collaboration (Liu et al., 2023; Fang et al., 053

2025; Chen et al., 2022; Défossez et al., 2024). 054

By leveraging transfer learning from pre-trained 055

LLM weights, these models achieve cross-modal 056

semantic alignment in tasks such as visual ques- 057

tion answering and speech dialogue. However, this 058

practice has primarily been employed within the 059

traditional Transformer architecture. In the con- 060

text of linear models, few works have expanded 061

their understanding to modalities beyond natural 062

language. This disparity highlights a crucial gap in 063

the current landscape of linear models. 064

In this paper, we describe MODRWKV. It is the 065

first RNN-based linear model that extends its capa- 066

bilities to the cross-modal domain. MODRWKV 067

is based on RWKV7, a RNN-based architecture 068

powered by generalized delta rule with vector val- 069

ues gating, in-context learning rates, and relaxed 070

value replacement rule. We hypothesize that the in- 071

herent sequential processing capabilities of RNNs, 072

coupled with a carefully designed shared parame- 073

ter base, can effectively capture both intra-modal 074

and inter-modal dependencies across diverse data 075

types. 076

We take advantage of the RWKV7 architecture 077

to propose an innovative unified training paradigm 078

for multimodal fusion. MODRWKV adopts a 079

lightweight shared parameter base with a modality- 080

specific encoder framework, where simply switch- 081

ing the front-end encoder enables seamless trans- 082

fer across multimodal tasks. This approach sys- 083
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tematically explores the representation capabili-084

ties of RNN architectures within cross-modal se-085

mantic spaces, aiming to break the Transformer-086

dominated research paradigm. It offers new theo-087

retical and practical insights into the deployment088

of large RNN-based models in the multimodal do-089

main.090

Our contributions can be summarized as three-091

fold:092

1. Proposed the MODRWKV framework, pi-093

oneering a unified multimodal training paradigm094

based on an RNN architecture. By adopting a095

plug-and-play design for modality encoders, it096

significantly enhances cross-modal scalability097

and integration efficiency.098

2. Conducted a comprehensive and system-099

atic evaluation of MODRWKV’s full-modality100

understanding capabilities, establishing a bench-101

mark paradigm for assessing the cross-modal102

performance of RNN-based architectures.103

3. Extensive Ablation experiments validate104

the optimal multimodal processing design that105

achieves a desirable balance between perfor-106

mance and computational efficiency.107

2 Background108

RWKV7: Modern RNN Architecture Simple109

linear RNNs (Qiao et al., 2024; Gu and Dao, 2024)110

can be written in the following recurrent form:111

ht = Wht−1 +Uxt, (1)112

which enables parallelized training but lacks strong113

language performance and long-term dependency114

preservation. RWKV combines the efficiency of115

linear RNNs (constant memory and time complex-116

ity during inference) with powerful modeling capa-117

bilities through its time-mixing block. It uses keys118

kt and values vt, linearly projected from xt, and119

updates the state st with input-dependent decay wt120

and receptance rt:121

st = e−wt · st−1 + ktv
T
t , (2)122

In RWKV7, the state update is enhanced for greater123

expressiveness with the form:124

st = Gtst−1 + atktv
T
t , (3)125

where employed a generalized delta rule with two126

improvements: (1) In-context learning rate. the127

term at, a vector-valued learning rate projected128

as at = Waxt, controls the influence of the129

new information ktv
T
t on the state. (2) Vec- 130

tor value gating. The dynamic transition ma- 131

trix Gt = (I − atktk
T
t )diag(e

−ewt ) incorpo- 132

rates wt, a vector-valued gating parameter from 133

wt = Wwxt, enabling channel-specific decay 134

rates. This input-dependent design makes st highly 135

adaptive to context. 136

Multimodal Large Language Models LLMs 137

have traditionally been trained on natural language 138

data and are primarily designed to understand and 139

generate text. These models excel in text-based 140

tasks but are inherently limited to the domain of hu- 141

man language. Recently, many works have begun 142

to explore the potential of large language models 143

beyond their linguistic roots, pushing their capabil- 144

ities into other modalities. From a modality per- 145

spective, MLLMs now handle a variety of data 146

types beyond text, including images (Liu et al., 147

2024a), audio (Défossez et al., 2024), and video. 148

Structurally, these models adapt by incorporating 149

modality-specific encoders, such as visual trans- 150

formers for images or audio transformers for sound. 151

Input integration varies between unified tokeniza- 152

tion, where all modalities are converted into a 153

single token sequence, and cross-modal attention, 154

where the model attends to features across modali- 155

ties. 156

3 Methodology 157

MODRWKV is the first RNN-based multimodal 158

architecture that integrates the MLLM training 159

paradigm with a linear model, achieving excep- 160

tional hardware efficiency. In Section 3.1, we 161

present the encoder selection design of MODR- 162

WKV. In Section 3.2, we detail the adapter design 163

of MODRWKV. In Section 3.3, we describe the 164

sequence compression method for efficiently pro- 165

cessing diverse multimodal data. 166

3.1 Multimodal Encoder 167

Vision Encoder. We evaluated CLIP (Radford 168

et al., 2021) and SigLIP2 (Tschannen et al., 2025) 169

as alternative visual encoders for MODRWKV, 170

applying identical adaptation frameworks to each 171

model independently. Each vision-language en- 172

coder processes raw images to generate sequential 173

feature embeddings that are then aligned with the 174

RWKV large language model through lightweight 175

adapter layers. Our experiments validated MODR- 176

WKV’s strong inherent capacity for visual informa- 177

tion processing, with this framework demonstrating 178
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Figure 1: ModRWKV network architecture. Multi-modality data streams undergo initial processing via an encoder,
a 1D Convolutional layer, and an adapter. (The 1D Convolutional layer is employed to compress the sequence length
of multi-modal inputs, which significantly reduces the computational overhead during training.) Concurrently, text
data is transformed through a Text Embedding module. The outputs from the adapter and Text Embedding layers
are subsequently concatenated.

excellent cross-modal adaptability even without179

architectural modifications to the base language180

model.181

Audio Encoder. In our study, we employ182

WavLM (Chen et al., 2022) and Whisper (Rad-183

ford et al., 2022) as audio encoders for MODR-184

WKV. We select encoder models with sizes rang-185

ing from approximately 100M to 400M parame-186

ters, specifically choosing WavLM base+, WavLM187

large, Whisper small, and Whisper medium for188

evaluation. These encoders process audio sampled189

at 16,000 Hz and generate feature vectors at a fre-190

quency of 50 Hz. For the Whisper encoder, each191

audio segment is padded to a duration of 30 sec-192

onds.193

Time Series Encoder. We adopt WaveNet (Van194

Den Oord et al., 2016) and Timer (Liu et al., 2024b)195

as alternative temporal encoders for MODRWKV.196

Timer is initialized with pre-trained weights, with197

the weights frozen during training, while WaveNet198

is trained from scratch without pre-trained weights.199

However, during inference, both encoders are200

frozen to enable zero-shot evaluation. Each en-201

coder transforms raw time-series data into high-202

level feature embeddings, which are then aligned203

with the RWKV blocks via lightweight adapters.204

3.2 Adapter Design205

We introduce a single-MLP adapter (Liu et al.,206

2023) for dimension alignment between modali-207

ties, reducing the adapter’s parameter. This forces208

the RWKV7 backbone to handle the majority of209

cross-modal reasoning, providing a rigorous test of210

RNN-based architectures in multimodal settings:211

h = Linear2(ReLU(Linear1(x))). (4)212

Table 1: Multimodal Benchmark Evaluation

Benchmark Description

VQA-v2 (Goyal et al., 2017) Image Understanding
TextVQA (Singh et al., 2019) Text-Image Integration
GQA (Hudson and Manning, 2019) Reasoning
ScienceQA (Lu et al., 2022) Scientific Reasoning
POPE (Li et al., 2023) Hallucination
MMMU (Yue et al., 2024) Reasoning
MMBench (Liu et al., 2024c) Assessment
LibriSpeech (Panayotov et al., 2015) Speech Recognition
Aishell-1 (Bu et al., 2017) Speech Recognition
GIFT-Eval (Aksu et al., 2024) Time Series
UTSD (Liu et al., 2024b) Time Series

3.3 Sequence Compression 213

To address the computational challenges of long 214

sequences in LLMs, we employ 1D convolution to 215

effectively compress multimodal sequences (e.g., 216

image patches, audio spectrograms). This approach 217

significantly reduces processing overhead while 218

maintaining model performance. For an input x ∈ 219

RCin×L, a convolutional kernel W ∈ RCout×Cin×k, 220

stride s ≥ 1, padding p, the c-th output channel 221

Y ∈ RCout×L′
is computed as: 222

yc =

Cin∑
i=1

k−1∑
j=0

W c,i,j · xi,s·t+j

+ bc︸ ︷︷ ︸
Conv1D

, (5) 223

where t = 0, . . . , L′ − 1 and L′ is computed as 224

L′ =
⌊
L+2p−k

s

⌋
+ 1. 225

4 Experiments 226

4.1 Experimental Details 227

Training Settings (1) Vision. Our implemen- 228

tation follows the phased training paradigm of 229

LLaVA (Liu et al., 2023) for both vision and au- 230

dio understanding. In Phase I, we first freeze the 231
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Table 2: Comparison with SoTA methods on 7 benchmarks. Benchmark names are abbreviated due to space
limits. VQA-v2; GQA; SQAI: ScienceQA-IMG; VQAT: TextVQA; POPE; MMB: MMBench; MMMU. PT and IT
indicate the number of samples in the pretraining and instruction tuning stages, respectively.

Method LLM PT IT VQAv2 GQA SQAI VQAT POPE MMB MMMU

LLaVA-1.5 Vicuna-7B 558K 665K 78.5 62.0 66.8 58.2 86.5 64.3 -

LLaVA-1.5 Vicuna-13B 558K 665K 80.0 63.3 71.6 61.3 86.2 67.7 -

LLaVA-1.6 Vicuna-7B 558K 665K 81.8 64.2 72.8 65.7 86.7 67.7 35.8

LLaVA-Phi Phi-2-2.7B 558K 665K 71.4 - 68.4 48.6 85.0 59.8 -

MobileVLM-3B MobileLLaMA-2.7B 558K 665K - 59.0 61.2 47.5 84.9 59.6 -

VL-Mamba Mamba LLM-2.8B 558K 665K 76.6 56.2 65.4 48.9 84.4 57.0

MODRWKV RWKV7 LLM-3B 558K 665K 78.3 60.8 70.9 51.1 87.1 66.6 38.7

Table 3: Model’s WER(%) on Librispeech dataset and CER(%) on Aishell-1 dataset.

Dataset Data (h) Encoder Clean WER(%) Other WER(%) Dev CER(%) Test CER(%)

Librispeech 960

wavlm large 2.43 6.51 - -
wavlm base+ 3.08 10.38 - -
whisper medium 5.33 12.28 - -
whisper small 6.24 16.92 - -

Aishell-1 178

wavlm large - - 9.68 10.33
wavlm base+ - - 12.40 13.46
whisper medium - - 5.08 5.83
whisper small - - 6.29 6.95

encoder and the RWKV model, training only a lin-232

ear adapter with a single MLP and layer norm to233

project multimodal features into the embedding234

space of the language model. In Phase II, we then235

unfreeze both the adapter and RWKV parameters,236

while the encoder remains frozen to preserve pre-237

trained representations. To comprehensively assess238

the impact of encoder choice and model scale on239

RWKV7 performance, we performed experiments240

on four vision languagemarks using three model241

sizes (0.4B, 1.5B and 3B) for each encoder. Our242

models are trained on 8×NVIDIA A800 GPUs. De-243

tails of training settings can be found at Appendix 9.244

(2) Audio. Training was conducted in two phases:245

Phase I trained only the audio adapter (LR=1e-246

4), while Phase II jointly trained the adapter and247

RWKV (LR decayed from 1e-4 to 5e-5). For Lib-248

riSpeech, we ran 1 epoch in each phase; for Aishell-249

1, 2 epochs in Phase I and 4 in Phase II. The default250

batch size was 32, reduced to 16 for the Whisper en-251

coder due to GPU constraints, with epochs halved252

accordingly to match training steps. All experi-253

ments used 44×090 GPUs. (3) Time series. In the254

Time series task, We conducted experiments using255

dual NVIDIA RTX 4090 (24GB) GPUs, training on256

a 441,725-sample short-duration univariate dataset.257

Datasets We consider diverse datasets in vision, 258

audio, and time series (Refer to Table 1). For vi- 259

sion understanding ability, we use LLaVA-595K 260

as training dataset for Phase I, and LLaVa-665k 261

for Phase II. For audio, We train our MODR- 262

WKVmodel using two open-source datasets: (1) 263

LibriSpeech (Panayotov et al., 2015), which com- 264

prises 960 hours of English reading audio data; and 265

(2) Aishell-1 (Bu et al., 2017), which includes 170 266

hours of Chinese audio data. For each, we trained 267

our model exclusively on the respective training 268

dataset. In the time series task, we utilized pub- 269

lic datasets from GIFT-Eval (Aksu et al., 2024). 270

After thorough sorting and cleaning, we derived a 271

small number of univariate datasets. Additionally, 272

we incorporated UTSD (Liu et al., 2024b) public 273

datasets later in the process. 274

Benchmarks To rigorously evaluate our model’s 275

capabilities across diverse reasoning scenarios, we 276

employed a comprehensive evaluation framework 277

spanning from basic visual recognition to advanced 278

knowledge-intensive tasks. This framework sys- 279

tematically verifies our model’s cross-modal com- 280

petence at various cognitive levels by assessing it 281

on seven multimodal benchmarks: VQA-v2 (Goyal 282

et al., 2017) for fundamental image understanding 283
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Table 4: Zero-shot MSE with Adapter Scaling 4× use gift-eval datasets (WaveNet Encoder) (Qiu et al., 2024)

Model LB-FL ECL ETTh1 ETTh2 ETTm1 ETTm2 WTH Traffic

TimeFM 720-96 0.119 0.421 0.326 0.363 0.206 0.123 0.327
Timer 720-96 0.221 0.414 0.305 0.440 0.203 0.178 0.526
UniTS 720-96 0.175 0.377 0.323 0.761 0.249 0.194 0.481
TTM 720-96 0.170 0.368 0.286 0.415 0.186 0.152 0.509
MOIRAI 720-96 0.212 0.394 0.285 0.516 0.222 0.208 1.359
ROSE 720-96 0.209 0.382 0.298 0.512 0.224 0.200 0.572

MODRWKV(25% gift-eval) 720-96 0.342 0.746 0.633 0.754 0.559 0.797 0.512
MODRWKV(100% gift-eval) 720-96 0.342 0.648 0.453 0.227 0.426 0.203 0.342

and question-answering, TextVQA (Singh et al.,284

2019) to evaluate optical character recognition285

(OCR) and text-image integration, GQA (Hud-286

son and Manning, 2019) for compositional rea-287

soning and real-world visual understanding, Sci-288

enceQA (Lu et al., 2022) to assess scientific mul-289

timodal reasoning through multiple-choice ques-290

tions, POPE (Li et al., 2023) to quantify ob-291

ject hallucination via binary classification tasks,292

MMMU (Yue et al., 2024) to challenge models with293

college-level, cross-discipline problems, and MM-294

Bench (Liu et al., 2024c), which represents a sys-295

tematically designed, objective evaluation frame-296

work for comprehensive assessment that uses circu-297

larEval strategy for assessment stability, ETT (Qiu298

et al., 2024), which focuses on long-term mul-299

tivariate time-series forecasting using electricity300

transformer temperature data, serving as a stan-301

dard benchmark for evaluating temporal modeling302

capabilities under various sequence lengths and303

prediction horizons, WeatherBench (Rasp et al.,304

2020) to evaluate spatiotemporal forecasting us-305

ing global atmospheric data as a standard bench-306

mark for data-driven weather prediction, etc.. Ad-307

ditionally, we evaluated our MODRWKVmodel308

using the corresponding open-source datasets: Lib-309

riSpeech (Panayotov et al., 2015), which com-310

prises 960 hours of English reading audio data,311

and Aishell-1 (Bu et al., 2017), which includes 170312

hours of Chinese audio data.313

4.2 Qualitative Evaluation314

Vision Understanding As summarized in Ta-315

ble 2, MODRWKV demonstrates strong overall316

performance across eight widely-used multimodal317

benchmarks, outperforming existing state-of-the-318

art (SoTA) methods in its parameter range. Com-319

pared to VL-Mamba-2.8B, MODRWKV-3B con-320

sistently achieves higher scores on all evaluated321

tasks, reflecting its superior capability in visual322

question answering, compositional reasoning, and323

image-conditioned instruction following. 324

Notably, despite having a significantly smaller 325

language backbone than LLaVA-1.5-7B, MODR- 326

WKV achieves competitive or superior results on 327

several benchmarks. It surpasses LLaVA-1.5-7B 328

in ScienceQA-IMG, POPE, and MMBench, while 329

maintaining comparable performance on VQAv2. 330

Furthermore, MODRWKV attains the highest re- 331

ported score among peers on the MMMU bench- 332

mark, highlighting its generalization ability in chal- 333

lenging multi-modal understanding scenarios. 334

These results collectively suggest that MODR- 335

WKV offers a favorable trade-off between perfor- 336

mance and model size. Its effectiveness stems not 337

merely from scale, but from architectural efficiency 338

and a well-designed multimodal integration strat- 339

egy, positioning it as a competitive alternative to 340

larger vision-language models. 341

Vision Knowledge The following examples in 342

Table 10 showcase the capabilities of the MODR- 343

WKV QA chatbot. These examples illustrate how 344

MODRWKV effectively integrates visual informa- 345

tion with general knowledge, while also perform- 346

ing basic logical reasoning to address common user 347

queries. 348

Audio Recognition Table 3 presents the Word 349

Error Rate (WER) for the LibriSpeech test_clean 350

and test_other test sets, as well as the Character Er- 351

ror Rate (CER) for the Aishell-1 development and 352

test sets. For the LibriSpeech dataset, the model 353

achieved a WER of 2.43% on the test_clean subset, 354

indicating a high level of precision in recognizing 355

clear speech. On the test_other subset, the model at- 356

tained a WER of 6.51%, demonstrating reasonable 357

performance in handling more challenging noisy 358

speech samples without data augmentation. For 359

the Aishell-1 dataset, the model achieved CERs of 360

5.08% on the development set and 5.83% on the 361

test set, using the Whisper medium encoder. These 362

results reflect the model’s effectiveness in handling 363
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Table 5: Zero-shot MSE on Public Datasets: ECL, ETTh, ETTm, WTH, Traffic (Timer Encoder) (Liu et al., 2024b)

Dataset Size Adapter Scaling ECL ETTh1 ETTh2 ETTm1 ETTm2 WTH Traffic

Gift-Evel 2× 0.641 0.785 0.882 0.949 0.719 0.633 0.988
Gift-Evel + UTSD 2× 0.516 0.637 0.848 0.891 0.672 0.512 0.683
Gift-Evel + UTSD 4× 0.453 0.629 0.547 0.843 0.648 0.461 0.641
Gift-Evel + UTSD 8× 0.535 0.629 0.652 0.828 0.762 0.566 0.617

Table 6: MODRWKV Visual Models with different
Encoders and parameters tested on benchmarks.

Vision Size VQAv2 VQAT GQA SQAI

CLIP
0.4B 62.04 31.72 49.32 51.10
1.5B 72.31 40.27 54.56 62.77
3B 73.13 45.56 57.00 70.66

SigLIP2
0.4B 72.04 38.75 55.52 43.32
1.5B 76.95 44.96 58.88 63.10
3B 78.30 51.09 60.75 70.93

non-English speech recognition tasks with limited364

training data.365

During adapter training, we observed a phe-366

nomenon akin to the capability emergence de-367

scribed by (Ma et al., 2024). However, the tim-368

ing of this emergence was inconsistent and heav-369

ily influenced by the initialization of the adapter’s370

weights. In some instances, the adapter failed to371

converge during Phase I.372

Time Series Forecasting We conducted com-373

parative experiments on two temporal encoder374

architectures: Timer and WaveNet. Results375

(See Table 4) show that although Timer has a376

larger parameter count (based on pre-trained377

weights), it consistently underperforms WaveNet378

on downstream time-series forecasting tasks.379

We hypothesize that this performance gap arises380

from WaveNet’s use of causal dilated convo-381

lutions, which effectively capture long-range382

temporal dependencies through hierarchically383

expanding receptive fields. Additionally, unlike384

Timer’s patch-wise embedding, WaveNet adopts385

a point-wise embedding strategy, allowing it386

to extract finer-grained temporal features. For387

training data preparation, we constructed two388

fine-tuning datasets: a baseline dataset (GIFT-389

Eval)(Aksu et al., 2024) and an augmented390

dataset composed of GIFT-Eval and a partially391

processed subset of UTSD(Liu et al., 2024b).392

Experiments indicate that models trained on393

the augmented dataset—containing anomalous394

samples—achieved superior generalization in395

zero-shot evaluations across public benchmarks396

including ECL, ETT, WTH, and Traffic. Notably, 397

this training strategy enables the model to maintain 398

stable predictions even under distribution shifts, 399

demonstrating strong robustness and generaliza- 400

tion. Architecture ablation studies further revealed 401

that the scaling factor of the adapter modules 402

plays a significant role in performance. A scaling 403

factor of 4× yielded the best overall results on 404

the validation set (see Table 5), outperforming the 405

8× and 2× settings by approximately 10.0% and 406

13.5%, respectively. 407

408

Overall, even under constrained conditions—no 409

data augmentation, limited training data, and fewer 410

training steps—the MODRWKV model achieved 411

competitive accuracy on time-series forecasting 412

tasks, providing empirical evidence for its applica- 413

bility in real-world, complex scenarios. 414

4.3 Ablation Study 415

The Effect of Different Vision Encoders In or- 416

der to evaluate the impact of different vision en- 417

coders on the performance of multimodal models, 418

this study designed rigorous comparative experi- 419

ments. We selected two representative visual en- 420

coder architectures for comparison: the contrastive 421

learning-based CLIP and the recently proposed 422

SigLIP2. In the experimental design, we specif- 423

ically controlled the following variables: the length 424

of the encoded visual feature sequences for both 425

(google/siglip2-base-patch16-384 and openai/clip- 426

vit-large-patch14-336) was set to 577, to eliminate 427

any potential confusion caused by differences in 428

sequence length that could affect the understanding 429

ability of LLMs; cross-validation was conducted 430

on LLMs of different scales (ranging from 0.4B to 431

3B parameters) to ensure the generalizability of the 432

experimental conclusions. 433

As shown in Table 6, SigLIP2 encoder con- 434

sistently outperforms CLIP encoder all evaluated 435

benchmarks, including VQAv2, TextVQA, GQA, 436

and ScienceQA. Notably, the SigLIP2-based model 437

achieves significant improvements in both gen- 438

eral and text-based visual question answering 439
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Table 7: By controlling the kernel and stride of conv1d,
control the sequence length of multimodal signals to
compare performance differences.

Size (k,s) Token VQAv2 VQAT GQA SQAI

1.5B

(0,0) 577 76.95 44.96 58.88 63.10
(3,2) 288 75.21 45.75 58.28 66.02
(4,3) 192 74.17 44.27 57.53 65.72
(5,4) 144 73.21 42.65 57.07 65.29

tasks, as well as in compositional reasoning. De-440

spite its encoder containing only 90M parame-441

ters—approximately 30% of the CLIP encoder’s442

size—SigLIP2 demonstrates superior performance,443

particularly in tasks requiring fine-grained visual-444

text alignment and semantic understanding. These445

results underscore that model effectiveness in mul-446

timodal understanding is influenced more by en-447

coder design and pretraining methodology than by448

parameter scale alone.449

Efficiency of Sequence Compression via 1D Con-450

volution It is well known that the efficiency prob-451

lem in processing long sequences has long been452

one of the main bottlenecks limiting the perfor-453

mance of LLMs. This challenge is particularly454

prominent in multimodal tasks, where signals from455

different modalities often generate a large number456

of tokens after encoding. For example, in the MOD-457

RWKVmodel, a single image encoded through the458

SigLIP2 encoder generates 577 tokens, and when459

extended to video sequences, the length increases460

by an order of magnitude. To address this issue, this461

section systematically investigates the optimization462

effects of convolutional dimensionality reduction463

(Conv1D), aiming to provide new technical insights464

for sequence compression research.465

We conducted empirical research (See Table 7466

and visualization in Figure 2) on the MODRWKV-467

1.5B model architecture using the LLaVA train-468

ing dataset, and performed comprehensive evalua-469

tions across multiple benchmark datasets, including470

VQAv2, TextVQA, GQA, and ScienceQA. The ex-471

perimental results show that when the sequence472

length is compressed by 50%, the model exhibits473

only a slight decrease in performance (on aver-474

age) while achieving a 4.6% accuracy improvement475

on the ScienceQA task. Further research reveals476

that as the kernel size and stride increase, although477

the model performance exhibits a gradual decline,478

the computational efficiency is significantly im-479

proved. We tested MODRWKV-1.5B on single480

4090 GPU without any acceleration; The results481

Table 8: Performance differences under different pre-
training weights

Size Model VQAv2 VQAT GQA SQAI

0.4B base 72.04 38.75 55.52 43.32
g1 73.21 41.13 57.34 55.58

1.5B base 76.95 44.96 58.88 63.10
g1 77.87 50.91 60.18 64.63

indicate that increasing the compression ratio of 482

token sequences can substantially accelerate infer- 483

ence speed, showing a clear efficiency gain. This 484

highlights an effective strategy for balancing com- 485

putational efficiency and model performance, offer- 486

ing valuable insights for practical deployment. 487

G1 reasoning model We experimentally validate 488

the effect of text pretraining weights on the ability 489

of large language models to understand multimodal 490

information by comparing two pretraining weights 491

(base and g1) of the RWKV7-0.4B model. It is 492

important to note that the g1 model is an improved 493

version of the base model, obtained through post- 494

training by introducing a large amount of ’think’- 495

type data. Although both models perform similarly 496

in pure text NLP benchmark tests, as shown in Ta- 497

ble 8, fine-tuning with the g1 pretraining weights 498

significantly outperforms the base model across all 499

metrics, with an exceptionally significant improve- 500

ment observed in the SQA metric (specific improve- 501

ment is 28%). This empirical result strongly con- 502

firms that an appropriate text pretraining strategy 503

can effectively enhance the language model’s abil- 504

ity to understand multimodal information, thereby 505

improving its overall performance in downstream 506

tasks. 507

Time Series Forecasting encoder Compare with 508

Timer and WaveNet In a feedforward neural 509

network (FFN), activation functions such as ReLU 510

introduce sparsity by setting some outputs to zero, 511

which in turn reduces the rank of the output ma- 512

trix and may impact the model’s representational 513

capacity. Through both theoretical analysis and 514

empirical experiments using the results in Table 5, 515

we observed that the effect is suboptimal when the 516

hidden layer dimension is set to 2x or 8x the input 517

dimension. 518

Table 5 presents the zero-shot mean squared er- 519

ror (MSE) performance of different adapter scaling 520

configurations on multiple public datasets, includ- 521

ing ECL, ETTh, ETTm, WTH, and Traffic. The 522

results indicate that increasing the adapter scaling 523

7



Figure 2: Performance and efficiency of MODRWKV. Left. The scaling curve of tokens with the performance
score. Right. The inference time of MODRWKV with the number of tokens.

factor from 2× to 4× significantly improves perfor-524

mance across most datasets, with the lowest MSE525

values observed at 4× scaling. Specifically, the526

Gift-Evel + UTSD model with 4× scaling achieves527

the best results on ECL (0.453), ETTh1 (0.629),528

ETTh2 (0.547), ETTm2 (0.648), WTH (0.461), and529

Traffic (0.641), demonstrating that this configura-530

tion effectively enhances model accuracy.531

However, further increasing the scaling factor532

to 8× does not consistently improve performance,533

with some datasets showing increased error val-534

ues. This suggests that excessively large hidden535

layer dimensions may introduce instability or di-536

minish representational efficiency. Based on these537

findings, we recommend setting the hidden layer538

dimension to at least four times the input dimen-539

sion to preserve sufficient rank, thereby enhancing540

the model’s representational power and stability.541

p = 1−
∑n

i=m

(
n
i

)
2n

542

Table 4 presents the zero-shot mean squared er-543

ror (MSE) results for various models using the544

WaveNet encoder with adapter scaling 4× on pub-545

lic datasets, leveraging the gift-eval dataset. The546

models are evaluated on multiple time-series fore-547

casting benchmarks, including ECL, ETTh, ETTm,548

WTH, and Traffic, with a lookback length of 720549

and a forecast length of 96.550

From the results, TimeFM achieves the best551

performance on ECL (0.119), WTH (0.123), and552

Traffic (0.327), demonstrating strong predictive ca-553

pabilities on these datasets. TTM performs best554

on ETTh1 (0.368) and ETTm2 (0.186), while555

MOIRAI achieves the lowest error on ETTh2556

(0.285). Our proposed model, MODRWKV (100%557

gift-eval), outperforms other models on ETTm1558

(0.227), showing its effectiveness in short-term 559

forecasting for this dataset. 560

Comparing MODRWKV(25% gift-eval) and 561

MODRWKV(100% gift-eval), we observe that in- 562

creasing the proportion of gift-eval data signifi- 563

cantly improves performance across most datasets, 564

particularly on ETTh2 (from 0.633 to 0.453) and 565

ETTm1 (from 0.754 to 0.227). This suggests that 566

leveraging a larger portion of the gift-eval dataset 567

enhances ours model generalization and stability. 568

Overall, the results highlight the varying 569

strengths of different models across datasets, em- 570

phasizing the importance of dataset composition 571

and model architecture in achieving optimal fore- 572

casting performance. 573

5 Conclusion 574

In this paper, we propose MODRWKV, a mul- 575

timodal understanding framework that enables 576

modality switching via interchangeable encoders. 577

Built upon RWKV7, MODRWKV provides a com- 578

prehensive analysis and evaluation of the capabil- 579

ities of modern RNN architectures in the multi- 580

modal domain. 581

6 Limitations 582

This paper presents a systematic evaluation of the 583

proposed MODRWKV framework across a range 584

of benchmark tasks involving different modalities, 585

demonstrating the feasibility of applying linear- 586

structured models to multi-modal large language 587

models (MLLMs). Nonetheless, this work does 588

not yet explore more complex multi-modal fusion 589

scenarios, such as tri-modal tasks involving speech, 590

vision, and language. Future work will aim to ad- 591

dress these richer multi-modal settings. 592
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A Example Appendix 752

Table 9: Hyperparameter Settings for Visual Instruction
Tuning of MODRWKV

Hyperparameter Step1 Step2
bsz 256 128
ctx_len 2048
lr 1e-3 2e-5
warmup_steps 100
beta1 0.9
beta2 0.99
adam_eps 1e-8
precision bf16
lr_schedule wsd

A.1 Examples 753
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Visual Examples

User How many Cars in this picture?
MODRWKV There are two cars in the picture, with one being the taxi cab the man is standing

on.

[Start a new conversation, and clear the history]

User What is the name of this picture?
MODRWKV The name of this picture is “Starry Night ”
User Who drew it?
MODRWKV Vincent van Gogh drew this picture.

[Start a new conversation, and clear the history]

User Is this real in current life?
MODRWKV No, this is not a real animal. It is a computer-generated image (CGI) of a dinosaur,

specifically a T-Rex, walking through a forest.
User Depict the environment
MODRWKV The environment in the image is a forest with trees, rocks, and a dirt path. The

CGI dinosaur is walking through this natural setting.
User Based on the facial expression, what is it’s emotion?
MODRWKV The dinosaur appears to be angry, as it is depicted with its mouth open and teeth

showing.
User Based on its emotion and the environment, what do you think this dinosaur is doing

right now?
MODRWKV Based on its angry expression and the forest setting, it is possible that the dinosaur

is either searching for food, defending its territory, or reacting to a perceived threat.
The fact that it is walking through the forest suggests that it might be exploring its
habitat or looking for prey. However, without more context or information, it is
difficult to determine the exact reason for its current behavior.

Table 10: Visual Example.
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Audio Examples

User What is your name?
MODRWKV Hello! My name is RWKV, and I’m your friendly voice assistant here to

help with any questions or tasks you have.

User Can I drink coffee before I go to bed?
MODRWKV Yes, you can drink coffee before you go to bed, but it’s important to do

so in moderation. Drinking coffee too close to bedtime can interfere with
your sleep quality. Try to have your last cup of coffee at least 6 hours
before bedtime. If you’re sensitive to caffeine, you might want to avoid
it altogether. Also, consider other relaxing activities before bed to help
you wind down

User Tell me something about machine learning.
MODRWKV Machine learning is a branch of artificial intelligence that focuses on

creating systems that can learn from and make decisions based on data.
It involves algorithms that enable computers to identify patterns and
make predictions or decisions without being explicitly programmed
for each task. This technology is widely used in various applications,
such as recommendation systems, speech recognition, and autonomous
vehicles. Machine learning models can improve over time as more data is
processed, making them more accurate and efficient. It’s a powerful tool
for automating tasks, enhancing user experiences, and driving innovation
across many industries.

Table 11: Interactive Audio Examples Demonstrating Question-Answer Capabilities
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