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Abstract

Recent monocular metric depth estimation (MMDE) methods have made no-
table progress towards zero-shot generalization. However, they still exhibit a
significant performance drop on out-of-distribution datasets. We address this
limitation by injecting defocus blur cues at inference time into Marigold, a pre-
trained diffusion model for zero-shot, scale-invariant monocular depth estimation
(MDE). Our method effectively turns Marigold into a metric depth predictor in a
training-free manner. To incorporate defocus cues, we capture two images with
a small and a large aperture from the same viewpoint. To recover metric depth,
we then optimize the metric depth scaling parameters and the noise latents of
Marigold at inference time using gradients from a loss function based on the
defocus-blur image formation model. We compare our method against existing
state-of-the-art zero-shot MMDE methods on a self-collected real dataset, showing
quantitative and qualitative improvements. Our implementation is available at
https://github.com/chinmay0301lucsd/DiffusionCam.

1 Introduction

Estimating metric depth from a single camera viewpoint is a central problem in computer vision with
numerous downstream applications, including 3D reconstruction [24]], autonomous driving [50], and
endoscopy [31]. This task, known as monocular metric depth estimation (MMDE), is fundamentally
ill-posed due to inherent depth-scale ambiguity [46]]. Multi-view methods [65] avoid this ambiguity
but are often expensive and impractical in settings like endoscopy or microscopy. Training data-driven
MMDE methods is challenging, as it requires accounting for a diverse set of camera parameters and
metric depth scales. As a result, existing MMDE models struggle in zero-shot settings, i.e., they
generalize poorly to unseen datasets. Recent advances in zero-shot MMDE [75] have demonstrated
improved generalization, but there is still a considerable performance drop on unseen datasets.

In contrast to MMDE, monocular relative depth estimation (MDE) methods recover a relative depth
map, factoring out the physical depth scale. This enables using large-scale datasets with diverse
depth ranges [41]] for training data-driven MDE methods. As a result, MDE methods achieve better
zero-shot generalization at significantly lower training cost than MMDE methods, as shown by recent
results [[70, [71}126]]. However, despite favorable performance on benchmarks, the absence of metric
scale in MDE outputs precludes their applicability in downstream tasks requiring absolute depth.

Existing data-driven MMDE methods commonly suffer from two failure modes: undesirable coupling
between image texture and depth predictions (fig.[3)), and inaccurate estimation of the scene’s physical
scale (see fig. d)). The first issue of rexture coupling also affects MDE methods (see fig. [3) unless
explicitly mitigated through complex training procedures that account for texture variation [22}|55]].

*Corresponding author: ctalegaonkar@ucsd.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Camera  Bjurred Image AlF zf ~ N0, I) &

B

Parameters Xp, X 4 dv=¢o. *b

(f,F,N} tL d l' d a-d+p

I . . o] _":ﬂ ! _, Defocus

B = = = Bl <zllxp —Rpll?

. e 9C.f.N.F)
ﬂé IL Marigold Monocular Depth  Metric Depth Estimated Loss
N F,22) Blurred Image

Drrn Bl

Figure 1: Method overview. We capture two images (same viewpoint) from a camera with focal
length f and focused at a distance F": an all-in-focus (AIF) image x (F-stop: N = 22) and a blurred

image x;, (F-stop: IV < 22). Using the AIF x and an initial learnable noise vector Z(Td ), Marigold
predicts the relative depth d. We then affine transform d with learnable parameters («, 3), obtaining
the metric depth d™. Given the AIF x, depth d™, and camera parameters (f, F, V), we synthesize
a blurred image X, using the defocus blur forward model. To update the learnable parameters, we
compute their gradients w.r.t the L2 loss between X}, and xy,.

We demonstrate that incorporating camera physics, particularly defocus blur, with a data-driven MDE
model at inference time can effectively address both failure modes without any re-training. We use
Marigold [26]], a diffusion-based MDE model, as it enables backpropagation-based inference time
optimization using defocus cues, while staying on its learned manifold of plausible depth maps. To
provide these defocus blur cues, we capture two images from a single viewpoint: a small-aperture
all-in-focus (AIF) image, which is given as input to Marigold, and a large-aperture image that provides
physical cues for metric depth. Our approach requires only a variable aperture camera, such as a
DSLR, and knowledge of the lens focal length, focus distance, and F-stop, which are readily available
from image metadata; this avoids the need for extrinsic calibration required by multiview setups.

Defocus blur is known to provide coarse metric depth cues in monocular settings 33159, 169]], but
has rarely been explored alongside recent data-driven advances in MMDE. We show in our work
that revisiting this classical cue and integrating it with modern relative depth methods like Marigold
improves metric depth estimation performance, without any retraining. While most depth from
defocus methods use multiple measurements [21} 30} 163]], we require only two. Prior work has
also explored other hardware novelties to encode depth cues, such as dual pixel cameras [[19} [68]]
and coded apertures [28]]. However, these depth cues are coarse, and training MMDE models for
these systems is limited by the lack of datasets captured with a sufficient camera parameter diversity.
This motivates the need for an approach that combines strong data-driven pre-trained MDE/MMDE
models trained on existing RGB datasets with physics-based cues from non-pinhole cameras.

To this end, our contributions are as follows: We formulate MMDE as an inverse problem under the
defocus blur image formation model. Using inference-time optimization, we recover the metric depth
scale and correct for texture-depth coupling — without retraining Marigold. We devise a hardware
setup consisting of a rigidly coupled DSLR (RGB camera) and an Intel RealSense depth camera to
capture RGB images and the ground truth metric depth. We collect a dataset of 7 diverse real-world
indoor scenes, captured at different defocus blur levels. We compare our method on this dataset with
current MMDE methods and demonstrate quantitative improvements on real data.

2 Related Work

Zero-shot depth models Recent approaches for Monocular (relative) Depth Estimation (MDE)
and Monocular Metric Depth Estimation (MMDE) can be classified as discriminative or generative.
Discriminative approaches largely rely on vision transformer-based architectures [7, 15, 6 74} |39]
trained on large-scale datasets. Transformer-based methods have been more successful for MDE
[70,[71]] compared to MMDE accuracy-wise, as MMDE is a more ill-posed task than MDE. These
approaches have very low inference times, but for MMDE, the performance degrades on out-of-
distribution test scene Most of these methods are purely data-driven and ignore depth-based
visual effects in images such as defocus cues. It is also difficult to incorporate physics-based depth
refinement in these methods at test time without any re-training [73]]. Since we use a generative MDE,
our approach can incorporate physical cues at test time in a training-free manner.

ZRefer to [[73] for a detailed survey on MMDE methods.



Current state-of-the-art generative MDE/MMDE methods [47,[13]] are predominantly diffusion-based.
Several previous methods [[13| 47, |32]] incorporate diffusion-based depth denoising in their pipelines,
achieving highly detailed depth maps — but are not zero-shot. [48] achieves zero-shot MMDE with a
diffusion-based approach by incorporating diverse field of view (FOV) augmentations in training, but
it is not open source and lags behind transformer-based methods in performance. Marigold [26] is
trained by fine-tuning Stable Diffusion-v2 on synthetic depth data. It achieves high-quality zero-shot
MDE and supports test time refinement, but is not applicable natively for MMDE. Our approach
uses defocus cues to refine the relative depth predictions from Marigold (or similar methods [16]),
enabling its application to MMDE. Prior work [60] also proposes a similar strategy for dense MMDE
from a sparse metric depth map using Marigold and test time optimization. In contrast, our method
does not require a sparse depth map as input, and solely relies on RGB images and a priori known
scene bounds. Using defocus blur cues, our method resolves inaccuracies in monocular depth while
also estimating the global scaling parameters for metric depth.

Diffusion model priors for inverse problems We frame MMDE as an inverse problem under the
defocus blur image formation model. This framing closely relates to the recent work on solving linear
inverse problems using pre-trained diffusion models [12]]. [9,[11} 54, [10] incorporate the forward
model constraints while sampling pixel-space diffusion models pre-trained on smaller datasets. As
a result, these methods require many steps while sampling the diffusion model and have limited
generalizability as priors. [53|144] use latent variable diffusion models (LDMs) as priors, resulting
in better in-the-wild generalizability. We use Marigold as the LDM, but instead of incorporating
the defocus forward model during sampling, we optimize the latent noise vector based on the error
between the observed and predicted image using the forward model. Our approach is inspired by
recent methods (371136, (77,161} [17] which uses noise optimization in conjunction with a differentiable
auxiliary guidance loss to improve the sampling quality of the diffusion model based on text input.
While these methods use trained models as differentiable proxies for guidance, we use a physics-based
imaging forward model. [34] also uses a physics-based forward model with a diffusion prior, but
requires re-training the diffusion prior from scratch.

Depth estimation from passive camera physics cues A substantial body of research on MMDE
leverages camera physics, including methods like depth-from-defocus (DfD), -[64, 20, 58, 2],
phase/aperture masks [28, 78l 176l 13} 167]], and dual pixel sensors [[18 168, [1]. Classical approaches
produce very coarse depth maps. Most DfD methods need a well-aligned [66]] multi-image focal stack
[29] 571, to achieve good depth quality. Optical mask-based methods pose a harder inverse problem
of jointly estimating both AIF and the depth map. We capture only 2 images at the same focus
distance and different apertures, requiring no image alignment and AIF estimation. This simplifies
depth refinement with minimal added capture time. Previous work has also used variable apertures
for classical [[15] and learning-based [S6] depth estimation methods, but it is not zero-shot. While
learning-based approaches [19, 8} 166, [18] help improve the depth map quality for these methods, they
don’t generalize well to out-of-distribution scenes. Dual pixel-based methods are popular for phone
cameras, [[18,[38]], but are tied to the specific camera architecture. While we show results with a
standard DSLR sensor, our approach can be adapted to dual-pixel-style camera architectures as well.

3 Preliminaries

Diffusion-based monocular depth estimation Our approach is built on top of Marigold [26]],
which is a monocular depth estimator trained by fine-tuning the denoising U-Net of StableDiffusion-
v2 (SDv2) [43] on synthetic depth data. Marigold allows sampling the conditional distribution of the
monocular depth given an input image, p(dg|x). In particular, Marigold attempts to generate clean
monocular depth maps, dg given a clean input image x by first sampling d7 ~ A(0, I) from an i.i.d
Gaussian distribution, and then iteratively denoising it (where each intermediate step is denoted by
d;) according to a fixed noise schedule with parameters oy, 0. As SDv2 is a latent-diffusion model,
the entire generative process happens on encoded latent depth maps z(()d) with latent images z(*) as
conditioning. Training Marigolcﬂ (which we denote as X4(-)) involves using the standard denoising
loss common in image diffusion works, but on depth maps rather than images, and passes the image

3While technically SDv2 is trained in e-prediction mode rather than x-prediction, we use x-prediction given
their mathematical equivalence and alignment with Marigold-LCM, which uses x-prediction.
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Figure 2: Comparing simulated PSFs with the PSF captured from our camera setup. (a) A point
source placed d distance away from a thin lens focused at a focus distance F' produces a blurred
image (PSF) with a diameter ¢, also known as the circle of confusion. The variation of ¢ with source
distance d is shown in the plot. (b) The Disc approximation to the camera PSF lies roughly within the
same bounds (dotted red circle) as the PSF captured from the RGB camera (Real GT) in (c). The
Gaussian PSF significantly exceeds the bounds. Slight differences between the real and Disc PSF
stem from the octagonal aperture and diffraction ignored in our model. (c) We rigidly mount an Intel
RealSense on a DSLR to capture ground truth depth, and calibrate both cameras to align predicted
depth from the RGB image with the ground truth depth for evaluation.

input into the model as well through channel-wise concatenation:

d 5 d x
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where w(t) is a time-dependent weighting function. At inference time, x is first mapped to a lower
dimensional latent vector z*) = £(x) through VAE encoder & in SDv2. The inference process starts

with sampling a noisy latent depth vector Z(Td) ~ N(0, I), which is iteratively refined by applying the
denoiser fcd,(z,gd)7 z™) 1) to obtain zéd) over 1" sampling steps. z(()d) is then decoded through the SD

decoder D to produce the output depth map d = D(z(()d)). Marigold assumes both z¥), z() ¢ RM
For faster inference, we use the latent consistency model version of Marigold, Marigold-LCM, and
obtain zéd) with a single inference step from z(Td ). Monocular depth d can be mapped to metric depth
d™ by an affine transform; more details in sectionE}

Modeling defocus cues Under the thin lens camera assumption, defocus blur manifests as a uniform
blur kernel, with a depth-dependent diameter. The blur kernel diameter for a point source placed at a
distance d away from the camera is determined by the circle of confusion (CoC) [40] equation
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where the focal length f, focus distance F', and F-stop N are camera parameters that are known
from the image EXIF data. s denotes the pixel size in physical units (m). The CoC defines a
depth-dependent point spread function (PSF) h(i,j | u,v,d) that predicts the response at pixel
coordinate (i,7) from a point source at lateral coordinate (u,v) and depth d under defocus blur.
Note that (u, v) can represent depth-normalized pixel coordinates under an ideal pinhole projection,
allowing us to write d = d™[u, v] (valid for general non-volumetric scenes that assume a single
depth value per coordinate). We assume that the PSF is shift-invariant for a given depth d, i.e.
h(i,j | u,v,d) = h(i —u,j—v|0,0,d™[u,v]) = h(i —u,j —v | d™[u,v]), which is simply the
on-axis PSF, modeled as a disc (assuming circular aperture) with radius given by CoC equations,
translated to be centered at (7, j). To ensure smooth optimization, we include a linear fall-off at the
boundary of the discontinuous disc kernel, similar to [62]]. The PSF can then be expressed as
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We assume the PSF to be normalized and explicitly account for exposure and energy balancing during
image capture and processing (see section[d). While the above PSF can also be approximated as an
isotropic 2D Gaussian [20], we opt for the disc parameterization in eq. @) similar to [62,51], as it
better approximates the PSF of the real camera compared to the Gaussian approximation in [20], as
shown in fig. 2| We can see from eq. (2) that an image captured with a very small aperture (high V)
would have negligible defocus blur due to very small CoC values. Such an image is referred to as the
all-in-focus (AIF) image, x. Given the AIF x, the blurred image x;, can be approximated (neglecting
occlusion) as a spatially varying convolution between h and x,

xp(4,5) = // x(u,v) - h(i —u, j — v; d™[u, v])dudv (6)
For simplicity, we denote the above image formation forward model as
szg(X,dm,f,F,N). (7)

The AIF image x, captured at a high F-stop, serves as the blur-free input for both Marigold and the
camera blur model eq. (7), while the low F-stop image x;, provides defocus cues for MMDE.

Inference-time optimization Without loss of generality, any generative model (GAN, Diffusion or
flow-based) ¢ : RM — R¥ can be construed as a mechanism to map a simple probability distribution,
such as an i.i.d. Gaussian distribution, ¢ ~ N(0, ) € R to a non-linear N-dimensional manifold,
such as images or audio, through a differentiable generative process x = ¢(g). Inference time
optimization [37]] refers to manipulating the generation process by updating the initial noise € based
on gradients from a differentiable loss function £(z) on the generated sample z,

€ = e—VL(x). 3

To further ensure that € still lies close to the Gaussian manifold after the gradient updates, € can be
rescaled to have a L2 norm of v/M as in [45], which is a valid approximation for samples drawn
from a high dimensional Gaussian distribution as per the Gaussian annulus theorem [4]. This holds
for most generative models, as the initial noise vectors are typically high-dimensional (M > 50). In

our case, € corresponds to the noise latent z(Td) in Marigold, which we optimize using a loss function
(eq. (TI)) governed by the defocus blur forward model eq. (7).

4 Method

We capture two images per scene: x, with F-stop (Vs = 22) and exposure time £, serves as the
blur-free all-in-focus (AIF) image. A second image, Xy, is captured at a lower F-stop (/V, = 8) with
exposure time ty,, thereby providing strong depth-varying defocus cues. The forward model in eq.
assumes radiometrically linear images (no gamma correction or non-linear processing) and energy
constancy between the AIF and blurred images. We use raw images to satisfy these assumptions.
Since total captured energy scales with exposure time (¢) and aperture area (< (f/N)?) [25], we
scale x;, by the factor %bf . x:zi to match the energy in x. Note that we vary the exposure time to

ensure well-exposed measurements across F-stop settings, while fixing the camera gain.

We frame metric depth estimation as an inverse problem, with the defocus blur image formation
process in eq. (6) as the forward model, and Marigold as the monocular depth prior. To obtain
scale-invariant monocular depth d € [0, 1], we use Marigold-LCM, which takes in as input the AIF

x (encoded to z(¥)), and a learnable depth latent vector Z(Td )N (0,I). A single inference step
of Marigold-LCM gives us the denoised depth latent zgd) =Xy (Z(Td), 7%, 1), which is decoded

to monocular depth d = D(z(()d)). The predicted monocular depth d € [0, 1] is then mapped to
metric depth by affine transforming d with a learnable metric scale («) and offset (3) per scene,
d™ = « - d + . To ensure that o, S remain bounded and differentiable, we parameterize them as
a = Smax - 0(a) and B = S, - o(b), where o(+) is the sigmoid function; a, b are unconstrained
learnable parameters initialized to 0, and sy, and Sy, are the upper and lower scene depth bounds,
respectively, which we assume are known a priori (valid for indoor scenes). To summarize, the metric
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Figure 3: Correcting texture-depth coupling. We assess MMDE performance on textured fronto-
parallel 2D planes with constant ground truth depths (GT). Using an all-in-focus (a) and blurred
image (zoom into insets) (b), our method (RMSE: 0.01) recovers the correct depth maps (c) for the
two textured planes. We resolve the texture coupling in the Marigold prediction (Ours Init) and
recover the correct metric scale. Competing methods (RMSE: 0.2-0.5) fail to predict both the constant
relative depth map (except MLPro and Metric3D in row 1) and the correct scale.

depth (d™) can be expressed using the optimizable parameters «, b, as:
d™ = S - (1) - D ()”c¢ ( 2™, 1)) + Smin - (1)
=y (a7 b, Z(Td)> . )
The optimized metric depth d™ can then be recovered by solving:
am: argmin HXb—g(X,dm,f,F,N)Hg (10)
dm:y( 05
subject to |z H — VM, (11)
2

where g(-) denotes the defocus blur forward model (eq. (7)), x, and x are the captured blurred

and AIF images, respectively. By optimizing the learnable parameters «, ), , We incorporate
defocus blur cues for both correct metric scale recovery (a, b) and refining the initial depth estimate

by Marigold (zgpd )). See fig. for the overview of our method.

Motivating Synthetic Toy Examples We demonstrate that our approach resolves texture-depth
coupling, accurately recovering metric depth in a synthetic scene with a textured plane at constant
depth. While such a plane may seem simple, distinguishing it from a flat 2D image/poster or an
actual 3D scene is challenging when viewed from a single viewpoint. Data-driven methods are biased
towards predicting depths that reflect surface variations even in the absence of true depth changes, i.e.,
their outputs are strongly fexture coupled. However, supplementing the AIF image with a simulated
blurred image provides defocus cues that help our method disambiguate a flat poster from a 3D
scene, as demonstrated in fig. [|using toy examples of textured planes with constant depth. While
learning-based methods and initial Marigold outputs suffer from texture coupling and scale errors,
our method corrects both, producing accurate, constant-depth maps that outperform all baselines.

Accelerating inference We use the distilled latent consistency model version of Marigold
(Marigold-LCM) to reduce the number of sampling steps significantly. We observe that a sin-
gle sampling step suffices for our case, which significantly speeds up inference-time optimization
[36, [14] relative to the normal 20-50 inference steps [37, 61]] that Marigold [60] uses. We show an
ablation study with more sampling steps in supplement.E. We also implement custom CUDA kernels
for the Disc-PSF forward model. This provides a 2.5x speed up over the PyTorch implementation pro-
vided by [62] while being more memory efficient, allowing our method to scale to higher-resolution
images. Using a single sampling step of Marigold-LCM allows us to compute gradients w.r.t z(d)
without gradient checkpointing as previously done in [37].

Optimization details We run the optimization for 200 iterations, which takes roughly 3.5-4 minutes
on an NVIDIA A-40 GPU with peak memory usage of 15 GB. We use the Adam optimizer with a
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Figure 4: Comparisons on our collected dataset. Our method consistently estimates accurate
metric depth across all the scenes. We also observe better relative depth recovery due to leveraging
defocus cues (zoom in 4x on blurred) in some regions (blue boxes, STAIRS). While the competing
methods perform comparably to ours in some cases (MLPro:PLANE, KITCHEN, UniDepth:STAIRS,
Metric3D:THORDOG, BOOKS), they struggle with the rest of the scenes due to incorrect relative depth
(TOYS, BOOKS) and metric scale (PLANE) recovery. recovers sharp details but fails at metric scale
and relative depth accuracy for many of the scenes. Since the RealSense has a wider FOV than the
DSLR, we show a roughly aligned crop of the GT depth for comparison.

learning rate of 1.5 x 1073 for z(Td ), 5 x 1073 for (a, b), and default values for optimizer parameters.
Note that we use the same scene bounds sy, = 1.49, Smax = 3.5 for all the real scenes in our
dataset. These values represent a conservative upper bound on the potential maximum scale and
offset in the real dataset. Please see supplement.A for more details.

5 Experiments and Results

Dataset details Our method requires 2 images captured with different apertures (but same view-
point) to integrate defocus cues. Standard monocular depth datasets [49] typically capture
in-focus images at a single aperture per scene, making them unsuitable for evaluating our method.
While one could simulate defocused images with eq. (7) and RGBD data, this does not capture the
model mismatch (occlusion, diffraction) in the physical image formation process. Therefore, to
fairly evaluate our method, we construct a hardware capture setup, shown in fig. 2] comprising an
Intel RealSense depth camera rigidly mounted to a DSLR camera (Canon EOS 5D Mark II). We
use this system to collect a custom real-world dataset of 7 unique scenes, evaluating our method
against learning-based MMDE baselines. We choose scenes with diverse subjects and depth profiles,
placed within the operating depth range of RealSense (0.3—3.8m) to ensure accurate ground truth
depth. Note that the CoC changes negligibly with depth beyond these distances, making defocus cues
unreliable. For each scene, we capture images at 6 different apertures, f/4, f/8, f/11, f/13, f/16,
and f/22, with the latter serving as the AIF image x. The blurred image, Xy, is selected from the
lower F-stop images (see fig. [5|for comparison of F-stop setting on depth map quality). As described
in section[d we try to maintain a similar ratio of the exposure time and the camera aperture area for
all the measurements taken for a scene. The lens focal length (f) and F-stop (/V) are provided by the
camera EXIF data, and the focus distance F' is read manually from the lens’s analog focus scal

*Alternatively, a lens with focus motor encoding would allow this to be known from EXIF
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Figure 5: Analyzing the effect of different aperture sizes and initializations. Left: We use our
forward model to simulate blurred images of a scene from the NYU-v2 dataset. We observe minimum
depth error at N = 13, with errors increasing at more extreme aperture values. Right: We plot J; at

the end of optimization for various c, /3 initializations normalized between 0-1 (o — 2, 3 — i ),

in the figure for visualization. While the performance degrades for small values of «, 8 (bottom left),
it is relatively stable for a broad range of initializations.

Please see supplement.B for camera parameters and other dataset details, and supplement.H for more
discussion on ground truth depth map quality.

Evaluation Metrics We evaluate the predicted metric depth, d™, from our method against the
RealSense ground truth depth d (with overloaded notation), using the metrics in [3}[39]. Specifically,

we compute absolute relative error (REL) = ﬁ Zf\il %, root mean squared error (RMSE)

M ~
- \/ﬁ > i |di —dff

thresholds §,, = fraction of pixels where max (

2, average log error (logl0) = Zﬁl |log, d; — log;o d™

, and accuracy
3 m
7

gé, ji ) < (1.25)™ forn = 1,2,3. M denotes the

number of pixels, and d;, 61;“ denote the RealSense and predicted depths at pixel ¢, respectively. We
also report point-cloud-based metrics, i.e., Chamfer Distance (CD) and the aggregated F1 score (FA)
as defined in [39]]. We align the ground truth and predicted depth map, similar to [19], and compute
the metrics for pixels with non-zero values across the aligned depth maps. See supplement.C for
more details on the depth map alignment/calibration procedure.

Quantitative and qualitative results We evaluate our method against some of the recently popular
MMDE methods UniDepth [39], Metric3D [74], and MLPro [7]] on our collected dataset (table
and the NYUV2 [35] test set. Both Metric3D and UniDepth are provided with the required cam-
era parameters as input. We outperform existing methods qualitatively (fig. 4)) and quantitatively
(table E]) on all the evaluation metrics, averaged over all 7 scenes in our collected dataset. Please
see supplement.D for per-scene quantitative metrics on our dataset and supplement.H for depth
error visualizations. On the NYUV2 test set, our method is on par with the MMDE baselines. See
supplement.J for more details. For our dataset, the MMDE methods (MLPro, Metric3D) recover
sharper details and are on-par with our method on some scenes (see fig. ), but they lack consistency
in their overall performance across all scenes. Our method achieves better consistency across varying
scene conditions. Leveraging defocus cues enables our approach to recover the correct depth scale
while also resolving relative depth errors in some cases (fig. @] insets). We also evaluate our method
(row 4 in table[2)) using a Gaussian PSF [20] in the forward model. While previous work [20] uses the
Gaussian PSF for training models for unsupervised depth recovery, we find that the model mismatch
between the Gaussian PSF and the PSF of the real camera (fig. [2)) leads to severe performance
degradation in our case, compared to using the Disc PSF, which matches the real camera PSF better.
This highlights the value of a physically consistent forward model, even with strong learned priors.

Comparing with fine-tuning based methods Our method relies on optimizing noise-latents of a
relative depth foundation model (RDFM) such as Marigold or Geowizard at test-time. Our approach
(inference-time optimization) can be valuable in zero-shot settings, where fine-tuning-based methods
would struggle due to the domain gap. We validate this by comparing our method with MMDE



Method | RMSE| REL| logl0| &, 1 621 31 CDJ FA?T

[71] FT Hypersim 0.523 0.314 0.151  0.178 0.825 0971 0.208 0.616
[71] FT NYUv2 0.407 0.252 0.096 0.654 0.832 0988 0.183 0.733
Marigold FT NYUv2 0.475 0.231 0.098 0.634 0.878 0963 0.175 0.808
Ours, No FT 0.273 0.125 0.052 0.879 0975 0991 0.103 0.870

Table 1: Comparison with fine-tuning-based (FT) methods on our dataset. Our method (row 4)
outperforms (FT)-based methods across all metrics. NYUv2 (real, depth < 10m) has a lesser domain
gap to our dataset (real, depth < 3.5m) than HyperSim (synthetic, depth < 20m); as evident by the
improvement in DepthAnythingv2 [[71] when FT on NYUv2 (row 2) compared to HyperSim (row 1).

models obtained by fine-tuning RDFMs (DepthAnythingv2 [[71], Marigold) on Metric depth datasets
with a restricted depth range, as required by our method (section ). We evaluate the following
fine-tuning-based baselines on our collected dataset in table[T|— DepthAnythingv2 [71] fine-tuned on
the Hypersim[42]] dataset (row 1), NYU-v2 train set (row 2), and Marigold Fine-Tuned on NYUv2
(row 3). Our method (row 4, table E]) outperforms the fine-tuning-based baselines. This validates
the utility of our inference-time method in zero-shot settings, where fine-tuning-based methods can
struggle due to a domain gap. Please see supplement.K for details on fine-tuning these baselines
and additional results on the NYUv2 test set. In addition to fine-tuning-based methods, we also
outperform [56], which estimates metric depth from multi-aperture inputs via self-supervised learning
with a differentiable forward model. See Supplement.L. for more details on the comparison with [S6].

Extending our method beyond Marigold Our method is plug-and-play and, in principle, works
with any diffusion-based model like Marigold that exposes a differentiable mapping from its latent
space to depth estimates. This enables test-time latent optimization, which allows for incorporating
defocus cues without retraining. We demonstrate this by using Geowizard as the diffusion backbone
[L6] instead of Marigold. GeoWizard is a stable-diffusion-based monocular depth + normal predictor,
trained on a more complex data distribution. Our method achieves similar performance with either of
the backbones (Rows 5,6 in table @]), but shows minor patch-level artifacts with GeoWizard, likely due
to stronger texture-depth coupling. See Supplement.I for visualizations and hyperparameter details.

Method \ RMSE| REL] logl0ol 6: 1 621 63T CD) FAY
MLPro 0.468 0.246 0.105 0.597 0.821 0990 0.205 0.696
UniDepth 0.574 0.358 0.152 0.263 0.757 0902 0260 0.612
Metric3D 0.349 0.195 0.087 0.611 0958 0983 0.135 0.814
Ours - Gaussian 0.528 0.279 0.142 0422 0.695 0.928 0.241 0.652
Ours - Disc 0.273 0.125 0.052 0.879 0975 0991 0.103 0.870

Ours (Disc) with GeoWizard 0.291 0.137 0.061 0.824 0966 0.990 0.105 0.874

Table 2: Comparison with learning based MMDE methods on our dataset. Our method with the
Disc PSF outperforms all the MMDE baselines averaged over all scenes in our dataset. The disc PSF,
being more consistent with the real camera PSF, outperforms the Gaussian PSE. UniDepth, Metric3D,
and our method are provided with camera intrinsics parameters during inference.

5.1 Ablation Studies

Only single blurred image as input: In our method, Marigold takes the all-in-focus (AIF) image
(F/22) as input to predict relative depth, which is combined with learnable scale—offset parameters
to synthesize a blurred image. The synthesized image is compared with a captured blurred image
(F/8) that provides metric depth cues [52]]. To assess the contribution of the AIF, we remove the AIF
and instead provide a single moderately blurred image (F/16) as input to both Marigold and the loss
function (eq. (IT))). This ablation also evaluates whether the diffusion prior alone is strong enough
to operate with a single modestly blurred image. Removing the AIF input leads to a large RMSE
increase (1.36 vs. 0.346) and visible artifacts (fig. [6]), indicating that while the diffusion prior captures
coarse depth cues, the AIF input is essential for accurate metric depth estimation.

Sensitivity to «, § initialization: Gradient-based methods are known to be susceptible to local
minima for non-convex optimizations. We thus evaluate the sensitivity of our method to the initializa-

tion for v, 5. We run the optimization in (eq. ) with a fixed zgfi ) while grid-searching over initial



J &
Tl
Scene Depth from I blurred image ~ Depth from AIF + blurred image ~ GT Depth: Realsense

Figure 6: Degradation in depth quality on using only a single blurred image. For the TOYS scene,
we observe that using a single blurred image as input results in severely inaccurate relative depth
(middle), with all toys, guitar, and the monitor at similar relative depths. Our proposed method (right)
recovers the depth ordering between the objects more accurately.

values of « and 3. In fig. E| (right), we observe that performance (measured by §;) drops for small
initialization values but remains stable across a broad range around oo = 0.5, 5 = 0.5, supporting the

robustness of our chosen initialization. We also ablate on sensitivity to initial ngd ) in supplement.E.

Improvements in relative depth from defocus cues We quantitatively evaluate the effect of
defocus cues in our method on improving the relative depth quality. Optimizing only «, 5 while
holding Z(Td ) constant leads to a performance drop (table . This highlights the role of defocus cues in
refining the relative depth initially predicted by Marigold. Please see supplement.F for visualizations.

Method | RMSE| REL| logl0| 6.1 6271 431
Ours a, 3 opt 0.297 0.156 0.069 0.743 0957 0.99
Ours 0.273 0.125 0.052 0.879 0975 0.991

Table 3: Relative depth quality Optimizing the noise latent along with the affine parameters (ours)
performs better than optimizing only the affine parameters («, 5 opt).

Different aperture sizes We analyze how the aperture (F-stop) used for capturing the blurred
image affects our performance. To do this, we use a scene from the NYU-v2 [33]], an indoor RGBD
dataset with high-quality ground truth depth annotations. This synthetic setup allows evaluating
large F-stops that cannot be captured with our camera, while isolating aperture size from forward
model mismatches in a real setup. Using the ground truth depth and our forward model (eq. (7)), we
simulate the blurred images x;, at varying F-stops (N values) and compute the error metrics between
the ground truth and our predicted depth. We observe in fig. [5] that the performance (measured in
RMSE) degrades for extreme aperture sizes. This is expected, as extreme blur (high or low) makes
the inverse problem ill-posed, and an optimal blur level is key for accurate depth recovery. While
N = 13 appears to be optimal in simulation (ignoring model mismatch), it underperforms N = 8 on
average for real scenes, likely due to low contrast and insufficient blur cues in some of the scenes
(STAIRS, PLANE). Please see supplement.G for results across all apertures captured in the real dataset.

6 Limitations and Future Work

While our method outperforms data-driven MMDE baselines, it remains significantly slower at
inference time. Our method is best suited to scenes with a small depth range for which defocus
blur offers high depth sensitivity. We observe that if the initial Marigold prediction is severely
incorrect in some regions (visualized in supplement.F), the optimization may not always be able to
fully correct them (ours for SHOERACK, THORDOG in fig. ). A possible extension of our method
is to jointly estimate the AIF and depth map from a single blurred input, as previously explored
in non-zero-shot approaches [19, [1]]. Our framework can broaden the utility of pre-trained depth
priors to scientific applications involving depth-dependent imaging processes such as hyperspectral
imaging [27], endoscopy [31]], and microscopy [72]. While we avoid discretizing the depth map
[23]], our forward model loses accuracy at occlusion boundaries. We envision further improvements
through better PSF engineering (coded aperture masks) and more accurate forward modeling of
defocus blur. Another promising direction is to adapt feed-forward methods such as for handling
multi-aperture inputs through test-time adaptation and fine-tuning [73]. Large-scale multi-aperture
datasets could make such methods practical for these settings.

Acknowledgements: We thank Alankar Kotwal and Bhargav Ghanekar for helpful discussions,
Namrata Mantri for helping collect the real dataset, and Agastya Kalra for proofreading the draft.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We will mention all the hyperparameters in the supplement.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [Yes]
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Justification: We will release the code after acceptance. But the dataset will be provided as
an anonymous link in the supplement.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify implementation details in the paper; additional details will be
included in the supplement.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform thorough ablations on different initialization, and characterize the
effects of different aperture sizes on our method through a synthetic study. In the supplement,
we characterize the effect of the stochasticity of the initial latent noise vector of the diffusion
model by repeating an experiment 10 times with different random initializations for the
latent noise vector, and report the variance in the observed final metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention the GPU used, memory usage, and optimization time for our
algorithm.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We confirm to the ethics guidelines.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work has no particularly negative societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]

Justification: We have cited the datasets and models we used for comparison. These datasets
have been widely used in published papers on this topic.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the self-collected dataset in the supplementary material with
guidelines on how to use it, and all the camera parameters used while capturing it.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects involved
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper is not related to LLM research or applications.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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