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Abstract 

Strategically variable behavior can be advantageous in various fields such as sports 

(unpredictability), art (creativity), science (innovation), and problem-solving (thinking outside the 

box). Although previous studies identified experimental conditions under which humans and non-

human animals show increased variable decision-making, we have only a limited understanding 

of its underlying cognitive mechanisms. Using a reinforcement learning model, we simulate the 

use of three different theorized strategies in an adversarial reward learning environment that 

requires very high variability. Model simulations with a policy-gradient meta-learning algorithm 

show that agents could respond more optimally in such environments by (1) relying on a stochastic 

generator, (2) increasing one’s learning rate to allow for faster interactions between reinforcement 

learning and extinction, or (3) strategically upvalue unchosen actions using a frequency-based 

memory. After demonstrating the theoretical benefit of each of these strategies, we fitted our model 

on existing datasets of human-, pigeons-  and rat behavior in adversarial environments. We show 

that, while all three species can engage in highly variable behavior, only humans strategically 

upvalue unchosen actions as a strategy to achieve variability. 
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Introduction 

The ability to behave variable, unpredictable, or seemingly random can often be a 

beneficial strategy. For example, a football player will benefit from being unpredictable during 

shootouts, to avoid that the goalkeeper can predict the ball’s trajectory (S. Gershman, 2021). Prey 

animals show random-like behavior when chased by a predator to confuse or disorient the predator 

(Humphries & Driver, 1967). More generally, variable behavior can yield alternative ways to reach 

a goal, lead to new ideas for solving a problem, or be innovative in science, creative in art, or 

unpredictable in games (Campbell, 1960; Kilicay-Ergin & Jablokow, 2012; Parsonson & Baer, 

1978; Walker & Wooders, 2001). It improves the ability to adjust to new, uncertain or complex 

environments (Hills et al., 2015). Without regular sources of variation, action selection would be 

confined to information extracted from prior learning episodes, making progress difficult 

(Nergaard & Holth, 2020; Uddin, 2021). On a larger time scale, variability drives individual 

development, everyday learning, societal advancement and natural evolution (Dall & Griffith, 

2014; Donahoe & Palmer, 1994; Siegler, 1998). Despite this broad agreement on the benefits of 

variability for learning and action and the numerous examples where humans and non-human 

animals act strategically variable, it remains unclear how humans and other animals make variable 

decisions. Specifically, we lack insight into the cognitive processes that underlie the generation of 

strategically variable behavior.  

Decision-making in biological and artificial agents alike fundamentally involves the 

exploitation-exploration trade-off; the choice to exploit familiar options for a known reward or to 

instead explore new options for an unknown, potentially better, reward (Mehlhorn et al., 2015). 

The latter is sometimes implemented using novelty bonuses (Kakade & Dayan, 2002). Exploration 

is even more important when variability itself is rewarded. To test such strategic variability, some 
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studies in the reinforcement learning literature have used reinforcement schedules that are aimed 

to increase action variability. These experiments typically involve a multi-armed bandit problem 

where on each trial subjects have to choose among several alternatives, and response variability is 

encouraged by only rewarding the previously least frequent and/or recent (sequence of) chosen 

actions (Page & Neuringer, 1985). Hence, rewards are maximized when subjects respond as 

variable as possible. From here on, we will refer to such an environment as adversarial, as the 

environment attempts to oppose the subject and drive them to a sequence of variable actions as a 

result. Such adversarial environments successfully increase choice variability, including in humans 

(Jensen et al., 2006; Neuringer, 1986), pigeons (Jensen et al., 2006; Machado, 1989, 1992, 1993; 

Page & Neuringer, 1985) and rats (Bryantt & Church, 1974; Neuringer, 1991).  

These experiments show that humans and non-human animals can learn to behave variably 

when the environment requires them to do so. However, the cognitive mechanisms underlying this 

strategic variability remain unknown. Several ideas have been proposed from different cognitive 

theories. The current study will formalize three different proposed cognitive mechanisms within 

one computational modelling framework, investigate their respective computational efficiency, 

and empirical fit to different data. This will be achieved by associating each of the three cognitive 

mechanisms to one critical parameter in the model and its dynamics across various environments. 

We will refer to the potential cognitive mechanisms as: a stochastic-generator, dynamic 

reinforcement/extinction learning, and a frequency-based memory. Before turning to our model, 

we briefly introduce each of these putative mechanisms in turn. 
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The first proposal is that the brain has access to a stochastic1 generator (Jensen et al., 2006; 

Page & Neuringer, 1985): a mechanism that allows humans and non-human animals to select 

random actions, i.e., without regard to any learned information. Learning from past experience and 

previous choices would still happen, but this information can be blocked when variability is 

required. Similarly, Maye et al., (2007) propose that ‘a general neural mechanism’ underlies 

spontaneous behavior. Jensen et al., (2006) conducted experiments on humans and pigeons, where 

on each trial, subjects had to make one choice among several alternatives. An adversarial 

environment was used to induce variability in the subjects’ actions. They exposed their subjects to 

three different experimental conditions, varying the number of alternative choice options in each 

condition (that is, two, four or eight alternatives). They argued that, if subjects use a stochastic 

generator, performance should improve with more action options, because a random generator is 

less likely to repeat a sequence with more options. On the other hand, if performance were to 

decrease with increasing alternatives, they hypothesized that the subjects would rely on more a 

systematic approach to being variable, as it’s easier to use a systematic process when there are less 

options to choose from. They observed an increase in performance when increasing the choice 

alternatives and concluded that this is consistent with a stochastic-generator hypothesis.  

The idea of a stochastic generator is also implicit in computational models of decision-

making and reinforcement learning (Sutton & Barto, 2020). Decision making requires dealing with 

the exploration-exploitation trade-off, and this can be done by introducing parameters that quantify 

 

 

1 With variability, we refer to a broader concept that relates to a property of the desired or observed behavior. 

Stochasticity is one way of achieving variability. However, behavior can be highly variable without a random 

underlying process. 
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the amount of randomness that goes into the decision process algorithm. One such parameter is 

the epsilon parameter in the epsilon-greedy algorithm (Abed-alguni, 2018; Sutton & Barto, 2020; 

Wilson & Collins, 2019). Epsilon represents the probability to select an action randomly, and 

hence, explore: the higher epsilon, the more actions are chosen randomly. Hence, fitting such a 

model to behavior implicitly assumes that humans and non-human animals have access to a 

stochastic generator. 

Dynamic reinforcement/extinction learning provides a second potential mechanism that 

could lead to behavioral variability (Machado & Tonneau, 2012; Nergaard & Holth, 2020). Here, 

the agent would quickly learn from previous feedback and prediction errors: infrequent actions are 

more likely to lead to reinforcement, making them more frequent, while frequently chosen options 

remain unrewarded and lead to extinction, making them infrequent (Machado & Tonneau, 2012). 

Applying this reinforcement loop at a very high pace (e.g., immediate reinforcement of individual 

actions when rewarded and immediate extinction when unrewarded), could ultimately also result 

in the generation of highly variable action sequences. In models of decision-making, this could be 

achieved with a very high learning rate in Rescorla-Wagner style update rules. In this case, agents 

would learn to behave variably based on the outcome of an action or choice. 

A third potential mechanism relies on a frequency-based memory. Such a mechanism can 

lead to variability by adapting action values as a function of how (in)frequently they were selected 

or, in other words, an agent would store the actions that were previously taken and then decide to 

not do the exact same thing again. In practice, this requires remembering and monitoring previous 

actions and track their individual choice frequencies. Storing this information can allow choosing 

infrequent actions and thus avoid choosing the same actions again. Like the stochastic generator, 

this strategy can result in highly variable behavior, but it originates from a different cognitive 
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process, i.e., by relying on past choices. It requires memory to store choice frequencies of past 

actions and a choice is made based on how often the option was chosen in the past, irrespective of 

their outcome as would be the case of dynamic reinforcement/extinction learning. This idea is 

consistent with the common interpretation of random behavior in the random number generation 

(RNG) task (Ross, 1955), where people are asked to produce a random sequence of numbers. In 

the RNG literature, it is commonly assumed that the underlying process for generating variable 

behavior is related to a combination of executive functions, inhibition and working memory 

strategies that rely on the tracking and remembering of the frequency of omitted actions (Baddeley 

et al., 1998; Capone et al., 2014; Joppich et al., 2004; Oomens et al., 2015; Towse, 1998; 

Wagenaar, 1972). 

Here, we first suggest a computational modeling framework that integrates these three 

potential cognitive sources of variability. This allows us to distinguish the respective contributions 

of each of these three proposed mechanisms, and thus eventually elucidate which (combination of) 

processes are used to produce strategically variable behavior in different species and contexts. For 

this purpose, we adapt one of the most influential models of reinforcement learning and decision-

making – the Rescorla-Wagner model (Rescorla & Wagner, 1972), and link each mechanism to 

one of three parameters in our model.  

The model 

The modeling framework is based on a standard Rescorla-Wagner (RW) model for 

reinforcement learning and decision-making (Rescorla & Wagner, 1972). Each response option or 

action is associated to a Q-value that is updated on a trial-by-trial basis according to a learning rule 

(defined shortly). On each trial, decision-making relies on an epsilon-greedy decision-making rule, 
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where epsilon quantifies the level (probability) of stochasticity in the decisions. Otherwise, the 

action with the currently highest (learned) Q-value is chosen: 

       Decision at trial 𝑡: {
𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎𝑟𝑔𝑚𝑎𝑥{𝑄𝑡−1(𝑎)}

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛
𝑤𝑖𝑡ℎ 𝑃 =
𝑤𝑖𝑡ℎ 𝑃 =

  
1 − 𝜀

𝜀
        (1) 

where a stands for action, Qt(a) is the Q-value at trial t for action a and P stands for probability. 

The option with the currently highest Q-value is selected with a probability of 1 - ε. In the other 

case, an option is randomly selected. In other words, ε represents the probability to select an option 

randomly, without taking past information (based on learned Q-values) into account. Hence, low 

and high values of ε lead to stable and variable decisions, respectively. The stochastic generator 

mechanism predicts a regulation of ε across environments that require different levels of 

behavioral- or decision variability. 

We opted for an epsilon-greedy decision-making policy instead of another commonly used 

function to introduce randomness, i.e., the temperature parameter in a Softmax function, because 

we wanted a parameter that directly describes the proportion of completely random choices. 

Specifically, our aim was to have a simple policy with only two possibilities: either select the 

action with the highest learned value (the greedy choice) or make a completely random choice. 

Therefore, our approach demands a parameter that strictly reflects the probability of making a 

completely random decision, without any dependence on past learned values. In contrast, a 

Softmax decision policy still includes the relative values of the choice options, meaning it relies 

on past information even when making probabilistic choices.  

After the choice is made and feedback is given, the Q-value of the currently chosen option 

is updated according to a RW learning rule. Specifically: 

𝑄𝑡(𝑎, 𝑐) =  𝑄𝑡−1(𝑎, 𝑐) +  𝛼(𝑟𝑡−1 − 𝑄𝑡−1(𝑎, 𝑐))               (2) 
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Here a stands for action, c stands for chosen, 𝛼 is the learning rate, r is the reward and t is 

the trial. The Q-value of the chosen action is updated with the prediction error weighted by a 

learning rate α. The prediction error, 𝑟𝑡−1 − 𝑄𝑡−1(𝑎, 𝑐), is the difference between the value of the 

reward and the previous Q-value of the currently chosen option. The learning rate α quantifies the 

speed with which updates are made after feedback. The dynamic reinforcement/extinction learning 

mechanism predicts that an increase in learning rate is the prerequisite to generate variable 

behavior. 

Finally, the standard RW learning rule for chosen options was extended with an update rule 

for all remaining, unchosen options. We added a parameter, λ, that allows to keep track of the 

frequency with which an action wasn’t chosen through its Q-value.  

𝑄𝑡(𝑎, 𝑢) =  𝑄𝑡−1(𝑎, 𝑢) +  𝜆                 (3) 

Here, u stands for unchosen and λ is a value-bias towards recently unchosen options, further 

referred to as the unchosen value-bias. This parameter updates the frequency-based memory. The 

less frequently a particular option is chosen, the more 𝜆 is added to its associated Q-value. This 

can upregulate (if λ > 0) or downregulate (if λ < 0) the value of unchosen actions, leading to higher 

(resp. lower) Q-values for unchosen options, making them more (resp. less) likely to be chosen. 

This can result in more variable (resp. more stable) choices relative to standard RW-based learning. 

The frequency-based memory mechanism predicts an upregulation of λ when more strategically 

variable behavior is generated. 

Taken together, our model has three critical parameters, ε, α, and λ, each of which closely 

align with one of the three cognitive mechanisms introduced above. Each of these mechanisms 

predicts the upregulation of a different parameter. That is, the stochastic generator mechanism 
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predicts the upregulation of ε, the dynamic reinforcement/extinction learning mechanism predicts 

the upregulation of α, and the frequency-dependent memory mechanism predicts the upregulation 

of λ, when strategically variable behavior is required. 

This paper presents two studies. Study 1 is a computational investigation that tested the 

above predictions by simulating the model across different environments that require different 

levels of variable responding. This allowed us to evaluate the internal validity of our model. 

Specifically, the model was simulated in a stable environment (where the different response 

options have fixed reward probabilities), a volatile environment (where the reward probabilities 

are shuffled among the different response options every few trials), and, most importantly, an 

adversarial environment (following a variability contingency where only the 60% least frequent 

and least recent response duplets are rewarded). These three environments have an increasing 

demand to make variable decisions in order to get rewards. A policy-gradient optimization of ε, α, 

and λ (in separate simulations) was used to find the optimal parameter values in each environment 

and to investigate whether adjusting any of these three parameters across the environments is 

beneficial to adapt to the different variability demands, and in particular the adversarial one.  For 

all three parameters, we predicted that higher values would allow for more variable behavior. 

Next, Study 2 is an empirical investigation that evaluated the applicability and external 

validity of this model by fitting it to behavioral data from humans, pigeons and rats exposed to an 

adversarial context. We predicted that the preferred mechanism(s) employed by humans pigeons 

and rats would be reflected by higher values of these parameters when fitting the model, and 

compared parameter values across species to see whether cross-species differences could be 

observed in generating strategically variable behavior. 
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Study 1: Model simulations across stable, volatile, and adversarial 

environments 

Methods 

 In this Simulation study, the model performed a multi-armed bandit task in a stable, a 

volatile, and an adversarial environment to investigate how it would adapt its parameters in each. 

All environments contained eight choice options. In the stable environment, three options had a 

probability of 70% to yield a reward and the remaining five had a 30% reward probability. These 

reward probabilities remained fixed across trials. In the volatile environment, three options had a 

90% reward probability and the remaining five a 10% reward probability. Importantly, these 

reward probabilities shuffled on average every 15 trials (taken from a rounded normal distribution 

𝒩(15,3)). Finally, the adversarial environment also included eight choice options, but 

reinforcement was based on choice frequencies (Machado, 1992; Page & Neuringer, 1985). 

Frequencies of response pairs (the current and previous response) were tracked. This resulted in 

64 (= 82) different response pairs, that were all initialized at a counter uniformly randomly sampled 

between 0.9 and 1.1. After each choice (except for the very first choice), the counter of the 

corresponding response pair consisting of the current choice and the previous choice was increased 

by one. All other counters were subtracted by 1/63. Finally, all counters were multiplied by an 

amnesia coefficient of φ = 0.984 to account for recency (see also Denney & Neuringer, 1998). 

This ensured that the less recent a response pair was emitted, the more its associated counter was 

decreased, making less recent pairs more likely to be reinforced. Reinforcement was given when 

the current completed response pair was associated to a counter that was among the 60% lowest 

counters. For example, if the response options are numbered from 1 to 8, consider 15 trials where 
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the sequence of choices thus far was 522318417645227. The last choice was ‘7’ and the 

reinforcement schedule would check the counter of the pair [27], which indicates the frequency of 

occurrence of this pair in the entire generated sequence up to that point. If the counter of this pair 

was among the lowest 60% of all possible 64 response pairs, a reward of 1 would result; otherwise, 

the reward would be 0. In the example, the pair is indeed among the lowest 60% (indeed, the pair 

had not yet been generated) so a reward of 1 is given. The choice in the previous trial in the example 

was ‘2’. This trial would check the counter of the pair [22]. In this case, because the pair occurred 

before and its choice frequency (or counter) is higher than the other pairs, no reward was given in 

this trial. 

Stable and volatile environments have been studied extensively in reinforcement-learning 

and decision-making before (Behrens et al., 2007; Browning et al., 2015; Nassar et al., 2010; 

Simoens et al., 2024). In stable environments, agents learn the high rewarding options and stick to 

them. In volatile environments, agents are required to explore other options when the reward 

probabilities shift, i.e., it requires variability in decision-making from time to time, because reward 

probabilities change regularly across trials. In an adversarial environment, however, the best 

strategy is to make variable choices all the time. This environment therefore allowed us to study 

more purely strategically variable behavior. The benefit of simulating performance across all three 

environments further allowed us to determine how and which parameters need to be adjusted to 

meet different variability requirements. 

 We used a parameter optimization strategy to assess which parameter values for ε, α and λ 

(Eq. 1-3) are optimal in the three environments. Each parameter was optimized in a separate set of 

simulations. One way to do this, is to use a second RW update rule on a higher level to learn Q-

values associated to certain parameter values or intervals (Sikora, 2008). However, this approach 
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confines these parameters to discrete and arbitrary values or intervals. For this reason, we instead 

used a policy-gradient update rule, resulting in a continuous parameter space in which the 

parameters were optimized. The policy-gradient update rule seeks to identify the optimal (most 

rewarding) values of the parameters within each environment (Sutton & Barto, 2020; van 

Heeswijk, 2020; Williams, 1992). This method enables us to validate the efficacy of upregulating 

or downregulating the parameters in the three environments. The policy-gradient method updates 

the mean and log(standard deviation) of a normal distribution, from which ε, α, or λ were 

subsequently sampled. The parameter updates occurred on a slower time scale than the value 

updates (every 10 trials, as in Sikora, 2008).  

A first set of simulations optimizes ε. The update rules for the mean and standard deviation 

of ε can be seen in the following equations: 

𝜇𝜀̃,𝑡+10 =  𝜇𝜀̃,𝑡 +  𝛼𝜇𝑟𝑏,𝑡+10
(𝜀̃𝑡−𝜇𝜀̃,𝑡)

𝜎𝜀̃,𝑡
2           (4) 

      𝜎𝜀̃,𝑡+10
∗ = 𝜎𝜀̃,𝑡

∗ +  𝛼𝜎𝑟𝑏,𝑡+10 (
(𝜀̃𝑡−𝜇𝜀̃,𝑡)

2

exp(𝜎𝜀̃,𝑡
∗2)

− 1)          (5) 

for t = 10x with x ∈ ℕ. Here, μ represents the mean of the optimized parameter (in this Equation 

𝜀̃) and 𝜎∗ is the natural logarithm of 𝜎, the standard deviation of the meta-learned parameter (i.e., 

𝜎∗ = ln(𝜎)). Both mean and standard deviation have a separate learning rate, respectively 𝛼𝜇 and 

𝛼𝜎. In all simulations, 𝛼𝜇 was set to 0.5 and 𝛼𝜎 was set to 0.1. In the Equations given here, the 

optimized parameter is 𝜀̃, which is sampled from a normal distribution, 𝜀𝑡̃~𝒩(𝜇𝜀̃,𝑡, 𝜎𝜀̃,𝑡). The final 

ε used in the decision-making of Q-values (Equation 1), is an inversed logit transformation of 𝜀̃, 

such that 0 ≤ ε ≤ 1 (i.e., 𝜀𝑡 =  
exp(𝜀̃𝑡)

1+exp(𝜀̃𝑡)
).   



 

 

14 

 

The updates use a baselined reward 𝑟𝑏,𝑡 (Williams, 1992), by subtracting a weighted reward 

average from the average of the 10 last received rewards, i.e., 𝑟𝑏,𝑡 =  𝑟̅(𝑡−10):𝑡 −  𝑅𝑡−11, where 

𝑟̅(𝑡−10):𝑡 is the average received reward of the last 10 trials. 𝑅𝑡−11 is a weighted average of all past 

rewards from t = 0 to t – 11, i.e., 𝑅𝑡−11 =  𝑅𝑡−12 +  𝛼𝑅(𝑟𝑡−11− 𝑅𝑡−12), with 𝛼𝑅 the reward learning 

rate, set to 0.25 in all simulations, and rt-11  is the received reward at trial t-11 (the last trial before 

the last update). The baseline rewards evaluates if the average reward of the last 10 trials that 

resulted from the last parameter update is better or worse than a weighted average reward of 

everything that happened before that update, and it uses this information to make the next 

parameter update. 

Similarly, a second set of simulations optimizes the value of 𝛼̃, where 𝛼̃ is a logit 

transformation of α (so 0 ≤ α ≤ 1). A third set of simulations optimizes 𝜆̃, where 𝜆̃ is a logit 

transformation of λ, rescaled in a way that -3 ≤ λ ≤ 3. Each set of simulations included 500 runs of 

10000 trials in each of the three environments, where each set optimized only one parameter. The 

other two parameters were fixed to common-sense values. Specifically, the optimization of ε had 

a fixed learning rate 𝛼 = 0.25 and a fixed unchosen value-bias λ = 0 (i.e., no choice-bias) in each 

environment. The optimization for learning rate fixed ε = 0.3 and λ = 0 in each environment. The 

optimization for the unchosen value-bias λ fixed ε = 0.3 and 𝛼 = 0.25 in each environment.  

In each simulation set, all parameters converged to specific values in each environment. 

To assess if these values were indeed optimal for each environment, we simulated our model 

(Equations 1-3) using these values, without the optimization part (Equations 4-5). We calculated 

the optimal parameter values for ε, α, and λ by taking the average of the logit transformations of 

the learned means, e.g. for epsilon 𝜇𝜀̃, of the last 100 trials across the 500 simulations. These values 

were combined with the fixed parameter settings with which the optimization took place. This 
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resulted in 9 new sets of simulations in each environment with different combinations of parameter 

values (Table 1). Each of these sets contained 100 simulations over 2500 trials. 

Table 1: Parameter settings in simulations 

Parameter settings of simulations with model from Equations 1-3. Every simulation set contains one optimized parameter value 

(opt), the remaining two parameters are set to the values they took in the optimization simulations. 

First, we compared the average reward obtained by the model for each simulation setting 

separately. Second, to validate if the adaptation of these three parameters across contexts was 

useful, we calculated the average reward obtained by the model across different sets of simulations. 

Specifically, this included the average reward across the row of each table (optimization of ε, 

optimization of α and optimization of λ) and across the diagonal of each table. The latter represents 

a situation where the model adapts one of these parameters across contexts, i.e., it checks if 

parameter adjustment across environments is useful when responding more or less variable (rather 

than having fixed parameters across environments).  

Additionally, since the goal of the dynamic parameter settings is to adapt to different 

variability demands, we calculated a variability measure for each simulation set across the diagonal 

of Table 1. Variability is measured as the second-order entropy, which is a normalized form of the 

Shannon entropy (Shannon, 1948), corrected for the total number of choice options (Page & 

Neuringer, 1985). The second-order entropy is calculated as follows: 

           𝑈2 =  
−(∑ (𝑝2,𝑘𝑙𝑜𝑔2(𝑝2,𝑘))𝑚

𝑘 +𝑈1)

𝑙𝑜𝑔2(𝑚)
           (6) 

Optimization of ε  Optimization of α  Optimization of λ 

Stable  

(sta) 

Volatile  

(vol) 

Adversarial 

(adv) 

 Stable  

(sta) 

Volatile  

(vol) 

Adversarial 

(adv) 

 Stable  

(sta) 

Volatile  

(vol) 

Adversarial 

(adv) 

Opt 𝜺𝒔𝒕𝒂 
α = 0.25 
𝝀 = 0 

Opt 𝜀𝑠𝑡𝑎 
α = 0.25 
𝜆 = 0 

Opt 𝜀𝑠𝑡𝑎 
α = 0.25 
𝜆 = 0 

 ε = 0.3 
Opt α𝑠𝑡𝑎 
𝜆 = 0 

ε = 0.3 
Opt α𝑠𝑡𝑎 
𝜆 = 0 

ε = 0.3 
Opt α𝑠𝑡𝑎 
𝜆 = 0 

 ε = 0.3 
α = 0.25 
Opt 𝜆𝑠𝑡𝑎 

ε = 0.3 
α = 0.25 
Opt 𝜆𝑠𝑡𝑎 

ε = 0.3 
α = 0.25 
Opt 𝜆𝑠𝑡𝑎 

Opt 𝜺𝒗𝒐𝒍 
α = 0.25 
𝝀 = 0 

Opt 𝜀𝑣𝑜𝑙 
α = 0.25 
𝜆 = 0 

Opt 𝜀𝑣𝑜𝑙 
α = 0.25 
𝜆 = 0 

 ε = 0.3 
Opt α𝑣𝑜𝑙  
𝜆 = 0 

ε = 0.3 
Opt α𝑣𝑜𝑙  
𝜆 = 0 

ε = 0.3 
Opt α𝑣𝑜𝑙  
𝜆 = 0 

 ε = 0.3 
α = 0.25 
Opt 𝜆𝑣𝑜𝑙 

ε = 0.3 
α = 0.25 
Opt 𝜆𝑣𝑜𝑙 

ε = 0.3 
α = 0.25 
Opt 𝜆𝑣𝑜𝑙 

Opt 𝜺𝒂𝒅𝒗 
 α = 0.25 
𝝀 = 0 

Opt 𝜀𝑎𝑑𝑣 
α = 0.25 
𝜆 = 0 

Opt 𝜀𝑎𝑑𝑣 
α = 0.25 
𝜆 = 0 

 ε = 0.3 
Opt α𝑎𝑑𝑣 
𝜆 = 0 

ε = 0.3 
Opt α𝑎𝑑𝑣 
𝜆 = 0 

ε = 0.3 
Opt α𝑎𝑑𝑣 
𝜆 = 0 

  ε = 0.3 
α = 0.25 
Opt 𝜆𝑎𝑑𝑣 

ε = 0.3 
α = 0.25 
Opt 𝜆𝑎𝑑𝑣 
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α = 0.25 
Opt 𝜆𝑎𝑑𝑣 



 

 

16 

 

in which we used the first-order (and normalized) entropy or 𝑈1-value: 

                          𝑈1 =  
− ∑ (𝑝1,𝑖𝑙𝑜𝑔2(𝑝1,𝑖))𝑛

𝑖

𝑙𝑜𝑔2(𝑛)
  

Here, n is the total number of possible responses or actions (8 in the case of the simulations) 

and k is the total number of possible response pairs (82 = 64 in the case of the simulations settings). 

The frequencies with which each response and each response pair occurs in a generated sequences 

is given by p1,i and p2,k respectively. A second-order entropy value of 0 means there is no variability 

in the sequence. A value of 1 means there is maximum variability in the sequence. 

Results 

First, we simulated the model while optimizing epsilon (ε) according to Equations 4 and 5. 

Figure 1A shows the average of the resulting sampled ε and the standard errors in each 

environment. The average of the optimized mean ε of the last 100 trials suggest an optimal ε value 

of 0.08 in a stable environment, an optimal value of 0.25 in a volatile environment, and an optimal 

value of 0.86 in an adversarial environment. We took these optimal values and combined them 

with the fixed α and λ setting (in which ε was optimized, see Table 1 Optimization of ε ), to simulate 

the model from Equations 1-3 in each of the three environments (Figure 1B). Our results show that 

the highest average rewards in each environment are indeed obtained by using the respective ε 

value that was optimized in that environment. Moreover, the model obtains a significantly higher 

reward when ε is adjusted between environments (Figure 1C). Last, by comparing the second-

order entropy between the three environments, we demonstrate that the average variability in 

responding effectively increased across the three environments with increasing ε (Figure 1D).  

Second, we performed the same procedure for optimizing learning rate α (substituting α 

for ε in equations 4-5 and setting the other parameters equal to common sense values). The average 
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of the optimized mean α of the last 100 trials over all simulations was 0.37, 0.86, and 0.97 in a 

stable, volatile, and adversarial context, respectively (Figure 2A). As visualized in Figure 2B, 

using the optimized α values resulted in a slightly better overall reward (for parameter settings, see 

Table 1 Optimization of α). Similarly, varying α between environments resulted in a slightly higher 

overall reward, however not significant (Figure 2C). More importantly, Figure 2D confirms that 

increasing α did enhance response variability where increased variability is needed. 

The third and last optimization was for the unchosen value-bias parameter, λ. Here, λ was 

substituted for ε in Equation 4 and 5. The optimal values for λ were -0.21, 0.24, and 0.83, in the 

stable, volatile and adversarial context, respectively. This shows that the model learns to valuate λ 

positively in an adversarial environment, thereby giving unfrequently chosen options more value 

(i.e., the longer ago an option was chosen, the higher its Q-value). In a stable environment, the 

model learns to devaluate unchosen options, thereby giving the more frequent chosen options more 

value. The optimal values were plugged into the model of Equations 1-3, together with the fixed 

ε- and α value (see Table 1, Optimization of  λ). Figure 3B shows the average reward obtained 

with each parameter combination in each environment, clearly giving an advantage of a positive 

unchosen value-bias in the adversarial environment, and an advantage of a negative unchosen 

value-bias in the stable environment, but not much effect in the volatile environment. Nonetheless, 

an environment-specific λ is more beneficial than keeping λ constant (Figure 3C). Last, Figure 3D 

shows the second-order entropy in each environment, demonstrating that positive λ values lead to 

a significant increase in variability in an adversarial and volatile environment, as opposed to the λ 

values in a stable. 
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Figure 1: A) Optimization of epsilon (ε). The blue line shows the result for the stable environment, the orange line shows the result 

for the volatile environment and the green line shows the result for the adversarial environment. The plot shows the average across 

500 simulations of the sampled ε, where the shaded areas above and below the lines are standard errors. Learning rate (α)  was 

fixed across environments and equal to 0.25. The unchosen value-bias (λ) was also kept fixed and equal to 0. The optimal values 

for ε (εsta, εvol and εadv) are the average values of the learned mean ε in the last 100 trials of each simulation. B) Average reward 

across 100 simulations and 2500 trials obtained by the model from Equations 1-3 using different sets of parameter combinations 

in the three environments. Each parameter combination contains one of the optimized ε values and the fixed α and λ value that was 

used in the optimization. C) Average reward across three environments, where the first three bars represent the result when ε is 

kept constant but equal to one of the three optimal values across environments. The fourth bar shows the result when ε is set to its 

optimal value in each environment. Rewards obtained by the model are significantly higher when an environment-specific ε is used. 

D) Average second-order entropy in each environment when using the respective, optimal ε value. Variability significantly 

increases between the environments going from stable to volatile to adversarial, while using increasing ε. 
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Figure 2: A) Optimization of learning rate (α). The blue line shows the result for the stable environment, the orange line shows the 

result for the volatile environment and the green line shows the result for the adversarial environment. The plot shows the average 

across 500 simulations of the sampled α, where the shaded areas above and below the lines are standard errors. Epsilon (ε) was 

fixed across environments and equal to 0.3. The unchosen value-bias (λ) was also kept fixed and equal to 0. The optimal values for 

α (αsta, αvol and αadv) are the average values of the learned mean α in the last 100 trials of each simulation. B) Average reward 

across 100 simulations and 2500 trials obtained by the model from Equations 1-3 using different sets of parameter combinations 

in the three environments. Each parameter combination contains one of the optimized α values and the fixed ε and λ value that was 

used in the optimization. C) Average reward across three environments, where the first three bars represent the result when α is 

kept constant but equal to one of the three optimal values across environments. The fourth bar shows the result when α is allowed 

to take on its optimal value in each environment. Rewards obtained by the model are higher when an environment-specific α is 

used, but not significant. D) Average second-order entropy in each environment when using the respective, optimal α value. 

Variability significantly increases between the environments going from stable to volatile to adversarial, while using increasing α. 
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Figure 3: A) Optimization of unchosen value-bias (λ). The blue line shows the result for the stable environment, the orange line 

shows the result for the volatile environment and the green line shows the result for the adversarial environment. The plot shows 

the average across 500 simulations of the sampled λ, where the shaded areas above and below the lines are standard errors. 

Epsilon (ε) was fixed across environments and equal to 0.3. Learning rate (α) was also kept fixed and equal to 0.25. The optimal 

values for λ (opt λsta, opt λvol and opt λadv) are the average values of the learned mean λ in the last 100 trials of each simulation. B) 

Average reward across 100 simulations and 2500 trials obtained by the model from Equations 1-3 using different sets of parameter 

combinations in the three environments. Each parameter combination contains one of the optimized λ values and the fixed ε and α 

value that was used in the optimization. C) Average reward across three environments, where the first three bars represent the 

result when λ is kept constant but equal to one of the three optimal values across environments. The fourth bar shows the result 

when λ is allowed to switch to its optimal value in each environment. Rewards obtained by the model are higher when an 

environment-specific λ is used. D) Average second-order entropy in each environment when using the respective, optimal λ value. 

Variability significantly increases between the environments when going from stable to volatile and adversarial, while increasing 

λ. 
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Discussion 

The aim of Study 1 was to investigate whether we can model and simulate three cognitive 

mechanisms that have been argued to underlie strategically variable behavior: a stochastic 

generator (Jensen et al., 2006; Page & Neuringer, 1985), a dynamic reinforcement/extinction 

process (Machado & Tonneau, 2012; Nergaard & Holth, 2020), and a frequency-based memory 

(Capone et al., 2014; Oomens et al., 2015). We linked each cognitive mechanism to a 

computational mechanism, i.e., the dynamics of three parameters in our model. The model consists 

of a decision-making policy using epsilon-greedy where ε represents the probability to select an 

action randomly, a standard Rescorla-Wagner update rule for chosen actions with learning rate α, 

and an additional update rule for unchosen actions involving the addition of an unchosen value-

bias λ (Rescorla & Wagner, 1972; Sutton & Barto, 2020). We simulated and optimized this model 

in three different environments that require an increasing level of variable responding. The goal 

was for the model to achieve different levels of variability, solely by adapting one of the three 

parameters linked to an underlying cognitive mechanism. All parameters converged to different 

values across the different environments, which were lowest for the stable environment and highest 

for the adversarial environment. Furthermore, these higher values effectively resulted in more 

variable behavior, as summarized in the second-order entropy. This confirmed that the 

upregulation of one of these three parameters is sufficient to generate variable choices. 

We introduced the parameter λ to stimulate frequency-based memory, allowing the agent 

to choose more infrequent response options with higher values of λ in order to behave variable. 

Interestingly, however, we observed negative values for λ in the stable context, which reflects a 

devaluation of unchosen options: the more an option does not get chosen, the less likely it will be 

chosen later. In hindsight, this outcome could be expected since, in a stable environment, high 



 

 

22 

 

rewarding options are consistent across trials. Once identified, the model should keep selecting 

those. Positive λ values reflect a valuation of unchosen options: the more an option does not get 

chosen, the higher its associated Q-value, and the more likely they will be selected (when the 

greedy option is chosen). This made most sense in the volatile and adversarial environments where 

reward probabilities often change and exploration is necessary (i.e., volatile environment), or the 

least frequently chosen options were rewarded and switching to them was beneficial at every trial 

(i.e., adversarial environment). While the optimal value for λ was estimated higher in the 

adversarial environment, an estimation of obtained reward rate suggested the optimal value for the 

volatile environment was also slightly more optimal in the adversarial environment (Figure 3B). 

It is therefore possible that the policy gradient did not find the optimal parameter and overestimated 

the value for λ. Although we wanted to remain agnostic about the optimal value and therefore 

chose to keep the bounds for estimating this parameter relatively wide (from -3 to 3), it is possible 

that this led the model to explore overoptimistic values of λ that were hard to come back from.  

Taken together, our simulations show that adapting any of the three parameters in our 

model is sufficient to significantly increase behavioral variability. In other words, the three 

proposed mechanisms each offer a potential way of generating strategically variable behavior in 

an environment that calls for it, especially the adversarial environment. Building on this, our next 

question was to study which mechanism humans, and non-human animals, effectively employ. In 

our next study, we thus set out to estimate the origin of variability in humans, pigeons and rats, 

who were exposed to an adversarial environment. By fitting our model to observed behavior, the 

resulting parameter values could reveal insights into strategically variable behavior across these 

different species. From Study 1, we predict that contributions of one (or more) of the mechanisms 

would be reflected by relatively high  values for the associated parameter estimates.  
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Study 2: Model estimation of human, pigeon, and rat behavior in 

adversarial environments 

 Next, as a first empirical application of our model, we estimated the model parameters in 

three existing datasets of humans, pigeons, and rats who were exposed to an adversarial 

environment. In this environment, our model predicts higher values for one (or multiple) of the 

three critical parameters (ε, α, and λ), in line with the three proposed underlying cognitive 

mechanisms. Importantly, we do not expect these cognitive mechanisms to be mutually exclusive. 

A mix of two or even all three mechanisms is plausible. We had no strong predictions as to which 

mechanism, or combination thereof, human and non-human animals would use to generate 

strategically variable behavior but previous studies have investigated the effect of (variants of) the 

critical parameters in our model, although never in an adversarial environment. 

For example, it has shown that in a more volatile environment, humans tend to use both 

higher learning rates (α) and more randomness (ε) in their decisions (Behrens et al., 2007; Goris 

et al., 2021; Simoens et al., 2024; Verbeke & Verguts, 2024), which suggests they may also be 

able to flexibly upregulate those parameters when faced with adversarial environments requiring 

yet more variability. Similarly, Jin et al. (2024) showed that pigeons can also dynamically adjust 

their learning rate (α) and the randomness (ε) that goes in their decisions while learning a task. 

Rats have similarly been shown to dynamically adjust learning rates (α) over time, and depending 

on the uncertainty of the choice options (Funamizu et al., 2012). Together, these studies suggest 

that all three species may be able to also find optimal (relatively high) ε and α values specific for 

an adversarial context.  
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The unchosen value-bias (λ) or variants thereof have also been used in other studies before. 

Often referred to as ‘stickiness’ or choice persistence (but simultaneously allowing for a switching 

bias), this parameter has been shown to be a valuable addition to RW models in probabilistic 

reversal learning tasks (comparable to a volatile environment) with two choice options in humans 

(Eckstein et al., 2022). More generally, Palminteri et al. (2016) showed that, in a probabilistic 

learning task, adult human participants use a counterfactual updating rule (similar to the unchosen 

value-bias but not exactly the same), in addition to the classical Rescorla-Wagner updating rule 

for chosen options. On the contrary, adolescents did not seem to benefit from a counterfactual 

updating rule.  

Similarly, Laurent and Balleine, (2015) suggest that also rats seem to encode unchosen 

action values, and may use counterfactual reasoning in their decision-making. Counterfactual (or 

unchosen option) value updating has not been studied or observed in pigeons before. Moreover, it 

remains contested whether non-human animals have similar action and event memory as humans 

do (Lind & Jon-And, 2024), questioning their ability to flexibly use frequency-based memory in 

an adversarial environment. 

More broadly focusing on the considered mechanisms rather than specific parameters, 

Machado (1993) suggested that some animals may rely on both memory strategies and a stochastic 

generator in an adversarial environment, further depending on the demands of the variability 

contingency. De Souza Barba (2015) argued that unpredictable responding is a default setting in 

humans and nonhuman animals when no actions are consistently rewarded, aligning with a 

stochastic generator. Although this may be the case, it remains somewhat unclear how much 

people can really tap into this stochastic generator, even when explicitly instructed to. For instance, 

in RNG tasks, it is a consistent observation that humans show certain biases when trying to be 
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random (Capone et al., 2014; Oomens et al., 2015; Ross, 1955; Wagenaar, 1972). These biases 

include repetitions (repeating the same digits), cycling (repeating a certain sequence of digits) and 

seriation (changing digits by adding or subtracting one or two units) (Ginsburg & Karpiuk, 1994). 

Such systematic processes seem more consistent with a memory-based mechanism. It has also 

been shown that RNG tasks recruit more attentional resources in comparison to ordered number 

generation tasks (Joppich et al., 2004). These biases and the allocation of attention suggest that 

humans might rely more on memory when trying to be variable.  

Methods 

Datasets 

The human and pigeon dataset were first described in Jensen et al. (2006). The objective in 

this study was to investigate whether the level of variability differed when subjects were exposed 

to an adversarial environment with two, four, or eight choice options. The pigeon dataset included 

five subjects, who were maintained at 85% of their normal weight and performed around 150000 

trials each. The pigeons had to peck on a screen on different response squares. All five pigeons 

were exposed to three different conditions (with two, four or eight response options), of which the 

response square orientations are visualized in Figure 4A (only the squares were visible to the 

pigeons). 

An example of a trial for the pigeons can be seen in Figure 4B. A trial started with a fixation 

square. When pigeons pecked this square, the response options (2, 4, or 8) were projected. Pigeons 

had to peck one of these response squares; if their choice satisfied the variability contingency, a 

cue for reinforcement was shown (a green asterisk), otherwise the initial fixation square was 

projected again, initiating a new trial. If the variability contingency was met and the green asterisk 

appeared, pigeons had to peck it, which led in 25% of all trials to an access to food for 1.2s. After 
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this (and in the other 75% of the cases), the initial fixation square was shown again, and a new trial 

started. Pigeons performed approximately 75 sessions of 2000 trials each, where the sessions 

cycled between a fixed order of the two-choice condition, four-choice condition and eight-choice 

condition. Only the final 18 sessions were used for analysis (6 sessions per condition), resulting in 

12000 trials per condition and per pigeon. 

Similar to the reinforcement schedule used for the simulations of the adversarial 

environment in Study 1, the variability contingency required a response to complete a sequence 

that was among the least frequent emitted sequences. To keep the number of possible sequences 

constant in each condition, the two-choice condition kept track of frequencies of six consecutive 

responses (26 = 64), the four-choice condition kept track of three consecutive responses (43 = 64), 

and the eight-choice condition kept track of two consecutive responses (82 = 64; as explained in 

Study 1). This resulted in 64 possible sequences in each condition. For example, if in the two-

choice condition a sequence ‘101101001010001010111101010’ was pecked, the last pecked 

option was 0, which completed the 6-response sequence ‘101010’. The second last pecked option 

was 1, which completed the sequence ‘110101’. For each of these response sequences, the 

frequency was tracked using a counter. An example of the 8 choice condition can be found in 

Study 1. 

All 64 counters in all three conditions were initialized to a value of 20 units. Each response 

increased the value of the counter of the sequence it completed by one unit. To maintain a constant 

sum across counters, 1/63 was subtracted from all other 63 frequencies. The variability 

contingency was met when the counter of the completed sequence was below 21.6. When a reward 

was given, all counters were multiplied by an amnesia coefficient of 0.984, making it more likely 
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that frequencies of less recent sequences were decreased sufficiently to meet the variability 

contingency.  

The human dataset was similar to the design with pigeons and is also described in Jensen 

et al. (2006). Six college students participated and were rewarded $40 and the possibility to earn 

$25 if they generated sequences that were more variable (higher second-order entropy) than the 

least variable sequence generated by the pigeons (i.e., their second-order entropy needed to be 

higher than the lowest pigeon second-order entropy), and $50 if they could produce the most 

variable sequence (highest second-order entropy overall). Instead of pecking, the human 

participants responded on a numeric keypad of an e-Mac computer. The available keys were 

visually represented on screen where the key’s image lighted up after responding. The experiment 

differed from the pigeon experiment in that center-key presses and a response to a green asterisk 

were not necessary. Moreover, human participants were rewarded with points instead of food. 

Each participant performed blocks of 150 trials in a randomized order but ensuring that each set 

of three consecutive blocks contained the two-, four-, and eight condition at least once. The 

participants eventually performed a variable number of trials in each condition. Total number of 

trials ranged in the two-choice condition between 3770 and 35960 trials, with an average of 17202 

trials. In the four-choice condition, the total number of trials ranged from 3915 to 35960 trials, 

with an average of 17182 trials. In the eight-choice condition, the total number of trials ranged 

from 4060 to 35815 trials, with an average of 17255 trials. 

The last dataset contained twenty rats, and has been made public online (Jensen, 2018, 

https://osf.io/5h4zx/). The rats were put in a cage that had 5 different response operands (3 keys 

and 2 levers, see Figure 4C). Responses had to satisfy a variability contingency (specified shortly) 

in order to result in a reward. After every response, a brief 2.1 kHz tone was presented during an 
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interresponse time (IRT) of 0.5s. During this time, response operand lights were darkened; 

responses during the IRT were not accounted for and reset the IRT. The response-generated tone 

was followed by a sequence of decreasing tones (2.6 kHz, 2.85 kHz, 3.1 kHz) lasting 1 s, after 

which a 45 mg food pellet (the reward) was presented. Besides responses to the operands during 

the IRT or during food delivery, all responses were effective. The rats had five possible responses: 

right key, center key, left key, left lever and right lever. 

All twenty rats were exposed to eight different experimental conditions, among one was 

close to the above-described adversarial environment. For our purposes, we only used the data 

from this adversarial environment (the V4 schedule in the original preprint Jensen, 2018). Ten rats 

performed 20 sessions of this adversarial schedule across two phases in the experiment, while 

another ten rats performed 10 sessions of this schedule. One session lasted 90 minutes and rats 

performed between 215-1606 trials per session (on average 900 trials), where each trial was one 

response. 

Similar to the reinforcement schedules described above, the frequencies of response triplets 

were tracked with counters, being 53 = 125 different counters, initialized at 1. On each trial, one 

response was made and the relative counter of the completed response triplet was checked (i.e., 

consisting of the current response, and the last two responses, using a moving window for each 

new trial). If the relative counter (the counter divided by the sum of all counters) was lower than a 

threshold of 0.0112, the variability contingency was met and food would be presented. After every 

trial, the counter of the completed response triplet was increased by one unit and an amnesia 

coefficient (0.95) was applied to all counters to give more weight to triplets that were less recently 

emitted.  
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Figure 4: A) Example of the response square options pigeons (and humans) saw. Left: condition with two options. Middle: condition 

with four response options. Right: condition with eight response options. The numbers were not visible to the participants. Source: 

Jensen, et al (2006). B) Diagram of a trial in the experiment with pigeons (Jensen, 2006). C) Cage in which the rats were placed 

for the experiment (Jensen, 2018). 

Model simulations, recoveries and model fits 

First, because the experimental setups and variability contingencies between datasets were 

slightly different, we simulated each version of the adversarial context (human/pigeon datasets 

with 2, 4 and 8 choice alternatives and the rat dataset with 5 alternatives) using the model and the 

policy-gradient parameter optimization. We compared these simulations with our own adversarial 

environment from Study 1 to look for differences in optimal parameter values between the 

adversarial environments. The main difference between our earlier simulations and the 

human/pigeon datasets was that in the experimental data, frequencies of emitted response 

sequences were tracked with absolute counters, and a fixed threshold was used to check if these 

counters were low enough in order to meet the variability contingency. In the rat dataset, 
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frequencies of response sequences were calculated as relative counters (i.e., by dividing the 

absolute counter of a response sequences by the total amount of trials). These relative counters 

needed to be lower than a threshold to meet the variability contingency. In our adversarial 

environment from Study 1, absolute counters were used to track frequencies of response 

sequences, but the threshold was relative, i.e., the counters needed to be in the lowest 60% in order 

to be rewarded. We simulated each variation of the environment using Equations 1-3, and 

simultaneously optimized epsilon, learning rate or unchosen value-bias (lambda) using Equation 

4-5, similarly as in Study 1. Each adversarial environment (5 in total) was simulated for each 

optimization 100 times over 10000 trials. Updates of the parameters happened every 10 trials.  

Next, we fitted our model on the three animal datasets and estimated the three critical 

parameters: epsilon, learning rate and unchosen value-bias (the ε-α-λ model, Equations 1-3). This 

is our main model from which we compared the parameter values, where high parameter values 

could be linked to the associated mechanisms underlying variable behavior. Additionally, we fitted 

an alternative model to evaluate the influence of adding λ. In the second model, we set the 

unchosen value-bias to 0, in order to check whether adding this parameter (in the first model) was 

a valuable addition to a regular Rescorla-Wagner model (i.e., the ε-α model, Equation 1-2).  

We performed a model recovery with these two models (Wilson & Collins, 2019). For each 

model, 1000 datasets were simulated for 500 trials in the 4 adversarial environments resembling 

the human/pigeon (2, 4 and 8 choice alternatives) experiment and the rat experiment. For each 

simulated dataset, parameters were sampled from uniform distributions ( ε and α between 0 and 1; 

𝜆 between -3 and 3). The 2000 resulting simulated datasets in each environment were used to fit 

the two models by minimizing the negative loglikelihood of each model. Best model fits were 

evaluated using the Bayesian Information Criteria (BIC) values. This resulted in a confusion 
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matrix, showing the probability of the model being identified as the best fit when the data was 

actually simulated by that model. 

For the winning model, we additionally performed a parameter recovery. To do this, we 

simulated 500 datasets of 500 trials from the model in the 4 adversarial environments, with 

randomly sampled parameters (from the same distributions as just mentioned). Then, we 

minimized the negative loglikelihood of the function from which the data was simulated and 

estimated the parameters. Correlations between true and estimated parameters were calculated 

using R2 value and Pearson- and Spearman correlations.  

Last, we fitted the two models on the three datasets (human, pigeon, rat) using negative 

loglikelihood minimization. BIC values were used to assess which model fitted the data of each 

subject best. For the ε-α-λ model, we further estimated the respective parameters for each subject 

in each dataset. Because the 20 rats performed multiple sessions of the experiment on multiple 

days, resulting in multiple datasets for the same rat subject, we estimated the parameters of the 

model for each session/dataset separately and took the average of the estimates for each rat.  

Results 

Model simulations in experimental conditions 

First, we simulated the five different adversarial environments with our model and the 

policy-gradient algorithm (Equations 4 and 5), optimizing either epsilon (ε), learning rate (α) or 

unchosen value-bias (λ), to evaluate whether the small differences between adversarial 

environmental setups resulted in a difference in optimal parameter values. In line with Study 1, 

Figure 5A shows that the optimization of ε led to relatively high optimal values, in all but one of 

the five adversarial environments. This shows that the number of alternatives has an effect on 
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optimal ε values, with lower ε values when there are less response alternatives. Additionally, the 

usage of relative frequency counters or a relative threshold to check the counters (such as in the 

rat- and Study 1 environment), also led to overall higher optimal ε values. Similarly, Figure 5B 

shows the optimization of α in the five different adversarial environments. The higher α in these 

last two environments may also be attributed to the usage of relative counters/thresholds. That is, 

larger α seemed especially beneficial in those environments, but not necessarily in the 

environments used in the human/pigeon study. Last, Figure 5C shows the optimization of λ. These 

simulations consistently showed that positive values of around 1 were preferred for lambda. 

Figure 5: Simulation of five different adversarial environments: the 2 alternative (dark brown)-, 4 alternative (light brown)-, and 

8 alternative (beige) experimental setups from the human- and pigeon experiments from Jensen and colleagues (2006), the 5 

alternative condition (grey) of the rat experiment from Jensen (2018), and the simulated adversarial environment from Study 1 

(green) in this paper. Darker lines are average sampled parameters (from the learned mean and standard deviation), shaded areas 

are standard errors. All simulations were done with the model in Equations 1-3. The optimization of parameters was done using 

Equation 4 and 5, where for the optimization of learning rate ε is substituted for α, and in the optimization of lambda ε ̃ was 

substituted for λ. A) Optimization of epsilon. B) Optimization of learning rate. C) Optimization of lambda. 
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Model recovery and parameter recovery 

Before fitting the ε-α-λ model and the ε-α model to the data, we also performed a model 

recovery in the adversarial environments resembling each of the 4 experiments. The confusion 

matrices can be seen in Figure 6. It shows that the ε-α-λ model and ε-α model could be identified 

well above chance level. 

Figure 6: Confusion matrix with two models: the ε-α-λ model, the ε-α model. 1000 datasets were simulated for each model over 

500 trials, according to the rat experiment environment and the human/pigeon experimental environment with 8, 4 and 2 choice 

alternatives. All these simulated datasets were used to fit each of the two models using a negative loglikelihood minimization. The 

confusion matrix gives the probability that the model on the x-axis result in the best model fit (based on BIC values), given that 

the data was simulated from the model on the y-axis. 
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We also performed a parameter recovery analysis for the ε-α-λ model in all adversarial 

environments resembling the 4 experiments. The true vs recovered parameters for simulations of 

the rat experiment can be seen in Figure 7. The recoverability of epsilon and learning rate was high 

(R2 = 0.99 and 0.80 respectively), meaning that the model estimation process is accurate in finding 

the values that generated the data. The recovery of λ is accurate within the [-1,1] bounds, but not 

very recoverable outside of these bounds. This is possibly because values outside these bounds 

surpassed the value of our reward signal (i.e., 1).  

 

Figure 7: Parameter recovery of the ε-α-λ model simulated in the rat experimental environment. A) Recovery of ε in the ε-α-λ model 

(R2 = 0.99, Pearson correlation = 0.995 and Spearman correlation = 0.995). B) Recovery of α in the ε-α-λ model (R2 = 0.80, 

Pearson correlation = 0.90 and Spearman correlation = 0.90). C) Recovery of λ in the ε-α-λ model (R2 = 0.75, Pearson correlation 

= 0.8 and Spearman correlation = 0.86). All correlations where significant (p < 0.01). We also did parameter recoveries in the 

human/pigeon experimental environments, with 2, 4 and 8 choice alternatives.  

In the 8 choice environment, recovery of ε in the ε-α-λ model achieved an R2 = 0.98, 

Pearson correlation = 0.992 and Spearman correlation = 0.992, recovery of α achieved an R2 = 

0.81, Pearson correlation = 0.90 and Spearman correlation = 0.90 and recovery of λ achieved an 

R2 = 0.58, Pearson correlation = 0.78 and Spearman correlation = 0.77. In the 4 choice 
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environment, recovery of ε in the ε-α-λ model achieved an R2 = 0.99, Pearson correlation = 0.995 

and Spearman correlation = 0.995, recovery of α achieved an R2 = 0.83, Pearson correlation = 

0.91 and Spearman correlation = 0.91 and recovery of λ achieved an R2 = 0.57, Pearson correlation 

= 0.77 and Spearman correlation = 0.77.  In the 2 choice environment, recovery of ε in the ε-α-λ 

model achieved an R2 = 0.97, Pearson correlation = 0.987 and Spearman correlation = 0.986, 

recovery of α achieved an R2 = 0.68, Pearson correlation = 0.84 and Spearman correlation = 0.84 

and recovery of λ achieved an R2 = 0.59, Pearson correlation = 0.78 and Spearman correlation = 

0.79. 

Model fits 

 Finally, we looked at the human-, pigeon-, and rat datasets. First, we examined the 

variability within the subjects’ generated sequences by calculating the second-order entropy per 

subject (Equation 6) to establish whether all species generated variable behavior. Because subjects 

performed a varying number of trials, we first calculated the second-order entropy based on the 

last 500 trials, to keep the information constant between all subjects. The average second-order 

entropy per species and for the different choice conditions can be seen in Figure 8. The average 

second-order entropy among human subjects was 0.5 (2 alternatives), 0.74 (4 alternatives) and 

0.79 (8 alternatives). The average second-order entropy for pigeons was 0.5 (2 alternatives), 0.73 

(4 alternatives) and 0.79 (8 alternatives). Finally, for rats, the average second-order entropy (5 

alternatives) was 0.74. Our simulations of Study 1 consistently showed second-order entropy 

scores around 0.8 in an adversarial environment (Figure 1D, 2D and 3D), that were significantly 

higher than the second-order entropy scores in a stable and volatile environment (with the 

exception of the λ optimization simulations, where second-order entropy scores in a volatile vs 

adversarial environment were similar). The variability levels generated by humans, pigeons and 
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rats as seen here are comparable to adversarial second-order entropy scores in our simulations 

(with the exception of the relatively low second-order entropy in the 2 choice alternatives 

contexts), confirming that these subjects indeed exhibited strategically variable behavior. 

 

Figure 8: Average second-order entropy for each species’ dataset (last 500 trials). A second-order entropy of 0 means there is no 

variability within the sequence. A second-order entropy of 1 indicates that all possible pairs of alternative options occur equally 

often in the sequences. 

Next, we fitted our two models. The ε-α-λ model gave the best fit for all subjects of all 

species in all conditions, except for two human subjects where the ε-α model fitted once better in 

the 2 choice condition and once better in the 4 choice condition. Table 2 provides the average BIC 

values for each model.  

Table 2: Average BIC values of each model for each dataset (human, pigeon and rat). 

 ε-α-λ model ε-α model 

Human 47240 47758 

Pigeon 33042 33286 

Rat 2862 2935 

 Average BIC values for each model and each species' dataset (a lower BIC value means better fit). Each subject/condition was 

fitted on the two models. The ε-α-λ model fits best to all datasets. 
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Next, we studied the parameter values. Figure 9A shows that for all species, ε estimates 

were high. The average value of ε in the ε-α-λ model for the humans was 0.92 (range: 0.77-0.99), 

for the pigeons also 0.92 (range: 0.88-0.95), and for the rats 0.85 (range average per rat over days: 

0.76-0.92).  

The α estimates (Figure 9B) showed a less consistent pattern, but more of a broad range of 

individual differences for humans and pigeons. Interestingly, this result is in accordance with the 

model simulations suggesting that the optimal value was not necessarily a high α in the precise 

variability reward contingencies that humans and pigeons were subjected to. Accordingly, the α 

estimates ranged from 0.17 to 1 with an average of 0.76 for humans, and from 0.02 to 0.91 with 

an average of 0.4 for pigeons. In the rat dataset, however, α estimates were higher, with an average 

of 0.88 (range 0.66-0.98). This is again consistent with our simulations showing that the specific 

variability reward contingency used for rats did benefit from higher learning rates. 

Finally, we turned to the λ estimates to investigate how much different species up- or down-

valued unchosen actions, with an upregulation shown to be beneficial in generating variable 

behavior and obtaining more reward in these adversarial environments. Interestingly, λ estimated 

(Figure 9C) showed species-specific differences. Specifically, λ values were positive for all human 

subjects and sessions, except for two, with an average of 1.29 (range: -2.09 – 2.69) in the ε-α-λ 

model. This same model showed an average λ of -1.32 (range: -2.46 – -0.16) for pigeons and -0.84 

(range: -1.68 – -0.2) for rats. This suggests that only human subjects show positively valued 

choice-bias estimates, meaning that only human subjects seemed to upvalue unchosen options. 

Pigeons and rats, in contrast, show a devaluation of unchosen options, even though this is not 

optimal in an adversarial environment (Figure 5C). 
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Figure 9; Parameter estimates of the ε-α-λ model. Every dot is a parameter estimation for one dataset belonging to one subject. 

Color of dots represent the number of choice alternatives that were available to the subjects in each experiment, where beige 

represent the condition with 2 alternatives, light brown represents the condition with 4 alternatives, dark brown represents the 

condition with 8 alternatives and grey  represents the condition with 5 alternatives. A) Estimates of epsilon in the ε-α-λ model. B) 

Estimates of learning rates in the ε-α-λ model. C) Estimates of lambda in the ε-α-λ model. In each plot, data is grouped per species. 

For the rats, every dot is the average of the parameter estimates for that rat across all days.  

Discussion 

In this study, we examined empirical data from humans, pigeons and rats who were exposed to an 

adversarial environment. Although the experimental settings differed slightly between these 

studies, subjects were always rewarded more if their currently chosen option completed a sequence 

that was among the previously least frequent emitted sequences. These adversarial environments 

were designed in such a way that highly variable responding is the most optimal strategy in order 

to achieve a high reward rate, which was also observed as indicated by the average second-order 
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entropy values, especially in the four-, and eight-choice conditions for humans and pigeons, and 

for rats.  

We fitted the ε-α-λ model to the empirical datasets, and further compared it to a model 

lacking λ. For most subjects the ε-α-λ model fitted best. In all models, and across species, we 

observed high ε values, consistent with the idea of a stochastic generator. The learning rate spanned 

almost the entire range of available values for humans and pigeons, but were high for rats in the ε-

α-λ model (α > 0.66). This large range of learning rates for humans and pigeons was potentially a 

consequence of the specific reinforcement schedule as also suggested by our simulations.  

Interestingly, λ was almost exclusively positive for humans, and negative for pigeons and 

rats. This suggests that only humans upvalue unchosen options in an environment that requires 

them to respond more variably. That is, while most of human decision-making is consistent with 

a stochastic generator (as seen in the high epsilon values), the proportion of times where decision-

making relied on learning (Q-values), they exhibited behavior that seemed fitting to upvalued 

actions that had been chosen less. This same unchosen value-bias was negative for pigeons and 

rats. Although for pigeons and rats, the decision-making is also best captured by a stochastic 

process (high epsilons), negative unchosen value-biases suggest that in those instances that they 

were relying on learned values, they showed more of a repetition bias towards the previously made 

choice.  

General Discussion 

We linked three potential cognitive mechanisms for generating strategically variable 

behavior to a computational framework. Specifically, we evaluated a model that included a 

stochastic generator that assumes the ability to respond randomly by blocking out past information 
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(Page & Neuringer, 1985), a dynamic reinforcement and extinction process that relies on learning 

from past outcomes (Machado, 1992; Nergaard & Holth, 2020), and a frequency-based memory 

that keeps track of past action frequencies. We argued that each mechanism can be described by 

the regulation of a specific parameter in the computational framework and that by adjusting this 

parameter, different levels of strategically variable behavior can be generated. In Study 1, we 

showed that upregulating one of the three parameters is sufficient to obtain more strategically 

variable behavior. In Study 2, we fitted our model to empirical datasets with humans, pigeons, and 

rats, and found that all species show parameter values compatible with a stochastic generator. 

Crucially, however, only humans additionally show an upvaluation of unchosen options consistent 

with a frequency-based memory, and only rats show consistently high learning rates. 

To investigate the internal validity of our model, we first simulated the model in three 

environments (stable, volatile and adversarial) and used a policy-gradient method to optimize each 

parameter linked to a cognitive mechanism. Specifically, the stochastic generator mechanism 

predicted an upregulation of epsilon when going from a stable to a volatile and finally to an 

adversarial environment. When ε was free to be learned, it indeed resulted in the upregulation of ε 

across these environments, successfully resulting in a maximum average reward and an increase 

in variability across the environments in the predicted direction. The dynamics 

reinforcement/extinction learning mechanism predicted the upregulation of learning rate α across 

these environments. Optimization simulations with a policy-gradient showed that α indeed adjusts 

in the expected directions in each environment. However, the effect of an upregulated α on 

performance and variability measures was smaller than an upregulation of ε. Last, the frequency-

based memory mechanism predicted the upregulation of λ with increasing variability demands. 

Here too, the simulations showed that this unchosen value-bias indeed increased across 
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environments. That is, adjusting λ leads to different levels of variability in decision-making. This 

shows that each of these three mechanisms can indeed establish different variability demands in 

different environments.  

Optimizing parameters while the model interacts with the environment is an instance of 

meta-learning, as often applied in reinforcement learning and machine learning (Hutter et al., 

2019). Meta-learning algorithms (such as Eq. 4 and 5) optimize parameters on a continuous scale 

while the learning rule and decision rule (such as Eq. 1-3) carries out the task (Raza Ali et al., 

2020; Sikora, 2008). A similar approach was used by Sikora (2008) to meta-learn (or optimize) 

the temperature parameter (comparable to epsilon) in a Softmax decision policy. Instead of a policy 

gradient method, they used an RW learning rule, to learn the values of different intervals from 

which the temperature parameter was sampled. Their meta-learning algorithm quickly learned the 

optimal temperature value in a stable environment and returned better rewards with increasing 

volatility of the environment. Yet another way to update parameters of reinforcement learning 

models is with the Stochastic Real Value Units algorithm, as used by Schweighofer & Doya 

(2003). This algorithm learns meta-parameters using a stochastic gradient. Similarly as with the 

policy-gradient of Study 1, a mean value is learned based on a reward feedback signal but the noise 

term in this case is random (and not learned as with the policy-gradient). Their algorithm also 

quickly learned the optimal learning rate, temperature and discount factor in a Markov decision 

problem task, making the algorithm adaptable to the settings of the task environment. The goal of 

these meta-learning algorithms was similar to our study: optimizing parameters to fit the 

environment in which the decision is made. Meta-learning parameters in real-time doesn’t confine 

these parameters to single values and allows for a more flexible response to changes in the 

environment. Intuitively, this concept more closely aligns with human and non-human animal 
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behavior, as they also need to be capable of adapting to changing environments. In fact, meta-

learning has been increasingly applied to the study of human behavior in recent years (Binz et al., 

2023; Griffiths et al., 2019; Silvetti et al., 2022). Meta-learning models have been shown to capture 

a broad range of empirically observed behavior. For example, they can describe several properties 

of heuristic human decision-making (Binz et al., 2022) and have been shown to replicate human 

biases in probabilistic interpretation (Dasgupta et al., 2020). We are currently unaware of such 

datasets, but future studies should evaluate whether human participants can also flexibly adapt 

between adversarial and stable or volatile environments, and try and fit meta-learning models to 

assess if humans meta-learn some, if any, of the critical parameters in our model to achieve 

strategically variable behavior.  

Here, we leveraged our model to study strategically variable behavior in humans, pigeons 

and rats in adversarial environments. The second-order entropy, characterizing the variability in 

responses, confirmed similar levels of variability generated by these subjects as generated by our 

model simulations in Study 1. All these species are capable of variable choice-making as a strategy, 

but the parameter estimates showed they achieve it in a different way. Our main model, the ε-α-λ 

model, showed the best fit.  

The estimates showed high epsilon values for all species, and learning rates spanning 

almost the entire range of available values for humans and pigeons, but relatively high (>0.66) 

values for rats. The exact value for learning rate for rats was likely dependent on the precise 

reinforcement schedule, rather than species. Interestingly, we also observed a positive unchosen 

value-bias for humans, but negative ones for pigeons and rats. Taken together, this implies that the 

behavior of all species aligned with those of a stochastic generator. The behavior also seemed 

partially explained by that of a dynamic reinforcement and extinction process, especially for rats. 
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Finally, for humans, choices also seemed to rely on a frequency-based memory, where they 

strategically upregulated the values of actions that had not been performed for a while, something 

that pigeons and rats seemed to lack altogether. A first potential explanation for this is that humans 

could realize that variability in itself is a strategy, in a way (other) animals cannot. This awareness 

may be crucial for these memory processes, which ultimately may also lead to biases that deflect 

from randomness as observed in random number generation tasks (Ginsburg & Karpiuk, 1994; 

Joppich et al., 2004). 

A second explanation could be that humans, as opposed to pigeons and rats, may be more 

likely to try and infer (a set of) rules from the environment that maximize their rewards (without 

necessarily realizing that variability in itself is the strategy). For example, Maes and colleagues 

(2015) studied generalization strategies in humans, pigeons and rats, and found that rat- and pigeon 

subjects generalized based on stimulus features, while most human participants showed 

generalization based on a set of inferred rules (Maes et al., 2015). In the adversarial environment 

of our study, it may be possible to infer such rules by keeping track of choice frequencies, as 

reflected in the positive λ-values. This type of decision-making process still leads to some degree 

of variability, be it biased and not completely random.  

Finally, some non-human animals might even be unable to infer a rule based on memory. 

Indeed, (Lind & Jon-And, 2024) recently argued that non-human animals do not have memory for 

(stimulus) sequences (but see Inoue & Matsuzawa, 2007). Therefore, it is possible that they are 

less able to remember choice frequencies and use these to create more variable behavior. Instead, 

pigeons and rats might ‘give up’ easier when no actions are consistently rewarded and switch to a 

default setting that also results in spontaneous or unpredictable behavior (De Souza Barba, 2015). 

This does not require realizing that one should make variable choices, but could simply result from 
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a false belief that it does not matter what choice is made and a default stochastic strategy is most 

likely to help them learn new contingencies if they come up. This idea aligns with a putative 

stochastic generator mechanism and is reflected in the high epsilon values.  

A clear avenue for future research is that our model currently models three potential 

cognitive mechanisms or learning dynamics, but more may be needed. The three mechanisms – a 

stochastic generator, dynamic reinforcement/extinction learning, and frequency-based memory – 

were inspired by prior literature on strategically variable behavior in environments where 

variability is selectively reinforced. We aimed to provide a first model to study and disentangle 

these different mechanisms within a single computational framework. However, it is possible, and 

not unlikely, that human and non-human animals may further rely on other mechanisms that could 

also be added to our model. For example, agents may use more complex rule-based strategies to 

generate variable behavior that currently went undetected in our model (e.g., Dayan & Niv, 2008; 

Dehaene et al., 2022; Lake et al., 2015), or selectively up- or down-regulate different learning rates 

for negative versus positive prediction errors (S. J. Gershman, 2015; Niv et al., 2012; Palminteri 

& Lebreton, 2022; Rosenbaum et al., 2022; Simoens et al., 2024; Wen et al., 2023). 

Taken together, we provide a first computational framework to study strategically variable 

decision-making in adversarial environments, and show a clear distinction between the different 

underlying cognitive mechanisms that humans use to be strategically variable, and those employed 

by pigeons and rats. Our results are generally consistent with previous studies suggesting that 

humans show superior performance on problem-solving tasks that require self-control (MacLean 

et al., 2014). Importantly, the need for variable or unpredictable behavior in real-life is often 

confined to social situations, such as in games or sports, which humans may face more. In such 



 

 

45 

 

cases, it has been shown that humans often need to use more complex inferences that go beyond 

simpler forms of reinforcement learning (FeldmanHall & Nassar, 2021; Vélez & Gweon, 2021). 
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