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ABSTRACT

Conformal Prediction (CP) is a powerful tool to construct uncertainty sets with
coverage guarantees, which has fueled its extensive adoption in generating pre-
diction regions for decision-making tasks, e.g., Trajectory Optimization (TO) in
uncertain environments. However, existing methods predominantly employ a se-
quential scheme, where decisions rely unidirectionally on the prediction regions,
and consequently the information from the decision-making end fails to be trans-
mitted back to instruct the CP end. In this paper, we propose a novel End-to-End
CP (E2E-CP) framework for shrinking-horizon TO with a joint risk constraint
over the entire mission time. Specifically, a CP-based posterior risk calculation
method is developed by fully leveraging the realized trajectories to adjust the pos-
terior allowable risk, which is then allocated to future times to update prediction
regions. In this way, the information in the realized trajectories is continuously fed
back to the CP end, enabling attractive end-to-end adjustments of the prediction
regions and a provable online improvement in trajectory performance. Further-
more, we theoretically prove that such end-to-end adjustments consistently main-
tain the coverage guarantees of the prediction regions, thereby ensuring provable
safety. Additionally, we develop a decision-focused iterative risk allocation algo-
rithm with theoretical convergence analysis for allocating the posterior allowable
risk which closely aligns with E2E-CP. The effectiveness and superiority of the
proposed method are demonstrated through benchmark experiments.

1 INTORDUCTION

In recent years, Trajectory Optimization (TO) has achieved significant success in fields such as
autonomous driving |Zhou et al.| (2020), autonomous surface vessels [T'solakis et al.[ (2024), and
coverage control [Davis et al| (2016). However, collision-free TO in uncertain environments is a
formidable challenge, because the intentions of obstacles are unknown. A crucial aspect of collision
avoidance involves predicting obstacle trajectories. Existing trajectory prediction tools are unable to
predict fully accurate trajectories. Therefore, a common approach is to generate the (1 —«)-coverage
prediction regions of the obstacle trajectories. If these regions contain the true trajectories with a
probability of at least 1 — «, they are considered valid. The key to probabilistic collision-free TO
lies in adjusting the prediction regions while remaining valid to improve the trajectory performance.

Conformal Prediction (CP) is an attractive framework to produce prediction regions with finite-
sample guarantees of validity [Vovk et al.| (2005); |Shafer & Vovk] (2008)). Without imposing any
assumptions about prediction algorithms and data distributions, CP utilizes a calibration dataset
to obtain a valid prediction region for test data. Owing to its simplicity and versatility, CP and
its variants have been widely applied in various safety-critical applications, such as probabilistic
collision-free TO [Lindemann et al.| (2023); |Sun et al| (2024), reliable estimation of graph neural
networks |H. Zargarbashi et al.| (2023)) and language modeling |Quach et al.| (2024).

However, there is a disconnect between existing research on CP theory and CP application for
decision-making. On the side of CP theory, most existing work primarily focuses on upstream
data, developing new CP algorithms to enhance prediction performance, such as addressing distri-
butional shifts |Gibbs & Candes| (2021)), performing multi-step time forecasting [Sun & Yu| (2023)),
and improving the efficiency of prediction regions Bai et al.|(2022). There is a lack of CP algorithms
focused on enhancing the performance of downstream decisions. On the side of CP application for
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decision-making, most existing work embeds the CP into decision-making pipelines as a method for
generating prediction regions, and employs a sequential approach, i.e. the prediction region is first
computed using CP and then the decision depends unidirectionally on the prediction region without
considering the favorable impact of the decision on the prediction region. However, this informa-
tion channel blockage from the decision-making end to the CP end seriously prevents the CP from
leveraging the information of past decisions to boost the performance of future decisions. Therefore,
there is a pressing research need to develop an end-to-end framework that seamlessly integrates CP
with decision-making, fully exploiting the information of past decisions to adjust prediction regions
in an end-to-end fashion and thereby remarkably enhance the performance of future decisions.

To fill the aforementioned research gap, we propose an End-to-End CP (E2E-CP) framework for
shrinking-horizon TO in uncertain environments and the collision risk over the total mission time is
constrained at all times. The proposed framework leverages CP to construct the prediction regions of
obstacle positions and adjusts these regions online in an end-to-end fashion while ensuring coverage
guarantees, i.e. validity. In particular, we propose a novel posterior probability calculation method
to obtain the posterior probability of collision conditional on realized trajectories. The posterior
collision probability is then used to adjust the allowable collision risk, which is allocated to future
times to yield prediction regions. In this manner, information from past trajectories is transmitted to
the CP end through the posterior probability calculation, guiding the end-to-end adjustments of the
prediction regions. Such adjustments in E2E-CP not only offer provable performance improvements
but also consistently maintain the validity of the prediction regions. With the adjusted prediction
regions, the trajectory is obtained by solving the resulting TO problem. Additionally, we further
propose a decision-focused risk allocation method, i.e. Iterative Risk Allocation (IRA), which aims
to optimize the trajectory performance by iteratively allocating the allowable risk to future times
while enjoying the convergence guarantee. We highlight the main contributions of our work below.

* We propose, for the first time in the literature E2E-CP, a general uncertainty quantification
framework closely associated with downstream decision-making which enables the adjust-
ment of prediction regions using the feedback information embedded in decisions.

* We prove that 1) the end-to-end adjustments in E2E-CP do not compromise the coverage
guarantees of prediction regions, and 2) E2E-CP offers guarantees for decision-making per-
formance improvement. In other words, E2E-CP enjoys both validity and performance.

* We propose a decision-focused risk allocation algorithm with theoretical convergence analy-
sis for E2E-CP, which optimizes the risk allocation to enhance decision-making performance.

2 RELATED WORK

Conformal Prediction. Conformal prediction originated in the early work|Vovk et al.|(1999;2005));
Shafer & Vovk (2008) to generate the prediction region. The salient advantage of CP lies in its
ability to offer coverage guarantees regardless of prediction algorithms and data distributions. Most
recently, various variants of CP have been developed to handle upstream data with different char-
acteristics |H. Zargarbashi et al.[(2024); [Liu et al.| (2024) or to produce prediction regions in a wide
array of forms|Angelopoulos et al.|(2024); Auer et al.|(2023). In response to the distribution shift in
the upstream data, ACI|Gibbs & Candes| (2021); Podkopaev et al.[(2024); [Zaffran et al.| (2022)) and
EnbPI Xu & Xie| (2021} 2023)) developed CP through online learning and sliding window, respec-
tively, and achieved asymptotic validity. In the context of multi-step time series forecasting, |Sun &
Yu (2023) combined CP with copula to propose the CopulaCPTS, while [Cleaveland et al.| (2024)
employed an optimization-based method. [Zhou et al.| (2024b) presented a new conformal method
for time series forecasting. In addition, numerous studies focused on improving the efficiency of
the prediction region by changing the region shape Xu et al.| (2024), minimizing the region length
Kiyani et al.|(2024), or directly optimizing the region construction function |Bai et al.| (2022). Note
that the prediction regions are typically utilized by downstream tasks in a sequential manner. How-
ever, the aforementioned research work primarily aims to enhance the predictive performance of CP
rather than directly improving the performance of downstream decision-making.

TO in Uncertain Environments. The probabilistic collision-free TO in uncertain environments
relies on the accurate description of uncertainties. Robust optimization and chance-constrained op-
timization are typically employed in TO to mitigate collision risks |[Kuwata & How| (2010); Petrovic
et al.| (2022)); Zhu & Alonso-Moral (2019). However, in these methods, the bound or distribution of
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uncertainty is assumed to be perfectly available to construct the confidence set of uncertainty. Fortu-
nately, the recent development of CP theory relaxes the above limitations and offers distribution-free
methods for constructing the confidence set. |Lindemann et al.| (2023)) and |Strawn et al.| (2023) ap-
plied CP to the safe planning for single-robot systems, while Muthali et al.|(2023)) and |[Kuipers et al.
(2024) extended it to multi-robot systems. Additionally, |Dixit et al.| (2023) and [Zhou et al.| (2024a)
employed the ACI to address the obstacle trajectory distribution shift. [Stamouli et al.| (2024) pro-
posed a novel nonconformity score for shrinking-horizon TO. All the above methods directly employ
CP in a sequential way to generate prediction regions. Nevertheless, the performance of realized
trajectories has yet to be conveyed to the upstream CP end as feedback information to adjust the
prediction regions, which has the great potential to further boost the performance of trajectory.

3  PROBLEM FORMULATION AND BACKGROUND

3.1 PROBLEM FORMULATION

Consider a discrete-time nonlinear dynamical system as follows.

Tip1 = f(@,ue),  To = Tinat (D
where x; € X C R™ and u; € U C R™ are the state and control at time ¢t = 0, ..., T, respectively,
and T' > 1 is the total mission time. The sets ¢/ and X represent the admissible sets of control
inputs and system states, respectively. The function f : R" x R™ — R"= represents the system
dynamics and x;,;: is the initial state of the system. For brevity, let ¢ .+, := (x,,...,2¢,) and
Uty t, = (Uty, ..., Ug, ) denote the state and control sequences from ¢ to to (t1 < t3), respectively.

The system operates in an environment with M dynamic obstacles with a priori unknown trajecto-
ries. Let Y; := (Y1, ..., Y3, ar) represent the joint obstacle position at time ¢, where Y; ; € RP de-
notes the position of obstacle j at time ¢. Additionally, the joint obstacle trajectory Y := (Yo, ..., Y1)
is assumed to be sampled from an unknown probability distribution D, i.e. Y ~ D. The system
can observe the joint obstacle states Yy, ..., Y;, when making the decision at time ¢. We assume the
independence between D and system (T)), and the availability of an offline dataset as follows.

Assumption 3.1. For any time t > 0, the system state xg.; and control uy.; do not change the
distribution D.

Assumption 3.2. We have a calibration dataset D q = {Y(l), LY }, where each of the N
joint obstacle trajectories are independently drawn from D, i.e. Y ~ D, Vi=1,...,N.

Assumption [3.1] is typically adopted by default in the literature related to TO [Lindemann et al.
(2023));Zhu & Alonso-Mora) (2019); Hakobyan & Yang| (2021) and Assumption[3;2]is not restrictive
in practice, e.g. the historical trajectories of obstacles. With Assumptions and we can
conclude that the real joint obstacle trajectory Y and the N available joint obstacle trajectories Y (*)
are independent and identically distributed (i.i.d.), and are therefore also exchangeable.

We focus on the TO problem whose objective is to find the sequences 1.7 and ugy.7—1 that minimize
the cost function J (1.7, ug.7—1) subject to the dynamics and constraints. The TO is performed in
a shrinking-horizon fashion, with the optimization problem at time ¢ formulated as follows.

) T-1
min J (@11, upr—1) = lr (o) +Z (2, ug) (2a)
Ti41:TUt:T—1 T=t

st xry1 = fzr,ur), Vr=t,..T—1 (2b)
T, € X, Vr=t+1,..,T (2¢)
ur €U, Vr=t,..T —1 (2d)

P g Y. > >1 2
() _ {clarYr) 20} >1~a (2e)

where P{X} denotes the probability of event X, the constraint function ¢ := R" x RN¥P — R is
L-Lipschitz continuous, which can encode various tasks, such as collision avoidance. Due to the
uncertainty of the joint obstacle position Y., we impose the joint chance constraint with failure
probability o € (0,1) to ensure that the joint probability of satisfying the constraint over the total
mission time is no less than 1 — «. To ensure the initial feasibility of the TO problem, we assume
that the initial state satisfies the constraint, i.e. ¢(xg, Yy) > 0, with probability 1.
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3.2 TRAJECTORY PREDICTOR

Recall that system (I) can observe the joint obstacle positions Yy, ..., Y; when making decisions
at time ¢. By inputting Y{.; into a trajectory prediction algorithm, we can obtain the predictions
fftﬂ‘t, e }A’T‘t of the future obstacle states Y; 1, ..., Y. Specifically, a trajectory predictor can be
developed by learning a prediction model g, : RN — RNP from the training dataset Dyyq;n,
which is independent of D.,;. Given an observed joint obstacle trajectory Yp.;, the model g;(-)
provides the prediction Yt+1|t for the state of the next time Y; ;. Then we recursively generate
the predictions YH_QH, s YT|t by inputting Y1:t+1|t, vy YT—t—l:T—1|t to the function g;(-). A spe-
cific example of g;(-) is modeled by Recurrent Neural Network (RNN) which demonstrates signif-
icant performance in time series prediction Rudenko et al|(2020). In this paper, we employ Long
Short-Term Memory (LSTM) (Graves & Graves|(2012)) to generate the predictions of joint obstacle
trajectories. Note that g;(-) can be any prediction algorithm in our proposed framework.

3.3 CONFORMAL PREDICTION

CP is used to obtain prediction regions for predictive models without making any assumptions on
the data distribution or the predictive models [Vovk et al.| (2005)); [Shafer & Vovk] (2008). Here we
provide a brief introduction to the theoretical results for CP and refer readers to |Angelopoulos &
Bates| (2021)) for a thorough introduction.

Given N + 1 exchangeable random variables R, R™"), ..., R(N)| CP aims to find a probabilistic
upper bound for R based on RV, ..., R™N) such that R is less than this upper bound with high
probability. In practice, R represents the test datapoint, while R(?), ..., R*Y) denote the calibration
dataset. Formally, the central idea behind CP is summarized in the following lemma.

Lemma 3.1. [Lemma 1 in Tibshirani et al|(2019)] If R, R™), ..., R™) are N + 1 exchangeable
random variables, then for a failure probability o € (0, 1), it holds that

P {R < Quantilel,a(R(l), v RM), oo)} >1—« 3)

where the function Quantile; _, (R(l), oy RN 00) denotes the level 1 —« quantile of the empirical
distribution of the values RW . RN as follows.

Quantile;_o(RM, ... R™) 00) = inf{z: P{Z < z} > 1 — a}, (4a)

Z ~ (ZN_I dpe + 5OO> /(N +1) (4b)

where 85y and 8o, denote the Dirac delta function at R and oo, respectively.

The variable R is usually referred to as the nonconformity score, whose common choice in regres-
sion is the prediction error R := |V, — YT|t|, where Y7 ; is the prediction of Y.

4 END-TO-END CONFORMAL PREDICTION

The challenge in solving the TO problem (2) lies in the computation of the joint probability (2e).
Existing literature predominantly employs a sequential way of using CP, i.e. the prediction regions of
obstacle positions are first computed based on the failure probability «, and then the decision of TO
depends one-way on the prediction regions. However, it is important to note that in the shrinking-
horizon TO framework, at time ¢ the past decisions x.; are available and typically contain rich
information that can instrumentally assist in refining the prediction regions at subsequent time steps,
thereby considerably improving the performance of TO. Therefore, we propose a novel E2E-CP. In
particular, E2E-CP not only exploits the feedback information provided by realized trajectories to
perform end-to-end adjustments of the prediction regions but also maintains coverage guarantees.

To begin with, the joint chance constraint (2¢) can be reformulated as a set of individual chance
constraints and a total risk constraint by using Boole’s inequality as follows.

T P{c(w,, ;) 20} =1 —ar, V7 =1,..,T
P{tton 2010 { QR TE B0 20 T ®
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The risk «, at each time can be initially allocated uniformly at time ¢t = 0, i.e. o, = /T,
and remains constant throughout the shrinking-horizon TO process, as in [Lindemann et al.[ (2023).
However, at time ¢, the system states z, for 7 < t are available, which grants us to compute the
posterior probability 8, = P{c(z,,Y,) > 0|z, } and the permissible risk for future times, which
is then used to adjust the prediction regions. Using the information in the realized trajectories, the
end-to-end adaptation of the prediction regions tremendously reduces the conservatism of trajectory
online while ensuring coverage guarantees. In Subsection [4.I] we present the individual chance
constraint reformulation using the prediction regions derived based on a specific risk allocation. In
Subsection .2 we present a CP-based method for calculating 3.. We reformulate the TO problem
in Subsection4.3] The specific details of the risk allocation are deferred to Section 5]

4.1 CONSTRAINT REFORMULATION USING CONFORMAL PREDICTION REGION

We randomly divide the calibration dataset D, into two subsets D!, and D? , with K and L joint
obstacle trajectories, respectively, where K+ L = N. Without loss of generality, we reassign indices
to the joint obstacle trajectories as D!, := {Y() .. Y(F)} and D? | := {Y(E+D [y K+
At time ¢, we can obtain the prediction of the joint obstacle position Y|, for all future time 7 =
t+1,...,T using g;(-) described in Section Similarly, the prediction V) for each trajectory

Tt
Y ® in D! , is derived by using the same method. We define the nonconformity score as follows.
— |yD —¥E) vi=1,., K (6)

[t

Ryp=|Ys = You|  RY

Tt

Note that YT,YT(I), e YT(K) are exchangeable and the prediction function g;(-) is trained from

Dyyqin independent of Dial. Therefore, given an allocated risk o, for future time 7, the random
variables R, Rgl‘z, - Rg‘? are exchangeable and the prediction region with coverage guarantee

is derived according to Lemma [3.T]as follows.

P{|Y; = Youll <CL*7} 21—y (7a)
Cli%" = Quantiley . (RY)), .., R}, 00) (7b)

Based on the (1 — a.;)-coverage prediction region {y : ||y — let I < Cilzaf }, the individual chance

constraint in (3 can be reformulated as the following lemma proven in Appendix

Lemma 4.1. I]‘Assumptionsand hold and (., f/}‘t) > LCi‘;O‘* is satisfied where Cilza’
is calculated by , then the individual chance constraint P{c(x,,Y;) > 0} > 1 — « is satisfied.

4.2 POSTERIOR PROBABILITY CONDITIONAL ON PAST DECISIONS

At time ¢, the states z for all past time 7 = 1, ..., ¢ are deterministic and available to the trajectory
optimizer. We assume that = is the true system state at time 7. Note that 27 is an feasible solution to
the TO problem (2) at time 7 — 1 with the reformulated constraints through Lemma.1] Therefore,
the individual chance constraint P{c(x%,Y;) > 0} > 1 — «, is satisfied at time 7 — 1 and will
be naturally satisfied for all time 7" > 7 — 1. However, the constraint violation probability ., is
a priori probability allocated before time 7 that tends to overestimate the violation probability and
thus leads to conservative results. Fortunately, the determined x allows us to compute the posterior
probability of constraint violation ., which, as we theoretically prove, is less than c. with high
probability. The risk redundancy between a., and 3, can be allocated across future times. In this
way, the information embedded in z7 is transmitted back from the decision-making end to the CP
end to readjust the prediction region end-to-end and to achieve a trajectory with notably improved
performance. To compute /3 using Lemma|[3.1} we propose a novel nonconformity score as follows.

Sy =c(zx,Y,) S =c(zr, YD) Vi=1,.,K+L (8)

We note that YT,YT(I),...,YT(K+L) are exchangeable, and if x} is fixed and independent of

Y, YT(I), e YT(K+L), the random variables S, Sﬁl), - S§K+L) are also exchangeable. However,
as z is derived through the TO problem at time 7 — 1, it depends on D! , and the random

variables S, Sﬁl), e S;K) are no longer exchangeable. Therefore, we only use the subset D2, i.e.
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S$K+1), ceny S£K+L), to compute 3. The upper bound of the posterior violation probability /3, is
computed via the following lemma, whose proof is given in Appendix

Lemma 4.2. Assume that x5 is the true state of the system at time T and Assumption[3.1 holds, then
the upper bound of the posterior violation probability at time T is as follows.

L ,
P{c(xr,Y;) <0} < B, = (1 + Z:_l I (S$K+z) < 0)) /(1+1L) )
where 1(+) is the indicator function.

Some might raise the concern that 3, could be higher than «.., which could result in a more con-
servative trajectory when using 3, in subsequent times. However, the following corollary proven in
Appendix [A.3]restricts the upper bound of the expectation of /3.

Corollary 4.1. Suppose that § € (0,1) and K is sufficiently large (K > (—1n6)/(2a2)), we have

P{E(QT) < (1+L(aT+ —1n5/(2K)))/(1+L)} >1-4 (10)
Furthermore if K, L — oo, then E(8;) < «. holds with probability one.

Remark 4.1. We remark that Corollary provides a performance guarantee for the proposed
method, i.e. the proposed method performs at least as well as the sequential method |Lindemann
et al|(2023) with high probability. Furthermore, the experiments in Section [6| demonstrate that the
proposed method performs significantly better in practice. This is attributed to the conservatism
of the inequality in the proof of Corollary (Appendix . Since c(xk,Y;) contains the
information provided by the function c (e.g. the size and shape of the robot and obstacles) and the
system state x%, it typically occurs that P{c(z,Y;) < 0} < P{||Y; — YT|t | > Ciﬁm} in practice.
By effectively utilizing 3, we intelligently adjust the allowable risk and the prediction region for
future times to improve the performance of the optimized trajectory online.

4.3  OPTIMIZATION PROBLEM REFORMULATION

Thus far, by making use of the joint chance constraint reformulation (3)), the individual constraint
reformulation in Lemmal4.T]and the posterior probability calculation in Lemma[.2] the TO problem
at time ¢ can be transformed as follows.

T—1
th:nglTi{lhatH:T J (1.7, upr—1) = lp(zr) + ZT:t I (27, ur) (11a)
st Trg1 = f(xr,ur), vr=t,..,T -1 (11b)

zr €X, Vr=t+1,..,T (11¢)

ur €U, Vr=t,..T—1 (11d)

(w7, Vo) > LCi‘;"‘*, Vr=t+4+1,.,T (11e)

ar >0, vr=t+1,.,T (11f)

S esa=Y 5 (11g)

where Constraint ensures the satisfaction of individual chance constraints (5 for future times
T =1t+1,...,T through Lemma and C1~“ is calculated by . Constraint is imposed to
ensure the non-negativity of a.;. Constraint is the most important part for end-to-end adjust-
ments of the prediction region and online performance enhancement of the optimized trajectory. It
is derived by replacing o for past time 7 = 1, ..., ¢ in the total risk constraint (5) with 3, calculated
through Lemma The information embedded in past decisions 7, ..., z; influences the future
values of a1, ..., ap through the calculation of (31, ..., 5; thereby reshaping the prediction region
of CP in an end-to-end way. Based on Corollary and Remark [4.1] 3; is highly likely to be less
than a in practice. Consequently, using 5, grants more risk to be reserved for future times, result-
ing in much compact prediction regions and tremendously improved optimization performance.

However, it is important to note that C’},l_t“* depends on «; and D} ,. Consequently, treating cv¢ 1.7
as decision variables alongside x;1 1.7 and us.7—1 would make the optimization problem ([_I;f[) com-
putationally demanding to solve for larger values of 7" and K. Therefore, we will present an alloca-
tion method for o .7 that aligns with the optimization problem in the next section.
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Figure 1: Shrinking-horizon trajectory optimization framework using E2E-CP.

5 SHRINKING-HORIZON TRAJECTORY OPTIMIZATION USING E2E-CP

The shrinking-horizon TO framework using E2E-CP is illustrated in Figure|l} The information in
x{., guides the end-to-end adjustments of the size of the prediction regions CT‘;(”* through posterior
probability calculations. Solving the TO problem (IT) is divided into two steps: 1) risk allocation
and 2) TO with the fixed oy41.7. The TO problem with the fixed a;y1.7 is formalized as

follows.
min J(@pqrr, upr—1) st (118) — (11e) (12)

Tt41:T,Ut: T —1
The problem can be readily solved to obtain x}, .7 and uy.r-_, and only the first system input
uy is implemented as the control input. Therefore, as the actual time ¢ progresses, the optimization
horizon gradually shrinks. For the risk allocation, a general approach is the Average-based Risk
Allocation (ARA), i.e. the allocable risk is evenly allocated across future times at time ¢ below.

@, = (afz;)ﬁf) T —t) Yr=t+1,.,T (13)

Although the ARA method has the advantage of computational efficiency, the fixed proportion al-
location significantly diminishes the flexibility in modifying the prediction regions for future times.
Therefore, we extend the IRA proposed in|Ono & Williams| (2008)) to the E2E-CP. To begin with,
we refer to the TO problem with a fixed risk allocation ayy1.7 @]) and the risk allocation problem
as the lower-stage problem and the upper-stage problem, respectively. The system states xy, .7 and
inputs uy.-_4, as well as the risk allocation a4 1.7 are obtained by iteratively solving the lower and
upper-stage problems. We denote the feasible region of the lower-stage problem (I12)) with ay4 1.7
as R;(cy41.7). The upper-stage problem optimizes oy 1.7, formally stated below.

min  J*(a¢t1.7) (14a)
At41:T
st. a; >0, Vr=t+1,...,T (14b)
T t
< o —
Do orSa=) B (14c)
arrrr € {ouprr 1 3 (g1, wer—1) € Re(augrr)} (14d)

where J*(cs41.7) is the optimal objective function of given a4 1.7. If arisk allocation ay 1.7
satisfies lEEi then we refer to a,1.7 a feasible risk allocation. However, the lower-stage
problem (14)) is challenging to solve due to the computational complexity arising from its objective
function (14a) and Constraint (I4c). To solve (I4) efficiently, we introduce a descent algorithm,
i.e. IRA for E2E-CP. This algorithm is based on the monotonicity of J*(cy1.7) below, which is
theoretically proven in Appendix [A.4]

Lemma 5.1. At time t, the following inequalities always hold.
0J* (ay41:7)

ooy
where J*(qui1.7) is defined as the same as in (14dl).

<0 Vr=t+1,...T (15)
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We assume that o', . represents the feasible risk allocation obtained after the nth iteration at

time ¢. IRA aims to obtain a feasible risk allocation a;fll:T in the (n + 1)th iteration such that

J* () < (e, 1.p). Inthe (n + 1)th iteration, IRA first solves the lower-stage problem (12)
using o', 1. to obtain the optimal solution xy', .7 and ui’r_ ;. Subsequently, based on 7, | .1, Con-

straint in the lower-stage problem (I2)) is categorized into active and inactive constraints. The
. . . . ~ 1— a:
active and inactive constraint sets are formally defined as Zoc; := {7 : c(al, Y1) = LC’T| ST =

t+1,.,Ttand Z;p :={7: 7 & Zyet, T =t + 1,..., T}, respectively. In summary, IRA consists
of two steps: 1) tightening the inactive constraints and 2) relaxing the active constraints.

Tightening the inactive constraints is first implemented to construct o', ;.o from o}, ;... Specifi-
cally, for 7 € Z,t, set & = a. Based on the definition of C’i‘;("* l) C’i‘;“* is non-increasing
with respect to «, for the fixed Dial. Thus for 7 € Z;,,4, we choose & < o so that

e(@?, Vo) > LOL,S > LCL (16)

Tt

Based on (16)), it can be deduced that (z} .7, uilp_1) € Re(a}1.p) € Re(af.p). Therefore,
the optimal solution (x}, ;.7 uyty_;) for o, ;.1 is also the optimal solution for &y, ;.,, and thus
J* (o 1.r) = J*(afy.p). Finally, it is straightforward to show that a, ;.- is a feasible risk
allocation, because (i) li follows from and the fact that when o, — 0, C’ilf“ — oo (i)

. . . T ~ T t . .
li is satisfied since 5, ap <>, ol <a—) By (i) lb is satisfied because
(@} 1.7, uptp_y) is feasible for a4 1.7. The specific construction of a7 is as follows.

n T E Ia(:t

~n ar,
“r = { (I—n)a? +na?, 7€ TLina (17)

where 7 € (0, 1) is the step size and o is the lower bound of &, V7 € Z,,, calculated as in
Lemma[5.2] which is proven in Appendix [A.3]

Lemma 5.2. Assume that x}\, | .p is feasible for the problem with o .r and o .p < 1. For
T € Lina, the lower bound of &2 while satisfying (@) is as follows.

K . ,
o = (1 +y 1 (C(xz, Vo) < LRS&)) J(1+K) (18)
Furthermore, it is deterministic that o < o

Then a;fll:T is constructed from &}, .- to relax the active constraints as follows.

~n T ~n
an+1 — o + (OL - 23:1 57‘ - ZT:tJ,-l a’T) /Nact7 TE Iact : (19)
T &” T € Iina

T?

where N, represents the number of elements in the set Z,,. It can be easily verified that affl{T

satisfies GH) and thus a?jﬁT is a feasible risk allocation. Note that a1 > a" since a”
satisfies (T4c). Therefore, the following inequality is obtained by implying Lemma 5.1}

T (o) < T (@) = T (0 ) (20)

By recursively constructing o, y.p, ..., @} 1, in this manner, J* monotonically decreases. The
algorithm of E2E-CP using IRA at time ¢ is delineated in Algorithm [T](in Appendix[B). The conver-
gence of Algorithm|I]is provided in the following theorem proven in Appendix

Theorem 5.1. Assume that 33?+1:T7 ul r_, are feasible in problem with risk allocation O‘?+1:T~
If the sets X, U are bounded and the objective function J(xiy1.1,ur.7—1) Is continuous, then the
sequence of the optimal objective value {J* (o, .7) }nen converges to a finite limit.

Remark 5.1. One may notice that the calculation of 3, in Lemma is similar to the computation
of & in Lemma This observation is correct. The key difference between the two lies in that the
former utilizes the dataset D? , independent with D!, to achieve the coverage guarantee for 3. By
contrast, as a step in solving ([1)), the latter does not need to consider the coverage guarantee and
thus directly uses Di - The use of different datasets results in the former providing probabilistic
guarantee (Corollary , while the latter achieves deterministic guarantee (o} < o).
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6 EXPERIMENTS

We conduct simulations to demonstrate the effectiveness of the E2E-CP for TO. In particular, we
conduct 1,000 Monte Carlo experiments on a kinematic vehicle model Pepy et al.|(2006)), a 3D linear
quadrotor model |Mistler et al.|(2001), and a dynamic bicycle model [Hakobyan & Yang| (2021 ﬂ We
present and analyze experimental results, and the experiment details and comprehensive results can
be found in Appendix|C| The following TO methods are analyzed in all benchmark experiment

» Sequential CP: Computation of the CP region and TO is performed sequentially, without
end-to-end adjustments to the region after decision-making.

* E2E-CP with ARA: The method based on E2E-CP using average risk allocation.
¢ E2E-CP with IRA: The method based on E2E-CP using iterative risk allocation.

Figure 2] shows the simulation results from one of the 1,000 independent simulations using the 2D
vehicle model. At ¢ = 0, the vehicle performs the first TO using different methods. For E2E-
CP with IRA, IRA allows for flexible allocation of the risks across future times. Therefore, by
assigning more risk to the time 7 = 9, which leads to a compact prediction region, a trajectory
passing between Obstacles 2 and 3 is obtained. However, with the fixed risk allocation at ¢ = 0,
Sequential CP and E2E-CP with ARA can only optimize the trajectory based on fixed prediction
regions. Consequently, they can only navigate around to pass between Obstacles 1 and 2. Note that
at t = 0, no deterministic vehicle position is available for posterior probability calculation. Thus
E2E-CP with ARA degenerates into Sequential CP, resulting in both methods obtaining essentially
the same trajectory. As time progresses, more and more vehicle positions become available. For
E2E-CP with ARA, (31.3 can be computed at ¢ = 3 and is with high probability less than .3, as
outlined in Corollary The reduction from .3 to B1.3 leads to an increased allowable risk for
future times, corresponding to a narrowing in the prediction regions. As a result, compared with
Sequential CP, E2E-CP with ARA generates a less conservative trajectory. Similarly, E2E-CP with
IRA also leverages [31.3 to increase the total allocable risk, thereby further enhancing the flexibility
in allocating risks for future times. As illustrated in Figure [2] the trajectory obtained by E2E-CP
with IRA at ¢ = 3 exhibits reduced conservativeness compared with the trajectory obtained at ¢ = 0.

Table [T] summarizes the average cost, average computation time, and collision avoidance rate of
1,000 simulations with different methods. The complete tables can be found in Appendix [C] As
shown in Table |1} the E2E-CP with ARA noticeably reduces the cost by an average of 11.26%

All trajectories @® Squence CP @ E2E-CP with ARA @ E2E-CP with IRA

I 1 2 bogz bo@z IO oe
¢4 3 e e Q e a

Figure 2: Trajectories of the vehicle with different TO methods. (Numbers on the circles denote the
indices of obstacles. The diamond and pentagon symbols represent the initial and target points of
the vehicle, respectively. The translucent circles represent the planned positions of the vehicle and
the prediction regions for further time. In particular, the colored and transparent circles with black
edges denote the planned positions and the prediction regions for 7 = 9, respectively.)

!The interior-point method-based solver IPOPT (v3.12.9) was used to solve the TO problem .
2Source code will be made available upon acceptance of the paper.
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Table 1: Average cost, computation time, and collision avoidance rate using the vehicle model with
different methods. The total risk tolerance is set to o = 0.2.
Sequential CP E2E-CP with ARA E2E-CP with IRA

Average cost 17.05 15.13 2.89
Average computation time (s) 0.076 0.078 0.131
Collision avoidance rate 88.4% 89.1% 91.2%

compared with Sequential CP thanks to the feedback information of posterior probabilities, with a
negligible additional computational burden. Furthermore, by flexibly allocating the additional al-
lowable risk provided by posterior probabilities, E2E-CP with IRA achieves an 83.05% reduction in
average cost compared with Sequential CP. However, since IRA needs to solve the TO problem (12)
iteratively, the average computation time increases significantly. Additionally, thanks to the coverage
guarantee for E2E-CP provided by Lemma4.2] both E2E-CP with ARA and IRA achieve a collision
avoidance rate that exceeds the required threshold (80%). Thus ARA and IRA can be freely chosen
according to the computational capability, real-time requirement, and trajectory performance.

To investigate the impact of using prior versus posterior probabilities on the prediction regions,
we collect the prediction region radius for time ¢, denoted as Csog¢, using the vehicle model with
different methods across 1,000 simulations, as illustrated in Figure El It can be observed that C’Qo‘t
decreases as ¢ increases, which is reasonable since the error of the trajectory predictor diminishes
as ¢ approaches 7. Note that since Sequential CP only uses prior probabilities to compute Cog)
throughout the entire planning process, which depends solely on D.q;, C|¢ remains constant for a
fixed ¢ across the 1,000 simulations. By contrast, for E2E-CP with ARA, Cs; also depends on the
actual obstacle positions and past decisions due to the use of the posterior probabilities, which leads
to the variability of C'yo); across 1,000 simulations. The distribution of Cy|g is illustrated in the right
panel of Figure@ It can be seen that Cyg; computed by E2E-CP with ARA is typically smaller than
that computed by Sequential CP. As ¢ increases, more posterior probabilities can be used, leading to
a growing gap between the Cy|; calculated by the two methods, which corroborates Corollary

The details about the prediction region radius for different ¢ and 7 are provided in Appendix

Although our experiments are conducted under exchangeability provided by Assumptions [3.1] and
[3:2] we have empirically demonstrated the proposed method exhibits a certain degree of robustness
to moderate distribution shifts and can maintain safety and high performance in realistic scenarios
(beyond Assumption [3.T)). Detailed experiments can be found in Appendix [D]and Appendix [E]

0.68
1 0.67
0.66
0.65
0.64
0.63

Region radius (m)
Region radius (m)

5 &
Prediction region radius for 7= 20 0.62

0.2 - [ E2E-CP with ARA (posterior probability):
—Sequence CP (priori probability)

0.61

i

0.60

0 2 4 6 8 10 12 14 16 18 20 0 200 400 600 800
Actual time t Number

Figure 3: Left: prediction region radius for 7 = 20 at each time ¢ (Cy¢) using the vehicle model
with different methods across 1,000 simulations. Right: distributions of Csqg.

7 CONCLUSION AND LIMITATIONS

In this paper, we proposed an E2E-CP framework for shrinking-horizon TO with a joint risk con-
straint over the entire mission time in uncertain environments. This method enables the feedback of
the information in the realized trajectory from the decision-making end to the CP end, guiding the
end-to-end adjustments of the prediction regions. The proposed end-to-end adjustment rule balances
both performance and safety, offering provable performance and coverage guarantees. Furthermore,
the proposed E2E-CP is not limited to TO, it can be applied to any safety-critical decision-making.

The proposed E2E-CP has two limitations: the requirement for a sufficient calibration dataset size
and the reliance of the theoretical guarantees in this paper on data exchangeability. We provide a
detailed discussion and several potential ways to address these limitations in Appendix [G]

10



Under review as a conference paper at ICLR 2025

REFERENCES

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
Savarese. Social Istm: Human trajectory prediction in crowded spaces. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 961-971, 2016.

Anastasios Angelopoulos, Emmanuel Candes, and Ryan J Tibshirani. Conformal pid control for
time series prediction. Advances in neural information processing systems, 36, 2024.

Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Andreas Auer, Martin Gauch, Daniel Klotz, and Sepp Hochreiter. Conformal prediction for time
series with modern hopfield networks. Advances in Neural Information Processing Systems, 36:
56027-56074, 2023.

Yu Bai, Song Mei, Huan Wang, Yingbo Zhou, and Caiming Xiong. Efficient and differentiable
conformal prediction with general function classes. arXiv preprint arXiv:2202.11091, 2022.

Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident
predictions even when distributions shift. Journal of the American Statistical Association, pp.
1-66, 2024.

Matthew Cleaveland, Insup Lee, George J Pappas, and Lars Lindemann. Conformal prediction
regions for time series using linear complementarity programming. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 20984-20992, 2024.

Bobby Davis, loannis Karamouzas, and Stephen J Guy. C-opt: Coverage-aware trajectory optimiza-
tion under uncertainty. IEEE Robotics and Automation Letters, 1(2):1020-1027, 2016.

Anushri Dixit, Lars Lindemann, Skylar X Wei, Matthew Cleaveland, George J Pappas, and Joel W
Burdick. Adaptive conformal prediction for motion planning among dynamic agents. In Learning
for Dynamics and Control Conference, pp. 300-314. PMLR, 2023.

Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. Ad-
vances in Neural Information Processing Systems, 34:1660-1672, 2021.

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with recur-
rent neural networks, pp. 3745, 2012.

Soroush H. Zargarbashi, Simone Antonelli, and Aleksandar Bojchevski. Conformal prediction sets
for graph neural networks. In Proceedings of the 40th International Conference on Machine
Learning, volume 202, pp. 12292-12318. PMLR, 2023.

Soroush H. Zargarbashi, Mohammad Sadegh Akhondzadeh, and Aleksandar Bojchevski. Robust
yet efficient conformal prediction sets. In Proceedings of the 41st International Conference on
Machine Learning, volume 235, pp. 17123-17147. PMLR, 2024.

Astghik Hakobyan and Insoon Yang. Wasserstein distributionally robust motion control for collision
avoidance using conditional value-at-risk. IEEE Transactions on Robotics, 38(2):939-957, 2021.

Shayan Kiyani, George Pappas, and Hamed Hassani. Length optimization in conformal prediction.
arXiv preprint arXiv:2406.18814, 2024.

Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecasting in crowds: A deep
learning perspective. IEEE Transactions on Intelligent Transportation Systems, 23(7):7386-7400,
2021.

Tom Kuipers, Renukanandan Tumu, Shuo Yang, Milad Kazemi, Rahul Mangharam, and Nicola Pao-
letti. Conformal off-policy prediction for multi-agent systems. arXiv preprint arXiv:2403.16871,
2024.

Yoshiaki Kuwata and Jonathan P How. Cooperative distributed robust trajectory optimization using
receding horizon milp. IEEE Transactions on Control Systems Technology, 19(2):423-431, 2010.

11



Under review as a conference paper at ICLR 2025

Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dy-
namic environments using conformal prediction. IEEE Robotics and Automation Letters, 2023.

Yi Liu, Alexander Levis, Sharon-Lise Normand, and Larry Han. Multi-source conformal infer-
ence under distribution shift. In Proceedings of the 41st International Conference on Machine
Learning, volume 235, pp. 31344-31382. PMLR, 2024.

V Mistler, Abdelaziz Benallegue, and NK M’sirdi. Exact linearization and noninteracting control of
a 4 rotors helicopter via dynamic feedback. In Proceedings 10th IEEE international workshop on
robot and human interactive communication., pp. 586-593. IEEE, 2001.

Anish Muthali, Haotian Shen, Sampada Deglurkar, Michael H Lim, Rebecca Roelofs, Aleksandra
Faust, and Claire Tomlin. Multi-agent reachability calibration with conformal prediction. In 2023
62nd IEEE Conference on Decision and Control (CDC), pp. 6596-6603. IEEE, 2023.

Masahiro Ono and Brian C Williams. Iterative risk allocation: A new approach to robust model
predictive control with a joint chance constraint. In 2008 47th IEEE Conference on Decision and
Control, pp. 3427-3432. IEEE, 2008.

Romain Pepy, Alain Lambert, and Hugues Mounier. Path planning using a dynamic vehicle model.
In 2006 2nd International Conference on Information & Communication Technologies, volume 1,
pp- 781-786. IEEE, 2006.

Luka Petrovié, Ivan Markovié, and Ivan Petrovi¢. Mixtures of gaussian processes for robot mo-
tion planning using stochastic trajectory optimization. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 52(12):7378-7390, 2022.

Aleksandr Podkopaev, Dong Xu, and Kuang-chih Lee. Adaptive conformal inference by betting. In
Forty-first International Conference on Machine Learning, 2024.

Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jac Ho Sohn, Tommi S. Jaakkola, and Regina
Barzilay. Conformal language modeling. In The Twelfth International Conference on Learning
Representations, 2024.

Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila, and Kai O
Arras. Human motion trajectory prediction: A survey. The International Journal of Robotics
Research, 39(8):895-935, 2020.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

Charis Stamouli, Lars Lindemann, and George Pappas. Recursively feasible shrinking-horizon mpc
in dynamic environments with conformal prediction guarantees. In 6th Annual Learning for
Dynamics & Control Conference, pp. 1330-1342. PMLR, 2024.

Kamile Stankeviciute, Ahmed M Alaa, and Mihaela van der Schaar. Conformal time-series fore-
casting. Advances in neural information processing systems, 34:6216-6228, 2021.

Kegan J Strawn, Nora Ayanian, and Lars Lindemann. Conformal predictive safety filter for rl con-
trollers in dynamic environments. IEEE Robotics and Automation Letters, 2023.

Jiankai Sun, Yiqi Jiang, Jianing Qiu, Parth Nobel, Mykel J Kochenderfer, and Mac Schwager. Con-
formal prediction for uncertainty-aware planning with diffusion dynamics model. Advances in
Neural Information Processing Systems, 36, 2024.

Sophia Huiwen Sun and Rose Yu. Copula conformal prediction for multi-step time series prediction.
In The Twelfth International Conference on Learning Representations, 2023.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
diction under covariate shift. Advances in neural information processing systems, 32, 2019.

Anastasios Tsolakis, Rudy R Negenborn, Vasso Reppa, and Laura Ferranti. Model predictive tra-
jectory optimization and control for autonomous surface vessels considering traffic rules. /IEEE
Transactions on Intelligent Transportation Systems, 2024.

12



Under review as a conference paper at ICLR 2025

Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for real-time
multi-agent navigation. In 2008 IEEE international conference on robotics and automation, pp.
1928-1935. Ieee, 2008.

Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian conference on
machine learning, pp. 475-490. PMLR, 2012.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world,
volume 29. Springer, 2005.

Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of al-
gorithmic randomness. 1999.

Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In International
Conference on Machine Learning, pp. 11559-11569. PMLR, 2021.

Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In International
Conference on Machine Learning, pp. 38707-38727. PMLR, 2023.

Chen Xu, Hanyang Jiang, and Yao Xie. Conformal prediction for multi-dimensional time series
by ellipsoidal sets. In Proceedings of the 41st International Conference on Machine Learning,
volume 235, pp. 55076-55099. PMLR, 2024.

Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive
conformal predictions for time series. In International Conference on Machine Learning, pp.
25834-25866. PMLR, 2022.

Hao Zhou, Yanze Zhang, and Wenhao Luo. Safety-critical control with uncertainty quantification
using adaptive conformal prediction. In 2024 American Control Conference (ACC), pp. 574-580.
IEEE, 2024a.

Jinyun Zhou, Runxin He, Yu Wang, Shu Jiang, Zhenguang Zhu, Jiangtao Hu, Jinghao Miao, and
Qi Luo. Autonomous driving trajectory optimization with dual-loop iterative anchoring path
smoothing and piecewise-jerk speed optimization. IEEE Robotics and Automation Letters, 6(2):
439-446, 2020.

Yanfei Zhou, Lars Lindemann, and Matteo Sesia. Conformalized adaptive forecasting of heteroge-
neous trajectories. In Proceedings of the 41st International Conference on Machine Learning,
volume 235, pp. 62002-62056. PMLR, 21-27 Jul 2024b.

Hai Zhu and Javier Alonso-Mora. Chance-constrained collision avoidance for mavs in dynamic
environments. IEEE Robotics and Automation Letters, 4(2):776-783, 2019.

Steve Zymler, Daniel Kuhn, and Ber¢ Rustem. Distributionally robust joint chance constraints with
second-order moment information. Mathematical Programming, 137:167-198, 2013.

13



Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF LEMMA [£.1]

According to Assumptions and as well as the calculation of Ci‘;% , the (1 — o;)-
/2]

coverage guarantee of the prediction (7a) is obtained through Lemma [3.1] Note that the function ¢
is L-Lipschitz continuous, the following inequality is obtained.

||C(J)-,—, YT) - C(x‘l'a YTIt)H S L||YT - Y7|t|| - C(.’L‘T, YT) Z C($7—,Y7-|t) - LHYT - Y7|t|| (21)

If the constraint ¢(z, YT“) > LC’i‘;O" is satisfied, we have the following inequality.

c(wr,Y7) = L(CL," = |Yr = Yopll) (22)
According to the (1 — «a.)-coverage guarantee P{Ciﬁa — Y, — f/ﬂtH >0} >1—a,, the
lemma is proven. O

A.2 PROOF OF LEMMA [4.2]

Based on Assumption , the random variables YT,YT(KH),...,YT(KJrL) are exchangeable.
Note that x} is the true state of the system at time 7, thus z7 is fixed and independent of
Y, YT(KJrl) YT(KJrL) Sq('K+1) S£-K+L)

able.

. Therefore, the random variables S, are exchange-

B PEES)

Without loss of generality, we assume that the dataset {—S$K+i)

GUE+1)

:4=1,..., L} are sorted in non-

decreasing order. We first assume that — < 0, and then we define the maximum index ¢ that

makes ngKH) < 0 hold as follows.

/= max |
1=1,....L (23)
st. — S$K+Z) <0

Then the posterior satisfaction probability can be computed below.
P{c(zr,Y;) > 0} = P{-S, <0} > P{-8, < —SE+I} (24)
It is assumed that there are ¢ terms in {—S$K+i) :i=1,..., L} identical to ST e,

—QUEH) o _gURHE—tRD) - GKHD) < g < _GUEHED (25)

Then —S$K+Z) can be equivalently reformulated as follows.

{—t l
(K40 _ g o(K+1)  _ o(K+L) Lot £ 2
Sy Quantileg(—Sx s ey =S ,00), VBe (1 AR +L] (26)
Combining (24) and (26) we have
P{c(z*,Y;) > 0} > P{-S, < Quantileg(—SHEHY . —SEFD) o0} 27)

Note that the random variables S, S$K+1), e S£K+L) are exchangeable and 3 € (%, H_LL} -

(0,1), and thus we can apply Lemma3.1|and obtain

1+L°1+L (28)

Therefore, the upper bound of the posterior violation probability can be computed by
e ]

1+4L1+L

To minimize this upper bound, we take the maximum value of 3 and (29) becomes (30).
14

P{e(a?, Y,) > 0} > 6, v&e(“t ! ]

P{c(z:,Y;) <0} <1-08, VBe ( (29)
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According to the definition of ¢ (23), we can compute ¢ as follows.

L L
_ (K+i) 7 (K+4)
¢ Z]I(ST + 20) L ;]I(ST + <0) 31)

i=1

Combining (30) and (3I), we have
1+35 T (SﬁK”) < O)
1+ L

Finally, we consider the scenario in which —S$K+1) > 0, which means S§K+i) <0Vi=1,..L.
Then the inequality (32)) is simplified as follows.

Ple(xf,Y,) <0} <1 (33)

which is always true. Thus, the Lemma is proven. O

P{c(zr,Y;) <0} < (32)

A.3 PROOF OF COROLLARY [4.1]

Taking expectations on both sides of Equation (9], we can obtain

E(5,) = 14+ LP{SY¥ ™ <0} 14 LP{S, <0} 1+ LP{c(at,Y;) <0} )
a 1+ L B 1+ L N 1+ L

VARG A a

The second equality holds because x} is fixed and independent of Y., and
since YT,YT(K+1), s VEHD) are iid., Sy, SE+1 SK+L are also i.i.d.. Note that the func-
tion ¢ is L-Lipschitz continuous and x% is a feasible solution of problem (2) with the reformulated
constraint through Lemma /1] and the following inequality can be derived in the same manner as

inequalities (2I) and (22) in the Proof of Lemma[.T] (Appendix [A.T).

c(wr, Yr) = L, = |[Yy = Youl) (35)
Based on (33)), we can obtain
c(wy,Yr) <O = |[Yr = Yol > CL (36)
And the following inequality is derived.
P{c(a},Yr) < 0} < P{[|Y; — Yol > CF, %} (37)

Combining (34) and (37), we have
1+ LP{||Y; — Yy | > CL%7}

Tt

E(B,) < 38
(Br) < T L (38)
For a,,6 € (0,1) and K > (—1n4d)/(2a2), we can apply [Vovk! (2012), Proposition 2a] so that
PIR{IY, — Vol < €} 2 1= (o + v/~ 6/CR) )} 216 (39)
which can be equivalently transformed into the following expression.
P {IP’ {||YT — Yol > cj‘;ar} <ar+ —1n6/(2K)} >1-6 (40)

Combining (38) and @0), we can finally obtain the inequality (I0).

When K, L — oo, we can further assume that L > 1/§ and K > max{(—1Ind)/(2a2),1/5}. Note
that for a fixed «;, we can always find a small enough positive § such that ., + /(= 1nd)/(2K) <
a; ++/(—01nd)/2 < 1. Therefore for a small enough positive 6 we have

d+ar++/—0Ind/2
PLE(B,) <
<22
41
141L (aT +/~ T 5/(21{)) “h
SPLE(B,) < >1-§
>PAB(,) < 1+L >
Let § — 0T, we finally obtain that E(3;) < a. holds with probability one. O
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A.4 PROOF OF LEMMA[5.1]

Let ;1,7 and o, ;. be two risk allocations at time ¢. Based on the definition of C’l‘to" ,

Ciﬁ “7 is non-increasing with respect to c, for fixed D} ;. Therefore, if ol < a2, V7 =t+1,..., T,
1 2

then Ci‘;a* > C’ilzaT which further leads to Rt(at+1:T) - Rt(at+1:T). Since J*(a¢41.7) is

the minimum of the objective problem with the feasible region Ry(ovq1.7), J*(ap,1.p) >

J*(,1.7) can be obtained and the lemma is proven. O

A.5 PROOF OF LEMMA[3.2]

The computation of the lower bound is analogous to the calculation of 3, in Lemma except
that Lemma 3.1]is not required to obtain coverage guarantees. Therefore, the computation is based

on D! . Without loss of generality, we assume that the dataset {R(Tz)t :i=1,..., K} is sorted in
non-decreasing order. Note that 1T is feasible for the problem with o, 1.7 and 7 € Zip,,

the inequality c(mZ,Yﬂt) > LCl_a LQuantilel,an(R(l) R

e B o0) holds true. Since

ol < 1, it follows that c(z?, Y, TE) > R( 2 Therefore, we define the maximum index K that makes
c(a?, Yy1) > LR hold as follows.

Tt
K= Jnax k
o . *) (42)
st c(al,Yo) > LR
It is assumed that there are ¢ terms in {R( D= 1,..., K} identical to Rf‘ ;» and thus we can obtain
K— K— K K
R R<|t> <c(a?, Vo) /L < RUY (43)

We aim to determine the maximum value of C’ o (the minimum value of &) while satisfying

Ciltaf < cfx? YT“)/L which is equlvalent to C1 & < R , because Ciﬁ&: can only take
R(K)

values at a finite number of discrete points RU .l t, SRy

reformulated as follows.

00. Furthermore, Rflt can be equivalently

Ko_ 0o () (K) oy — f K-t K
R-r\t = QuantzleB(RTlt, .. RTlt ,00) = CT\t’ VB e <1+K_, 1_"_7[{ (44)
Therefore, the constraint C o < R Tt is equivalent to the following expression.
1—a™ B IC —t ’C
T < 3 —_ 45
Cre " = O B€<1+K’1+K} 45)

Note that C’f ¢ 18 non-decreasing with respect to 3 for fixed D! .. Constraint is further refor-
mulated as follows.

~ K
n> I~
1 1K (46)

According to the definition of K (#2)), we can compute K in (7).

K= Z (el Yop) = LR, ) = K - Z I (el Yop) < LRS)) (47)
Combining (4 and , the lower bound of & is computed as follows.
1+8 1 (c(xy,YT|t) < LRift)

n _ 48
az 7K (48)
We note that o is the lower bound of & that ensures the constraint c(x”, Y ¢) > LC’ . Fur-

thermore, since z}!, |.r is feasible for the problem l| with o}’ .-, the constraint c(x T,Ym) >
LC;;O‘TV is satisfied. Therefore, o} < 7 is naturally obtained. Thus the Lemma is proven. O
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A.6 PROOF OF THEOREM[3.1]

The proof adapts elements of the proof from Zymler et al|(2013). If &, ., ud.;_, is a feasible
solution for the risk allocation a? 1T the update law of a;4 .7 guarantees that the sequence of the
optimal objective values {.J* (', .7)}nen is monotonically decreasing, as previously mentioned.
Since the sets X and U/ are bounded, x11.7 and us.—1 are bounded. Because the objective function
J(Z¢41.7, ur.7—1) is continuous, the boundedness of z; 1.7, up7—1 and the monotonicity of the
optimal objective value sequence imply that {.J* (', .7) }nen converges to a finite limit. O

B ALGORITHM

The algorithm of E2E-CP using IRA at time ¢ is delineated as follows. Note that at time ¢ = 0, the
input parameter cvg.r is initialized as ag = 0, a1.7 = /T, Po.+—1 is omitted, and the posterior
probability calculation in Line 3 is replaced by the assignment 5y = 0. € is a given small tolerance.

Algorithm 1: E2E-CP using IRA at time ¢
Input: o, a7, Bo:e—1. €, 1, D2,y D2

cal’ ~cal
Observe the system state x; and joint obstacle states Y; ;

Yitifes }A’T‘t < Trajectory prediction using LSTMs based on Yy, ..., Y; ;

B < Posterior probability calculation @) ; // Using x; and D2,
J* (0 p) ¢ 00, 0 1p  Quyrr n 0 // Initialization of IRA
repeat

J*(a 1.p)s 2., upp_y < Solve the lower-stage problem (12) with aj, ;.1 ;

Zacts Lina, Nact < Identification of active and inactive constraints ;

ay, .p + Transitional risk allocation calculation (17) ;

n+1 . . . .
a1 < New risk allocation calculation l| ;
n<n-+1;

n—1 n—2

until |J* (o' .p) — ‘]*(at—i-l:T)‘ <€
OutPUt: 50:25’ ’U/Z;l,p Q41:7 = a;:tll:T»

C EXPERIMENT DETAILS AND ADDITIONAL RESULTS

C.1 SIMULATION FOR A KINEMATIC VEHICLE MODEL

We examine the kinematic vehicle model |Pepy et al.|(2006) with the following nonlinear dynamics.

Pat+1 Pzt + Avg cos by

Pyl | _ | Dyt + Avgsiny (49)
011 | 0+ ATt tan gy
Vg1 v + Aay

where p; := (Dg.t, Dy.¢), O¢, vy are the position, orientation, and velocity of the vehicle, respectively.
l := 0.2 is the length, and A = 0.125 is the sampling time. The system inputs are the steering angle
¢+ € [—7/6,7/6] and the acceleration a; € [—5, 5]. The total time is set to T = 20. The objective

is to reach the vicinity of the target point while avoiding collisions with obstacles. Formally, the
objective function is defined as J = Zf;tl 100¢2 + a2 to minimize energy consumption and the
constraint |[pr — ptar||2 < 0.2 is incorporated into to ensure the vehicle reaches the target point,
where py,, is the target point. The constraint function for collision avoidance is as follows.

C(p‘n YT) = minj:l,A.wM ||p'ra YT,j||2 — Ty —To—Tsg (50)

where r,. and r, are the inflation radius of the vehicle and obstacle, respectively. r; is the safety
margin. Similar to |Lindemann et al.| (2023), we consider M = 3 obstacles, with their trajectories
generated by TrajNet++ |Kothari et al.[(2021) using the ORCA simulator [Van den Berg et al.[(2008).
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We generate 13,000 joint obstacle trajectories and randomly divide them into training Dy;.q;y, cal-
ibration D.,;, and test D;.s; datasets with the set sizes 2,000, 10,000, and 1,000, respectively. We
train an LSTM |Alahi et al.| (2016) using Dy,q:n as the trajectory predictor. For the proposed E2E-
CP, D.q is further divided into D!, and D? , with sizes |D} | = 2,000 and |D?,,| = 8,000. We
conduct 1,000 Monte Carlo simulations using D;.s:. As we discussed in Section @ the methods
Sequential CP, E2E-CP with ARA, and E2E-CP with IRA are analyzed.

Table 2: Average cost, computation time, and collision avoidance rate using the kinematic vehicle
model with different methods.

Sequential CP E2E-CP
with ARA with IRA
o =0.05 22.20 20.46 4.77
Average cost a=0.10 20.24 18.78 3.52
g a=0.15 19.22 17.35 3.18
a=0.20 17.05 15.13 2.89
o =0.05 0.111 0.100 0.128
Average computation time @ i 0.10 0.093 0.087 0.126
a=0.15 0.078 0.085 0.130
a=0.20 0.076 0.078 0.131
a=0.05 95.4% 95.7% 98.4%
Collision avoidance rate @ i 0.10 93.9% 93.1% 98.3%
a=0.15 90.8% 89.8% 97.6%
a=0.20 88.4% 89.1% 91.2%

Table [2| shows the average cost, average computation time, and collision avoidance rate of 1,000
simulations using the kinematic vehicle model with different methods. We collect the simulation
data under different total risk tolerances o = 0.05,0.10,0.15,0.20. On one hand, with an increase
in total risk tolerance, the average cost of all methods decreases. On the other hand, benefiting from
the feedback information of posterior probabilities, the average cost of E2ZE-CP with ARA shows a
reduction of 7.21% to 11.26% compared to Sequential CP. Furthermore, by flexibly allocating the
allowable risk provided by posterior probabilities, the average cost of E2ECP with IRA exhibits a
significant reduction compared with Sequential CP. Additionally, the increase in total risk tolerance
provides greater flexibility in the risk allocation of E2E-CP with IRA, resulting in a significant
reduction in its average cost. As mentioned in Section [6] the calculation of posterior probabilities
does not incur additional computational burden. Therefore, the average computation time of E2E-
CP with ARA is essentially comparable to that of Sequential CP. The collision rates of all methods
do not exceed their corresponding total risk tolerances.

C.2 SIMULATION FOR LINEAR QUADROTOR MODEL

We examine the quadrotor model Mistler et al.|(2001) with the following linear dynamics.

i = g0 j=-9¢  i=iw 1)
. 1 . .
¢:ﬁuz G:Ifyu:», 1/):11164

where g = 9.81 represents the gravitational acceleration, m¢g = 0.65 denotes the mass, and

lg = 0.23 is the distance between the quadrotor and the rotor. I, = 0.0075, I,, = 0.0075,
and I,, = 0.013 correspond to the area moments of inertia about the principle axes in the body
frame. The states are the position and orientation with the corresponding velocities and rates —
(z,y,2,2,9, 2,0,0,, gb,&,w) € R'2. The control inputs uy, us, us, us correspond to the thrust
force in the body frame and three moments. The system (51) is discretized using the sampling time
A = 0.125, and the total time is also set to 7" = 20.

Similar to the experiments based on the kinematic vehicle model in Appendix [C.1] the objective
is to control the quadrotor to reach the target point py,, while navigating around M = 3 moving
obstacles. The target point constraint and obstacle avoidance constraints are consistent with those
used in the simulation using the kinematic vehicle model. We randomly generate 13,000 obstacle
trajectories and assign them as in Appendix [C.I] The methods Sequential CP, E2E-CP with ARA,
and E2E-CP with IRA are analyzed through 1,000 Monte Carlo simulations.
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Table 3: Average cost, computation time, and collision avoidance rate using the quadrotor model
with different methods.

Sequential CP E2E-CP
with ARA with IRA

a =0.05 17.321 15.356 7.189

Average cost a=0.10 16.168 14.228 6.798
verag a=0.15 14.835 12.354 6.191
a=10.20 13.217 10.222 5.398

a =0.05 0.022 0.027 0.038

Average computation time a=0.10 0.020 . 0.039
a=0.15 0.021 0.020 0.037

a=0.20 0.020 0.019 0.036

a =0.05 98.8% 98.2% 96.3%

Collision avoidance rate a=0.10 93.5% 94.6% 34.1%
a=0.15 92.0% 90.2% 91.9%

a=10.20 88.2% 86.7% 88.2%

Table [3] shows the average cost, average computation time, and collision avoidance rate of 1,000
simulations using the quadrotor model with different methods. The experimental results using the
quadrotor model are fundamentally consistent with those derived from the experiments using the
kinematic vehicle model. Compared with Sequential CP, E2E-CP with ARA benefits from the pos-
terior probabilities calculation, leading to a moderate improvement in performance. E2E-CP with
IRA, leveraging the combined use of posterior probabilities and a more flexible risk allocation, ex-
hibits a significant enhancement in performance. Note that due to the linear nature of the quadrotor
model, there is a significant reduction in computation time compared to the nonlinear vehicle model.

C.3 SIMULATION FOR DYNAMIC BICYCLE MODEL

We examine a vehicle with the following dynamic bicycle model [Hakobyan & Yang|(2021).

& = v, cosb — v, sin b (52)
Y = vy sind + vy, cos f (53)
0=r (54)
9 2 9,Cp —21,C, 2
b, = ny _ <fcfc + 'Uw> r+ ﬂ(;f (55)
my vy my vy %4

P —Q(Zfo +1,.C) B QZJ%Cf - QZ%CT’T n QZfo
B IZU.'C Y IZ/U’I) IZ

where z,y are the vehicle’s central of mass, 0,v,, and r are lateral velocity, orientation, and yaw
rate, respectively. Furthermore, v, is the constant longitudinal velocity, my denotes the mass of
the vehicle, C'y and C,. represent the cornering stiffness coefficients of the front and rear tires re-
spectively, L and L, denote the distances from the center of mass to the front and rear wheels, and
I, corresponds to the moment of inertia around the z-axis. The input variable is the front wheel
steering angle 7. The system @) is discretized using the sampling time A = 0.125, and the total
time is also set to 7" = 20. According to|Hakobyan & Yang|(2021), the parameters of the dynamic
bicycle model used in this simulation are listed in Table 4]

5 (56)

Table 4: Dynamic bicycle model parameters.
my Cy Cy I Ly L, Uz
1700kg 50kN/rad 50kN/rad 6000kg - m? 1.2m 1.3m 5m/s

The task is to steer the vehicle to its target point p while avoiding M = 2 moving obstacles. Similar
to the experiments in Appendix [C.I} the target point constraint and obstacle avoidance constraints
are incorporated into the optimization problem to ensure the vehicle reaches the target point while
avoiding collisions with obstacles. We collect 13,000 joint obstacle trajectories and assign them
as in Appendix [C.I} The methods Sequential CP, E2E-CP with ARA, and E2E-CP with IRA are
analyzed through 1,000 Monte Carlo simulations.
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Table 5: Average cost, computation time, and collision avoidance rate using the dynamic bicycle
model with different methods.

Sequential CP E2E-CP
with ARA with IRA
o =0.05 23.05 20.91 13.77
Averace cost a=0.10 22.38 18.39 11.35
g a=0.15 20.71 16.99 10.17
a=0.20 16.55 14.78 8.58
o =0.05 0.365 0.361 0.884
Average computation time o i 0.10 0.339 0.335 0.817
a=0.15 0.494 0.506 1.292
a=0.20 0.309 0.407 1.003
o =0.05 96.8% 96.5% 97.0%
Collision avoidance rate @ i 0.10 94.8% 94.0% 94.3%
a=0.15 91.5% 90.0% 91.5%
a=0.20 89.5% 87.8% 89.5%

Table E] shows the average cost, average computation time, and collision avoidance rate of 1,000
simulations using the dynamic bicycle model with different methods. The experimental results are
generally consistent with those obtained from the experiments using the kinematic vehicle mode and
the quadrotor model. The performance of E2E-CP shows a certain degree of improvement over Se-
quential CP based on posterior probability calculations. Based on posterior probability calculations,
E2E-CP with ARA demonstrates a certain level of performance improvement compared to Sequen-
tial CP, while E2E-CP with IRA further attains significant performance by leveraging the combined
use of posterior probabilities and a more flexible risk allocation. It should be noted that, due to the
simulation of a relatively complex nonlinear model in this experiment, the average computation time
inevitably increases. Furthermore, it may be observed that the reduction in average cost achieved by
E2E-CP with IRA compared to Sequential CP decreases in this experiment (47.2% reduction) com-
pared with the experiment using the kinematic vehicle model in Appendix (81.9% reduction).
This is because, compared to relatively simple scenarios (2 obstacles, dynamic bicycle model exper-
iment), more complex scenarios (3 obstacles, kinematic vehicle model experiment) better highlight
the performance improvements enabled by the flexibility in risk allocation.

In summary, the three simulation experiments demonstrate the general applicability of the proposed
method, achieving significant performance improvements across various system models while sat-
isfying probabilistic collision avoidance requirements. In fact, the complexity of different system
models only affects the average computation time. In addition, simulations demonstrate that E2E-CP
with IRA achieves more significant performance improvements in relatively complex scenarios.

D EXPERIMENTS AND DISCUSSION ON DISTRIBUTION SHIFT

The individual chance constraint reformulation in Lemma [.T] and the posterior probability calcula-
tion in Lemma rely on Assumptions [3.1]and [3.2] which imply that real joint obstacle trajectory
and those in the training and calibration datasets follow the same distribution D. Specifically, As-
sumption [3.1] posits that the system does not influence the real joint obstacle trajectory, which holds
approximately in many robotic applications, e.g., autonomous vehicles behave in ways that result
in socially acceptable trajectories that do not change the behavior of pedestrians |[Lindemann et al.
(2023)). Assumption[3.2]assumes the availability of the training and calibration datasets. Assumption
is commonly used and not restrictive in practice [Sun & Yu| (2023); [Stankeviciute et al.| (2021)),
as extensive data can be sourced from advanced high-fidelity simulators or robotic applications like
autonomous vehicles, where datasets are increasingly accessible.

Although many scenarios approximately satisfy our assumption of the same distribution, we ac-
knowledge that the system states + may change D during test time, e.g., when a robot is too close to
a pedestrian. However, in this appendix, we demonstrate through analysis and experiments that the
proposed method exhibits a certain degree of robustness to moderate distribution shifts. Specifically,
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we design experiments to compare the effects of different levels of distribution shifts between test
trajectories and calibration trajectories on the performance and safety of the proposed method.

Apart from the method of generating obstacle trajectories, the experimental setup is identical to that
of the kinematic vehicle model experiment in Appendix [C.1} To obtain obstacle trajectories with
different distributions, the obstacles are modeled using the following double integrator model.

A2
Pz t+1 Pt + Avr,t + TQm,t
A2
Py t+1 _ Dyt —+ AU%t + TCLy)t (57)
Va,t+1 Vet + Aax’t
Uy, t+1 Uyt + Aaw

where (pz, py, vz, vy) is the state of an obstacle, consisting of its center of mass and velocity vector.
The control input u = (a, a,) is the acceleration vector. Similarly, the sampling time A is selected
as 0.125. The obstacle trajectories from a given start point to the target point are obtained by solving
an optimization problem. And the obstacle trajectories with different distributions are generated
by adding zero-mean Gaussian noise N(0, 02) with varying covariance o to the system input w.
Specifically, the trajectories in the training and calibration datasets are generated under o.q;; = 0.3,
while the test trajectories are generated under different values of o4.,. Thus, the difference between
Otest and o.qy; reflects the magnitude of the distributional shift. For each different value of o,
we conduct 1,000 Monte Carlo experiments.

Table 6: Average cost and collision avoidance rate using the kinematic vehicle model with different
distribution shifts (o = 0.2).

Sequential CP E2E-CP
with ARA with IRA
Otest = 0.01 15.45 12.36 3.88
Otest = 0.10 15.98 13.70 3.96
Average cost Otest = 0.30 17.27 15.82 5.06
Otest = 1.00 20.53 16.66 7.27
Otest = 2.00 22.78 18.93 9.77
Otest = 3.00 23.93 20.72 10.75
Otest = 0.01 97.6% 99.0% 99.6%
Otest = 0.10 97.6% 97.9% 99.6%
Collision avoidance rate Ttest = 0.30 20.4% 20.0% 92.4%
Otest = 1.00 85.7% 85.7% 84.1%
Otest = 2.00 83.6% 82.8% 82.4%
Otest = 3.00 79.3% 78.9% 78.2%

Table|6[shows the average cost and collision avoidance rate of 1,000 simulations using the kinematic
vehicle model with different values of o;.s;. An increase in 0. relative to o.,;; indicates an in-
crease in the distributional shift between the test and calibration trajectories. However, even when
Otest INCreases to 2, the collision rate of the proposed method remains within the total risk tolerance
(o = 0.2). Although the collision rate no longer meets the risk tolerance requirement when ot
increases to 3, we will demonstrate in Appendix [E] that such large distribution shifts are unlikely to
occur in practical applications. Moreover, an increase in oy leads to unexpected obstacle move-
ments, which ultimately result in an increase in the average cost. However, under all values of o,
the proposed method achieves a significant decrease in average cost compared to the Sequential CP.
In summary, the proposed method exhibits a certain degree of robustness to moderate distribution
shifts. Specifically, when the distribution shift between the test trajectory and the calibration trajec-
tories is not substantial, the proposed method can maintain the satisfaction of the total risk constraint
and the performance improvement compared to Sequential CP.

One might question whether, in realistic scenarios, the test trajectory could experience a large dis-
tribution shift, leading to a violation of the total risk constraints. Fortunately, this is highly unlikely
to occur in practice. In|Strawn et al.| (2023), the author explicitly checked through experiments that
interactions among agents in multi-agent systems do not introduce large distribution shifts.
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E EXPERIMENTS AND DISCUSSION ON DEPENDENT SCENARIOS

In this appendix, we directly design simulation scenarios where the system and obstacles are depen-
dent, to demonstrate the safety and high performance of the proposed method in realistic scenarios.

Except for the method of generating obstacle trajectories, the experimental setup is identical to that
of the kinematic vehicle model experiment in Appendix |C| The obstacles are modeled using the
double integrator model (57). The training and calibration trajectories are generated in the same
manner as described in Appendix D] Considering the interdependence between the system and the
obstacles, the test obstacle trajectories are generated online during test time based on the current
system state. Specifically, only the references of the test trajectories are generated offline. The real
test trajectories are obtained by solving an optimization problem to follow the reference trajectories.
Additionally, when obstacles approach the system, the distance between the obstacles and the system
is incorporated into the objective function to simulate real-world avoidance behavior. Both the
scenarios, considering and ignoring the interdependence between the system and the obstacles, are
simulated.

Table 7: Average cost and collision avoidance rate using the kinematic vehicle model with indepen-
dent and dependent obstacles.

Sequential CP E2E-CP
with ARA with IRA
a=0.1
Average cost Independent 20.116 18.022 4.053
Dependent 20.269 18.005 4.123
Collision avoidance rate Independent 94.7% 93.6% 94.4%
Dependent 93.8% 91.0% 93.3%
a=0.2
Average cost Independent 17.289 14.932 3.032
Dependent 17.279 15.007 3.045
Collision avoidance rate Independent 88.2% 89.5% 92.0%
Dependent 86.5% 88.3% 89.5%

Tablemshows the average cost and collision avoidance rate of 1,000 simulations using the kinematic
vehicle model with independent and dependent obstacles. “Independent” and “Dependent” represent
the cases where the influence of the system on the obstacle trajectories is disregarded and considered,
respectively. It can be observed that the influence of the system on obstacles indeed reduces the
overall collision avoidance rate, as it disrupts the exchangeability between the test and calibration
trajectories. However, the reduction in the collision avoidance rate is negligible and remains well
within the corresponding total risk tolerance. Moreover, Table [/| also shows that the dependence
between the system and obstacles has almost no impact on the average cost. In summary, in realistic
scenarios, relaxing Assumption [3.1] does not significantly impact the performance of the proposed
algorithm.

F DETAILS ABOUT THE PREDICTION REGIONS

Table 3| shows the prediction region radius for different time ¢ and 7 (C;) using the kinematic
vehicle model with different methods (Sequential CP and E2E-CP with ARA). At the initial state
(t = 0), no realized state is available for calculating posterior probabilities. As a result, C7|o
for all 7 obtained by Sequential CP and E2E-CP with ARA are essentially identical, with minor
differences arising from the fact that Sequential CP utilizes the calibration D,,;, whereas E2E-CP
with ARA only employs D!, ;. As the system operates, an increasing number of realized states z}
are available for the calculation of posterior probabilities, enabling E2E-CP to yield a relatively
narrower prediction region, corresponding to a smaller C|;. As shown in Table (8] the average ratio
of the predicted region radius obtained by E2E-CP with ARA to those by Sequential CP generally
exhibits a decreasing trend as time ¢ increases. Moreover, when ¢ > 10, based on sufficient posterior
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probabilities, the prediction region radius obtained by E2E-CP with ARA is reduced by more than
50% compared to that of Sequential CP.

Table 8: Prediction region radius for different 7 and ¢ (C|;) using the kinematic vehicle model with
different methods (Sequential CP and E2E-CP with ARA) across 1,000 simulations (a = 0.2).

T=3 T=6 T=9 7t=12 7=15 71=18 Ratio
E2E-CP with ARA  0.125 0.258 0.374 0.519 0.698 0.913

=0 TSequential CP 0.120 0.247 0374 0520 0691 0902 90
. E2E-CPwith ARA 0102 0216 0351 0527 0.705
t=3 T Sequential CP S 0120 0263 0409 0598 0738 0793
o EECPWthARA 01 028 042 0604
o Sequential CP 0.152 0.304 0.451 0.625 '
~ E2E-CP with ARA 0134 0268 0414
t=9 T gequential CP ST~ S 0149 0305 0466 OB
T EJE-CP with ARA 0.059  0.139
E=12 squential CP S~ s T s a3 0201 0493
E2E-CP with ARA 0.054
t=15 Sequential CP ~ o o o o 0.115 0.470

G LIMITATIONS

The proposed E2E-CP has two limitations. The first limitation lies in the reliance of the proposed
method on the size of the calibration dataset. As previously mentioned, to ensure coverage guaran-
tees within the end-to-end framework, the calibration dataset needs to be split into two parts: one
for forward computation of prediction regions and the other for backward computation of posterior
probabilities. This requirement results in the proposed method needing a larger calibration dataset
compared to standard CP methods. However, extensive data can be sourced from advanced high-
fidelity simulators or robotic applications like autonomous vehicles, where datasets are increasingly
accessible. Thus we believe that the reliance on data quantity will not present a substantial challenge.

Additionally, the second limitation lies in the reliance of the proposed method’s theoretical guar-
antees on exchangeability. Although we have empirically demonstrated that the proposed method
exhibits a certain degree of robustness to moderate distribution shifts (Appendix [D) and ensures
safety and high performance in the realistic setting (Appendix [E), we do not address distribution
shifts in full generality or provide theoretical guarantees. Therefore, extending the proposed method
beyond exchangeability represents a promising direction for future work. To this end, we propose
several potential ways to extend the proposed method beyond the assumption of exchangeability.
Firstly, the robust conformal prediction [Cauchois et al.| (2024) can be used to obtain valid prediction
regions for all distributions that are “close” to D (in terms of the f-divergence), and integrate these in
our algorithm. Additionally, integrating the adaptive conformal prediction |Gibbs & Candes| (2021
with our proposed method is also a potentially viable approach. Moreover, updating the calibra-
tion dataset online using real-time data based on a sliding window may also be a
potential way to go beyond the assumption of exchangeability.
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