
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIFO-PROMPT: PROMPTING WITH HINDSIGHT AND
FORESIGHT FOR LLM-BASED AUTOMATIC HEURISTIC
DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates the application of Large Language Models (LLMs) in
Automated Heuristic Design (AHD), where their integration into evolutionary
frameworks reveals a significant gap in global control and long-term learning.
We propose the Hindsight-Foresight Prompt (HiFo-Prompt), a novel framework
for LLM-based AHD designed to overcome these limitations. This is achieved
through two synergistic strategies: Foresight and Hindsight. Foresight acts as a
high-level meta-controller, monitoring population dynamics(e.g., stagnation and
diversity collapse) to switch the global search strategy between exploration and
exploitation explicitly. Hindsight builds a persistent knowledge base by distill-
ing successful design principles from past generations, making this knowledge
reusable. This dual mechanism ensures that the LLM is not just a passive opera-
tor but an active reasoner, guided by a global plan (Foresight) while continuously
improving from its cumulative experience (Hindsight). Empirical results demon-
strate that HiFo-Prompt significantly outperforms a comprehensive suite of state-
of-the-art AHD methods, discovering higher-quality heuristics with substantially
improved convergence speed and query efficiency.

1 INTRODUCTION

Combinatorial Optimization (CO) problems, which involve finding an optimal solution from a dis-
crete set of possibilities, are ubiquitous in science and engineering. Because of their NP-hardness,
designing effective heuristics for these problems is a complex work, traditionally based on extensive
human experience and intuition (Camacho-Villalón et al., 2023).

The advent of Large Language Models (LLMs) has catalyzed a paradigm shift toward Automated
Heuristic Design (AHD) (Wang & Chen, 2023; Liu et al., 2024c). A particularly potent approach
marries LLMs with Evolutionary Computation (EC), casting the LLM as a high-level semantic mu-
tation operator. Foundational works such as FunSearch (Romera-Paredes et al., 2024) and EoH (Liu
et al., 2024b) established the viability of this LLM+EC paradigm, demonstrating its capacity to
discover novel and effective heuristics.

However, as the field progresses, two fundamental challenges have emerged in AHD: the inability
to steer the heuristic generation process based on population dynamics and the failure to distill and
manage the core design principles of high-performance heuristics to guide the subsequent heuristic
generation process.

First, many approaches lack a mechanism for global adaptive guidance. They often rely on local or
reactive signals; for instance, ReEvo (Ye et al., 2024) performs reflection on a single candidate, while
methods such as MCTS-AHD (Zheng et al., 2025) passively embed the exploration-exploitation
trade-off within their search structure. This localized control does not respond to the macroscopical
dynamics of the population and cannot proactively intervene when the search encounters systemic
issues such as premature convergence or a decline in diversity. A more aggressive strategy involves
in-weight adaptation, where methods such as EvoTune (Šurina et al., 2025) and CALM (Huang
et al., 2025) use numerical gradients to fine-tune the LLM’s parameters. Although powerful, this
approach is computationally intensive and treats the LLM as an opaque policy network, sacrificing
the interpretability of high-level symbolic reasoning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Second, existing frameworks across the board suffer from poor knowledge persistence. Success-
ful heuristic design experiences, the valuable ”genes” of the evolutionary process, often remain
entangled within their specific code implementations. When parent candidates are discarded, these
insights are lost, a phenomenon we term knowledge decay. Other high-level concepts, such as evolv-
ing the optimizer itself in MoH (Shi et al., 2025) or reshaping the problem in RedAHD (Thach et al.,
2025), are orthogonal and do not address this core issue of knowledge loss. Ultimately, this flaw
prevents the system from achieving cumulative learning, forcing it to perpetually rediscover similar
concepts rather than building on a foundation of proven wisdom.

To overcome these fundamental limitations, we propose HiFo-Prompt (Hindsight-Foresight
Prompt), a framework that establishes a hierarchical control architecture for LLM-based AHD.
HiFo-Prompt elevates the LLM from a mere code generator to a symbolic meta-optimizer by en-
dowing it with two synergistic capabilities: First, the Foresight module addresses the control prob-
lem by serving as a meta-controller(Evolutionary Navigator) that observes population dynamics.
Upon detecting states like performance plateaus, it explicitly modulates the generative process by
switching evolutionary regimes via lightweight, interpretable verbal gradients injected at the prompt
level—a symbolic alternative to opaque and expensive numerical gradients. Second, the Hindsight
module directly tackles knowledge decay by implementing the Insight Pool, a persistent and evolv-
ing repository of distilled algorithmic knowledge. It distills valuable heuristic generation strategies
from their specific code implementations, transforming them into abstract, reusable design princi-
ples. This institutional memory allows the system to build upon past successes, effectively seeding
subsequent generations with proven wisdom. In summary, the contributions of our approach are as
follows:

• We introduce HiFo-Prompt, a novel framework consisting of Hindsight and Foresight mod-
ules. It dynamically generates prompts for LLMs by decoupling thoughts from code,
thereby enabling independent updates and evaluations. This mechanism leads to a sig-
nificant reduction in both training time for heuristics and evaluation costs for LLMs.

• To improve the Hindsight and Foresight abilities of our method, we introduce the Insight
Pool and Evolutionary Navigator, respectively. The Insight Pool accumulates knowledge
from high-performing codes through iterative updates. The Evolutionary Navigator con-
trols population states by monitoring evolution and balancing exploration-exploitation dy-
namics.

• We evaluated the heuristics designed by HiFo-Prompt on complex optimization tasks, com-
paring them against advanced handcrafted heuristics and existing AHD approaches. Our
results achieve state-of-the-art performance in the AHD domain, with substantial improve-
ments over prior AHD methods, particularly excelling in the Traveling Salesman Problem
(TSP) and Flow Shop Scheduling Problem (FSSP).

2 RELATED WORK

LLM-driven Automatic Heuristic Design The integration of Large Language Models (LLMs)
into Evolutionary Computation (EC) is a vibrant new direction for Automated Heuristic Design
(AHD) (Liu et al., 2024a; Chauhan et al., 2025). Pioneered by works like FunSearch (Romera-
Paredes et al., 2024) and EoH (Liu et al., 2024b), this paradigm leverages the LLM as a powerful
semantic operator to generate heuristics as code. Recent efforts to advance this paradigm can be
categorized along several axes. Some works focus on refining search control through sophisticated
prompt engineering and guidance mechanisms (Ye et al., 2024; Dat et al., 2025), or by redesign-
ing the population structure itself (Zheng et al., 2025). A distinct, more model-centric approach
directly adapts the LLM’s parameters via reinforcement learning-based fine-tuning (Šurina et al.,
2025; Huang et al., 2025). At the highest level of abstraction, research has also explored evolving
other core components of the optimization process, such as the optimizer (Shi et al., 2025) or the
problem representation (Thach et al., 2025).

Knowledge Management in Generative Search Harnessing historical information is a corner-
stone of efficient search. In classical EC, methods like Cultural Algorithms (Maheri et al., 2021)
formalize this via a structured Belief Space that stores and evolves collective knowledge. Contem-
porary LLM-based approaches often rely on in-context ”reflection” mechanisms (Shinn et al., 2023;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Bo et al., 2024), where the model self-critiques failures to inform its next attempt. However, this
knowledge is typically transient, unstructured, and instance-specific. Consequently, these methods
lack a mechanism for accumulating and generalizing insights over time, preventing the formation of
a persistent, structured knowledge base analogous to those in classical EC.

Adaptive Control in Evolutionary Computation Dynamically adapting search strategies is a
long-standing goal in EC. Historically, this has been addressed through low-level, reactive mecha-
nisms like Adaptive Operator Selection (AOS) (Álvaro Fialho, 2010; Tian et al., 2023) and parameter
control (Eiben & Smith, 2015; Aleti & Moser, 2016). These methods rely on numerical credit as-
signment, effectively voting for strategies that recently performed well, but they lack a semantic
understanding of the search dynamics (e.g., identifying population stagnation). The reasoning capa-
bilities of LLMs offer a paradigm shift towards higher-level, proactive control (Eiben et al., 1999;
Papa, 2021). Instead of merely adjusting parameters, LLMs can interpret population-level statistics
to suggest symbolic actions, such as ”increase mutation rate to escape a local optimum.” This marks
a transition from fine-grained numerical tuning to semantic-based strategic adjustment.

3 METHODOLOGY

In this section, we introduce our proposed HiFo-Prompt, a novel framework that equips the evo-
lutionary process driven by LLM with mechanisms for learning and adaptation (shown in Figure
1). HiFo-Prompt integrates two synergistic components: a Foresight module for real-time adaptive
control, which monitors evolutionary dynamics to steer the search strategy, and a Hindsight module
for long-term knowledge accumulation, which manages a self-evolving repository of successful de-
sign principles that we term insights. By uniting foresight-driven strategy with hindsight-informed
knowledge, our framework transforms the generative process into a robust, self-regulating system.

Foundational
Prompt

Hindsight
Prompt

Foresight
Prompt

Foundational Prompt Strategies

Insight Pool

… …

Composite
Prompt

Self-Evolving

Prompt with Explore Regime

Prompt with Exploit Regime

Prompt with Balance Regime

EvolutionHeuristic

Elitist Heuristic
LLM

LLM

× N

insight-score

Synthesize

Insight
Distillation

insight-score

insight-score

insight-score insight-score

insight-score

select

select

select

Population State Information

Figure 1: The framework of HiFo-Prompt. Left: Prompt Construction builds upon a foundational
prompt, augmenting it with strategic Foresight and empirical Hindsight to form the final composite
prompt. Right: Knowledge Evolution forms a learning loop where elite heuristics are distilled into
new insights to continuously enrich the Hindsight knowledge base.

3.1 GUIDED PROMPT SYNTHESIS FOR AHD

Our HiFo-Prompt framework applies a Guided Prompt Synthesis mechanism that constructs each
prompt as a context-aware composite instruction. This mechanism integrates three interlocking

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

modules: Foundational prompt strategies, hint knowledge, and a foresight-driven strategy. The re-
sulting composite prompt provides precise, multifaceted guidance to the LLM. A complete example
of prompt generation for TSP with step-by-step construction is provided in Figure 2.

Pe
rf

or
m

an
ce

 (o
bj

ec
tiv

e)

Number of generations
841 2 3 5 6 7

6.04697
5.96625 5.956945.95694

5.93886 5.93886 5.83838 5.83838

Design adaptive hybrid meta-heuristics synergistically fusing multiple search paradigms
and dynamically tune operator parameters based on search stage or problem features

Insight 1

Employ machine learning or pattern recognition to mine deep problem structures and
optimal solution patterns then use learned insights to intelligently bias towards
promising search regions or constructive choices

Insight 2

Explore objective function engineering by introducing auxiliary or surrogate objectives or
by dynamically adjusting weights to reshape the search landscape aiding escape from
local optima or guiding diverse exploration

Insight 3

optimizing objective function evaluation criteria

……

considering long-term impact of current decisions

refining core evaluation and scoring functions

……

reducing unnecessary computational overhead and redundancy

exploring novel solution construction methodologies

……

introducing new randomization or adaptive mechanisms

E1: I have…create a new algorithm that has a totally…

E2: I have…but can be motivated from them…

M1: I have one algorithm…a modified version of the …

M2: I have one algorithm…a different parameter settings…

M3: First, you need to …simplify the components to…

……

Balance

Exploit

Explore

Hindsight——Insight Pool

Foresight——Regime Set

Foundational Prompt Strategies

Synthesize

Prompt for LLM
First, you need to identify the main components …… (M3)
Consider these successful design principles I've observed recently:
Design adaptive hybrid meta-heuristics synergistically …… (Insight 1)
Employ machine learning or pattern recognition to …… (Insight 2)
Explore objective function engineering by introducing …… (Insight 3)
When simplifying, please pay special attention to:
reducing unnecessary computational overhead and redundancy
(Exploit Regime)

LLM

Figure 2: Dynamic prompt generation process of HiFo-Prompt.

Foundational prompt strategies. Our framework’s generative foundation is a set of Foundational
Prompt Strategies, which function as the LLM-equivalent of genetic operators. We first generate
heuristics from scratch using the initial prompt strategy I1, then evolve them with five foundational
prompts adapted from EoH Liu et al. (2024b). These prompts are organized into two primary strate-
gies: 1) Reorganization Strategies, which include E1, synthesizing a new algorithm with a novel
structure from multiple parents, and E2, abstracting shared core ideas to generate conceptually dis-
tinct variants; and 2) Mutation Strategies, which encompass M1, making structural modifications
for functionally equivalent variants; M2, tuning critical parameters; and M3, simplifying compo-
nents prone to overfitting. While this curated set provides the raw generative capability, its effec-
tiveness depends on contextual guidance. This is the role of the Hindsight and Foresight modules,
which inject insights and a design directive into the prompts to align each action with the search’s
current needs.

Hindsight Module. This module incorporates proven knowledge in the form of insights, which
are abstract and generalizable design principles distilled from successful heuristics. These insights
are managed in a dynamic Insight Pool, where each is assigned and continuously updated with a
credibility score based on its empirical performance. Before generation, high-scoring insights are
retrieved and embedded into the prompt. They serve as validated priors to steer the LLM toward
promising designs. While effective for historical guidance, this module cannot address real-time
evolutionary needs.

Foresight Module. The Foresight module implements real-time strategic control, orchestrated by
its core component, the Evolutionary Navigator. The Navigator continuously monitors macroscopic
evolutionary indicators, such as performance stagnation and population diversity, to assess the state
of the search. Based on this analysis, it selects the governing evolutionary regime for the subse-
quent generation. This regime dictates the overall strategic focus by choosing one of three explicit
modes (Črepinšek et al., 2013): 1) Explore, to foster novelty when diversity is low or progress has
stalled; 2) Exploit, to refine high-performing solutions when progress is consistent; 3) Balance, to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

maintain a synergistic application of all operators. This high-level directive shapes the final prompt,
ensuring that the generative process of the LLM aligns with the immediate strategic needs of the
evolution.

3.2 HINDSIGHT: MECHANISMS OF THE SELF-EVOLVING INSIGHT POOL

While foundational prompts provide the generative actions, the Hindsight module steers evolution
with empirically validated knowledge managed within the Insight Pool. Analogous to the Belief
Space in Cultural Algorithms (Coello & Becerra, 2010), our work introduces a novel instantiation
for LLM-based AHD, distinguished by two core features: LLM-driven insight extraction and a
utility-based credit assignment tailored for prompt-based generation.

To mitigate the cold-start problem, we initialize the Insight Pool with seed insights from established
heuristic design literature. The core objective of the framework then becomes the autonomous dis-
covery and refinement of new, problem-specific insights. This is achieved through a continuous life-
cycle that systematically transforms transient evolutionary successes into explicit, reusable knowl-
edge assets, governed by three integrated phases: insight extraction, utility-driven application, and
adaptive pruning.

Insight Extraction and Admission. The lifecycle begins by expanding the knowledge base. At
the end of each generation, we prompt an LLM to distill generalizable design principles (insights)
from the elite individuals of the population (see Appendix G.1). To preserve informational diversity,
a candidate insight knew is admitted to the insight pool Kpool only if its Jaccard similarity to all
existing pool members falls below a novelty threshold θnovelty. For this comparison, each insight’s
text is preprocessed by converting it to lowercase and tokenizing it based on whitespace. The insights
themselves become active candidates for the guidance of future generations.

Insight Retrieval and Credit Assignment. To guide heuristic generation, we employ a utility-
based retrieval mechanism. For each new generation attempt, the mechanism selects the top-s in-
sights with the highest adaptive utility score U(ki, t). This contributing set of insights, denoted as
Kc, is then injected into the LLM’s prompt. Following the evaluation of the offspring generated, we
use credit assignment (Whitacre et al., 2006) to update the utility scores of all the insights in Kc.
The utility function is formulated to balance exploitation and exploration:

U(ki, t) = Ei(t)︸ ︷︷ ︸
Effectiveness

−wu log(Ni(t) + 1)︸ ︷︷ ︸
Usage Penalty

+ Br(t, t
last
i)︸ ︷︷ ︸

Recency Bonus

(1)

where Ei(t) is the learned effectiveness of insight i. The penalty term, weighted by wu, discourages
overuse by penalizing an insight based on its total retrieval count Ni(t), thus promoting exploration
of less-used ideas. The recency bonus Br offers a temporary reward for insights used recently;
specifically, it grants a fixed bonus if the insight was used within a small generation window τr (that
is, if t− tlast

i ≤ τr), promoting strategic coherence.

The effectiveness score Ei(t) is updated via credit assignment. This process first converts the raw
fitness g(hnew) of an offspring into a normalized, problem-agnostic score ρ̃, scaling its performance
relative to the best (g(hbest)) and worst (g(hworst)) solutions of the current population:

ρ̃ =
g(hworst)− g(hnew)

g(hworst)− g(hbest) + ϵ
(2)

where ϵ is a small constant (e.g., 10−6) to prevent division by zero in the case of a homogeneous
population where g(hworst) = g(hbest). We posit that an offspring’s evolutionary contribution is
non-linear. Therefore, we map ρ̃ to a final credit signal, geff, using a tiered, piecewise function. This
design creates distinct reward regimes for qualitatively different outcomes:

graw
eff =


0.8 + 0.2 · ρ̃ if g(hnew) ≤ g(hbest)

0.2 + 0.6 · ρ̃ if g(hbest) < g(hnew) ≤ g(havg)

−0.3 + 0.5 · ρ̃ if g(hnew) > g(havg)

(3)

This structure provides strong positive signals for paradigm-changing improvements (ρ̃ ≥ 1),
moderate rewards for incremental progress (0 ≤ ρ̃ < 1), and penalties for below-average per-
formance. The allowance of negative credit is a deliberate design choice to accelerate the prun-
ing of detrimental ideas. To ensure stable updates, the raw credit is then clipped to a final value

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

geff = max(−1.0,min(1.0, graw
eff)). Finally, for each insight j in the contributing set Kc, its effec-

tiveness score is updated through an Exponential Moving Average (EMA):

Ej(t+ 1) = (1− α) · Ej(t) + α · geff (4)

where the learning rate α ∈ [0, 1] smooths the stochastic credit signals from individual evaluations.
This allows an insight’s robust, long-term utility to emerge statistically, preventing its score from
being skewed by outlier performances.

Adaptive Pruning and Pool Maintenance. To maintain quality within its finite capacity Cpool, the
pool employs an adaptive pruning mechanism triggered when |Kpool| > Cpool. This process removes
the insight with the minimum eviction score, Sevict, which balances the proven performance of an
insight against the risk of its obsolescence:

Sevict(ki, t) = Ei(t)−Rdecay · (t− tlast used(ki)) (5)

where Ei(t) is the current effectiveness of the insight, tlast used(ki) is the generation of its last use,
and the time decay rate Rdecay targets not only low-effectiveness insights, but also those that have
become inactive. The decay rate is set conservatively to prevent the premature removal of valuable
but temporarily dormant knowledge. Furthermore, a grace period grants new insights with usage
counts below a threshold Tusage, eviction immunity. This ensures novel principles are given a fair
opportunity to demonstrate their utility before facing pruning.

3.3 FORESIGHT: THE EVOLUTIONARY NAVIGATOR FOR STATE-AWARE GUIDANCE

While the Hindsight module grounds the search in historically validated principles, the Foresight
module acts as an Evolutionary Navigator, providing real-time, state-aware guidance. Its primary
role is to dynamically orchestrate the balance between exploration and exploitation by implement-
ing a control policy π that maps the macroscopic evolutionary state St to a high-level strategic
orientation, the Evolutionary Regime θt. Crucially, unlike traditional adaptive EAs that solely tune
numerical parameters, Foresight establishes a semantic feedback loop that directly steers the con-
ceptual strategy of the generative LLM itself. This policy is a rule-based system that interprets key
state indicators to select the most appropriate regime:

θt =


θexplore if Cstag(t) ≥ τstag or ∆p(t) < δp
θexploit if Cprog(t) ≥ τprog

θbalance otherwise
(6)

To implement this policy, the Navigator continuously monitors two primary aspects of the evolu-
tionary search: its performance trajectory and its population diversity. The performance trajectory
is tracked via two mutually exclusive counters, Cprog and Cstag, based on the improvement in the
best raw fitness ∆g. If ∆g > 10−4, it is a generation of progress (increment Cprog, reset Cstag);
otherwise, it is stagnation (increment Cstag, reset Cprog). Simultaneously, the Navigator assesses
population health through a novel, problem-agnostic measure of phenotypic diversity, ∆p(t). This
metric is crucial because relying on fitness alone can be misleading; a population of high-fitness but
structurally similar individuals often indicates entrapment in a local optimum. To counteract this,
our metric quantifies the semantic variety within the population by measuring the dissimilarity of
the generated algorithms’ textual forms, rather than their fitness values. It is computed as the nor-
malized fraction of unique pairs of algorithms in the population P whose textual descriptions are
non-identical:

∆p(t) =
1

|P |(|P | − 1)/2

|P |∑
i=1

|P |∑
j=i+1

I(algi ̸= algj) (7)

where I(·) is the indicator function and algi denotes the textual description of the i-th algorithm.
This hybrid state representation, marrying quantitative performance trends with a qualitative mea-
sure of semantic diversity, grants the Navigator a far more holistic understanding of the search
landscape than fitness-based metrics alone can provide. These state indicators are evaluated against
empirically determined thresholds, with their specific values detailed in our experimental setup. The
design principles for these thresholds are key to the Navigator’s effectiveness. The design principles
for these thresholds are key to the Navigator’s effectiveness. The progress and stagnation counters

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

are designed to track immediate performance trends. This focus on recent history is crucial for
capturing the rapid dynamics inherent in LLM-based evolution, enabling swift strategic adjustments
in response to even short periods of stagnation or consistent improvement. Similarly, the diver-
sity threshold is calibrated to detect a significant collapse in semantic variety. It acts as an early
warning mechanism against premature convergence, triggering stronger exploratory pressure when
a substantial portion of the population becomes homogeneous. Once the regime θt is determined, it
is translated into a natural language Design Directive that is injected into the LLM’s prompt. For
instance, θexplore might yield a directive to try a significantly different approach from conventional
solutions, whereas θexploit would instruct the model to focus on refining and optimizing the most ef-
fective patterns. This mechanism ensures the LLM’s generative focus is explicitly aligned with the
high-level strategy dictated by the current evolutionary state.

4 EXPERIMENTS

In this section, we present the results of heuristics designed by our proposed HiFo-Prompt on dif-
ferent complex tasks, including Traveling Salesman Problem (TSP)(Matai et al., 2010), Online Bin
Packing Problem (Online BPP) (Seiden, 2002), Flow Shop Scheduling Problem (FSSP) (Emmons
& Vairaktarakis, 2012), and Bayesian Optimization (BO) (Shahriari et al., 2016). Task definitions
and details are given in Appendix B. Results on TSP, online BPP, and FSSP are presented in this
section, while the results on BO are provided in Appendix C.4, where HiFo-Prompt demonstrates
competitive and reliable performance.

Settings. We use the qwen2.5-max model via the DashScope API with a temperature of 1.0
and evolve a population of 4 individuals. The Insight Pool in Hindsight module has a capacity of
Cpool = 30, with a Jaccard similarity threshold of 0.7 for deduplication. Insight retrieval uses a
utility function with selection count s = 3, usage penalty weight wu = 0.1, and recency bonus
τr = 0.2. Credit assignment is performed using EMA with a learning rate of α = 0.3. For pool
maintenance, each insight’s eviction score decays at Rdecay = 0.01 per generation, and new insights
receive a grace period of Tusage = 3 applications. In the Foresight module, Evolutionary Navigator’s
thresholds are set to τstag = 3 for stagnation, τprog = 2 for progress, and δp = 0.3 for critical
diversity. We run 8 generations for CO tasks and 4 for BO, where rapid convergence demonstrates
our method’s efficiency. To ensure fairness, all LLM-based AHD baselines use the same LLM
endpoint and query budget, with other settings kept as reported in their original papers.

Table 1: Results on TSP with step-by-step construction. Gap(%) denotes the performance gap com-
pared to advanced heuristic algorithms. Time(s) represents the running time of designed heuristics.
This result of LLM-based AHD method is the average of three runs. The best-performing LLM-
based AHD results are shown in bold.

Method
TSP10 TSP20 TSP50

Gap Time(s) Gap Time(s) Gap Time(s)

LKH3 0.000% 6.492 0.000% 24.9 0.000% 323.3

POMO 0.246% - 0.248% - 0.163% -
LEHD 0.183% - 0.010% - 0.117% -

EoH 7.148% 0.042 10.064% 0.1 12.820% 1.3
ReEvo 5.227% 0.228 6.811% 1.2 10.239% 21.5
HSEvo 5.461% 0.689 7.950% 3.2 10.467% 89.4
MCTS-AHD 4.829% 0.440 8.045% 4.1 10.642% 91.4
Ours 1.654% 0.709 3.619% 12.9 6.625% 244.7

Baselines. To demonstrate the effectiveness of our proposed method in designing heuristics, we in-
troduce several approaches for solving these complex optimization tasks. (1) handcrafted heuristics,
e.g., LKH3(Lin & Kernighan, 1973) for TSP, First Fit and Best Fit (Romera-Paredes et al., 2024)
for Online BPP, NEH (Nawaz et al., 1983) and NEHFF (Fernandez-Viagas & Framinan, 2014) for
FSSP. (2) Neural Combinatorial Optimization (NCO) methods, e.g., POMO (Kwon et al., 2020)
and LEHD (Luo et al., 2023) for TSP, PFSPNet NEH (Pan et al., 2022) for FSSP. (3) LLM-based

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AHD methods, e.g., Funsearch (Romera-Paredes et al., 2024), EoH (Liu et al., 2024b), ReEvo (Ye
et al., 2024), HSEvo (Dat et al., 2025) and MCTS-AHD (Zheng et al., 2025). Most of our test
datasets follow EoH. Notably, Funsearch, ReEvo, and HSEvo require a seed function to initialize
their populations, while EOH, MCTS-AHD, and our method can run without it.

Traveling Salesman Problem. Step-by-Step Construction (Asani et al., 2023) and Guided Local
Search (GLS) (Alsheddy et al., 2016) are two different strategies for solving TSP. The detailed
procedure of the two strategies can be found in the Appendix B.1. We design key heuristics for
these two strategies. Table 1 compares the results of our method with other baselines. We evaluated
the performance on 100 instances at each of five sizes. To demonstrate performance on out-of-
distribution instances, we also conducted experiments on the TSPLib dataset (Reinelt, 1991), and
the results can be found in the Appendix C.1. We further evaluated our method on 100 instances of
TSP100, TSP200, and TSP500 in GLS. The results are shown in Table 2. The heuristic designed
by our method achieves a significant performance improvement compared to the LLM-based AHD
approach.

Table 2: Results on TSP with GLS. Comparison relative to the results of advanced heuristic on
TSP100, TSP200 and TSP500. This result of LLM-based AHD method is the average of three runs.
The best results are shown in bold.

Method
TSP100 TSP200 TSP500

Gap Time(s) Gap Time(s) Gap Time(s)

LKH3 0.000% - 0.000% - 0.000% -

EoH 0.026% 210.3 0.453% 368.1 2.037% 1100.7
ReEvo 0.049% 357.1 0.424% 775.8 2.090% 1103.4
HSEvo 0.087% 543.4 0.886% 792.9 2.507% 1105.1
Ours 0.015% 217.0 0.382% 392.4 1.520% 1100.8

Table 3: Results on Online BPP. Gap(%) denotes the ratio of excess bins compared to the lower
bound on Weibull instances. Obj. represents the value of the objective function. Results with * are
from EoH (Liu et al., 2024b). This result of LLM-based AHD method is the average of three runs.
The best results are highlighted in bold.

Method
5k C100 5k C300 5k C500

Gap Obj Gap Obj Gap Obj

lower bound 0.00% 2006.2 0.00% 1740.2 0.00% 1687.0

First Fit* 4.40% - 4.18% - 4.27% -
Best Fit* 4.08% - 3.83% - 3.91% -

Funsearch* 0.80% 2022.2 1.07% 1758.8 1.47% 1711.8
EOH 1.02% 2026.6 1.00% 1757.6 1.00% 1703.9
ReEvo 0.78% 2021.8 4.47% 1818.0 3.24% 1741.6
HSEvo 1.91% 2044.6 5.47% 1835.4 4.39% 1761.1
MCTS-AHD 0.99% 2026.0 0.95% 1756.8 0.95% 1703.0
Ours 0.69% 2020.1 0.66% 1751.7 0.66% 1698.1

Online Bin Packing Problem. The key function of Online BPP is a scoring function that outputs
a score for each bin, based on the current item’s size and the remaining capacities of the bins. We
evaluate our method on Weibull BPP instances (Romera-Paredes et al., 2024) following the EoH
setting. The results with three scales are shown in Table 3. Our method not only significantly
outperforms handcrafted heuristics but also surpasses LLM-based AHD approaches. More results
are provided in Appendix C.2.

Flow Shop Scheduling Problem. FSSP involves scheduling n jobs on m machines to minimize
the makespan, where each job comprises m operations processed in a fixed order. We evaluate

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the heuristic designed by our method on Taillard instances (Taillard, 1993). The dataset includes in-
stances with 20 to 100 jobs (n) and 10 to 20 machines (m). Table 4 presents some of the results, with
additional results provided in Appendix C.3. Our method performs well on all datasets, consistently
delivering strong and reliable results across different scenarios.

Table 4: Results on FSSP. The results show the comparison of makespan relative to the baseline on
Taillard instances. n denotes the number of jobs and m denotes the number of machines. Results
with * are from EoH (Liu et al., 2024b). This result of LLM-based AHD method is the average of
three runs. The best results are highlighted in bold.

Method n20,m10 n50,m10 n100,m10 n20,m20 n50,m20 n100,m20

NEH* 4.05% 3.47% 2.07% 3.06% 5.48% 3.58%
NEHFF* 4.15% 3.62% 1.88% 2.72% 5.10% 3.73%

PFSPNet NEH* 4.04% 3.48% 1.72% 2.96% 5.05% 3.56%

EoH 0.31% 0.29% 0.23% 0.20% 0.84% 0.94%
Ours 0.17% 0.17% 0.13% 0.10% 0.58% 0.51%

Ablation Study. To evaluate the contribution of each component in our method, we conducted
a series of ablation studies, as shown in Table 5. We separately removed the Hindsight obtained
by the insight pool and the Foresight provided by the navigator, and then removed both Hindsight
and Foresight entirely. These experiments are conducted on TSP and Online BPP. The design and
parameters of the experiments are aligned with those used in the main experiments.

Table 5: Ablations on Insight Pool and Navigator in TSP and Online BPP. The best results are
highlighted in bold.

TSP

TSP20 TSP50 TSP100
Gap Obj. Gap Obj. Gap Obj.

w/o Insight Pool 11.07% 4.29 13.76% 6.50 16.26% 9.06
w/o Navigator 5.82% 4.09 10.31% 6.30 11.48% 8.69
w/o Insight Pool and Navigator 11.49% 4.31 14.36% 6.53 18.80% 9.26

HiFo-Prompt 2.79% 3.97 5.81% 6.04 8.16% 8.43
Online BPP

1k, 100 5k, 100 1k, 300 5k, 300 1k, 500 5k, 500

w/o Insight Pool 4.33% 1.27% 4.07% 1.22% 4.14% 1.29%
w/o Navigator 2.83% 1.26% 2.64% 1.24% 2.60% 1.24%
w/o Insight Pool and Navigator 4.53% 2.19% 4.30% 2.01% 4.26% 2.05%

HiFo-Prompt 1.99% 0.66% 2.01% 0.63% 1.95% 0.66%

5 CONCLUSION

We introduced HiFo-Prompt, a novel evolutionary framework that advances LLM-driven heuristic
design through a hierarchical foresight-hindsight prompting mechanism. By synergizing an Evolu-
tionary Navigator for adaptive control with a self-evolving Insight Pool for knowledge reuse, our
framework transforms the search process into a closed-loop, self-regulating system. Across diverse
optimization benchmarks, HiFo-Prompt consistently outperforms state-of-the-art methods with re-
markable sample efficiency, often finding superior solutions using only 200 LLM requests. This
work provides not only a powerful method for heuristic automated algorithm design but also a con-
crete step towards agents that can learn to invent their problem-solving methodologies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Aldeida Aleti and Irene Moser. A systematic literature review of adaptive parameter control methods
for evolutionary algorithms. ACM Computing Surveys, 49(3):1–35, October 2016. doi: 10.1145/
2996355.

Abdullah Alsheddy, Christos Voudouris, Edward P. K. Tsang, and Ahmad Alhindi. Guided local
search. In Handbook of Heuristics, pp. 1–37. Springer, 2016. doi: 10.1007/978-3-319-07124-4
19-1. Living reference work entry.

Emmanuel O. Asani, Aderemi E. Okeyinka, and Ayodele Ariyo Adebiyi. A computation investi-
gation of the impact of convex hull subtour on the nearest neighbour heuristic. In 2023 Inter-
national Conference on Science, Engineering and Business for Sustainable Development Goals,
Omu-Aran, Nigeria, April 2023. IEEE. doi: 10.1109/SEB-SDG57117.2023.10124469.

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. In NeurIPS 2024
Poster. NeurIPS, 2024. URL https://openreview.net/forum?id=9469. Submitted:
26 Sept 2024, Last Modified: 04 Jan 2025.

Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and Rong Qu.
A survey of hyper-heuristics. Technical Report NOTTCS-TR-SUB-0906241418-2747, School
of Computer Science and Information Technology, University of Nottingham, Jubilee Campus,
Nottingham NG8 1BB, UK, 2009.

Christian L. Camacho-Villalón, Thomas Stützle, and Marco Dorigo. Designing new metaheuristics:
Manual versus automatic approaches. Intelligent Computing, 2:Article ID 0048, December 2023.
doi: 10.34133/icomputing.0048.

Dikshit Chauhan, Bapi Dutta, Indu Bala, Niki van Stein, Thomas Bäck, and Anupam Yadav. Evo-
lutionary computation and large language models: A survey of methods, synergies, and applica-
tions, 2025. URL https://arxiv.org/abs/2505.15741.

Carlos A. Coello Coello and Ricardo Landa Becerra. Efficient evolutionary optimization through
the use of a cultural algorithm. Engineering Optimization, 36(2):219–236, 2010. doi: 10.1080/
03052150410001647966.

Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. HSEvo: Elevating automatic heuristic
design with diversity-driven harmony search and genetic algorithm using LLMs. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39 of AAAI-25 Technical Tracks, pp.
26931–26938, 2025. doi: 10.1609/aaai.v39i25.34898.

A. E. Eiben and J. Smith. From evolutionary computation to the evolution of things. Nature, 521
(7553):476–482, 2015.

A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 3(2):124–141, July 1999. doi: 10.1109/4235.771166.

Hamilton Emmons and George Vairaktarakis. Flow Shop Scheduling: Theoretical Results, Algo-
rithms, and Applications, volume 182 of International Series in Operations Research & Man-
agement Science. Springer, New York, NY, 2012. ISBN 978-1461451518. doi: 10.1007/
978-1-4614-5152-5. URL https://doi.org/10.1007/978-1-4614-5152-5.

Leah Epstein, Lene M. Favrholdt, and Jens S. Kohrt. Comparing online algorithms for bin packing
problems. Journal of Scheduling, 15(1):13–21, 2012. doi: 10.1007/s10951-009-0129-5. URL
https://doi.org/10.1007/s10951-009-0129-5.

Victor Fernandez-Viagas and Jose M. Framinan. On insertion tie-breaking rules in heuristics for the
permutation flowshop scheduling problem. Computers & Operations Research, 45:60–67, May
2014. doi: 10.1016/j.cor.2013.12.012.

Fred Glover, Gregory Gutin, Anders Yeo, and Alexey Zverovich. Construction heuristics for the
asymmetric TSP. European Journal of Operational Research, 129(3):555–568, March 2001. doi:
10.1016/S0377-2217(99)00468-3.

10

https://openreview.net/forum?id=9469
https://arxiv.org/abs/2505.15741
https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1007/s10951-009-0129-5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ziyao Huang, Weiwei Wu, Kui Wu, Jianping Wang, and Wei-Bin Lee. Calm: Co-evolution of al-
gorithms and language model for automatic heuristic design. arXiv preprint arXiv:2505.12285,
2025. URL https://doi.org/10.48550/arXiv.2505.12285. Neural and Evolution-
ary Computing (cs.NE).

Angel A. Juan, Helena R. Lourenço, Manuel Mateo, Rachel Luo, and Quim Castella. Using iterated
local search for solving the flow-shop problem: parametrization, randomization and paralleliza-
tion issues. International Transactions in Operational Research, 21(1):103–126, 2014. doi:
10.1111/itor.12028. URL https://doi.org/10.1111/itor.12028.

G. M. Komaki, Shaya Sheikh, and Behnam Malakooti. Flow shop scheduling problems with as-
sembly operations: a review and new trends. International Journal of Production Research, 57
(10):2926–2955, 2019. doi: 10.1080/00207543.2018.1550269. URL https://doi.org/
10.1080/00207543.2018.1550269.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Se-
ungjai Min. POMO: Policy optimization with multiple optima for reinforcement learn-
ing. In Advances in Neural Information Processing Systems, volume 33, pp. 21188–21199,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
hash/f8b5b1f8f1f3b18a4d7a7a4c0d6a9f3d-Abstract.html.

Remi R. Lam, Karen E. Willcox, and David H. Wolpert. Bayesian optimization with a finite budget:
An approximate dynamic programming approach. In Advances in Neural Information Processing
Systems, volume 29, pp. 883–891, Barcelona, Spain, 2016. Curran Associates, Inc.

Eric Hans Lee, Valerio Perrone, Cédric Archambeau, and Matthias Seeger. Cost-aware bayesian
optimization. arXiv preprint, 2020. doi: 10.48550/arXiv.2003.10870. URL https://doi.
org/10.48550/arXiv.2003.10870.

Shen Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem.
Operations Research, 21(2):498–516, April 1973. doi: 10.1287/opre.21.2.498.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, Li Zhang, Zhongqi Li,
and Yuchi Ma. Exploring and evaluating hallucinations in llm-powered code generation. arXiv
preprint arXiv:2404.00971, 2024a. URL https://arxiv.org/abs/2404.00971. Sub-
mitted on 1 Apr 2024, last revised 11 May 2024.

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large
language model, 2023. URL https://arxiv.org/abs/2311.15249. arXiv preprint
arXiv:2311.15249.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Proceedings of the Forty-first International Conference on Machine Learning, 2024b.
URL https://icml.cc/Conferences/2024/AuthorGuide.

Fei Liu, Yiming Yao, Ping Guo, Zhiyuan Yang, Zhe Zhao, Xi Lin, Xialiang Tong, Mingxuan Yuan,
Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. A systematic survey on large language models
for algorithm design. arXiv preprint arXiv:2410.14716, November 2024c. URL https://
doi.org/10.48550/arXiv.2410.14716. v3.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In Advances in Neural Information Process-
ing Systems 36, 2023. URL https://papers.nips.cc/paper_files/paper/2023/
hash/f0e9cba66c49e382e4f3e7351d47e2ed-Abstract-Conference.html.

Alireza Maheri, Shahin Jalili, Yousef Hosseinzadeh, Reza Khani, and Mirreza Miryahyavi. A com-
prehensive survey on cultural algorithms. Swarm and Evolutionary Computation, 62:100846,
2021. doi: 10.1016/j.swevo.2021.100846.

Yannis Marinakis. Heuristic and metaheuristic algorithms for the traveling salesman problem. In
Encyclopedia of Optimization, pp. 1–12. Springer International Publishing, living reference work
entry edition, 2024. doi: 10.1007/978-3-030-54621-2 262-1. URL https://doi.org/10.
1007/978-3-030-54621-2_262-1.

11

https://doi.org/10.48550/arXiv.2505.12285
https://doi.org/10.1111/itor.12028
https://doi.org/10.1080/00207543.2018.1550269
https://doi.org/10.1080/00207543.2018.1550269
https://proceedings.neurips.cc/paper_files/paper/2020/hash/f8b5b1f8f1f3b18a4d7a7a4c0d6a9f3d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/f8b5b1f8f1f3b18a4d7a7a4c0d6a9f3d-Abstract.html
https://doi.org/10.48550/arXiv.2003.10870
https://doi.org/10.48550/arXiv.2003.10870
https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2311.15249
https://icml.cc/Conferences/2024/AuthorGuide
https://doi.org/10.48550/arXiv.2410.14716
https://doi.org/10.48550/arXiv.2410.14716
https://papers.nips.cc/paper_files/paper/2023/hash/f0e9cba66c49e382e4f3e7351d47e2ed-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/f0e9cba66c49e382e4f3e7351d47e2ed-Abstract-Conference.html
https://doi.org/10.1007/978-3-030-54621-2_262-1
https://doi.org/10.1007/978-3-030-54621-2_262-1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rafael Martı́ and Gerhard Reinelt. Heuristic methods. In The Linear Ordering Problem, volume
175 of Applied Mathematical Sciences, pp. 17–40. Springer, Berlin, Heidelberg, 2011. ISBN 978-
3-642-16729-4. doi: 10.1007/978-3-642-16729-4 2. URL https://doi.org/10.1007/
978-3-642-16729-4_2.

Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman problem: An
overview of applications, formulations, and solution approaches. In Donald Davendra (ed.), Trav-
eling Salesman Problem, Theory and Applications, pp. 1–25. InTech, Rijeka, Croatia, 2010. ISBN
978-953-307-426-9. doi: 10.5772/12909.

Muhammad Nawaz, E. Emory Enscore Jr, and Inyong Ham. A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983. doi: 10.1016/
0305-0483(83)90088-9.

Zixiao Pan, Ling Wang, Jingjing Wang, and Jiawen Lu. Deep reinforcement learning based opti-
mization algorithm for permutation flow-shop scheduling. IEEE Transactions on Emerging Topics
in Computational Intelligence, 7(4):900–911, 2022. doi: 10.1109/TETCI.2022.3154977.

Gregor Papa. Applications of dynamic parameter control in evolutionary computation. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1064–1088.
ACM, July 2021. doi: 10.1145/3449726.3461435. URL https://doi.org/10.1145/
3449726.3461435.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. The MIT Press, Cambridge, MA, 2006. ISBN 978-
0-262-22567-4. doi: 10.7551/mitpress/3206.001.0001. URL https://doi.org/10.7551/
mitpress/3206.001.0001. Open Access Edition.

Gerhard Reinelt. TSPLIB—a traveling salesman problem library. ORSA Journal on Computing, 3
(4):376–384, 1991. doi: 10.1287/ijoc.3.4.376.

Imma Ribas, Rainer Leisten, and Jose M. Framiñan. Review and classification of hybrid flow shop
scheduling problems from a production system and a solutions procedure perspective. Computers
& Operations Research, 37(8):1439–1454, 2010. doi: 10.1016/j.cor.2009.11.001. URL https:
//doi.org/10.1016/j.cor.2009.11.001.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, and et al. Mathematical discoveries from program search with large language mod-
els. Nature, 625(7995):468–475, 2024.

Steven S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671, Septem-
ber 2002. doi: 10.1145/585265.585269. URL https://doi.org/10.1145/585265.
585269.

Lahari Sengupta, Radu Mariescu-Istodor, and Pasi Fränti. Which local search operator works
best for the open-loop TSP? Applied Sciences, 9(19):3985, September 2019. doi: 10.3390/
app9193985. URL https://doi.org/10.3390/app9193985.

Jiřı́ Sgall. Online bin packing: Old algorithms and new results. In Arnold Beckmann, Erzèbet
Csuhaj-Varjú, and Klaus Meer (eds.), Language, Life, Limits: 10th Conference on Computability
in Europe, CiE 2014, Budapest, Hungary, June 23–27, 2014, Proceedings, volume 8493 of Lec-
ture Notes in Computer Science, pp. 362–372. Springer, 2014. doi: 10.1007/978-3-319-08019-2
38. URL https://doi.org/10.1007/978-3-319-08019-2_38.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, January 2016. doi: 10.1109/JPROC.2015.2494218. URL https://doi.org/10.
1109/JPROC.2015.2494218.

Yiding Shi, Jianan Zhou, Wen Song, Jieyi Bi, Yaoxin Wu, and Jie Zhang. Generalizable
heuristic generation through large language models with meta-optimization. arXiv preprint
arXiv:2505.20881, 2025. URL https://doi.org/10.48550/arXiv.2505.20881.
Machine Learning (cs.LG); Artificial Intelligence (cs.AI).

12

https://doi.org/10.1007/978-3-642-16729-4_2
https://doi.org/10.1007/978-3-642-16729-4_2
https://doi.org/10.1145/3449726.3461435
https://doi.org/10.1145/3449726.3461435
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1016/j.cor.2009.11.001
https://doi.org/10.1016/j.cor.2009.11.001
https://doi.org/10.1145/585265.585269
https://doi.org/10.1145/585265.585269
https://doi.org/10.3390/app9193985
https://doi.org/10.1007/978-3-319-08019-2_38
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.48550/arXiv.2505.20881

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

N. Shinn, F. Cassano, A. Gopinath, K. R. Narasimhan, and S. Yao. Reflexion: Language agents
with verbal reinforcement learning. In Proceedings of the Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, volume 25, pp.
2951–2959, Red Hook, NY, 2012. Curran Associates, Inc.

E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278–285, 1993. doi: 10.1016/0377-2217(93)90182-M.

Nasser Tairan and Qingfu Zhang. Population-based guided local search: Some preliminary ex-
perimental results. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE,
2010. doi: 10.1109/CEC.2010.5586062. URL https://doi.org/10.1109/CEC.2010.
5586062.

Nguyen Thach, Aida Riahifar, Nathan Huynh, and Hau Chan. Redahd: Reduction-based end-to-end
automatic heuristic design with large language models. arXiv preprint arXiv:2505.20242, 2025.
URL https://doi.org/10.48550/arXiv.2505.20242. Machine Learning (cs.LG).

Ye Tian, Xiaopeng Li, Haiping Ma, Xingyi Zhang, Kay Chen Tan, and Yaochu Jin. Deep reinforce-
ment learning based adaptive operator selection for evolutionary multi-objective optimization.
IEEE Transactions on Emerging Topics in Computational Intelligence, 7(4):1051–1064, August
2023. doi: 10.1109/TETCI.2022.3146882.

Jimi P. Tuononen. Analysis of rebuild local search operators for TSP. Master’s thesis, University of
Eastern Finland, School of Computing, Faculty of Forestry and Natural Sciences, Joensuu, Fin-
land, April 2022. URL https://cs.uef.fi/sipu/pub/MSc_TuononenJimi.pdf.

R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by local search. INFORMS
Journal on Computing, 8(3):302–317, 1996. doi: 10.1287/ijoc.8.3.302. URL https://doi.
org/10.1287/ijoc.8.3.302.

Christos Voudouris and Edward Tsang. Guided local search and its application to the traveling
salesman problem. European Journal of Operational Research, 113(2):469–499, 1999. doi:
10.1016/S0377-2217(98)00099-X.

Christos Voudouris, Abdullah Alsheddy, Edward P. K. Tsang, and Ahmad Alhindi. Handbook of
Heuristics. Springer International Publishing AG, 2016. ISBN 978-3-319-07153-4. doi: 10.1007/
978-3-319-07153-4.

Jianxun Wang and Yixiang Chen. A review on code generation with llms: Application and evalua-
tion. In Proceedings of the 2023 IEEE International Conference on Medical Artificial Intelligence,
Beijing, China, November 2023. doi: 10.1109/MedAI59581.2023.00044.

James M. Whitacre, Tuan Q. Pham, and Ruhul A. Sarker. Credit assignment in adaptive evolutionary
algorithms. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 1353–1360, New York, NY, USA, July 2006. ACM. doi: 10.1145/1143997.1144206.
URL https://doi.org/10.1145/1143997.1144206.

Yuezhong Wu, Thomas Weise, and Raymond Chiong. Local search for the traveling salesman
problem: A comparative study. In Proceedings of the 2015 IEEE 14th International Conference
on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp. 213–220. IEEE, 2015. doi:
10.1109/ICCI-CC.2015.7259388. URL https://doi.org/10.1109/ICCI-CC.2015.
7259388.

Xuesong Yan, Tao Song, and Qinghua Wu. An improved cultural algorithm and its application
in image matching. Multimedia Tools and Applications, 76:14951–14968, 2017. doi: 10.1007/
s11042-016-4041-x.

Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. Multi-objective
evolution of heuristic using large language model. In Proceedings of the Thirty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI-25), Hong Kong, China, 2025. AAAI Press.

13

https://doi.org/10.1109/CEC.2010.5586062
https://doi.org/10.1109/CEC.2010.5586062
https://doi.org/10.48550/arXiv.2505.20242
https://cs.uef.fi/sipu/pub/MSc_TuononenJimi.pdf
https://doi.org/10.1287/ijoc.8.3.302
https://doi.org/10.1287/ijoc.8.3.302
https://doi.org/10.1145/1143997.1144206
https://doi.org/10.1109/ICCI-CC.2015.7259388
https://doi.org/10.1109/ICCI-CC.2015.7259388

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yiming Yao, Fei Liu, Ji Cheng, and Qingfu Zhang. Evolve cost-aware acquisition functions us-
ing large language models. In Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova,
Heike Trautmann, Tea Tušar, Penousal Machado, and Thomas Bäck (eds.), Parallel Problem
Solving from Nature – PPSN XVIII: 18th International Conference, PPSN 2024, Hagenberg,
Austria, September 14–18, 2024, Proceedings, Part II, volume 15149 of Lecture Notes in Com-
puter Science, pp. 374–390. Springer Cham, 2024. doi: 10.1007/978-3-031-70068-2. URL
https://doi.org/10.1007/978-3-031-70068-2.

Ahmet Yarimcam, Shahriar Asta, Ender Özcan, and Andrew J. Parkes. Heuristic generation via
parameter tuning for online bin packing. In 2014 IEEE Symposium on Evolving and Autonomous
Learning Systems (EALS), pp. 102–108. IEEE, 2014. doi: 10.1109/EALS.2014.7009510. URL
https://doi.org/10.1109/EALS.2014.7009510.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo
Park, and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evo-
lution. In Proceedings of the 38th International Conference on Neural Information Processing
Systems, pp. 43571–43608, June 2024. URL https://nips.cc/Conferences/2024/
AuthorGuide.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang.
Udc: A unified neural divide-and-conquer framework for large-scale combinatorial op-
timization problems. In Advances in Neural Information Processing Systems 37,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for compre-
hensive exploration in llm-based automatic heuristic design. In Proceedings of the 2025 Inter-
national Conference on Machine Learning (ICML 2025), 2025. URL https://icml.cc/
Conferences/2025/AuthorGuide.

Álvaro Fialho. Adaptive Operator Selection for Optimization. PhD thesis, Université
Paris Sud- Paris XI, Paris, France, 2010. URL https://theses.hal.science/
tel-00578431v1. Submitted on 20 Mar 2011, HAL Id: tel-00578431.

Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation in evolutionary
algorithms: A survey. ACM Computing Surveys, 45(3):1–33, July 2013. doi: 10.1145/2480741.
2480752. URL https://doi.org/10.1145/2480741.2480752.

Anja Šurina, Amin Mansouri, Lars C.P.M. Quaedvlieg, Amal Seddas, Maryna Viazovska, Em-
manuel Abbe, and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets
reinforcement learning. COLM 2025, 2025. URL https://doi.org/10.48550/arXiv.
2505.12285.

A PRELIMINARY

A.1 PROBLEM FORMULATION OF AUTOMATIC HEURISTIC DESIGN

Automatic Heuristic Design (AHD) (Burke et al., 2009; Voudouris et al., 2016) aims to identify an
optimal heuristic h∗ from a vast search spaceH for a given computational task P . This process can
be formally expressed as the following optimization problem (Zheng et al., 2025):

h∗ = argmax
h∈H

g(h), (8)

where g(h) is a fitness function that maps a heuristic to a real number, estimating its quality based
on its expected performance on a representative set of problem instances D. For a task with a
minimization objective f (e.g., minimizing cost or error), this performance metric is defined as:

g(h) = Eins∈D [−f(h(ins))] . (9)

This formulation reframes the original task as a maximization problem over the heuristic space
H, thereby enabling the search for robust heuristics that yield high-quality solutions across diverse
instances.

14

https://doi.org/10.1007/978-3-031-70068-2
https://doi.org/10.1109/EALS.2014.7009510
https://nips.cc/Conferences/2024/AuthorGuide
https://nips.cc/Conferences/2024/AuthorGuide
https://proceedings.neurips.cc/paper_files/paper/2024/file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf
https://icml.cc/Conferences/2025/AuthorGuide
https://icml.cc/Conferences/2025/AuthorGuide
https://theses.hal.science/tel-00578431v1
https://theses.hal.science/tel-00578431v1
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.48550/arXiv.2505.12285
https://doi.org/10.48550/arXiv.2505.12285

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 LLM-DRIVEN EVOLUTIONARY COMPUTATION

The LLM-driven Evolutionary Computation (LLM+EC) framewor(Liu et al., 2024b; Romera-
Paredes et al., 2024; Yao et al., 2025; Chauhan et al., 2025) casts the AHD problem as an iterative,
population-based search process. Let P (t) = {h(t)

1 , . . . , h
(t)
M } be the population of M heuristics at

generation t, where each heuristic h
(t)
i ∈ H is represented by its thought and code. The transition

from P (t) to P (t+1) is governed by a stochastic evolutionary kernel F , which is parameterized by a
control vector θ(t) ∈ Θ:

P (t+1) ∼ F(P (t) | θ(t)). (10)
Here, the control vector θ(t) encapsulates contextual information that guides heuristic generation,
such as prompting strategies or performance feedback. In the absence of adaptive control, θ(t) can
be considered constant or null, i.e., θ(t) = θconst or θ(t) = ∅. The kernel F comprises two phases:

1. Generation Phase: An LLM, acting as a conditional generator L, creates new heuristics
through prompted crossover and mutation. A set of parents hp ⊆ P (t) is selected, and their
symbolic representations ρ(hp), which include the thought-and-code, are used. A
prompt function Π constructs a conditional prompt from ρ(hp) and θ(t) (e.g., exploration
or modification strategies). The LLM then generates offspring:

hc = L(Π(ρ(hp), θ
(t))), O(t) = {hc,1, hc,2, . . . , hc,N}, (11)

where N is the number of offspring (e.g., N = λM , where λ is the reproduction rate).
2. Selection Phase: The parent and offspring populations are merged into a candidate pool,

U (t) = P (t) ∪ O(t). A selection operator S then chooses the top M heuristics from this
pool based on the fitness metric g to form the next generation:

P (t+1) = S(U (t); g). (12)

This framework, introduced within the ”heuristic evolution” paradigm, leverages LLM-driven gener-
ation to explore the heuristic space and a selection mechanism to exploit high-performing solutions.

A.3 KNOWLEDGE-AUGMENTED EVOLUTIONARY COMPUTATION

To extend the capabilities of evolutionary algorithms beyond simple adaptive control, a prominent
research direction involves incorporating an explicit knowledge component. Cultural Algorithms
(?Coello & Becerra, 2010; Yan et al., 2017) provide a classic framework for this idea, decoupling the
evolutionary system into two interacting spaces: a population space containing candidate solutions
P (t) and a belief space Kt serving as a repository of experiential knowledge (Maheri et al., 2021).
These two spaces co-evolve through a dual-inheritance communication protocol.

Crucially, knowledge ks extracted from the belief space Kt becomes part of the high-level control
vector θ(t). This knowledge then guides the generation of offspring via an influence mechanism:

hc ∼ L
(
Π(ρ(hp), θ

(t))
)
, where ks ⊆ θ(t). (13)

Currently, the successes of the population are fed back into the belief space. An acceptance function
A identifies and extracts potentially valuable experiences, A(P (t)), from the current population.
These are then used by a knowledge update function UK to update the belief space:

Kt+1 = UK(Kt,A(P (t))). (14)
Knowledge-augmented evolution is thus a coupled dynamical system where the population and
knowledge base co-evolve interdependently. This explicit mechanism for knowledge management
allows the framework to achieve a more sophisticated form of learning based on abstracted experi-
ence.

B OPTIMIZATION PROBLEM DETAILS

B.1 TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) (Matai et al., 2010; Voudouris & Tsang, 1999) is a canonical
NP-hard combinatorial optimization problem. Given a set of N cities and the distances between

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

each pair, the objective is to find the shortest possible tour that visits each city exactly once before
returning to the starting city (?).

Formally, let V = {v1, v2, . . . , vN} be the set of cities. We model the problem on a complete,
undirected graph G = (V,E), where a non-negative distance dij is associated with each edge
(vi, vj) ∈ E. A tour is a permutation π of the indices {1, 2, . . . , N}. The goal is to find a per-
mutation π∗ that minimizes the total tour length (Zheng et al., 2024):

min
π

(
N−1∑
i=1

dπi,πi+1
+ dπN ,π1

)
where vπi denotes the i-th city in the tour.

Step-by-step Construction. Construction heuristics build a feasible solution from an empty set
by making a sequence of decisions (Glover et al., 2001). At each step, a component is added to the
partial solution based on a specific greedy criterion until a complete tour is formed (Martı́ & Reinelt,
2011). A fundamental example is the Nearest Neighbor (NN) heuristic. Starting from a node vπ1 ,
it constructs a tour by iteratively selecting the closest unvisited node. At step t, with a partial tour
St = (vπ1 , . . . , vπt) and the set of unvisited nodes Ut = V \ {vπ1 , . . . , vπt}, the next node vπt+1 is
chosen according to the rule (Marinakis, 2024):

vπt+1
= arg min

vj∈Ut

dπt,j

While fast, the myopic nature of such simple rules often leads to suboptimal solutions.

Our approach, HIFO-Prompt, introduces a new paradigm for solving combinatorial optimiza-
tion problems by shifting from traditional, fixed construction heuristics to dynamically generated,
instance-specific policies. We retain the foundational step-by-step framework of construction meth-
ods in which a solution is built incrementally. However, we fundamentally revolutionize the core
decision-making logic. Instead of relying on a universal, handcrafted rule (e.g., Nearest Neighbor),
which is often myopic and susceptible to poor initial choices leading to local optima, our method
leverages a LLM to synthesize a sophisticated decision-making function on-the-fly for each problem
instance. At every construction step t, the LLM acts as a reasoning engine. It is provided with the
complete state of the problem, including the current partial tour St, the set of unvisited candidate
nodes Ut, the global distance matrix C, and the tour’s origin node to facilitate reasoning about the
final closing cost (Liu et al., 2024b; 2023).

The advantage of HIFO-Prompt lies in its ability to offload the complex, knowledge-intensive task
of heuristic design to the LLM. Through carefully engineered prompts, we guide the model not
merely to select a node but to generate a computational policy that embodies advanced strategic
principles. The synthesized policy can perform non-trivial reasoning, such as conducting evaluations
of multi-step consequences to look beyond immediate greedy gains. It can be guided to implement
mechanisms analogous to maintaining a belief over a set of promising candidates, exploring their
short-term implications before committing to a single path. Furthermore, the generated function
can incorporate stochastic simulations or rollouts to approximate the long-term value of different
choices, mimicking the exploration capabilities of advanced search algorithms.

Guided Local Search Improvement heuristics, such as local search, start with a complete tour and
iteratively refine it. Guided Local Search (GLS) is an advanced metaheuristic that enhances local
search by introducing a guidance mechanism to escape local optima (?Voudouris & Tsang, 1999;
Voudouris et al., 2016). GLS achieves this by modifying the objective function with penalties on
certain solution features that appear in locally optimal solutions (Wu et al., 2015). For the Traveling
Salesperson Problem (TSP), the most natural features to penalize are the edges of the tour (Tairan &
Zhang, 2010).

The standard GLS cost function is augmented with a penalty term:

Laug(s) = L(s) + λ
∑

(u,v)∈s

puv (15)

where L(s) is the original tour length, the sum is over all edges (u, v) in tour s, puv is a penalty
counter for using the edge between cities u and v, and λ is a regularization parameter. An efficient

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

implementation involves creating a penalized distance matrix D′ for the local search:

D′
uv = duv + λ · puv . (16)

Minimizing the tour length using D′ is equivalent to minimizing Laug(s). The critical challenge lies
in designing the rule for updating the penalty matrix P = {puv}. When the local search becomes
trapped in a local optimum s∗, a state-dependent update heuristic, Hupdate, is invoked to determine
which edges in s∗ should be penalized:

Pnew = Hupdate(Pold, s
∗, D,N) , (17)

where N is a matrix of edge usage frequencies. Typically, this heuristic is a static, handcrafted rule
that increments the penalties for a subset of edges in s∗. This update reshapes the search landscape
to guide the search away from the current basin of attraction.

HiFo-Prompt automates the discovery of the update heuristic Hupdate. Instead of relying on a static,
human-designed rule, we task a LLM with synthesizing a complete, executable Python function to
serve as Hupdate.

At each GLS iteration, after converging to a local optimum s∗, this LLM-generated function is
invoked. It receives the full state necessary for intelligent penalization—the current penalty matrix
(Pold), the local optimum tour (s∗), the original distance matrix (D), and the edge frequency matrix
(N)—and outputs a new penalty matrix, Pnew. This updated matrix then modifies the search costs
via Eq. 16 for the next major iteration. The local search itself is driven by fundamental prompt
strategies like Relocate (Tuononen, 2022) and 2-opt (Sengupta et al., 2019). Our contribution lies
not in these prompt strategies but in the automated design of the sophisticated Hupdate function
through HiFo-Prompt, which provides the intelligence to guide these prompt strategies effectively.

We further elevate this concept by embedding heuristic generation within an evolutionary frame-
work. We treat the distinct Hupdate functions as a population of individuals. The LLM itself serves as
the primary genetic operator. Through structured prompts for crossover and mutation, the LLM in-
telligently combines or modifies existing high-performing strategies to produce novel offspring (Liu
et al., 2024b).

B.2 ONLINE BIN PACKING PROBLEM

The Online Bin Packing Problem (OBP) (Seiden, 2002) is a classic sequential decision-making
problem. We are presented with a sequence of items, A = (a1, a2, . . . , aT), arriving one at a time.
Each item at has a size st ∈ (0, 1]. We have an unlimited supply of bins, each with a unit capacity
of 1. The core constraints of the OBP are:

• Online Constraint: When item at arrives, a decision must be made to place it into a bin
without any knowledge of future items (at+1, . . . , aT).

• Irrevocable Placement: Once an item is placed in a bin, it cannot be moved.
• Capacity Constraint: For any bin Bj , the sum of the sizes of all items placed within it

must not exceed 1.

The objective is to minimize the total number of bins used after placing all T items (Epstein et al.,
2012; Yarimcam et al., 2014). If we let yj = 1 if bin j is used and yj = 0 otherwise, the goal is to
minimize

∑
j yj (Sgall, 2014).

Given the online nature of the problem, optimal solutions are generally not achievable. Instead, high-
performance algorithms rely on sophisticated greedy placement policies or heuristics. Following
the approach of (Romera-Paredes et al., 2024), we frame the task as learning a superior placement
heuristic. Specifically, we use the HiFo-Prompt framework to design a scoring function, Hscore, that
determines the most suitable bin for an incoming item.

When an item at with size st arrives, the HiFo-Prompt-generated heuristic is invoked. It takes as
input the item’s size and the state of all currently open bins. The state of a bin Bj is captured by
its residual capacity, cj = 1 −

∑
ak∈Bj

sk. The scoring function produces a scalar value for each
candidate bin:

σj = Hscore(st, cj) (18)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where σj represents the ”desirability” of placing item at into bin Bj . The placement policy is then
to assign the item to the valid bin with the highest score:

j∗ = argmax
j | cj≥st

σj (19)

If no existing bin can accommodate the item (i.e., the set of valid bins is empty), a new bin is
opened. The intelligence of our method lies in HiFo-Prompt’s ability to discover a non-trivial scoring
function Hscore that implicitly balances competing objectives, such as leaving space for potentially
larger future items versus consolidating small items efficiently. This contrasts with classic heuristics
like Best Fit (which is equivalent to Hscore(st, cj) = −cj) or First Fit, by allowing for a much richer
and more adaptive decision-making process.

B.3 FLOW SHOP SCHEDULING PROBLEM

The Flow Shop Scheduling Problem (FSSP) (Emmons & Vairaktarakis, 2012; Komaki et al., 2019)
is a canonical NP-hard scheduling challenge. The task is to schedule a set of n jobs, J = {1, . . . , n},
on a series of m machines, M = {1, . . . ,m}. Each job i ∈ J requires m operations, with the j-th
operation occurring on machine j. The processing time for job i on machine j is given by Tij from a
processing time matrix T (Vaessens et al., 1996; Ribas et al., 2010). A solution (Juan et al., 2014) is
a permutation of jobs, π = (π1, . . . , πn), which dictates the processing order on all machines. Key
constraints include that no machine can process multiple jobs at once, and no job can be on multiple
machines simultaneously.

The objective is to find a permutation π∗ that minimizes the makespan, Cmax. This is the total time
elapsed until the last job completes its final operation. The completion time C(πi, j) for job πi on
machine j is calculated recursively:

C(πi, j) = max
(
C(πi−1, j), C(πi, j − 1)

)
+ Tπi,j (20)

with base cases C(π0, j) = 0 and C(πi, 0) = 0. The makespan for a sequence π is therefore
Cmax(π) = C(πn,m).

Due to the problem’s complexity, we employ a local search metaheuristic (?Liu et al., 2024b). To
prevent the search from being trapped in local optima, we use the HiFo-Prompt framework to design
a sophisticated guidance strategy automatically. When the search converges to a locally optimal
sequence π∗, HiFo-Prompt-generated heuristic, Hguide, is invoked. It takes the current sequence, the
original processing time matrix, and problem dimensions to produce both a new time matrix T ′ and
a designated list of jobs to perturb, Jperturb:

(T ′, Jperturb) = Hguide(π
∗, T, n,m) (21)

This dual output provides a powerful guidance mechanism. The new matrix T ′ reshapes the search
landscape by penalizing attributes of the local optimum, effectively steering the search toward un-
explored regions. Concurrently, the list Jperturb directs subsequent local search operators, such as
insertions or swaps, to focus their computational effort on a specific subset of critical jobs. This
combined strategy of altering the problem’s cost structure while focusing on the search operators
constitutes a complete and intelligent guidance component, designed automatically by our frame-
work.

B.4 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) (Shahriari et al., 2016) and its ongoing development are of paramount
importance, as it provides the leading framework for sample-efficiently navigating the complex,
high-cost search spaces prevalent in modern science and engineering. Bayesian Optimization (BO)
has emerged as a principal framework for this task, excelling in applications like hyperparameter
tuning and automated scientific discovery. The power of BO lies in its sample efficiency. It builds a
probabilistic surrogate model of the objective function. It then uses an acquisition function (?Lam
et al., 2016) to intelligently decide where to sample next, thereby minimizing the number of costly
evaluations.

Our work addresses a particularly demanding variant: cost-aware BO (Snoek et al., 2012; Yao et al.,
2024; Zheng et al., 2025). In this setting, each function evaluation f(x) has a heterogeneous and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

unknown cost, denoted by c(x). The goal is to find the global maximum of f(x) within a fixed total
budget Btotal. This requires sequentially choosing evaluation points {x1, . . . ,xN} to maximize the
final outcome, subject to the constraint that

∑N
i=1 c(xi) ≤ Btotal (Lee et al., 2020). To manage this,

the BO agent maintains two surrogate models, typically Gaussian Processes (GPs) (Rasmussen &
Williams, 2006). One GP models the objective function, predicting its posterior mean µf (x) and
standard deviation σf (x). A second GP models the evaluation cost, providing a cost prediction
µc(x).

The core intelligence of the agent is encoded in its acquisition function, α(x). This function must
navigate a complex trade-off between seeking high rewards (exploitation), reducing model uncer-
tainty (exploration), and managing evaluation costs. At each iteration t, the next evaluation point
xt+1 is selected by maximizing this utility:

xt+1 = argmax
x∈X

α(x|Dt, Brem) (22)

where Dt = {(xi, yi, ci)}ti=1 is the set of previously evaluated points and Brem is the remaining
budget. The design of α(x) is the single most critical factor for achieving high performance.

We propose to automate the discovery of superior acquisition functions using the HiFo-Prompt
framework. Rather than relying on static, human-designed heuristics, HiFo-Prompt generates a
novel utility function, Hutility, from scratch. This generated function is highly context-aware, syn-
thesizing all critical information available at each decision step. It explicitly considers the surrogate
models’ predictions, the best-found solution so far (y∗t = maxi yi), and the dynamic state of the
budget:

α(x) = Hutility
(
µf (x), σf (x), µc(x), y

∗
t , Bused, Btotal

)
(23)

By generating a holistic function that reasons about the interplay between potential gain, uncertainty,
cost, and remaining resources, HiFo-Prompt creates powerful and adaptive sampling strategies. This
approach moves beyond hand-crafted designs, enabling superior performance in complex, budget-
constrained optimization scenarios.

C MORE RESULTS

C.1 TRAVELING SALESMAN PROBLEM

To demonstrate the generality and robustness of the heuristic designed by our proposed method,
we conduct a comprehensive evaluation using the real-world benchmark dataset TSPLib (Reinelt,
1991). TSPLib is a well-established collection of the TSP instances, widely used in the research
community for benchmarking optimization algorithms. For our experiments, we select a diverse
subset of TSP instances from TSPLib, specifically focusing on those containing no more than 500
nodes. This selection criterion ensures a manageable problem scale while still retaining the com-
plexity necessary to assess algorithmic performance effectively.

In our evaluation framework, we adopt a step-by-step construction approach to solve the TSP, which
incrementally builds a tour by selecting the next node based on a learned heuristic. This paradigm
allows us to evaluate the quality of decisions made at each step and better observe the contribution of
the designed heuristic to the final solution quality. To rigorously assess the effectiveness and compet-
itiveness of our proposed heuristic, we compare its performance against state-of-the-art LLM-based
AHD baselines. These methods represent recent advances in leveraging large language models for
combinatorial optimization tasks and serve as strong comparative baselines in our study. The ex-
perimental results, which include performance metrics, are summarized in Table ??. These results
provide empirical evidence that our method not only performs competitively but also generalizes
well across a variety of TSP instances in real-world scenarios.

C.2 ONLINE BIN PACKING PROBLEM

To provide a more comprehensive empirical validation and to assess the robustness of our frame-
work, we conducted further evaluations of the online Bin Packing Problem (BPP) on a broader and
more challenging set of Weibull-distributed instances. These instances, which more closely mimic
real-world scenarios than uniform distributions, were generated following the protocol established

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

in prior work on LLM-based heuristic discovery (Romera-Paredes et al., 2024). Table 6 presents a
detailed comparative analysis of our method against a wide spectrum of competitors, including both
classical, widely-adopted handcrafted heuristics (First Fit, Best Fit) and a suite of contemporary
approaches based on Large Language Models.

For each combination of bin capacity and problem size, the dataset includes five unique instances.
Performance is quantified by the average percentage gap to the known theoretical lower bound across
these instances, where a smaller value signifies a more efficient and effective packing solution.
The empirical results unequivocally demonstrate the superior performance of the heuristic we have
discovered. As shown in the table, our method consistently outperforms all baseline methods in
nearly every setting, securing the smallest average gap in 8 out of the 9 distinct configurations
tested. This highlights a remarkable level of consistency and dominance. The only exception is the
(Capacity=100, Size=10k) case, where Funsearch achieves a marginally lower gap. However, our
method’s strong performance across the entire parameter space underscores its greater reliability and
generalizability compared to methods that may excel only in specific, narrow scenarios. Notably,
our approach scales gracefully, achieving extremely low gap values (e.g., 0.41%, 0.42%) on the
largest and most complex problems, significantly surpassing both traditional algorithms and other
state-of-the-art LLM-driven frameworks. This comprehensive evaluation on challenging instances
further validates the efficacy of our evolutionary framework, showcasing its capacity to discover
sophisticated and high-performance heuristics that are robust across varied problem characteristics.

Table 6: Results on Online BPP in Weibull instances with varied capacities and problem sizes.
Results marked with * denote values taken from (Liu et al., 2024b).

Capacity Size First Fit Best Fit EoH ReEvo HSEvo MCTS-AHD Ours

100
1k 5.32% 4.87% 3.10% 3.63% 3.51% 3.38% 2.19%
5k 4.40% 4.08% 1.02% 0.78% 1.91% 0.99% 0.69%

10k 4.44% 4.09% 0.80% 0.35% 1.68% 0.84% 0.42%

300
1k 4.93% 4.48% 3.04% 7.34% 6.88% 3.21% 2.08%
5k 4.18% 3.83% 1.00% 4.47% 5.47% 0.95% 0.66%

10k 4.20% 3.87% 0.78% 4.05% 5.26% 0.85% 0.39%

500
1k 4.97% 4.50% 3.04% 5.92% 5.80% 3.20% 2.07%
5k 4.27% 3.91% 1.00% 3.24% 4.39% 0.95% 0.66%

10k 4.28% 3.95% 0.78% 2.79% 4.14% 0.85% 0.40%

C.3 FLOW SHOP SCHEDULING PROBLEM

Table 7 presents a comparative analysis of the performance of EoH and our proposed method on
FSSP of varying scales, defined by the number of jobs n and machines m. Performance is evaluated
using two key metrics: the objective function value and the relative gap, where the gap is measured
with respect to the solution quality of an advanced handcrafted heuristic. A smaller gap reflects a
solution that is closer to the heuristic baseline and, therefore, indicates higher solution quality. The
results demonstrate that our method consistently achieves smaller gaps across all tested problem
configurations, regardless of scale. Moreover, in many cases, it outperforms the advanced heuristic
itself in terms of the raw objective value. This consistent superiority suggests that our approach not
only generalizes well across diverse FSSP instances (Liu et al., 2024b) but also offers a competitive
alternative to domain-specific heuristics, exhibiting both strong effectiveness and robustness.

C.4 BAYESIAN OPTIMIZATION

Table 8 presents the experimental results on the design of cost-aware acquisition functions
(CAFs) (Yao et al., 2024) in Bayesian Optimization. We compare our method against both man-
ually crafted CAFs and those generated by LLM-based AHD methods. To ensure a fair comparison,
all LLM-based AHD approaches utilize the same underlying language model. Our method achieves
superior performance on the majority of benchmark functions, outperforming traditional CAFs (e.g.,
EI, EIpu, EI-cool) (Yao et al., 2024) as well as recent LLM-based AHD baselines (e.g., EoH (Liu
et al., 2024b), MCTS (Zheng et al., 2025)). The performance advantage is particularly pronounced

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Results on FSSP. The best results are highlighted in bold.

n m
EoH Ours

Gap Time(s) Gap Time(s)

20
5 0.25% 7.5 -0.01% 5.5

10 0.31% 13.0 0.17% 8.8
20 0.20% 23.8 0.10% 18.5

50
5 0.01% 45.1 0.00% 29.7

10 0.29% 83.9 0.17% 50.6
20 0.84% 168.4 0.58% 101.1

100
5 -0.02% 230.2 -0.04% 146.7

10 0.23% 299.6 0.13% 243.5
20 0.94% 305.2 0.51% 303.0

200
10 0.37% 337.1 0.12% 317.2
20 1.23% 334.6 0.71% 321.4

Table 8: Results on BO. The results denote the absolute error relative to the optimal solution. Results
marked with * are from (Yao et al., 2024). The best results are highlighted in bold.

Ackley Rastrigin Griewank Rosenbrock Levy ThreeHumpCamel

EI* 2.66 4.74 0.49 1.26 0.01 0.05
EIpu* 2.33 5.62 0.34 2.36 0.01 0.12
EI-cool* 2.74 5.78 0.34 2.29 0.01 0.07

EOH 3.11 3.48 0.72 2.57 0.04 0.18
MCTS 3.23 0.87 0.43 1.30 0.01 0.05
Ours 1.78 0.45 0.41 1.50 0.00 0.01

StyblinskiTang Hartmann Powell Shekel Hartmann Cosine8

EI* 0.03 0.00 18.89 7.91 0.03 0.47
EIpu* 0.02 0.00 19.83 7.92 0.03 0.47
EI-cool* 0.03 0.00 14.95 8.21 0.03 0.54

EOH 2.89 0.01 13.71 8.71 0.47 1.04
MCTS 0.02 0.00 1.91 5.14 0.08 0.29
Ours 0.02 0.01 2.65 4.08 0.57 0.28

on challenging functions such as Rastrigin, ThreeHumpCamel, and Shekel. These results underscore
the robustness and strong generalization ability of our approach across a wide range of optimization
landscapes.

C.5 COMPARATIVE RESULTS

We compared the progression of objective function values during the evolutionary process of our
method and EoH on both the TSP and Online BPP. Figure 3 presents the convergence analysis
curves. The figure demonstrates that our method converges more rapidly while requiring fewer
individuals in the population, indicating higher efficiency. Additionally, we have evaluated our
method on a variety of large language models, with the results presented in Table 9.

C.6 PARAMETER SENSITIVITY ANALYSIS

Based on the parameter sensitivity analysis results (see in Figure 4), the default parameter settings of
the genetic algorithm (population size 8, maximum generations 12, insight pool size 30, stagnation
threshold 3, diversity threshold 0.3) demonstrate robust overall performance. The analysis reveals
that population size significantly influences convergence behavior: excessively small values (e.g.,
4) tend to cause premature convergence, while overly large values (e.g., 12) reduce convergence

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16 18 20
Iteration Number

6.0

6.2

6.4

6.6
O

bj
ec

tiv
e

Va
lu

e
HiFo-Prompt Termination Line

Convergence Analysis for the Traveling Salesman Problem

Ours(4 population)
EoH(10 population)

0 2 4 6 8 10 12 14 16 18 20
Iteration Number

0.01

0.02

0.03

0.04

0.05

O
bj

ec
tiv

e
Va

lu
e

HiFo-Prompt Termination Line

Convergence Analysis for the Online Bin Packing Problem

Ours(4 population)
EoH(20 population)

Figure 3: Convergence Analysis for TSP and Online BPP.

Table 9: Results with different LLMs.
Method TSP-construction Online BPP

qwen2.5-max 0.274% 0.584%
GPT-4o-mini 3.835% 0.634%
DeepSeek-v3 4.306% 0.694%
Deepseek-r1 5.343% 1.248%
claude3.5-sonnet 5.036% 0.734%

efficiency. The maximum generations parameter achieves a near-optimal solution at 12 generations,
with diminishing returns observed beyond this point. An insight pool size of 30 effectively balances
diversity maintenance and noise avoidance. The dual-threshold parameters at their default values
optimally balance exploration and exploitation. Overall, the algorithm essentially converges within
6–8 generations, confirming that the current default configuration represents the optimal choice,
ensuring solution quality while maintaining computational efficiency.

0 1 2 3 4 5 6 7
Iteration

5.8

6.0

6.2

6.4

6.6

6.8

O
bj

ec
tiv

e
Va

lu
e

Population Size
pop_size=4
pop_size=8 (default)
pop_size=12

2 4 6 8 10 12 14 16
Generation

5.7

5.8

5.9

6.0

6.1

6.2

6.3

6.4
Max Generations

generations=8 (default)
generations=12
generations=16

1 2 3 4 5 6 7 8
Generation

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6
Insight Pool Size

pool_size=10
pool_size=30 (default)
pool_size=50

1 2 3 4 5 6 7 8
Generation

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6
Stagnation Threshold

threshold=1
threshold=3 (default)
threshold=5

1 2 3 4 5 6 7 8
Generation

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6
Diversity Threshold

threshold=0.1
threshold=0.3 (default)
threshold=0.5

Parameter Sensitivity Analysis

Figure 4: Parameter Sensitivity Analysis.

C.7 CONSUMPTION OF TIME AND TOKEN

Compared to other LLM-based AHD methods, our approach demonstrates advantages in both time
and token consumption, with particularly significant reductions in computational time. Based on
qwen2.5-maxmodel, we calculated the runtime and token consumption of various methods across
three problem domains: TSP-construction, Online BPP, and BO-CAF.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 10: Time and token consumption with different methods.
Methods Consumption TSP-construction Online BPP BO-CAF

EoH
Time 1.2h 1h 2h
Input Token 0.8M 0.5M 1.2M
Output Token 0.2M 0.2M 0.5M

ReEvo
Time 2h - -
Input Token 1.1M - -
Output Token 0.4M - -

MCTS-AHD
Time 4h 3h 14h
Input Token 1M 1M 1.3M
Output Token 0.3M 0.2M 0.6M

Ours
Time 40 min 36min 1h
Input Token 0.5M 0.28M 0.8M
Output Token 0.2M 0.12M 0.2M

D ALGORITHM DETAILS

This section provides detailed pseudocode for the core components of the HiFo-Prompt framework.
We first present the main algorithm, followed by the specific implementations for the survival selec-
tion and parent selection mechanisms.

D.1 MAIN FRAMEWORK ALGORITHM

Algorithm 3 outlines the complete, end-to-end procedure for the HiFo-Prompt framework. It details
the main evolutionary loop, starting from population initialization and proceeding through iterative
generations. Each generation consists of four primary phases: (1) Foresight and Hindsight, where
the Evolutionary Navigator and Insight Pool generate the control vector; (2) Construction, where the
LLM generates new heuristics under the guidance of the control vector; (3) Evaluation & Feedback,
where offspring are evaluated and the Insight Pool learns from the results; and (4) Selection, where
the next generation’s population is formed.

Algorithm 1 Greedy Population Management
Input: A population of individuals P , Target population size Ntarget

Output: A new population Pnew with size at most Ntarget

1: Pvalid ← Filter out individuals from P with null objective values
2: Initialize an empty list Punique

3: Initialize an empty set of seen objectives Oseen

4: for each individual i ∈ Pvalid do
5: if i.objective /∈ Oseen then
6: Add i to Punique

7: Add i.objective to Oseen

8: end if
9: end for

10: Nactual ← min(Ntarget, |Punique|)
11: Sort Punique in ascending order based on objective values.
12: Pnew ← the first Nactual individuals from sorted Punique

13: return Pnew

D.2 SURVIVAL SELECTION MECHANISM

To maintain a constant population size across generations, we employ a survival selection mecha-
nism after new offspring have been generated and evaluated. Algorithm 1 details this procedure.
It implements a greedy, elitist strategy that first filters out any invalid or unsuccessfully evaluated

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 2 Rank-Based Parent Selection
Input: Sorted population P (best to worst), Number of parents to select m
Output: A list of selected parents Pparents

1: Let N ← size of P
2: Initialize an empty list for probabilities W ← {}
3: for k = 0 to N − 1 do
4: Calculate probability wk ∝ 1/(k + 1 +N) {Rank-based weighting}
5: Append wk to W
6: end for
7: Select m individuals from P with replacement, using probabilities W , to form Pparents.
8: return Pparents

individuals. It then ensures uniqueness based on objective values to maintain diversity in the per-
formance space. Finally, it sorts the unique, valid individuals by their performance and truncates
the population to the target size Ntarget, ensuring that only the highest-performing heuristics are
retained for the next generation.

D.3 PARENT SELECTION MECHANISM

For the generative operators that require parent heuristics (e.g., crossover and mutation), a parent se-
lection mechanism is used to choose individuals from the current population. Algorithm 2 describes
the rank-based selection method used in our framework. This approach assigns a selection prob-
ability to each individual that is inversely proportional to its performance rank. This ensures that
higher-performing individuals are more likely to be selected as parents, creating a strong selection
pressure that guides the search towards promising regions of the heuristic space, while still allowing
lower-ranked individuals a chance to contribute.

E LIMITATION AND FUTURE WORK

E.1 LIMITATION

While HiFo-Prompt demonstrates significant advancements in automated heuristic design, its cur-
rent architecture possesses inherent limitations that define the boundaries of its present capabilities.

First, the core decision-making mechanism of the Evolutionary Navigator is predicated on a static,
handcrafted control logic. This rule-based system, while interpretable, lacks the capacity for self-
adaptation. Its fixed thresholds for stagnation, progress, and diversity are calibrated for the evaluated
problems but may not be universally optimal, potentially constraining its performance on novel
problem landscapes or over different evolutionary timescales. The Navigator can react to predefined
states but cannot learn or refine its control strategy from experience.

Second, the knowledge evolution within the Insight Pool is fundamentally intra-task. The framework
excels at capturing, refining, and reusing design principles within the context of a single optimization
problem. However, the true generalizability of these learned insights across different problem do-
mains remains an unevaluated and open question. We have not yet systematically validated whether
insights distilled from solving one problem class can effectively bootstrap the learning process on a
structurally different, unseen one.

E.2 FUTURE WORK

The limitations mentioned above naturally chart a course for several high-impact avenues for future
research, aimed at enhancing the framework’s autonomy, generality, and strategic depth.

A primary research thrust will be to transcend the Evolutionary Navigator’s current heuristic-driven
design by developing it into a learned metacontroller. We propose parameterizing its control func-
tion and leveraging techniques from the domain of Meta-Reinforcement Learning (Meta-RL). In
this paradigm, the Navigator would operate as a high-level agent, learning a control policy that
dynamically maps observational data from the evolutionary process—such as population diversity

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

metrics, fitness landscape topology, and rates of convergence—to a nuanced control vector. This
vector would modulate critical evolutionary parameters in real-time, including operator probabili-
ties, selection pressure, and even strategic alterations to the LLM prompts themselves. The reward
signal for this meta-agent would be carefully engineered to reflect overarching goals of evolutionary
efficiency, such as maximizing the rate of fitness improvement or minimizing the computational cost
to reach a performance threshold. Successfully implementing this would elevate the framework from
a system guided by static rules to one capable of learning and deploying its own adaptive control
strategies online, thereby achieving a superior order of autonomy and problem-specificity.

Another critical, complementary direction is the systematic investigation of inter-task knowledge
transfer, intending to evolve the framework from a single-task solver into a more general algo-
rithmic discovery platform. This research will proceed along two parallel vectors. First, we will
conduct a rigorous empirical evaluation of the framework’s zero-shot and few-shot transfer capa-
bilities. By applying a mature Insight Pool—developed for a source task—to novel target domains,
we can precisely quantify the generality of the learned principles and measure the extent to which
discovery costs can be amortized across problems. Second, we will pioneer the exploration of more
abstract and powerful knowledge representations that transcend the inherent ambiguities of natural
language strings. This includes investigating structured canonical forms, such as predicate logic or
probabilistic program sketches, and rich semantic representations like knowledge graphs. The cen-
tral hypothesis is that such formalisms can more effectively decouple a core algorithmic invariant
from its domain-specific instantiation, thereby creating a more robust foundation for seamless and
compositional cross-domain knowledge transfer.

F PROMPTS WITH FORESIGHT AND HINDSIGHT

This section provides the specific, concrete templates of the prompts used to guide the LLM, offering
a transparent and reproducible view of the core interaction engine at the heart of our HiFo-Prompt
framework. The ’HiFo’ (Hindsight-Foresight) name is not arbitrary; it directly reflects our core
methodology: the strategic deployment of distinct, context-aware prompts at different stages of the
evolutionary process. ’Foresight’ prompts are strategically employed during the initial generation
and creative mutation stages, encouraging the LLM to explore a diverse space of novel heuristic
possibilities. In stark contrast, ’Hindsight’ prompts play a critical role in reflection and data-driven
refinement, leveraging empirical performance feedback from past evaluations to methodically prune
the search space and systematically improve promising solutions.

To ground these abstract concepts and make our prompts tangible, we anchor our examples in the
canonical Online Bin Packing (OBP) problem. The objective in OBP is to assign an incoming
sequence of items of varying sizes into a minimum number of fixed-capacity bins, with the crucial
constraint that each item must be placed without knowledge of future items. Within this problem
context, our framework’s specific task is to evolve a high-performance Python scoring function,
score(item, bin), which acts as the core decision-making logic. This function evaluates the suitability
of a specific candidate bin for an incoming item. A higher returned score signifies a more desirable
placement, and the overarching control logic of the framework places the item in the bin that yields
the maximum score. The following subsections provide verbatim templates for each distinct phase
of the evolutionary process, clearly demonstrating how the system’s guidance dynamically shifts its
focus—from broad exploration to focused exploitation—as the search progresses.

F.1 INITIAL PROMPT STRATEGY I1

The i1 operator uses the following prompt template to generate the initial population of heuristics.
The guidance provided to the LLM at this stage comes from the initial state of the framework’s
components, including a set of high-quality seed insights.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Prompt for Operator i1

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
First, describe your new algorithm and main steps in one sentence. The description must be inside a
brace. Next, implement it in Python as a function named score.
This function should accept 2 input(s): ’item’, ’bins’.
The function should return 1 output(s): ’scores’.
The score function is designed to evaluate the placement options for a given item. It takes the item
to be placed and the current list of bins as input. It returns a list of numerical scores, with each score
corresponding to a bin in the input list. This list of scores guides the heuristic in selecting the most
suitable bin for the item according to the generated logic.
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle...>

For the evolutionary regime, please pay special attention to: <A specific instruction
from Design Directive>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

F.2 RECOMBINATION PROMPT STRATEGY E1

The following template for the e1 operator is a representative example of a prompt used during the
main evolutionary loop. It demonstrates how parent heuristics and the full, dynamic guidance from
the meta-cognitive components are integrated.

Prompt for Operator e1

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have k existing algorithms with their codes as follows:
No.1 algorithm and the corresponding code are:
<Description of the first algorithm>
<The Python code implementation of the first algorithm>
. . .
No.k algorithm and the corresponding code are:
<Description of the last algorithm>
<The Python code implementation of the last algorithm>
Please help me create a new algorithm that has a totally different form from the given ones.
First, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Next,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle...>

For the evolutionary regime, please pay special attention to: <A specific Design
Directive for promoting structural novelty, preserving diversity,
and avoiding premature convergence>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Prompt for Operator m2

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have one algorithm with its code as follows:
Algorithm description: <Description of the parent algorithm>
Code:
<The Python code implementation of the parent algorithm>
Please identify the main algorithm parameters and assist me in creating a new algorithm that has
different parameter settings of the score function provided.
First, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Next,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle>

When adjusting parameters, please pay special attention to: <A specific Design
Directive for parameter tuning>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

Prompt for Operator m1

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have one algorithm with its code as follows:
Algorithm description: <Description of the parent algorithm>
Code:
<The Python code implementation of the parent algorithm>
Please assist me in creating a new algorithm that has a different form but can be a modified version of
the algorithm provided.
First, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Next,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle>

For this mutation, please pay special attention to: <A specific Design Directive for
mutation>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

F.3 RECOMBINATION PROMPT STRATEGY E2

The e2 operator focuses on ”motivated recombination.” It prompts the LLM to first identify a com-
mon ”backbone” or core principle shared by the parent heuristics and then to create a new, improved
algorithm based on that shared foundation.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Prompt for Operator e2

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have k existing algorithms with their codes as follows:
No.1 algorithm and the corresponding code are:
<Description of the first algorithm>
<The Python code implementation of the first algorithm>
. . .
No.k algorithm and the corresponding code are:
<Description of the last algorithm>
<The Python code implementation of the last algorithm>
Please help me create a new algorithm that has a totally different form from the given ones but can be
motivated from them.
Firstly, identify the common backbone idea in the provided algorithms. Secondly, based on the back-
bone idea, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Thirdly,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle>

For this recombination, please pay special attention to: <A specific Design Directive
for simplification prune low-impact features>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

F.4 MUTATION PROMPT STRATEGY M1

The M1 operator implements a form of targeted mutation, generating a single-parent descendant
by refining its most critical components. It performs surgical modifications to elements like scor-
ing rules or parameter weights, while meticulously safeguarding the parent’s established, high-
performing logic. This process is not random; it is guided by a synthesis of recent, high-utility
design ”insights” and a high-level strategic directive. By injecting controlled, purposeful diversity,
M1 enables the search to escape local optima without dismantling the parent’s effective architec-
ture. This deliberate balance between exploitation (refining what works) and exploration (seeking
novelty) is crucial for accelerating convergence towards superior heuristics.

F.5 MUTATION PROMPT STRATEGY M2

The M2 operator implements parameter mutation, a targeted process to modify a heuristic’s numer-
ical behavior. It instructs the LLM to first deconstruct the parent’s score function to identify its key
hyperparameters. Following this analysis, the model is prompted to generate a new set of parameter
values. This generation can either explore novel configurations through significant changes or fine-
tune existing ones via subtle adjustments. This surgical approach methodically injects parametric
diversity into the population while preserving the integrity of the core algorithmic logic.

F.6 MUTATION PROMPT STRATEGY M3

The M3 operator is designed for structural simplification to enhance heuristic robustness and com-
bat overfitting. It instructs the LLM to perform a critical analysis of the parent score function,
specifically targeting components suspected of being over-specialized to in-distribution data. These
potentially brittle or overly complex segments are then strategically pruned or streamlined. The out-
come is a more parsimonious and computationally lean implementation that is theorized to exhibit
superior generalization to out-of-distribution scenarios, all while preserving the original function
signature to ensure architectural compatibility.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Prompt for Operator m2

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have one algorithm with its code as follows:
Algorithm description: <Description of the parent algorithm>
Code:
<The Python code implementation of the parent algorithm>
Please identify the main algorithm parameters and assist me in creating a new algorithm that has
different parameter settings of the score function provided.
First, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Next,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle>

When adjusting parameters, please pay special attention to: <A specific Design
Directive for parameter tuning>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

Prompt Template for Insight Extraction

The following are core descriptions and/or code of high-performance optimization algorithms
evolved recently:
Algorithm 1: <Natural language description and/or code of elite
individual 1>
Algorithm 2: <Natural language description and/or code of elite
individual 2>
Algorithm n: ... (and so on for the top 30% of the population)

Please extract 1-2 concise, generic, and performance-positive [design principles] or [effective pat-
terns] from the above algorithms. These principles should be applicable to various combinatorial
optimization problems, not just the specific problem domain. When formulating these principles, it
is essential to draw insights from both the conceptual natural language descriptions and their cor-
responding code implementations. Focus on identifying the underlying strategic design choices and
algorithmic methodologies rather than superficial characteristics or specific implementation minutiae.

Each principle/pattern must be expressed as an independent sentence in the following format:
• Balance local optimization with global solution structure when making decisions.

• Prioritize choices that maintain flexibility for future decision-making steps.

• Implement adaptive mechanisms that respond to problem instance characteristics.

Provide only the list of principles, without any preamble or other explanatory text.

G MANAGING FORESIGHT AND HINDSIGHT KNOWLEDGE

G.1 HINDSIGHT EVOLUTION VIA INSIGHT DISTILLATION

To continually enrich our system’s understanding of effective optimization strategies, we employ
a Large Language Model (LLM) to distill high-level design principles from high-performing al-
gorithms. This process is guided by a structured prompt, shown below, which provides the LLM

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

with the descriptions and/or code of elite solutions discovered during an evolutionary run. The core
instruction tasks the model with synthesizing concise, generalizable, and performance-positive pat-
terns, drawing insights from both the conceptual descriptions and the code implementations. This
automated extraction mechanism allows our system to learn from its own successes and progres-
sively build a more sophisticated knowledge base.

Seed Insights

• Design adaptive hybrid meta-heuristics synergistically fusing multiple search paradigms and
dynamically tune operator parameters based on search stage or problem features.

• Employ machine learning to mine problem structures and use learned insights to intelligently
bias towards promising search regions.

• Explore objective function engineering by introducing auxiliary objectives or dynamically
adjusting weights to reshape the search landscape.

• Construct problem-specialized solution representations and co-design dedicated operators to
fully leverage the representation’s structure.

• Implement intelligent diversification based on solution feature space analysis to systemati-
cally target uncovered regions and escape local optima.

G.2 INSIGHT SEED POOL

At the inception of the framework’s execution, the LLM bootstraps the heuristic generation process
by drawing from a curated repository of Seed Insights, a mechanism designed to mitigate the classic
”cold start” problem and channel the model’s creativity. These insights, which encapsulate estab-
lished principles and canonical rules-of-thumb distilled from decades of human expertise in heuristic
design—such as the ”Shortest Processing Time” principle in scheduling or the ”Nearest Neighbor”
concept in routing—are not rigid constraints but rather high-level conceptual guidelines. They are
strategically injected into the foundational prompts, often framed within a dedicated ”human knowl-
edge” block, to act as an intellectual scaffold. This initial infusion of well-vetted knowledge serves
to ground the search, preventing the generation of naive or logically flawed heuristics and providing
a potent directional bias that immediately steers the early stages of algorithmic evolution away from
vast, unproductive regions of the design space. By ensuring the process begins not from a tabula rasa
but from a high-quality, well-founded starting point, these seed insights exert a persistent influence
that accelerates convergence and significantly enhances the quality and novelty of all subsequent
automated discovery.

G.3 THE DIRECTIVE POOL FOR FORESIGHT

To operationalize the Evolutionary Navigator’s high-level strategy, we map the chosen
regime—Exploration, Exploitation, or Balance—to a specific Design Directive. Each directive is
a fine-grained textual instruction, uniformly sampled from a predefined pool corresponding to the
active regime. This sampled directive is then integrated into the generation prompt. This two-tiered
mechanism facilitates fine-grained control over the generation process, ensuring model outputs are
precisely aligned with the overarching evolutionary objective.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Design Directive

• Balance:
– Optimizing objective function evaluation criteria.
– Considering the long-term impact of current decisions.
– Balancing local optimality with global search strategies.
– Improving algorithm robustness across different problem instances.
– Managing computational complexity and time efficiency.

• Exploitation:
– Refining core evaluation and scoring functions.
– Fine-tuning critical algorithm parameters and thresholds.
– Improving the precision of existing heuristics and rules.
– Reducing unnecessary computational overhead.

• Exploration:
– Exploring novel solution construction methodologies.
– Investigating alternative problem decomposition approaches.
– Introducing new randomization or adaptive mechanisms.
– Experimenting with hybrid strategy combinations.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

Throughout the drafting and revision process of this manuscript, we employed Google’s Gemini
large language model as an advanced writing and editing tool. Its use was strictly limited to the
refinement of the language and presentation of our pre-existing ideas and research. The model’s
contributions include: (1) correcting grammatical, spelling, and punctuation errors; (2) rephrasing
complex sentences to improve readability and precision; and (3) suggesting adjustments to tone and
style to ensure consistency with academic standards.

Critically, the LLM was not used for any substantive intellectual contribution. All aspects of the
research, including the formulation of research questions, literature review, methodology, data anal-
ysis, and the drawing of conclusions, were conducted exclusively by the human authors. Each
suggestion provided by the LLM was critically evaluated by the authors for accuracy and appropri-
ateness, and we retain full responsibility for all claims, arguments, and the final articulation of the
work.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 3 HiFo-Prompt
Input: Problem definition F , optional seed algorithms Pseed
Parameter: Population size Npop, number of generations Gmax, set of evolutionary foundation
prompt strategies O with weightsW , number of parents m
Output: The final population of evolved algorithms P

1: Initialize Population P:
2: if Pseed is provided then
3: P ← Evaluate and populate from Pseed
4: else
5: P ← ∅
6: while |P| < Npop do
7: Indnew ← Generate an initial algorithm via LLM
8: Evaluate fitness of Indnew using F
9: Add valid Indnew to P

10: end while
11: end if
12: Initialize Insight PoolMinsight with a set of default design principles
13: Initialize Evolutionary Navigator Cmeta
14:
15: for g = 1 to Gmax do
16: Update Cmeta with current population state
17: if a condition for wisdom extraction is met then
18: Ptop ← Select top-performing individuals from P
19: new tips← Prompt LLM to extract generic design principles from Ptop
20: Add new tips toMInsight
21: end if
22:
23: for each foundation prompt strategy o ∈ O do
24: if random() <W[o] then
25: (evolutionary regime, design directive) ← Cmeta.get guidance() {Get strategic guid-

ance}
26: insights←MInsight.get insights() {Get inspiring principles}
27: Pparents ← Select m parents from P
28: Indnew ← Generate offspring via LLM using o, Pparents, guidance, and insights
29: Evaluate fitness of Indnew using F
30: if Indnew is valid and not duplicated then
31: effectiveness← Calculate effectiveness of tips based on Indnew’s performance
32: MInsight.update insight stats(insights, effectiveness) {Feedback loop}
33: Add Indnew to P
34: end if
35: end if
36: end for
37: P ← SurvivalSelection(P , Npop) {Manage population size}
38: end for
39: return Best individuals from P

32

	Introduction
	Related Work
	Methodology
	Guided Prompt Synthesis for AHD
	Hindsight: Mechanisms of the Self-Evolving Insight Pool
	Foresight: The Evolutionary Navigator for State-Aware Guidance

	Experiments
	Conclusion
	Preliminary
	Problem Formulation of Automatic Heuristic Design
	LLM-driven Evolutionary Computation
	Knowledge-Augmented Evolutionary Computation

	Optimization Problem Details
	Traveling Salesman Problem
	Online Bin Packing Problem
	Flow Shop Scheduling Problem
	Bayesian Optimization

	More Results
	Traveling Salesman Problem
	Online Bin Packing Problem
	Flow Shop Scheduling Problem
	Bayesian Optimization
	Comparative Results
	Parameter Sensitivity Analysis
	Consumption of Time and Token

	Algorithm Details
	Main Framework Algorithm
	Survival Selection Mechanism
	Parent Selection Mechanism

	Limitation and Future Work
	Limitation
	Future Work

	Prompts with Foresight and Hindsight
	Initial Prompt Strategy I1
	Recombination Prompt Strategy E1
	Recombination Prompt Strategy E2
	Mutation Prompt Strategy M1
	Mutation Prompt Strategy M2
	Mutation Prompt Strategy M3

	Managing Foresight and Hindsight Knowledge
	Hindsight Evolution via Insight Distillation
	Insight Seed Pool
	The Directive Pool for Foresight

	The Use of Large Language Models (LLMs)

