
Published as a conference paper at ICLR 2026

HIFO-PROMPT: PROMPTING WITH HINDSIGHT AND
FORESIGHT FOR LLM-BASED AUTOMATIC HEURISTIC
DESIGN

Chentong Chen1∗, Mengyuan Zhong1∗, Ye Fan2, Jialong Shi1†, Jianyong Sun1†
1Xi’an Jiaotong University
2Northwest Polytechnical University
{chengtong.chen, my.zhong}@stu.xjtu.edu.cn,
fanye@nwpu.edu.cn, {jialong.shi, jy.sun}@xjtu.edu.cn

ABSTRACT

This paper investigates the application of Large Language Models (LLMs) in
Automated Heuristic Design (AHD), where their integration into evolutionary
frameworks reveals a significant gap in global control and long-term learning.
We propose the Hindsight-Foresight Prompt (HiFo-Prompt), a novel framework
for LLM-based AHD designed to overcome these limitations. This is achieved
through two synergistic strategies: Foresight and Hindsight. Foresight acts as a
high-level meta-controller, monitoring population dynamics(e.g., stagnation and
diversity collapse) to switch the global search strategy between exploration and
exploitation explicitly. Hindsight builds a persistent knowledge base by distill-
ing successful design principles from past generations, making this knowledge
reusable. This dual mechanism ensures that the LLM is not just a passive op-
erator but an active reasoner, guided by a global plan (Foresight) while contin-
uously improving from its cumulative experience (Hindsight). Empirical results
demonstrate that HiFo-Prompt significantly outperforms a comprehensive suite of
state-of-the-art AHD methods, discovering higher-quality heuristics with substan-
tially improved convergence speed and query efficiency. Our code is available at
https://github.com/Challenger-XJTU/HiFo-Prompt.

1 INTRODUCTION

Combinatorial Optimization (CO) problems, which involve finding an optimal solution from a dis-
crete set of possibilities, are ubiquitous in science and engineering. Because of their NP-hardness,
designing effective heuristics for these problems is a complex task, traditionally based on extensive
human experience and intuition (Camacho-Villalón et al., 2023).

The advent of Large Language Models (LLMs) has catalyzed a paradigm shift toward Automated
Heuristic Design (AHD) (Wang & Chen, 2023; Liu et al., 2024c). A particularly potent approach
marries LLMs with Evolutionary Computation (EC), casting the LLM as a high-level semantic mu-
tation operator. Foundational works such as FunSearch (Romera-Paredes et al., 2024) and EoH (Liu
et al., 2024b) established the viability of this LLM+EC paradigm, demonstrating its capacity to
discover novel and effective heuristics.

However, as the field progresses, two fundamental challenges have emerged in AHD: the inability
to steer the heuristic generation process based on population dynamics and the failure to distill and
manage the core design principles of high-performance heuristics to guide the subsequent heuristic
generation process.

First, many approaches lack a mechanism for global adaptive guidance. They often rely on local
or reactive signals; for instance, ReEvo (Ye et al., 2024) performs reflection on a single candi-
date, while methods such as MCTS-AHD (Zheng et al., 2025) passively embed the exploration-

∗Equal contribution.
†Corresponding author.

1

Published as a conference paper at ICLR 2026

exploitation trade-off within their search structure. This localized control does not respond to the
macroscopical dynamics of the population and cannot proactively intervene when the search en-
counters systemic issues such as premature convergence or a decline in diversity. A more aggressive
strategy involves in-weight adaptation (e.g., EvoTune (Šurina et al., 2025), CALM (Huang et al.,
2025)), which uses numerical gradients to fine-tune the LLM. Although powerful, this approach
incurs high computational costs from repeated fine-tuning and reduces the LLM to an opaque policy
network. Consequently, learning is implicitly encoded in model weights, preventing the extraction
of explicit design principles and obscuring the model’s symbolic reasoning process.

Second, existing frameworks suffer from poor knowledge persistence, a phenomenon we term
knowledge decay. Successful design strategies often remain entangled within specific code imple-
mentations; when parent candidates are discarded, the underlying logic is lost. Recent advances,
such as evolving the optimizer in MoH (Shi et al., 2025) or automating problem reduction in
RedAHD (Thach et al., 2025), operate in orthogonal dimensions. They do not explicitly decouple
algorithmic knowledge from executable forms. Consequently, the system fails to achieve cumula-
tive learning, perpetually rediscovering similar concepts instead of building on proven algorithmic
strategies.

To overcome these fundamental limitations, we propose HiFo-Prompt (Hindsight-Foresight
Prompt), a framework that establishes a hierarchical control architecture for LLM-based AHD.
HiFo-Prompt elevates the LLM from a mere code generator to a symbolic meta-optimizer by endow-
ing it with two synergistic capabilities: First, the Foresight module addresses the control problem
by serving as a meta-controller(Evolutionary Navigator) that observes population dynamics. Upon
detecting states like performance plateaus, it explicitly modulates the generative process by switch-
ing evolutionary regimes via transparent verbal gradients injected at the prompt level, serving as a
symbolic alternative to opaque and expensive numerical gradients. Second, the Hindsight module
addresses knowledge decay by implementing the Insight Pool, an evolving repository of abstracted
design principles. It distills core algorithmic patterns from specific code implementations, trans-
forming them into reusable knowledge. This mechanism allows the system to build on validated
design principles, effectively seeding subsequent generations with proven algorithmic strategies. In
summary, the contributions of our approach are as follows:

• We introduce HiFo-Prompt, a novel framework consisting of Hindsight and Foresight mod-
ules. It dynamically generates prompts for LLMs by decoupling thoughts from code,
thereby enabling independent updates and evaluations. This mechanism leads to a sig-
nificant reduction in both training time for heuristics and evaluation costs for LLMs.

• To improve the Hindsight and Foresight abilities of our method, we introduce the Insight
Pool and Evolutionary Navigator, respectively. The Insight Pool accumulates knowledge
from high-performing codes through iterative updates. The Evolutionary Navigator con-
trols population states by monitoring evolution and balancing exploration-exploitation dy-
namics.

• We evaluated the heuristics designed by HiFo-Prompt on complex optimization tasks, com-
paring them against advanced handcrafted heuristics and existing AHD approaches. Our
results achieve state-of-the-art performance in the AHD domain, with substantial improve-
ments over prior AHD methods, particularly excelling in the Traveling Salesman Problem
(TSP) and Flow Shop Scheduling Problem (FSSP).

2 RELATED WORK

LLM-driven Automatic Heuristic Design The integration of Large Language Models (LLMs)
into Evolutionary Computation (EC) is a vibrant new direction for Automated Heuristic Design
(AHD) (Liu et al., 2024a; Chauhan et al., 2025). Pioneered by works like FunSearch (Romera-
Paredes et al., 2024) and EoH (Liu et al., 2024b), this paradigm leverages the LLM as a powerful
semantic operator to generate heuristics as code. Recent efforts to advance this paradigm can be
categorized along several axes. Some works focus on refining search control through sophisticated
prompt engineering and guidance mechanisms (Ye et al., 2024; Dat et al., 2025), or by redesign-
ing the population structure itself (Zheng et al., 2025). A distinct, more model-centric approach
directly adapts the LLM’s parameters via reinforcement learning-based fine-tuning (Šurina et al.,

2

Published as a conference paper at ICLR 2026

Foundational
Prompt

Hindsight
Prompt

Foresight
Prompt

Foundational Prompt Strategies

Insight Pool

… …

Composite
Prompt

Self-Evolving

Prompt with Explore Regime

Prompt with Exploit Regime

Prompt with Balance Regime

EvolutionHeuristic

Elitist Heuristic
LLM

LLM

× N

insight-score

Synthesize

Insight
Distillation

insight-score

insight-score

insight-score insight-score

insight-score

select

select

select

Population State Information

Figure 1: The framework of HiFo-Prompt, which comprises two core processes. (1) Prompt Con-
struction: A foundational prompt is dynamically augmented with design directives from the Fore-
sight and insights from the Hindsight to form the final composite prompt. (2) Knowledge Evolu-
tion: A self-evolving loop is established where elite heuristics from the evolutionary process are
distilled into new insights, continuously enriching the Hindsight module’s knowledge base.

2025; Huang et al., 2025). At the highest level of abstraction, research has also explored evolving
other core components of the optimization process, such as the optimizer (Shi et al., 2025) or the
problem representation (Thach et al., 2025).

Knowledge Management in Generative Search Harnessing historical information is a corner-
stone of efficient search. In classical EC, methods like Cultural Algorithms (Maheri et al., 2021)
formalize this via a structured Belief Space that stores and evolves collective knowledge. Contem-
porary LLM-based approaches often rely on in-context reflection mechanisms (Shinn et al., 2023;
Bo et al., 2024), where the model self-critiques failures to inform its next attempt. However, this
knowledge is typically transient, unstructured, and instance-specific. Consequently, these methods
lack a mechanism for accumulating and generalizing insights over time, preventing the formation of
a persistent, structured knowledge base analogous to those in classical EC.

Adaptive Control in Evolutionary Computation Dynamically adapting search strategies is a
long-standing goal in EC. Historically, this has been addressed through low-level, reactive mecha-
nisms like Adaptive Operator Selection (AOS) (Álvaro Fialho, 2010; Tian et al., 2023) and parameter
control (Eiben & Smith, 2015; Aleti & Moser, 2016). These methods rely on numerical credit as-
signment, effectively voting for strategies that recently performed well, but they lack a semantic
understanding of the search dynamics (e.g., identifying population stagnation). The reasoning capa-
bilities of LLMs offer a paradigm shift towards higher-level, proactive control (Eiben et al., 1999;
Papa, 2021). Instead of merely adjusting parameters, LLMs can interpret population-level statistics
to suggest symbolic actions, such as increase mutation rate to escape a local optimum. This marks
a transition from fine-grained numerical tuning to semantic-based strategic adjustment.

3 METHODOLOGY

In this section, we introduce our proposed HiFo-Prompt, a novel framework that equips the evo-
lutionary process driven by LLM with mechanisms for learning and adaptation (shown in Figure
1). HiFo-Prompt integrates two synergistic components: a Foresight module for real-time adaptive
control, which monitors evolutionary dynamics to steer the search strategy, and a Hindsight module

3

Published as a conference paper at ICLR 2026

Pe
rf

or
m

an
ce

 (o
bj

ec
tiv

e)

Number of generations
841 2 3 5 6 7

6.04697
5.96625 5.956945.95694

5.93886 5.93886 5.83838 5.83838

Design adaptive hybrid meta-heuristics synergistically fusing multiple search paradigms
and dynamically tune operator parameters based on search stage or problem features

Insight 1

Employ machine learning or pattern recognition to mine deep problem structures and
optimal solution patterns then use learned insights to intelligently bias towards
promising search regions or constructive choices

Insight 2

Explore objective function engineering by introducing auxiliary or surrogate objectives or
by dynamically adjusting weights to reshape the search landscape aiding escape from
local optima or guiding diverse exploration

Insight 3

optimizing objective function evaluation criteria

……

considering long-term impact of current decisions

refining core evaluation and scoring functions

……

reducing unnecessary computational overhead and redundancy

exploring novel solution construction methodologies

……

introducing new randomization or adaptive mechanisms

E1: I have…create a new algorithm that has a totally…

E2: I have…but can be motivated from them…

M1: I have one algorithm…a modified version of the …

M2: I have one algorithm…a different parameter settings…

M3: First, you need to …simplify the components to…

……

Balance

Exploit

Explore

Hindsight——Insight Pool

Foresight——Regime Set

Foundational Prompt Strategies

Synthesize

Prompt for LLM
First, you need to identify the main components …… (M3)
Consider these successful design principles I've observed recently:
Design adaptive hybrid meta-heuristics synergistically …… (Insight 1)
Employ machine learning or pattern recognition to …… (Insight 2)
Explore objective function engineering by introducing …… (Insight 3)
When simplifying, please pay special attention to:
reducing unnecessary computational overhead and redundancy
(Exploit Regime)

LLM

Figure 2: Dynamic prompt generation process of HiFo-Prompt.

for long-term knowledge accumulation, which manages a self-evolving repository of successful de-
sign principles that we term insights. By uniting foresight-driven strategy with hindsight-informed
knowledge, our framework transforms the generative process into a robust, self-regulating system.

3.1 GUIDED PROMPT SYNTHESIS FOR AHD

Our HiFo-Prompt framework applies a Guided Prompt Synthesis mechanism that constructs each
prompt as a context-aware composite instruction. This mechanism integrates three interlocking
modules: Foundational prompt strategies, Hindsight, and Foresight. The resulting composite prompt
provides precise, multifaceted guidance to the LLM. A complete example of prompt generation
for TSP with step-by-step construction is provided in Figure 2, and the specific templates for all
operators (e.g., I1, E1, M1) are detailed in Appendix E.

Foundational prompt strategies. Our framework’s generative foundation is a set of Foundational
Prompt Strategies, which function as the LLM-equivalent of genetic operators. We first generate
heuristics from scratch using the initial prompt strategy I1, then evolve them with five foundational
prompts adapted from EoH (Liu et al., 2024b). These prompts are organized into two primary
strategies: 1) Reorganization Strategies, which include E1, synthesizing a new algorithm with
a novel structure from multiple parents, and E2, abstracting shared core ideas to generate con-
ceptually distinct variants; and 2) Mutation Strategies, which encompass M1, making structural
modifications for functionally equivalent variants; M2, tuning critical parameters; and M3, simpli-
fying components prone to overfitting. While this curated set provides the raw generative capability,
its effectiveness depends on contextual guidance. This is the role of the Hindsight and Foresight
modules, which inject insights and a design directive into the prompts to align each action with the
search’s current needs.

Hindsight Module. This module incorporates valid heuristic experience in the form of insights,
which are abstract and generalizable design principles distilled from successful heuristics. These
insights are managed in a dynamic Insight Pool, where each is assigned and continuously updated
with a credibility score based on its empirical performance. Before generation, high-scoring insights
are retrieved and embedded into the prompt. They serve as validated priors to steer the LLM toward

4

Published as a conference paper at ICLR 2026

promising designs. While effective for historical guidance, this module cannot address real-time
evolutionary needs.

Foresight Module. The Foresight module implements real-time evolutionary state control, or-
chestrated by its core component, the Evolutionary Navigator. The Navigator continuously monitors
macroscopic evolutionary indicators, such as performance stagnation and population diversity, to as-
sess the state of the search. Based on this analysis, it selects the governing evolutionary regime for
the subsequent generation. This regime dictates the evolutionary search direction by choosing one
of three explicit modes (Črepinšek et al., 2013): 1) Explore, to foster novelty when diversity is low
or progress has stalled; 2) Exploit, to refine high-performing solutions when progress is consistent;
3) Balance, to maintain a synergistic application of all operators. This directive guides the prompt,
ensuring the LLM adapts to the current search phase.

3.2 HINDSIGHT: MECHANISMS OF THE SELF-EVOLVING INSIGHT POOL

Initially, HiFo-Prompt initializes the Insight Pool with seed insights(See Section F.3) to bootstrap
the generative process. Serving as an initial scaffold, these seeds allow the framework to immedi-
ately shift focus to autonomously evolving novel heuristics. This is achieved through a continuous
lifecycle that systematically transforms transient evolutionary successes into reusable knowledge as-
sets, governed by three integrated phases: insight extraction, utility-driven application, and adaptive
pruning.

Initially, HiFo-Prompt initializes the Insight Pool with seed insights(See Section F.3) to bootstrap the
generative process. Serving as an initial scaffold, these seeds allow the framework to immediately
shift focus to autonomously evolving novel, problem-specific heuristics. This is achieved through
a continuous lifecycle that systematically transforms transient evolutionary successes into explicit,
reusable knowledge assets, governed by three integrated phases: insight extraction, utility-driven
application, and adaptive pruning.

Insight Extraction and Admission. The lifecycle begins by expanding the knowledge base. At
the end of each generation, we prompt an LLM to distill generalizable design principles (insights)
from the elite individuals of the population (See Section F.1). To preserve informational diversity,
a candidate insight knew is admitted to the insight pool Kpool only if its Jaccard similarity to all
existing pool members falls below a novelty threshold θnovelty. For this comparison, each insight’s
text is preprocessed by converting it to lowercase and tokenizing it based on whitespace. The insights
themselves become active candidates for the guidance of future generations.

Insight Retrieval and Credit Assignment. To guide heuristic generation, we employ a utility-
based retrieval mechanism. For each new generation attempt, the mechanism selects the top-s in-
sights with the highest adaptive utility score U(ki, t). This contributing set of insights, denoted as
Kc, is then injected into the LLM’s prompt. Following the evaluation of the offspring generated, we
use credit assignment (Whitacre et al., 2006) to update the utility scores of all the insights in Kc.
The utility function is formulated to balance exploitation and exploration:

U(ki, t) = Ei(t)︸ ︷︷ ︸
Effectiveness

−wu log(Ni(t) + 1)︸ ︷︷ ︸
Usage Penalty

+ Br(t, t
last
i)︸ ︷︷ ︸

Recency Bonus

(1)

where Ei(t) is the learned effectiveness of insight i. The penalty term, weighted by wu, discourages
overuse by penalizing an insight based on its total retrieval count Ni(t), thus promoting exploration
of less-used ideas. The recency bonus Br offers a temporary reward for insights used recently;
specifically, it grants a fixed bonus if the insight was used within a small generation window Tw

(that is, if t− tlast
i ≤ Tw), promoting strategic coherence.

The effectiveness score Ei(t) is updated via credit assignment. This process first converts the raw
fitness g(hnew) of an offspring into a normalized, problem-agnostic score ρ̃, scaling its performance
relative to the best (g(hbest)) and worst (g(hworst)) solutions of the current population:

ρ̃ =
g(hworst)− g(hnew)

g(hworst)− g(hbest) + ϵ
(2)

5

Published as a conference paper at ICLR 2026

where ϵ is a small constant to prevent division by zero. Drawing upon techniques for handling
sparse rewards in Hierarchical Reinforcement Learning, we posit that an offspring’s evolutionary
contribution is non-linear. Therefore, we map ρ̃ to a final credit signal, geff, using a tiered, piecewise
function. This design creates distinct reward regimes for qualitatively different outcomes:

graw
eff =


0.8 + 0.2 · ρ̃ if g(hnew) ≥ g(hbest)

0.2 + 0.6 · ρ̃ if g(hbest) > g(hnew) ≥ g(havg)

−0.3 + 0.5 · ρ̃ if g(hnew) < g(havg)

(3)

This structure provides strong positive signals for paradigm-changing improvements (ρ̃ ≥ 1), mod-
erate rewards for incremental progress (0 ≤ ρ̃ < 1), and penalties for below-average performance.
The allowance of negative credit is a deliberate design choice to accelerate the pruning of detrimental
ideas.

This piecewise reward structure incorporates techniques for handling sparse rewards in Hierarchical
Reinforcement Learning. It provides discrete and explicit signals for distinct performance levels to
enhance interpretability. The coefficients follow a specific asymmetric philosophy where the reward
for elite solutions is significantly larger than the penalty magnitude, which is in turn larger than the
reward for incremental improvements. This prioritization provides a strong signal for paradigm-
shifting breakthroughs while effectively pruning unproductive directions. Furthermore, the parame-
ter sensitivity analysis detailed in Appendix C.7 demonstrates that the framework maintains robust
performance across a range of coefficient settings. This confirms that the structural logic of the
reward mechanism is more critical than precise tuning.

To ensure stable updates, the raw credit is then clipped to a final value geff =
max(−1.0,min(1.0, graw

eff)). Finally, for each insight j in the contributing set Kc, its effectiveness
score is updated through an Exponential Moving Average (EMA):

Ej(t+ 1) = (1− α) · Ej(t) + α · geff (4)

where the learning rate α ∈ [0, 1] smooths the stochastic credit signals from individual evaluations.
This allows an insight’s long-term utility to emerge statistically, preventing its score from being
skewed by outlier performances.

Adaptive Pruning and Pool Maintenance. To maintain quality within its finite capacity Cpool, the
pool employs an adaptive pruning mechanism triggered when |Kpool| > Cpool. This process removes
the insight with the minimum eviction score, Sevict, which balances the proven performance of an
insight against the risk of its obsolescence:

Sevict(ki, t) = Ei(t)−Rdecay · (t− tlast used(ki)) (5)

where Ei(t) is the current effectiveness of the insight, tlast used(ki) is the generation of its last use,
and the time decay rate Rdecay targets not only low-effectiveness insights, but also those that have
become inactive. The decay rate is set conservatively to prevent the premature removal of valuable
but temporarily dormant knowledge. Additionally, to prevent the premature elimination of under-
explored principles, insights with usage counts below a threshold Tusage are exempt from pruning,
allowing sufficient iterations to establish their true utility.

3.3 FORESIGHT: THE EVOLUTIONARY NAVIGATOR FOR STATE-AWARE GUIDANCE

While the Hindsight module grounds the search in historically validated principles, the Foresight
module acts as an Evolutionary Navigator, providing real-time, state-aware guidance. Its primary
role is to modulate the exploration-exploitation trade-off via a control policy, π : St → θt. This pol-
icy maps the current evolutionary state St to a high-level search orientation, denoted as the Evolu-
tionary Regime θt. Unlike traditional adaptive EAs that solely tune numerical parameters, Foresight
establishes a semantic feedback loop that directly steers the conceptual strategy of the LLMs. We
define π as a rule-based system that selects the appropriate strategic modes based on evolutionary
state :

θt =


θexplore if Cstag(t) ≥ τstag or ∆p(t) < δp
θexploit if Cprog(t) ≥ τprog

θbalance otherwise
(6)

6

Published as a conference paper at ICLR 2026

To implement this policy, the Navigator continuously monitors two primary aspects of the evolu-
tionary search: its performance trajectory and its population diversity. The performance trajectory
is tracked via two mutually exclusive counters, Cprog and Cstag, based on the improvement in the
best raw fitness ∆g. If ∆g > 10−4, it is a generation of progress (increment Cprog, reset Cstag);
otherwise, it is stagnation (increment Cstag, reset Cprog). Simultaneously, the Navigator assesses
population health through a novel measure of phenotypic diversity, ∆p(t). This metric is crucial
because relying on fitness alone can be misleading; a population of high-fitness but structurally
similar individuals often indicates entrapment in a local optimum. To counteract this, our metric
quantifies the semantic variety within the population by measuring the dissimilarity of the generated
algorithms’ textual forms, rather than their fitness values. It is computed as the normalized fraction
of unique pairs of algorithms in the population P whose textual descriptions are non-identical:

∆p(t) =
1

|P |(|P | − 1)/2

|P |∑
i=1

|P |∑
j=i+1

I(algi ̸= algj) (7)

where I(·) is the indicator function and algi denotes the textual description of the i-th algorithm.
Unlike embedding-based metrics, which risk obscuring critical logical alterations (e.g., dynamic vs.
static) through semantic smoothing (Agarwal et al., 2025), this metric relies on exact string matching
of the generated algorithmic descriptions. By enforcing a standardized prompt template to eliminate
trivial syntactic noise, any remaining lexical difference indicates a deliberate structural modification
by the LLM. Consequently, this approach provides a robust and computationally efficient proxy for
phenotypic diversity, ensuring that even subtle yet functional changes are preserved.

This hybrid state representation, which marries quantitative performance trends with a qualitative
measure of semantic diversity, provides the Navigator with a much more holistic understanding
of the search landscape than fitness-based metrics alone can. These state indicators are evaluated
against empirically determined thresholds, with their specific values detailed in our experimental
setup. The progress and stagnation counters are designed to track immediate performance trends.
This focus on recent history is crucial for capturing the rapid dynamics inherent in LLM-based evo-
lution, enabling swift strategic adjustments in response to even short periods of stagnation or consis-
tent improvement. Similarly, the diversity threshold is calibrated to detect a significant collapse in
semantic variety. It acts as an early warning mechanism against premature convergence, triggering
stronger exploratory pressure when a substantial portion of the population becomes homogeneous.
Once the regime θt is determined, it is translated into a natural language Design Directive(See
Section F.2) that is injected into the LLM’s prompt. For instance, θexplore might yield a directive
to try a significantly different approach from conventional solutions, whereas θexploit would instruct
the model to focus on refining and optimizing the most effective patterns. This mechanism ensures
the LLM’s generative focus is explicitly aligned with the high-level strategy dictated by the current
evolutionary state.

4 EXPERIMENTS

In this section, we present the results of heuristics designed by our proposed HiFo-Prompt on dif-
ferent complex tasks, including Traveling Salesman Problem (TSP) (Matai et al., 2010), Online Bin
Packing Problem (Online BPP) (Seiden, 2002), Flow Shop Scheduling Problem (FSSP) (Emmons
& Vairaktarakis, 2012), and Bayesian Optimization (BO) (Shahriari et al., 2016). Task definitions
and details are given in Appendix B. Results on TSP, online BPP, and FSSP are presented in this
section, while the results on BO are provided in Appendix C.4, where HiFo-Prompt demonstrates
competitive and reliable performance.

Experimental Settings. Experiments were conducted on a workstation equipped with an Intel
Core i7-12700 CPU, employing Qwen2.5-Max as the core LLM. The evolutionary process main-
tains a population size of 8, running for 8 generations on Combinatorial Optimization (CO) tasks and
4 generations on Bayesian Optimization (BO) tasks. Regarding specific module hyperparameters,
the Hindsight Module maintains an Insight Pool of capacity Cpool = 30 (Jaccard threshold 0.7),
with retrieval parameters set to selection count s = 3, usage penalty wu = 0.1, recency bonus mag-
nitude τr = 0.2, EMA rate α = 0.3, decay Rdecay = 0.01, and probation Tusage = 3. The Foresight
Module utilizes Navigator thresholds of τstag = 3 (stagnation), τprog = 2 (progress), and δp = 0.3

7

Published as a conference paper at ICLR 2026

Table 1: Results on TSP with step-by-step construction. Gap(%) denotes the performance gap
compared to advanced heuristic algorithms. Time(s) represents the running time of the designed
heuristics. This result of LLM-based AHD method is the average of three runs. The best-performing
LLM-based AHD results are shown in bold.

Method
TSP50 TSP100 TSP200

Gap Time(s) Gap Time(s) Gap Time(s)

LKH3 0.000% 323.3 0.000% 1450 0.000% 6312

POMO 0.163% - 1.636% - 13.961% -
LEHD 0.117% - 0.452% - 0.367% -

EoH 12.820% 1.4 15.361% 9 16.658% 78
ReEvo 10.239% 21.5 12.577% 224 14.890% 3013
HSEvo 10.467% 89.5 12.008% 1286 13.578% 24835
MCTS-AHD 10.642% 91.5 12.521% 1084 13.510% 14521
Ours 6.625% 244.7 8.582% 1843 8.877% 16099

Table 2: Results on TSP with GLS. Comparison relative to the results of advanced heuristic on
TSP100, TSP200 and TSP500. The result of the LLM-based AHD method is the average of three
runs. The best results are shown in bold.

Method
TSP100 TSP200 TSP500

Gap Time(s) Gap Time(s) Gap Time(s)

LKH3 0.000% - 0.000% - 0.000% -

EoH 0.026% 210.3 0.453% 368.1 2.037% 1100.7
ReEvo 0.049% 357.1 0.424% 775.8 2.090% 1103.4
HSEvo 0.087% 543.4 0.886% 792.9 2.507% 1105.1
Ours 0.015% 217.0 0.382% 392.4 1.520% 1100.8

(diversity). To ensure fair comparison, all LLM-based AHD baselines utilize the same underlying
LLM, while their hyperparameters follow the settings reported in their original publications.

Baselines. To demonstrate the effectiveness of our proposed method in designing heuristics, we in-
troduce several approaches for solving these complex optimization tasks. (1) handcrafted heuristics,
e.g., LKH3(Lin & Kernighan, 1973) for TSP, First Fit and Best Fit (Romera-Paredes et al., 2024)
for Online BPP, NEH (Nawaz et al., 1983) and NEHFF (Fernandez-Viagas & Framinan, 2014) for
FSSP. (2) Neural Combinatorial Optimization (NCO) methods, e.g., POMO (Kwon et al., 2020)
and LEHD (Luo et al., 2023) for TSP, PFSPNet NEH (Pan et al., 2022) for FSSP. (3) LLM-based
AHD methods, e.g., Funsearch (Romera-Paredes et al., 2024), EoH (Liu et al., 2024b), ReEvo (Ye
et al., 2024), HSEvo (Dat et al., 2025) and MCTS-AHD (Zheng et al., 2025). Most of our test
datasets follow EoH. Notably, Funsearch, ReEvo, and HSEvo require a seed function to initialize
their populations, while EoH, MCTS-AHD, and our method can run without it.

Traveling Salesman Problem. Step-by-Step Construction (Asani et al., 2023) and Guided Lo-
cal Search (GLS) (Alsheddy et al., 2016) are two different strategies for solving TSP. The detailed
procedure of the two strategies can be found in the Appendix B.1. We design key heuristics for
these two strategies. Table 1 compares the results of our method with other baselines in step-by-step
construction. We evaluated the performance on 100 instances at each of three sizes. To demon-
strate performance on out-of-distribution instances, we also conducted experiments on the TSPLib
dataset (Reinelt, 1991), and the results can be found in the Appendix C.1. We further evaluated our
method on 100 instances of TSP100, TSP200, and TSP500 in GLS. The results are shown in Table
2. The heuristic designed by our method achieves a significant performance improvement compared
to LLM-based AHD methods.

Online Bin Packing Problem. The key function of Online BPP is a scoring function that outputs
a score for each bin, based on the current item’s size and the remaining capacities of the bins. We

8

Published as a conference paper at ICLR 2026

Table 3: Results on Online BPP. Gap(%) denotes the ratio of excess bins compared to the lower
bound on Weibull instances. Obj. represents the value of the objective function. Results with * are
from EoH (Liu et al., 2024b). This result of LLM-based AHD method is the average of three runs.
The best results are highlighted in bold.

Method
5k C100 5k C300 5k C500

Gap Obj Gap Obj Gap Obj

lower bound 0.00% 2006.2 0.00% 1740.2 0.00% 1687.0

First Fit* 4.40% - 4.18% - 4.27% -
Best Fit* 4.08% - 3.83% - 3.91% -

Funsearch* 0.80% 2022.2 1.07% 1758.8 1.47% 1711.8
EoH 1.02% 2026.6 1.00% 1757.6 1.00% 1703.9
ReEvo 0.78% 2021.8 4.47% 1818.0 3.24% 1741.6
HSEvo 1.91% 2044.6 5.47% 1835.4 4.39% 1761.1
MCTS-AHD 0.99% 2026.0 0.95% 1756.8 0.95% 1703.0
Ours 0.69% 2020.1 0.66% 1751.7 0.66% 1698.1

Table 4: Results on FSSP. The results show the comparison of makespan relative to the baseline on
Taillard instances. n denotes the number of jobs and m denotes the number of machines. Results
with * are from EoH (Liu et al., 2024b). This result of LLM-based AHD method is the average of
three runs. The best results are highlighted in bold.

Method n20,m10 n50,m10 n100,m10 n20,m20 n50,m20 n100,m20

NEH* 4.05% 3.47% 2.07% 3.06% 5.48% 3.58%
NEHFF* 4.15% 3.62% 1.88% 2.72% 5.10% 3.73%

PFSPNet NEH* 4.04% 3.48% 1.72% 2.96% 5.05% 3.56%

EoH 0.31% 0.29% 0.23% 0.20% 0.84% 0.94%
Ours 0.17% 0.17% 0.13% 0.10% 0.58% 0.51%

evaluate our method on Weibull BPP instances (Romera-Paredes et al., 2024) following the EoH
setting. The results with three scales are shown in Table 3. Our method not only significantly
outperforms handcrafted heuristics but also surpasses LLM-based AHD approaches. More results
are provided in Appendix C.2.

Flow Shop Scheduling Problem. FSSP involves scheduling n jobs on m machines to minimize
the makespan, where each job comprises m operations processed in a fixed order. We evaluate
the heuristic designed by our method on Taillard instances (Taillard, 1993). The dataset includes in-
stances with 20 to 100 jobs (n) and 10 to 20 machines (m). Table 4 presents some of the results, with
additional results provided in Appendix C.3. Our method performs well on all datasets, consistently
delivering strong and reliable results across different scenarios.

Ablation Study. To evaluate the contribution of each component in our method, we conducted
a series of ablation studies, as shown in Table 5. We separately removed the Hindsight obtained
by the insight pool and the Foresight provided by the navigator, and then removed both Hindsight
and Foresight entirely. These experiments are conducted on TSP and Online BPP. The design and
parameters of the experiments are aligned with those used in the main experiments.

Discussion. We provide more experiments and discussion in the appendix. In Appendix C.5, we
present comparative studies between our method and EoH in terms of convergence speed. We also
evaluate our method across different LLMs to further demonstrate its effectiveness and generality.
In Appendix C.6, we conduct a thorough sensitivity analysis of the key hyperparameters involved
in our method, providing detailed explanations of their impact on performance. In Appendix C.7,
we conduct additional ablation studies and statistical analyses to further investigate the necessity,
underlying mechanisms, and stability of the key design components of HiFo-Prompt.

9

Published as a conference paper at ICLR 2026

Table 5: Ablations on Insight Pool and Navigator in TSP and Online BPP. The best results are
highlighted in bold.

TSP

TSP20 TSP50 TSP100
Gap Obj. Gap Obj. Gap Obj.

w/o Insight Pool 11.07% 4.29 13.76% 6.50 16.26% 9.06
w/o Navigator 5.82% 4.09 10.31% 6.30 11.48% 8.69
w/o Insight Pool and Navigator 11.49% 4.31 14.36% 6.53 18.80% 9.26

HiFo-Prompt 3.62% 4.00 6.63% 6.09 8.58% 8.46
Online BPP

1k, 100 5k, 100 1k, 300 5k, 300 1k, 500 5k, 500

w/o Insight Pool 4.33% 1.27% 4.07% 1.22% 4.14% 1.29%
w/o Navigator 2.83% 1.26% 2.64% 1.24% 2.60% 1.24%
w/o Insight Pool and Navigator 4.53% 2.19% 4.30% 2.01% 4.26% 2.05%

HiFo-Prompt 2.19% 0.69% 2.08% 0.66% 2.07% 0.66%

5 CONCLUSION

We introduced HiFo-Prompt, a novel evolutionary framework that advances LLM-driven heuristic
design through a hierarchical foresight-hindsight prompting mechanism. By synergizing an Evolu-
tionary Navigator for adaptive control with a self-evolving Insight Pool for knowledge reuse, our
framework transforms the search process into a closed-loop, self-regulating system. Across diverse
optimization benchmarks, HiFo-Prompt consistently outperforms state-of-the-art methods with re-
markable sample efficiency, often finding superior solutions using only 200 LLM requests. This
work provides not only a powerful method for heuristic automated algorithm design but also a con-
crete step towards agents that can learn to invent their problem-solving methodologies.

ACKNOWLEDGMENTS

This work was partially supported by National Natural Science Foundation of China (grants
12571590, 12426305, 62401473), National Key Research and Development Program of China
(grant 2022YFA1004201), Tianyuan Fund for Mathematics of the National Natural Science
Foundation of China (grant 12426105), Fundamental Research Funds for the Central Universi-
ties (grant xzd012024049), National Key Laboratory Fund Project for Space Microwave Com-
munication (grant HTKJ2024KL504010), Shenzhen Science and Technology Program (grant
JCYJ20240813150735045) and Key Research and Development Project in Shaanxi Province (grant
2025CY-YBXM-055).

REFERENCES

Dhruv Agarwal, Manoj Ghuhan Arivazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and
Rashmi Gangadharaiah. Searching for optimal solutions with llms via bayesian optimization. In
The Thirteenth International Conference on Learning Representations, 2025.

Aldeida Aleti and Irene Moser. A systematic literature review of adaptive parameter control methods
for evolutionary algorithms. ACM Computing Surveys, 49(3):1–35, October 2016. doi: 10.1145/
2996355.

Abdullah Alsheddy, Christos Voudouris, Edward P. K. Tsang, and Ahmad Alhindi. Guided local
search. In Handbook of Heuristics, pp. 1–37. Springer, 2016. doi: 10.1007/978-3-319-07124-4
19-1. Living reference work entry.

Emmanuel O. Asani, Aderemi E. Okeyinka, and Ayodele Ariyo Adebiyi. A computation investi-
gation of the impact of convex hull subtour on the nearest neighbour heuristic. In 2023 Inter-

10

Published as a conference paper at ICLR 2026

national Conference on Science, Engineering and Business for Sustainable Development Goals,
Omu-Aran, Nigeria, April 2023. IEEE. doi: 10.1109/SEB-SDG57117.2023.10124469.

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. In NeurIPS 2024
Poster. NeurIPS, 2024. URL https://openreview.net/forum?id=9469. Submitted:
26 Sept 2024, Last Modified: 04 Jan 2025.

Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and Rong Qu.
A survey of hyper-heuristics. Technical Report NOTTCS-TR-SUB-0906241418-2747, School
of Computer Science and Information Technology, University of Nottingham, Jubilee Campus,
Nottingham NG8 1BB, UK, 2009.

Christian L. Camacho-Villalón, Thomas Stützle, and Marco Dorigo. Designing new metaheuristics:
Manual versus automatic approaches. Intelligent Computing, 2:Article ID 0048, December 2023.
doi: 10.34133/icomputing.0048.

Dikshit Chauhan, Bapi Dutta, Indu Bala, Niki van Stein, Thomas Bäck, and Anupam Yadav. Evo-
lutionary computation and large language models: A survey of methods, synergies, and applica-
tions, 2025. URL https://arxiv.org/abs/2505.15741.

Carlos A. Coello Coello and Ricardo Landa Becerra. Efficient evolutionary optimization through
the use of a cultural algorithm. Engineering Optimization, 36(2):219–236, 2010. doi: 10.1080/
03052150410001647966.

Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. HSEvo: Elevating automatic heuristic
design with diversity-driven harmony search and genetic algorithm using LLMs. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39 of AAAI-25 Technical Tracks, pp.
26931–26938, 2025. doi: 10.1609/aaai.v39i25.34898.

A. E. Eiben and J. Smith. From evolutionary computation to the evolution of things. Nature, 521
(7553):476–482, 2015.

A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 3(2):124–141, July 1999. doi: 10.1109/4235.771166.

Hamilton Emmons and George Vairaktarakis. Flow Shop Scheduling: Theoretical Results, Algo-
rithms, and Applications, volume 182 of International Series in Operations Research & Man-
agement Science. Springer, New York, NY, 2012. ISBN 978-1461451518. doi: 10.1007/
978-1-4614-5152-5. URL https://doi.org/10.1007/978-1-4614-5152-5.

Leah Epstein, Lene M. Favrholdt, and Jens S. Kohrt. Comparing online algorithms for bin packing
problems. Journal of Scheduling, 15(1):13–21, 2012. doi: 10.1007/s10951-009-0129-5. URL
https://doi.org/10.1007/s10951-009-0129-5.

Victor Fernandez-Viagas and Jose M. Framinan. On insertion tie-breaking rules in heuristics for the
permutation flowshop scheduling problem. Computers & Operations Research, 45:60–67, May
2014. doi: 10.1016/j.cor.2013.12.012.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching ban-
dit problems. In Algorithmic Learning Theory: 22nd International Conference, ALT 2011,
Porto, Portugal, October 5-7, 2011. Proceedings, volume 6925 of Lecture Notes in Computer
Science, pp. 174–188, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. doi: 10.1007/
978-3-642-24410-0 15.

Fred Glover, Gregory Gutin, Anders Yeo, and Alexey Zverovich. Construction heuristics for the
asymmetric TSP. European Journal of Operational Research, 129(3):555–568, March 2001. doi:
10.1016/S0377-2217(99)00468-3.

Ziyao Huang, Weiwei Wu, Kui Wu, Jianping Wang, and Wei-Bin Lee. Calm: Co-evolution of al-
gorithms and language model for automatic heuristic design. arXiv preprint arXiv:2505.12285,
2025. URL https://doi.org/10.48550/arXiv.2505.12285. Neural and Evolution-
ary Computing (cs.NE).

11

https://openreview.net/forum?id=9469
https://arxiv.org/abs/2505.15741
https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1007/s10951-009-0129-5
https://doi.org/10.48550/arXiv.2505.12285

Published as a conference paper at ICLR 2026

Angel A. Juan, Helena R. Lourenço, Manuel Mateo, Rachel Luo, and Quim Castella. Using iterated
local search for solving the flow-shop problem: parametrization, randomization and paralleliza-
tion issues. International Transactions in Operational Research, 21(1):103–126, 2014. doi:
10.1111/itor.12028. URL https://doi.org/10.1111/itor.12028.

G. M. Komaki, Shaya Sheikh, and Behnam Malakooti. Flow shop scheduling problems with as-
sembly operations: a review and new trends. International Journal of Production Research, 57
(10):2926–2955, 2019. doi: 10.1080/00207543.2018.1550269. URL https://doi.org/
10.1080/00207543.2018.1550269.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Se-
ungjai Min. POMO: Policy optimization with multiple optima for reinforcement learn-
ing. In Advances in Neural Information Processing Systems, volume 33, pp. 21188–21199,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
hash/f8b5b1f8f1f3b18a4d7a7a4c0d6a9f3d-Abstract.html.

Remi R. Lam, Karen E. Willcox, and David H. Wolpert. Bayesian optimization with a finite budget:
An approximate dynamic programming approach. In Advances in Neural Information Processing
Systems, volume 29, pp. 883–891, Barcelona, Spain, 2016. Curran Associates, Inc.

Eric Hans Lee, Valerio Perrone, Cédric Archambeau, and Matthias Seeger. Cost-aware bayesian
optimization. arXiv preprint, 2020. doi: 10.48550/arXiv.2003.10870. URL https://doi.
org/10.48550/arXiv.2003.10870.

Shen Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem.
Operations Research, 21(2):498–516, April 1973. doi: 10.1287/opre.21.2.498.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, Li Zhang, Zhongqi Li,
and Yuchi Ma. Exploring and evaluating hallucinations in llm-powered code generation. arXiv
preprint arXiv:2404.00971, 2024a. URL https://arxiv.org/abs/2404.00971. Sub-
mitted on 1 Apr 2024, last revised 11 May 2024.

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large
language model, 2023. URL https://arxiv.org/abs/2311.15249. arXiv preprint
arXiv:2311.15249.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Proceedings of the Forty-first International Conference on Machine Learning, 2024b.
URL https://icml.cc/Conferences/2024/AuthorGuide.

Fei Liu, Yiming Yao, Ping Guo, Zhiyuan Yang, Zhe Zhao, Xi Lin, Xialiang Tong, Mingxuan Yuan,
Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. A systematic survey on large language models
for algorithm design. arXiv preprint arXiv:2410.14716, November 2024c. URL https://
doi.org/10.48550/arXiv.2410.14716. v3.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In Advances in Neural Information Process-
ing Systems 36, 2023. URL https://papers.nips.cc/paper_files/paper/2023/
hash/f0e9cba66c49e382e4f3e7351d47e2ed-Abstract-Conference.html.

Alireza Maheri, Shahin Jalili, Yousef Hosseinzadeh, Reza Khani, and Mirreza Miryahyavi. A com-
prehensive survey on cultural algorithms. Swarm and Evolutionary Computation, 62:100846,
2021. doi: 10.1016/j.swevo.2021.100846.

Yannis Marinakis. Heuristic and metaheuristic algorithms for the traveling salesman problem. In
Encyclopedia of Optimization, pp. 1–12. Springer International Publishing, living reference work
entry edition, 2024. doi: 10.1007/978-3-030-54621-2 262-1. URL https://doi.org/10.
1007/978-3-030-54621-2_262-1.

Rafael Martı́ and Gerhard Reinelt. Heuristic methods. In The Linear Ordering Problem, volume
175 of Applied Mathematical Sciences, pp. 17–40. Springer, Berlin, Heidelberg, 2011. ISBN 978-
3-642-16729-4. doi: 10.1007/978-3-642-16729-4 2. URL https://doi.org/10.1007/
978-3-642-16729-4_2.

12

https://doi.org/10.1111/itor.12028
https://doi.org/10.1080/00207543.2018.1550269
https://doi.org/10.1080/00207543.2018.1550269
https://proceedings.neurips.cc/paper_files/paper/2020/hash/f8b5b1f8f1f3b18a4d7a7a4c0d6a9f3d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/f8b5b1f8f1f3b18a4d7a7a4c0d6a9f3d-Abstract.html
https://doi.org/10.48550/arXiv.2003.10870
https://doi.org/10.48550/arXiv.2003.10870
https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2311.15249
https://icml.cc/Conferences/2024/AuthorGuide
https://doi.org/10.48550/arXiv.2410.14716
https://doi.org/10.48550/arXiv.2410.14716
https://papers.nips.cc/paper_files/paper/2023/hash/f0e9cba66c49e382e4f3e7351d47e2ed-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/f0e9cba66c49e382e4f3e7351d47e2ed-Abstract-Conference.html
https://doi.org/10.1007/978-3-030-54621-2_262-1
https://doi.org/10.1007/978-3-030-54621-2_262-1
https://doi.org/10.1007/978-3-642-16729-4_2
https://doi.org/10.1007/978-3-642-16729-4_2

Published as a conference paper at ICLR 2026

Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman problem: An
overview of applications, formulations, and solution approaches. In Donald Davendra (ed.), Trav-
eling Salesman Problem, Theory and Applications, pp. 1–25. InTech, Rijeka, Croatia, 2010. ISBN
978-953-307-426-9. doi: 10.5772/12909.

Muhammad Nawaz, E. Emory Enscore Jr, and Inyong Ham. A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983. doi: 10.1016/
0305-0483(83)90088-9.

Zixiao Pan, Ling Wang, Jingjing Wang, and Jiawen Lu. Deep reinforcement learning based opti-
mization algorithm for permutation flow-shop scheduling. IEEE Transactions on Emerging Topics
in Computational Intelligence, 7(4):900–911, 2022. doi: 10.1109/TETCI.2022.3154977.

Gregor Papa. Applications of dynamic parameter control in evolutionary computation. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1064–1088.
ACM, July 2021. doi: 10.1145/3449726.3461435. URL https://doi.org/10.1145/
3449726.3461435.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. The MIT Press, Cambridge, MA, 2006. ISBN 978-
0-262-22567-4. doi: 10.7551/mitpress/3206.001.0001. URL https://doi.org/10.7551/
mitpress/3206.001.0001. Open Access Edition.

Gerhard Reinelt. TSPLIB—a traveling salesman problem library. ORSA Journal on Computing, 3
(4):376–384, 1991. doi: 10.1287/ijoc.3.4.376.

Imma Ribas, Rainer Leisten, and Jose M. Framiñan. Review and classification of hybrid flow shop
scheduling problems from a production system and a solutions procedure perspective. Computers
& Operations Research, 37(8):1439–1454, 2010. doi: 10.1016/j.cor.2009.11.001. URL https:
//doi.org/10.1016/j.cor.2009.11.001.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, and et al. Mathematical discoveries from program search with large language mod-
els. Nature, 625(7995):468–475, 2024.

Steven S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671, Septem-
ber 2002. doi: 10.1145/585265.585269. URL https://doi.org/10.1145/585265.
585269.

Lahari Sengupta, Radu Mariescu-Istodor, and Pasi Fränti. Which local search operator works
best for the open-loop TSP? Applied Sciences, 9(19):3985, September 2019. doi: 10.3390/
app9193985. URL https://doi.org/10.3390/app9193985.

Jiřı́ Sgall. Online bin packing: Old algorithms and new results. In Arnold Beckmann, Erzèbet
Csuhaj-Varjú, and Klaus Meer (eds.), Language, Life, Limits: 10th Conference on Computability
in Europe, CiE 2014, Budapest, Hungary, June 23–27, 2014, Proceedings, volume 8493 of Lec-
ture Notes in Computer Science, pp. 362–372. Springer, 2014. doi: 10.1007/978-3-319-08019-2
38. URL https://doi.org/10.1007/978-3-319-08019-2_38.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, January 2016. doi: 10.1109/JPROC.2015.2494218. URL https://doi.org/10.
1109/JPROC.2015.2494218.

Yiding Shi, Jianan Zhou, Wen Song, Jieyi Bi, Yaoxin Wu, and Jie Zhang. Generalizable
heuristic generation through large language models with meta-optimization. arXiv preprint
arXiv:2505.20881, 2025. URL https://doi.org/10.48550/arXiv.2505.20881.
Machine Learning (cs.LG); Artificial Intelligence (cs.AI).

N. Shinn, F. Cassano, A. Gopinath, K. R. Narasimhan, and S. Yao. Reflexion: Language agents
with verbal reinforcement learning. In Proceedings of the Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

13

https://doi.org/10.1145/3449726.3461435
https://doi.org/10.1145/3449726.3461435
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1016/j.cor.2009.11.001
https://doi.org/10.1016/j.cor.2009.11.001
https://doi.org/10.1145/585265.585269
https://doi.org/10.1145/585265.585269
https://doi.org/10.3390/app9193985
https://doi.org/10.1007/978-3-319-08019-2_38
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.48550/arXiv.2505.20881

Published as a conference paper at ICLR 2026

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, volume 25, pp.
2951–2959, Red Hook, NY, 2012. Curran Associates, Inc.

E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278–285, 1993. doi: 10.1016/0377-2217(93)90182-M.

Nasser Tairan and Qingfu Zhang. Population-based guided local search: Some preliminary ex-
perimental results. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE,
2010. doi: 10.1109/CEC.2010.5586062. URL https://doi.org/10.1109/CEC.2010.
5586062.

Nguyen Thach, Aida Riahifar, Nathan Huynh, and Hau Chan. Redahd: Reduction-based end-to-end
automatic heuristic design with large language models. arXiv preprint arXiv:2505.20242, 2025.
URL https://doi.org/10.48550/arXiv.2505.20242. Machine Learning (cs.LG).

Ye Tian, Xiaopeng Li, Haiping Ma, Xingyi Zhang, Kay Chen Tan, and Yaochu Jin. Deep reinforce-
ment learning based adaptive operator selection for evolutionary multi-objective optimization.
IEEE Transactions on Emerging Topics in Computational Intelligence, 7(4):1051–1064, August
2023. doi: 10.1109/TETCI.2022.3146882.

Jimi P. Tuononen. Analysis of rebuild local search operators for TSP. Master’s thesis, University of
Eastern Finland, School of Computing, Faculty of Forestry and Natural Sciences, Joensuu, Fin-
land, April 2022. URL https://cs.uef.fi/sipu/pub/MSc_TuononenJimi.pdf.

R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by local search. INFORMS
Journal on Computing, 8(3):302–317, 1996. doi: 10.1287/ijoc.8.3.302. URL https://doi.
org/10.1287/ijoc.8.3.302.

Christos Voudouris and Edward Tsang. Guided local search and its application to the traveling
salesman problem. European Journal of Operational Research, 113(2):469–499, 1999. doi:
10.1016/S0377-2217(98)00099-X.

Christos Voudouris, Abdullah Alsheddy, Edward P. K. Tsang, and Ahmad Alhindi. Handbook of
Heuristics. Springer International Publishing AG, 2016. ISBN 978-3-319-07153-4. doi: 10.1007/
978-3-319-07153-4.

Jianxun Wang and Yixiang Chen. A review on code generation with llms: Application and evalua-
tion. In Proceedings of the 2023 IEEE International Conference on Medical Artificial Intelligence,
Beijing, China, November 2023. doi: 10.1109/MedAI59581.2023.00044.

James M. Whitacre, Tuan Q. Pham, and Ruhul A. Sarker. Credit assignment in adaptive evolutionary
algorithms. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 1353–1360, New York, NY, USA, July 2006. ACM. doi: 10.1145/1143997.1144206.
URL https://doi.org/10.1145/1143997.1144206.

Yuezhong Wu, Thomas Weise, and Raymond Chiong. Local search for the traveling salesman
problem: A comparative study. In Proceedings of the 2015 IEEE 14th International Conference
on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp. 213–220. IEEE, 2015. doi:
10.1109/ICCI-CC.2015.7259388. URL https://doi.org/10.1109/ICCI-CC.2015.
7259388.

Xuesong Yan, Tao Song, and Qinghua Wu. An improved cultural algorithm and its application
in image matching. Multimedia Tools and Applications, 76:14951–14968, 2017. doi: 10.1007/
s11042-016-4041-x.

Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. Multi-objective
evolution of heuristic using large language model. In Proceedings of the Thirty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI-25), Hong Kong, China, 2025. AAAI Press.

14

https://doi.org/10.1109/CEC.2010.5586062
https://doi.org/10.1109/CEC.2010.5586062
https://doi.org/10.48550/arXiv.2505.20242
https://cs.uef.fi/sipu/pub/MSc_TuononenJimi.pdf
https://doi.org/10.1287/ijoc.8.3.302
https://doi.org/10.1287/ijoc.8.3.302
https://doi.org/10.1145/1143997.1144206
https://doi.org/10.1109/ICCI-CC.2015.7259388
https://doi.org/10.1109/ICCI-CC.2015.7259388

Published as a conference paper at ICLR 2026

Yiming Yao, Fei Liu, Ji Cheng, and Qingfu Zhang. Evolve cost-aware acquisition functions us-
ing large language models. In Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova,
Heike Trautmann, Tea Tušar, Penousal Machado, and Thomas Bäck (eds.), Parallel Problem
Solving from Nature – PPSN XVIII: 18th International Conference, PPSN 2024, Hagenberg,
Austria, September 14–18, 2024, Proceedings, Part II, volume 15149 of Lecture Notes in Com-
puter Science, pp. 374–390. Springer Cham, 2024. doi: 10.1007/978-3-031-70068-2. URL
https://doi.org/10.1007/978-3-031-70068-2.

Ahmet Yarimcam, Shahriar Asta, Ender Özcan, and Andrew J. Parkes. Heuristic generation via
parameter tuning for online bin packing. In 2014 IEEE Symposium on Evolving and Autonomous
Learning Systems (EALS), pp. 102–108. IEEE, 2014. doi: 10.1109/EALS.2014.7009510. URL
https://doi.org/10.1109/EALS.2014.7009510.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo
Park, and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evo-
lution. In Proceedings of the 38th International Conference on Neural Information Processing
Systems, pp. 43571–43608, June 2024. URL https://nips.cc/Conferences/2024/
AuthorGuide.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang.
Udc: A unified neural divide-and-conquer framework for large-scale combinatorial op-
timization problems. In Advances in Neural Information Processing Systems 37,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for compre-
hensive exploration in llm-based automatic heuristic design. In Proceedings of the 2025 Inter-
national Conference on Machine Learning (ICML 2025), 2025. URL https://icml.cc/
Conferences/2025/AuthorGuide.

Álvaro Fialho. Adaptive Operator Selection for Optimization. PhD thesis, Université
Paris Sud- Paris XI, Paris, France, 2010. URL https://theses.hal.science/
tel-00578431v1. Submitted on 20 Mar 2011, HAL Id: tel-00578431.

Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation in evolutionary
algorithms: A survey. ACM Computing Surveys, 45(3):1–33, July 2013. doi: 10.1145/2480741.
2480752. URL https://doi.org/10.1145/2480741.2480752.

Anja Šurina, Amin Mansouri, Lars C.P.M. Quaedvlieg, Amal Seddas, Maryna Viazovska, Em-
manuel Abbe, and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets
reinforcement learning. COLM 2025, 2025. URL https://doi.org/10.48550/arXiv.
2505.12285.

A PRELIMINARY

A.1 PROBLEM FORMULATION OF AUTOMATIC HEURISTIC DESIGN

Automatic Heuristic Design (AHD) (Burke et al., 2009; Voudouris et al., 2016) aims to identify an
optimal heuristic h∗ from a vast search space H for a given computational task P . This process can
be formally expressed as the following optimization problem (Zheng et al., 2025):

h∗ = argmax
h∈H

g(h), (8)

where g(h) is a fitness function (maximized) that maps a heuristic to a real number, estimating its
quality based on its expected performance on a representative set of problem instances D. For a
task with a minimization objective f (minimized, e.g., minimizing cost or error), this performance
metric is defined as:

g(h) = Eins∈D [−f(h(ins))] . (9)
This formulation reframes the original task as a maximization problem over the heuristic space
H, thereby enabling the search for robust heuristics that yield high-quality solutions across diverse
instances.

15

https://doi.org/10.1007/978-3-031-70068-2
https://doi.org/10.1109/EALS.2014.7009510
https://nips.cc/Conferences/2024/AuthorGuide
https://nips.cc/Conferences/2024/AuthorGuide
https://proceedings.neurips.cc/paper_files/paper/2024/file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf
https://icml.cc/Conferences/2025/AuthorGuide
https://icml.cc/Conferences/2025/AuthorGuide
https://theses.hal.science/tel-00578431v1
https://theses.hal.science/tel-00578431v1
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.48550/arXiv.2505.12285
https://doi.org/10.48550/arXiv.2505.12285

Published as a conference paper at ICLR 2026

A.2 LLM-DRIVEN EVOLUTIONARY COMPUTATION

The LLM-driven Evolutionary Computation (LLM+EC) framewor(Liu et al., 2024b; Romera-
Paredes et al., 2024; Yao et al., 2025; Chauhan et al., 2025) casts the AHD problem as an iterative,
population-based search process. Let P (t) = {h(t)

1 , . . . , h
(t)
M } be the population of M heuristics at

generation t, where each heuristic h
(t)
i ∈ H is represented by its thought and code. The transition

from P (t) to P (t+1) is governed by a stochastic evolutionary kernel F , which is parameterized by a
control vector θ(t) ∈ Θ:

P (t+1) ∼ F(P (t) | θ(t)). (10)
Here, the control vector θ(t) encapsulates contextual information that guides heuristic generation,
such as prompting strategies or performance feedback. In the absence of adaptive control, θ(t) can
be considered constant or null, i.e., θ(t) = θconst or θ(t) = ∅. The kernel F comprises two phases:

1. Generation Phase: An LLM, acting as a conditional generator L, creates new heuristics
through prompted crossover and mutation. A set of parents hp ⊆ P (t) is selected, and their
symbolic representations ρ(hp), which include the thought-and-code, are used. A
prompt function Π constructs a conditional prompt from ρ(hp) and θ(t) (e.g., exploration
or modification strategies). The LLM then generates offspring:

hc = L(Π(ρ(hp), θ
(t))), O(t) = {hc,1, hc,2, . . . , hc,N}, (11)

where N is the number of offspring (e.g., N = λM , where λ is the reproduction rate).
2. Selection Phase: The parent and offspring populations are merged into a candidate pool,

U (t) = P (t) ∪ O(t). A selection operator S then chooses the top M heuristics from this
pool based on the fitness metric g to form the next generation:

P (t+1) = S(U (t); g). (12)

This framework, introduced within the heuristic evolution paradigm, leverages LLM-driven genera-
tion to explore the heuristic space and a selection mechanism to exploit high-performing solutions.

A.3 KNOWLEDGE-AUGMENTED EVOLUTIONARY COMPUTATION

To extend the capabilities of evolutionary algorithms beyond simple adaptive control, a prominent
research direction involves incorporating an explicit knowledge component. Cultural Algorithms
(Coello & Becerra, 2010; Yan et al., 2017) provide a classic framework for this idea, decoupling the
evolutionary system into two interacting spaces: a population space containing candidate solutions
P (t) and a belief space Kt serving as a repository of experiential knowledge (Maheri et al., 2021).
These two spaces co-evolve through a dual-inheritance communication protocol.

Crucially, knowledge ks extracted from the belief space Kt becomes part of the high-level control
vector θ(t). This knowledge then guides the generation of offspring via an influence mechanism:

hc ∼ L
(
Π(ρ(hp), θ

(t))
)
, where ks ⊆ θ(t). (13)

Currently, the successes of the population are fed back into the belief space. An acceptance function
A identifies and extracts potentially valuable experiences, A(P (t)), from the current population.
These are then used by a knowledge update function UK to update the belief space:

Kt+1 = UK(Kt,A(P (t))). (14)
Knowledge-augmented evolution is thus a coupled dynamical system where the population and
knowledge base co-evolve interdependently. This explicit mechanism for knowledge management
allows the framework to achieve a more sophisticated form of learning based on abstracted experi-
ence.

B OPTIMIZATION PROBLEM DETAILS

B.1 TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) (Matai et al., 2010; Voudouris & Tsang, 1999) is a canonical
NP-hard combinatorial optimization problem. Given a set of N cities and the distances between

16

Published as a conference paper at ICLR 2026

each pair, the objective is to find the shortest possible tour that visits each city exactly once before
returning to the starting city.

Formally, let V = {v1, v2, . . . , vN} be the set of cities. We model the problem on a complete,
undirected graph G = (V,E), where a non-negative distance dij is associated with each edge
(vi, vj) ∈ E. A tour is a permutation π of the indices {1, 2, . . . , N}. The goal is to find a per-
mutation π∗ that minimizes the total tour length (Zheng et al., 2024):

min
π

(
N−1∑
i=1

dπi,πi+1
+ dπN ,π1

)
where vπi

denotes the i-th city in the tour.

Step-by-step Construction. Construction heuristics build a feasible solution from an empty set
by making a sequence of decisions (Glover et al., 2001). At each step, a component is added to the
partial solution based on a specific greedy criterion until a complete tour is formed (Martı́ & Reinelt,
2011). A fundamental example is the Nearest Neighbor (NN) heuristic. Starting from a node vπ1 ,
it constructs a tour by iteratively selecting the closest unvisited node. At step t, with a partial tour
St = (vπ1 , . . . , vπt) and the set of unvisited nodes Ut = V \ {vπ1 , . . . , vπt}, the next node vπt+1 is
chosen according to the rule (Marinakis, 2024):

vπt+1
= arg min

vj∈Ut

dπt,j

Regarding the integration of our method with the framework, we will discuss this in more detail.
While fast, the myopic nature of such simple rules often leads to suboptimal solutions. Our ap-
proach, HiFo-Prompt, addresses this limitation by automating the discovery of more sophisticated
construction heuristics. We retain the foundational step-by-step framework where a solution is built
incrementally.

During training phase, we replace the fixed, handcrafted decision logic with a heuristic function
synthesized by an LLM within our evolutionary framework. Crucially, rather than employing the
LLM for online, per-step inference during the solving process, our method’s core contribution lies
in the offline synthesis of a complete, executable heuristic function.

During inference phase, this generated function—not the LLM itself—that is invoked at each step t.
This function receives the full problem state, including the current partial tour St, the set of unvisited
candidate nodes Ut, and the global distance matrix C (Liu et al., 2024b; 2023), and computes the
next node to add to the tour locally and efficiently.

Guided Local Search Improvement heuristics, such as local search, start with a complete tour and
iteratively refine it. Guided Local Search (GLS) is an advanced metaheuristic that enhances local
search by introducing a guidance mechanism to escape local optima (Voudouris & Tsang, 1999;
Voudouris et al., 2016). GLS achieves this by modifying the objective function with penalties on
certain solution features that appear in locally optimal solutions (Wu et al., 2015). For the Traveling
Salesperson Problem (TSP), the most natural features to penalize are the edges of the tour (Tairan &
Zhang, 2010).

The standard GLS cost function is augmented with a penalty term:

Laug(s) = L(s) + λ
∑

(u,v)∈s

puv (15)

where L(s) is the original tour length, the sum is over all edges (u, v) in tour s, puv is a penalty
counter for using the edge between cities u and v, and λ is a regularization parameter. An efficient
implementation involves creating a penalized distance matrix D′ for the local search:

D′
uv = duv + λ · puv . (16)

Minimizing the tour length using D′ is equivalent to minimizing Laug(s). The critical challenge lies
in designing the rule for updating the penalty matrix P = {puv}. When the local search becomes

17

Published as a conference paper at ICLR 2026

trapped in a local optimum s∗, a state-dependent update heuristic, Hupdate, is invoked to determine
which edges in s∗ should be penalized:

Pnew = Hupdate(Pold, s
∗, D,N) , (17)

where N is a matrix of edge usage frequencies. Typically, this heuristic is a static, handcrafted rule
that increments the penalties for a subset of edges in s∗. This update reshapes the search landscape
to guide the search away from the current basin of attraction.

HiFo-Prompt automates the discovery of the update heuristic Hupdate. Instead of relying on a static,
human-designed rule, we task an LLM with synthesizing a complete, executable Python function to
serve as Hupdate.

At each GLS iteration, after converging to a local optimum s∗, this LLM-generated function is
invoked. It receives the full state necessary for intelligent penalization—the current penalty matrix
(Pold), the local optimum tour (s∗), the original distance matrix (D), and the edge frequency matrix
(N)—and outputs a new penalty matrix, Pnew. This updated matrix then modifies the search costs
via Eq. 16 for the next major iteration. The local search itself is driven by fundamental prompt
strategies like Relocate (Tuononen, 2022) and 2-opt (Sengupta et al., 2019). Our contribution lies
not in these prompt strategies but in the automated design of the sophisticated Hupdate function
through HiFo-Prompt, which provides the intelligence to guide these prompt strategies effectively.

We further elevate this concept by embedding heuristic generation within an evolutionary frame-
work. We treat the distinct Hupdate functions as a population of individuals. The LLM itself serves as
the primary genetic operator. Through structured prompts for crossover and mutation, the LLM in-
telligently combines or modifies existing high-performing strategies to produce novel offspring (Liu
et al., 2024b).

B.2 ONLINE BIN PACKING PROBLEM

The Online Bin Packing Problem (OBP) (Seiden, 2002) is a classic sequential decision-making
problem. We are presented with a sequence of items, A = (a1, a2, . . . , aT), arriving one at a time.
Each item at has a size st ∈ (0, 1]. We have an unlimited supply of bins, each with a unit capacity
of 1. The core constraints of the OBP are:

• Online Constraint: When item at arrives, a decision must be made to place it into a bin
without any knowledge of future items (at+1, . . . , aT).

• Irrevocable Placement: Once an item is placed in a bin, it cannot be moved.

• Capacity Constraint: For any bin Bj , the sum of the sizes of all items placed within it
must not exceed 1.

The objective is to minimize the total number of bins used after placing all T items (Epstein et al.,
2012; Yarimcam et al., 2014). If we let yj = 1 if bin j is used and yj = 0 otherwise, the goal is to
minimize

∑
j yj (Sgall, 2014).

Given the online nature of the problem, optimal solutions are generally not achievable. Instead, high-
performance algorithms rely on sophisticated greedy placement policies or heuristics. Following
the approach of (Romera-Paredes et al., 2024), we frame the task as learning a superior placement
heuristic. Specifically, we use the HiFo-Prompt framework to design a scoring function, Hscore, that
determines the most suitable bin for an incoming item.

When an item at with size st arrives, the HiFo-Prompt-generated heuristic is invoked. It takes as
input the item’s size and the state of all currently open bins. The state of a bin Bj is captured by
its residual capacity, cj = 1 −

∑
ak∈Bj

sk. The scoring function produces a scalar value for each
candidate bin:

σj = Hscore(st, cj) (18)

where σj represents the desirability of placing item at into bin Bj . The placement policy is then to
assign the item to the valid bin with the highest score:

j∗ = argmax
{j | cj≥st}

σj (19)

18

Published as a conference paper at ICLR 2026

If no existing bin can accommodate the item (i.e., the set of valid bins is empty), a new bin is
opened. The intelligence of our method lies in HiFo-Prompt’s ability to discover a non-trivial scoring
function Hscore that implicitly balances competing objectives, such as leaving space for potentially
larger future items versus consolidating small items efficiently. This contrasts with classic heuristics
like Best Fit (which is equivalent to Hscore(st, cj) = −cj) or First Fit, by allowing for a much richer
and more adaptive decision-making process.

B.3 FLOW SHOP SCHEDULING PROBLEM

The Flow Shop Scheduling Problem (FSSP) (Emmons & Vairaktarakis, 2012; Komaki et al., 2019)
is a canonical NP-hard scheduling challenge. The task is to schedule a set of n jobs, J = {1, . . . , n},
on a series of m machines, M = {1, . . . ,m}. Each job i ∈ J requires m operations, with the j-th
operation occurring on machine j. The processing time for job i on machine j is given by Tij from a
processing time matrix T (Vaessens et al., 1996; Ribas et al., 2010). A solution (Juan et al., 2014) is
a permutation of jobs, π = (π1, . . . , πn), which dictates the processing order on all machines. Key
constraints include that no machine can process multiple jobs at once, and no job can be on multiple
machines simultaneously.

The objective is to find a permutation π∗ that minimizes the makespan, Cmax. This is the total time
elapsed until the last job completes its final operation. The completion time C(πi, j) for job πi on
machine j is calculated recursively:

C(πi, j) = max
(
C(πi−1, j), C(πi, j − 1)

)
+ Tπi,j (20)

with base cases C(π0, j) = 0 and C(πi, 0) = 0. The makespan for a sequence π is therefore
Cmax(π) = C(πn,m).

Due to the problem’s complexity, we employ a local search metaheuristic (Liu et al., 2024b). To
prevent the search from being trapped in local optima, we use the HiFo-Prompt framework to design
a sophisticated guidance strategy automatically. When the search converges to a locally optimal
sequence π∗, HiFo-Prompt-generated heuristic, Hguide, is invoked. It takes the current sequence, the
original processing time matrix, and problem dimensions to produce both a new time matrix T ′ and
a designated list of jobs to perturb, Jperturb:

(T ′, Jperturb) = Hguide(π
∗, T, n,m) (21)

This dual output provides a powerful guidance mechanism. The new matrix T ′ reshapes the search
landscape by penalizing attributes of the local optimum, effectively steering the search toward un-
explored regions. Concurrently, the list Jperturb directs subsequent local search operators, such as
insertions or swaps, to focus their computational effort on a specific subset of critical jobs. This
combined strategy of altering the problem’s cost structure while focusing on the search operators
constitutes a complete and intelligent guidance component, designed automatically by our frame-
work.

B.4 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) (Shahriari et al., 2016) and its ongoing development are of paramount
importance, as it provides the leading framework for sample-efficiently navigating the complex,
high-cost search spaces prevalent in modern science and engineering. Bayesian Optimization (BO)
has emerged as a principal framework for this task, excelling in applications like hyperparameter
tuning and automated scientific discovery. The power of BO lies in its sample efficiency. It builds
a probabilistic surrogate model of the objective function. It then uses an acquisition function (Lam
et al., 2016) to intelligently decide where to sample next, thereby minimizing the number of costly
evaluations.

Our work addresses a particularly demanding variant: cost-aware BO (Snoek et al., 2012; Yao et al.,
2024; Zheng et al., 2025). In this setting, each function evaluation f(x) has a heterogeneous and
unknown cost, denoted by c(x). The goal is to find the global maximum of f(x) within a fixed total
budget Btotal. This requires sequentially choosing evaluation points {x1, . . . ,xN} to maximize the

outcome, subject to the constraint that
N∑
i=1

c(xi) ≤ Btotal (Lee et al., 2020). To manage this, the BO

19

Published as a conference paper at ICLR 2026

agent maintains two surrogate models, typically Gaussian Processes (GPs) (Rasmussen & Williams,
2006). One GP models the objective function, predicting its posterior mean µf (x) and standard
deviation σf (x). A second GP models the evaluation cost, providing a cost prediction µc(x).

The core intelligence of the agent is encoded in its acquisition function, α(x). This function must
navigate a complex trade-off between seeking high rewards (exploitation), reducing model uncer-
tainty (exploration), and managing evaluation costs. At each iteration t, the next evaluation point
xt+1 is selected by maximizing this utility:

xt+1 = argmax
x∈X

α(x|Dt, Brem) (22)

where Dt = {(xi, yi, ci)}ti=1 is the set of previously evaluated points and Brem is the remaining
budget. The design of α(x) is the single most critical factor for achieving high performance.

We propose to automate the discovery of superior acquisition functions using the HiFo-Prompt
framework. Rather than relying on static, human-designed heuristics, HiFo-Prompt generates a
novel utility function, Hutility, from scratch. This generated function is highly context-aware, syn-
thesizing all critical information available at each decision step. It explicitly considers the surrogate
models’ predictions, the best-found solution so far (y∗t = maxi yi), and the dynamic state of the
budget:

α(x) = Hutility
(
µf (x), σf (x), µc(x), y

∗
t , Bused, Btotal

)
(23)

By generating a holistic function that reasons about the interplay between potential gain, uncertainty,
cost, and remaining resources, HiFo-Prompt creates powerful and adaptive sampling strategies. This
approach moves beyond hand-crafted designs, enabling superior performance in complex, budget-
constrained optimization scenarios.

C MORE RESULTS

C.1 TRAVELING SALESMAN PROBLEM

To demonstrate the generality and robustness of the heuristic designed by our proposed method,
we conduct a comprehensive evaluation using the real-world benchmark dataset TSPLib (Reinelt,
1991). TSPLib is a well-established collection of TSP instances, widely used in the research com-
munity for benchmarking optimization algorithms.

For our experiments, we select a diverse subset of TSP instances from TSPLib, specifically focusing
on those containing no more than 500 nodes. This selection criterion ensures a manageable problem
scale while still retaining the complexity necessary to assess algorithmic performance effectively.

In our evaluation framework, we adopt a step-by-step construction approach to solve the TSP, which
incrementally builds a tour by selecting the next node based on a learned heuristic. This paradigm
allows us to evaluate the quality of decisions made at each step and better observe the contribution
of the designed heuristic to the final solution quality.

To rigorously assess the effectiveness and competitiveness of our proposed heuristic, we compare
its performance against state-of-the-art LLM-based AHD baselines. These methods represent recent
advances in leveraging large language models for combinatorial optimization tasks and serve as
strong comparative baselines in our study. The experimental results, which include performance
metrics, are summarized in Table 6. These results provide empirical evidence that our method not
only performs competitively but also generalizes well across a variety of TSP instances in real-world
scenarios. In addition, we further conduct experiments on small-scale instances (TSP10 and TSP20)
under the step-by-step construction framework for TSP. The results are presented in Table 7.

C.2 ONLINE BIN PACKING PROBLEM

To provide a more comprehensive empirical validation and to assess the robustness of our frame-
work, we conducted further evaluations of the online Bin Packing Problem (BPP) on a broader and
more challenging set of Weibull-distributed instances. These instances, which more closely mimic
real-world scenarios than uniform distributions, were generated following the protocol established
in prior work on LLM-based heuristic discovery (Romera-Paredes et al., 2024). Table 8 presents a

20

Published as a conference paper at ICLR 2026

Table 6: Results on TSPLib. The best results are highlighted in bold.
name EoH MCTS-AHD ReEvo HSEvo Ours

eil51 7.665% 17.133% 4.409% 4.295% 6.691%
berlin52 16.080% 17.481% 15.678% 19.814% 10.973%
eil76 10.566% 15.193% 8.450% 10.034% 8.439%
pr76 25.222% 29.371% 21.089% 21.718% 20.505%
kroA100 24.347% 24.315% 17.509% 18.758% 16.616%
kroB100 30.274% 22.593% 9.059% 13.266% 20.502%
kroC100 25.542% 10.212% 27.343% 36.176% 10.000%
kroD100 31.497% 25.765% 25.797% 13.258% 32.315%
kroE100 24.618% 21.299% 23.905% 22.218% 14.925%
rd100 12.654% 11.470% 8.660% 12.995% 7.921%
eil101 14.421% 22.947% 12.163% 12.372% 7.229%
lin105 40.297% 16.797% 27.774% 42.519% 13.974%
pr107 9.900% 5.004% 7.894% 7.537% 3.811%
ch130 21.406% 6.930% 7.352% 13.107% 7.090%
ch150 19.604% 9.874% 12.644% 10.185% 4.275%
kroA150 27.891% 20.517% 25.887% 21.869% 20.070%
kroB150 22.403% 27.716% 29.499% 32.729% 13.677%
pr152 12.302% 10.457% 12.473% 11.960% 6.545%
u159 13.444% 7.074% 7.951% 13.644% 7.828%
kroA200 26.395% 26.219% 27.366% 28.537% 22.702%
kroB200 20.980% 20.083% 23.861% 21.590% 14.314%
tsp225 32.938% 20.193% 21.703% 22.503% 18.683%
a280 34.081% 24.095% 27.921% 31.736% 15.936%
rd400 14.612% 14.745% 13.865% 15.213% 8.075%
d493 18.833% 13.248% 14.776% 21.179% 7.976%
avg. 21.519% 17.629% 17.401% 19.168% 12.843%

Table 7: Results on TSP with step-by-step construction in 10 and 20.

Method
TSP10 TSP20

Gap Time(s) Gap Time(s)

LKH3 0.000% 6.492 0.000% 24.948

POMO 0.246% - 0.248% -
LEHD 0.183% - 0.010% -

EoH 7.148% 0.042 10.064% 0.168
ReEvo 5.227% 0.228 6.811% 1.215
HSEvo 5.461% 0.689 7.950% 3.273
MCTS-AHD 4.829% 0.440 8.045% 4.087
Ours 1.654% 0.709 3.619% 12.961

detailed comparative analysis of our method against a wide spectrum of competitors, including both
classical, widely-adopted handcrafted heuristics (First Fit, Best Fit) and a suite of contemporary
approaches based on Large Language Models.

For each combination of bin capacity and problem size, the dataset includes five unique instances.
Performance is quantified by the average percentage gap to the known theoretical lower bound across
these instances, where a smaller value signifies a more efficient and effective packing solution.

The empirical results demonstrate the superior performance of the heuristic we have discovered.
As shown in the table, our method consistently outperforms all baseline methods in nearly every
setting, securing the smallest average gap in 8 out of the 9 distinct configurations tested. This high-
lights a remarkable level of consistency and dominance. The only exception is the (Capacity=100,
Size=10k) case, where Funsearch achieves a marginally lower gap.

21

Published as a conference paper at ICLR 2026

Table 8: Results on Online BPP in Weibull instances with varied capacities and problem sizes.
Results marked with * denote values taken from (Liu et al., 2024b).

Capacity Size First Fit Best Fit EoH ReEvo HSEvo MCTS-AHD Ours

100
1k 5.32% 4.87% 3.10% 3.63% 3.51% 3.38% 2.19%
5k 4.40% 4.08% 1.02% 0.78% 1.91% 0.99% 0.69%

10k 4.44% 4.09% 0.80% 0.35% 1.68% 0.84% 0.42%

300
1k 4.93% 4.48% 3.04% 7.34% 6.88% 3.21% 2.08%
5k 4.18% 3.83% 1.00% 4.47% 5.47% 0.95% 0.66%

10k 4.20% 3.87% 0.78% 4.05% 5.26% 0.85% 0.39%

500
1k 4.97% 4.50% 3.04% 5.92% 5.80% 3.20% 2.07%
5k 4.27% 3.91% 1.00% 3.24% 4.39% 0.95% 0.66%

10k 4.28% 3.95% 0.78% 2.79% 4.14% 0.85% 0.40%

However, our method’s strong performance across the entire parameter space underscores its greater
reliability and generalizability compared to methods that may excel only in specific, narrow sce-
narios. Notably, our approach scales gracefully, achieving extremely low gap values (e.g., 0.41%,
0.42%) on the largest and most complex problems, significantly surpassing both traditional algo-
rithms and other state-of-the-art LLM-driven frameworks. This comprehensive evaluation on chal-
lenging instances further validates the efficacy of our evolutionary framework, showcasing its capac-
ity to discover sophisticated and high-performance heuristics that are robust across varied problem
characteristics.

C.3 FLOW SHOP SCHEDULING PROBLEM

Table 9 presents a comparative analysis of the performance of EoH and our proposed method on
FSSP of varying scales, defined by the number of jobs n and machines m. Performance is evaluated
using two key metrics: the objective function value and the relative gap, where the gap is measured
with respect to the solution quality of an advanced handcrafted heuristic. A smaller gap reflects a
solution that is closer to the heuristic baseline and, therefore, indicates higher solution quality. The
results demonstrate that our method consistently achieves smaller gaps across all tested problem
configurations, regardless of scale. Moreover, in many cases, it outperforms the advanced heuristic
itself in terms of the raw objective value. This consistent superiority suggests that our approach not
only generalizes well across diverse FSSP instances (Liu et al., 2024b) but also offers a competitive
alternative to domain-specific heuristics, exhibiting both strong effectiveness and robustness.

Table 9: Results on FSSP. The best results are highlighted in bold.

n m
EoH Ours

Gap Time(s) Gap Time(s)

20
5 0.25% 7.5 -0.01% 5.5

10 0.31% 13.0 0.17% 8.8
20 0.20% 23.8 0.10% 18.5

50
5 0.01% 45.1 0.00% 29.7

10 0.29% 83.9 0.17% 50.6
20 0.84% 168.4 0.58% 101.1

100
5 -0.02% 230.2 -0.04% 146.7

10 0.23% 299.6 0.13% 243.5
20 0.94% 305.2 0.51% 303.0

200
10 0.37% 337.1 0.12% 317.2
20 1.23% 334.6 0.71% 321.4

22

Published as a conference paper at ICLR 2026

Table 10: Results on BO. The results denote the absolute error relative to the optimal solution.
Results marked with * are from (Yao et al., 2024). The best results are highlighted in bold.

Ackley Rastrigin Griewank Rosenbrock Levy Three
HumpCamel

EI* 2.66 4.74 0.49 1.26 0.01 0.05
EIpu* 2.33 5.62 0.34 2.36 0.01 0.12
EI-cool* 2.74 5.78 0.34 2.29 0.01 0.07

EoH 3.11 3.48 0.72 2.57 0.04 0.18
MCTS-AHD 3.23 0.87 0.43 1.30 0.01 0.05
Ours 1.78 0.45 0.41 1.50 0.00 0.01

Styblinski
Tang Hartmann Powell Shekel Hartmann Cosine8

EI* 0.03 0.00 18.89 7.91 0.03 0.47
EIpu* 0.02 0.00 19.83 7.92 0.03 0.47
EI-cool* 0.03 0.00 14.95 8.21 0.03 0.54

EoH 2.89 0.01 13.71 8.71 0.47 1.04
MCTS-AHD 0.02 0.00 1.91 5.14 0.08 0.29
Ours 0.02 0.01 2.65 4.08 0.57 0.28

C.4 BAYESIAN OPTIMIZATION

Table 10 presents the experimental results on the design of cost-aware acquisition functions
(CAFs) (Yao et al., 2024) in Bayesian Optimization. We compare our method against both man-
ually crafted CAFs and those generated by LLM-based AHD methods. To ensure a fair comparison,
all LLM-based AHD approaches utilize the same underlying language model. Our method achieves
superior performance on the majority of benchmark functions, outperforming traditional CAFs (e.g.,
EI, EIpu, EI-cool) (Yao et al., 2024) as well as recent LLM-based AHD baselines (e.g., EoH (Liu
et al., 2024b), MCTS (Zheng et al., 2025)). The performance advantage is particularly pronounced
on challenging functions such as Rastrigin, ThreeHumpCamel, and Shekel. These results underscore
the robustness and strong generalization ability of our approach across a wide range of optimization
landscapes.

C.5 COMPARATIVE RESULTS

Convergence Analysis. We compared the progression of objective function values during the evo-
lutionary process of our method and EoH on both the TSP and Online BPP. Figure 3 presents the
convergence analysis curves. The figure demonstrates that our method converges more rapidly while
requiring fewer individuals in the population, indicating higher efficiency. For a detailed breakdown
of computational costs, including runtime and token consumption comparisons, please refer to Ap-
pendix C.8.

Results with Different LLMs. Furthermore, we evaluated it across a diverse set of LLMs. To
ensure fairness and consistency, we adopted the evaluation protocol established in MCTS-AHD
(Zheng et al., 2025). Specifically, we selected two representative problem scales for each task to
validate scalability, and each experiment was conducted across three independent runs, with average
values reported to mitigate stochasticity. The detailed comparative results are presented in Table 11.

The results indicate that our framework exhibits strong adaptability, consistently discovering effec-
tive heuristics across diverse LLMs. While Qwen-2.5-max yields the leading metrics , we observe
that performance does not follow the generic reasoning benchmarks of these models. Instead, suc-
cess appears to rely on the synergy between the framework’s guidance mechanisms and the specific
model’s characteristics (e.g., instruction following). Even smaller models like GPT-4o-mini show
competitive results, highlighting that optimizing the coordination between the LLM-based AHD and
the underlying model remains a promising and open direction for future research.

23

Published as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16 18 20
Iteration Number

6.0

6.2

6.4

6.6
O

bj
ec

tiv
e

Va
lu

e
HiFo-Prompt Termination Line

Convergence Analysis for the Traveling Salesman Problem

Ours(8 population)
EoH(10 population)

0 2 4 6 8 10 12 14 16 18 20
Iteration Number

0.01

0.02

0.03

0.04

0.05

O
bj

ec
tiv

e
Va

lu
e

HiFo-Prompt Termination Line

Convergence Analysis for the Online Bin Packing Problem

Ours(8 population)
EoH(20 population)

Figure 3: A Key Example of Convergence Analysis for TSP and Online BPP.

Table 11: Results with different LLMs.
Problems TSP-construction TSP-GLS
Scale N=50 N=100 N=100 N=200

Qwen-2.5-max 6.625% 8.582% 0.015% 0.382%
GPT-4o-mini 7.058% 9.579% 0.021% 0.433%
DeepSeek-v3 7.717% 10.455% 0.041% 0.480%
DeepSeek-r1 10.412% 12.638% 0.074% 0.589%
Claude3.5-sonnet 8.276% 11.087% 0.061% 0.454%

Problems Online BPP FSSP-GLS
Scale N=1k, C=100 N=10k, C=300 n=100, m=10 n=200, m=20

Qwen-2.5-max 2.188% 0.391% 0.128% 0.710%
GPT-4o-mini 2.287% 0.492% 0.137% 0.787%
DeepSeek-v3 2.238% 0.978% 0.185% 0.916%
DeepSeek-r1 2.984% 1.487% 0.313% 1.485%
Claude3.5-sonnet 2.089% 1.487% 0.179% 1.256%

C.6 PARAMETER SENSITIVITY ANALYSIS

To rigorously quantify the impact of key hyperparameters on the performance of HiFo-Prompt, we
conducted a comprehensive ablation study involving eight core parameters. All sensitivity experi-
ments were conducted on the TSP-50 construction task using the training dataset. To ensure statis-
tical reliability, each configuration was executed across 3 independent runs, with results reported as
the average objective function value. Unless otherwise specified, the framework operated under a
default configuration of population size Npop = 8 and maximum generations Gmax = 8. The results
confirm that the framework consistently converges to high-quality solutions across a broad spectrum
of configurations, demonstrating that our settings are both effective and robust without relying on
instance-specific fine-tuning. The results, visualized in Figure 4 and detailed in Table 12, not only
justify our default configurations but also reveal the underlying mechanics of the framework. Col-
lectively, these experiments demonstrate that HiFo-Prompt maintains consistent performance across
a reasonable range of parameter settings, confirming the robustness and reproducibility of the pro-
posed method.

Recency Bonus Magnitude (τr) The role of this parameter is grounded in the formulation of
the recency bonus function Br, designed to capture the temporal dynamics of the search process.
Formally defined as:

Br(t, t
last
i) =

{
τr if t− tlast

i ≤ Tw

0 otherwise
(24)

24

Published as a conference paper at ICLR 2026

Table 12: Ablation analysis of recency bonus magnitude (τr), usage penalty weight (wu) and
decay rate (Rdecay).

wu run1 run2 run3 avg.

0 5.958 5.989 5.978 5.975
0.05 5.894 5.901 5.907 5.901
0.1 (default) 5.885 5.838 5.873 5.866
0.3 5.921 5.907 5.922 5.917

τr run1 run2 run3 avg.

0 5.954 5.972 5.979 5.968
0.1 5.920 5.925 5.901 5.915
0.2 (default) 5.885 5.838 5.873 5.866
0.4 5.937 5.945 5.933 5.938

Rdecay run1 run2 run3 avg.

0 5.998 6.097 6.075 6.057
0.005 5.899 5.908 5.906 5.904
0.01 (default) 5.885 5.838 5.873 5.866
0.04 5.985 5.956 5.967 5.969

where t denotes the current generation index, tlast
i records the last generation in which insight i was

successfully applied, and Tw represents the sliding window size (set to Tw = 2). Here, τr controls
the magnitude of the reward assigned to recently validated insights. Theoretically, this mechanism
addresses the non-stationary nature of evolutionary search—an insight highly effective during early
exploration may become obsolete during later exploitation. This design aligns with the principles
of Sliding-Window Upper Confidence Bound (SW-UCB) (Garivier & Moulines, 2011) algorithms
used in non-stationary Multi-Armed Bandits. By restricting the bonus to a narrow temporal window
Tw, the framework implicitly discounts outdated information, ensuring that the selection process
prioritizes insights that are not just historically successful, but contextually relevant to the current
state of the population.

The sensitivity analysis presented in Table 12 validates this design choice. Specifically, when this
short-term memory is deactivated (τr = 0), the algorithm inherently lacks the incentive to maintain
search continuity. Consequently, the search explores widely but inefficiently, resulting in degraded
performance. However, it is crucial to note that simply increasing the reward is not monotonically
beneficial. As observed in the table, setting the reward magnitude too high (τr = 0.4) leads to
a deterioration in algorithm quality. This outcome suggests that excessive recency bias induces
myopic behavior, wherein the algorithm becomes overly focused on the specific traits of the most
recent iteration. Such short-sighted focus ultimately overshadows the robust, long-term effectiveness
signals (Ei) accumulated over time. In contrast, introducing a moderate reward (τr = 0.2) achieves
consistently strong performance. This finding confirms that explicitly rewarding recent successes
allows the LLM to effectively build upon immediate gains, thus guiding the population through the
shifting fitness landscape without becoming distracted by transient fluctuations.

Usage Penalty Weight (wu). This parameter regulates the exploration pressure within the Insight
Pool by modulating the usage cost term, defined as −wu log(Ni(t)+1), where Ni(t) represents the
retrieval count of insight i. The choice of a logarithmic growth function is deliberate: it ensures that
the penalty accumulates rapidly for the first few uses to prevent immediate overfitting, but saturates
quickly thereafter. This design enables the score of a frequently used insight to stabilize rather
than suffer a precipitous decline, thereby avoiding sharp priority reversals or oscillatory behavior
while granting other high-potential candidates a fair chance. The sensitivity analysis in Table 12
confirms the necessity of this balanced regulation. When the penalty is removed (wu = 0), the
framework exhibits a significant performance drop. This indicates a phenomenon of knowledge
collapse, where the algorithm over-exploits a few early dominant insights, effectively depriving the
search of diversity. Conversely, an aggressive penalty (wu = 0.3) yields suboptimal results by
discarding valid insights prematurely before their full potential is realized. The default value of

25

Published as a conference paper at ICLR 2026

wu = 0.1 demonstrates robust efficacy, showing that a gentle, saturating penalty is sufficient to
maintain a healthy turnover of valid ideas without suppressing fundamental design principles.

Decay Rate (Rdecay). This parameter governs the temporal lifecycle of insights, controlling the
rate at which older knowledge becomes obsolete. By applying a linear decay to the eviction score,
Rdecay enforces a mechanism of knowledge turnover, preventing the Insight Pool from becoming
a static archive of legacy strategies that, while successful in early generations, may no longer be
competitive. The sensitivity analysis in Table 12 reveals that this dynamic maintenance is critical
for sustained performance. When the decay mechanism is disabled (Rdecay = 0), the algorithm
yields the worst results among all tested configurations. This confirms that a static pool eventually
becomes saturated with stale information, effectively locking out superior novel insights due to
capacity constraints. Conversely, setting the rate too high (Rdecay = 0.04) causes the system to
rapidly forget valid principles, disrupting the accumulation of algorithmic knowledge. The default
rate of Rdecay = 0.01 demonstrates robust performance, continuously purging outdated or inactive
insights to ensure the pool remains relevant and valid, thereby staying aligned with the evolving
needs of the population.

Diversity Threshold (δp). This parameter establishes the minimum acceptable level of pheno-
typic diversity, acting as a sensitivity trigger for the Evolutionary Navigator. As defined in Eq. 7,
diversity is computed via exact string matching of the generated algorithmic descriptions. This rig-
orous design choice is motivated by the fact that our standardized prompt template eliminates trivial
syntactic noise (e.g., variable renaming), ensuring that any remaining lexical difference reflects a
deliberate structural modification by the LLM. Moreover, exact matching captures subtle but criti-
cal logical alterations—such as dynamic vs. static—that embedding-based metrics might obscure.
The threshold δp dictates when the system perceives the population as stagnated; dropping below
it triggers a shift to an Exploration regime. The sensitivity analysis in Figure 4 reveals the delicate
balance required here. A low threshold (δp = 0.1) proves overly tolerant of redundancy, allowing
the LLM to repeatedly output identical text without intervention. This failure to trigger exploration
traps the search in local optima, leading to premature convergence. Conversely, an excessively high
threshold (δp = 0.5) imposes a hypersensitive constraint that misinterprets healthy convergence as
stagnation. As evidenced by the significant instability in the green curve, this causes frequent, un-
necessary disruptions that abort the fine-tuning of high-potential heuristics. Therefore, the default
setting (δp = 0.3) represents a robust operating point. By triggering intervention only when over
70% of the population consists of exact duplicates, it functions as an indicator that effectively antic-
ipates local-optimum collapse, enforcing proactive exploration before the search fully stalls while
still permitting sufficient iterations for the local refinement of elite patterns.

Population Size (Npop). This parameter determines the breadth of the heuristic search space cov-
ered per generation. The sensitivity analysis in Figure 4 reveals a distinct trade-off: excessively
small populations (e.g., Npop = 4) lead to premature convergence, as the limited gene pool lacks
sufficient diversity to sustain effective recombination. Conversely, overly large populations (e.g.,
Npop = 12) significantly increase the computational burden (token consumption) without yielding
proportional performance gains. The results confirm that a size of 8 serves as an effective balance
point, providing sufficient genetic material for the LLM to synthesize high-quality heuristics while
maintaining a manageable query budget.

Maximum Generations (Gmax). This parameter defines the temporal budget of the evolutionary
process. The convergence trajectories in Figure 4 demonstrate that the algorithm typically achieves
near-optimal solutions within the first 6–8 generations. While extending the search to 12 or more
generations might offer slight refinements, it yields diminishing returns. The marginal performance
improvements observed in these later stages do not justify the significant additional inference costs.
Consequently, we selected Gmax = 8 as the standard configuration, representing a trade-off that
secures high solution quality while maximizing computational efficiency.

Insight Pool Size (Cpool). The capacity of the Insight Pool regulates the system’s long-term mem-
ory. As indicated by the variance and trends in Figure 4, a small pool (e.g., < 10) leads to catas-
trophic forgetting, where valuable high-level principles are evicted before they can be effectively
reused. On the other hand, an unconstrained or overly large pool acts as a noise accumulator, dilut-

26

Published as a conference paper at ICLR 2026

ing high-quality insights with mediocre ones and confusing the LLM with irrelevant context. Our
experiments indicate that a capacity of 30 effectively balances the retention of diverse, high-utility
insights with the need to filter out noise, maintaining both stability and agility.

Stagnation Threshold (τstag). This parameter determines the sensitivity of the Evolutionary Nav-
igator in detecting performance plateaus. It sets the number of consecutive non-improving genera-
tions required to trigger a shift from Exploitation to Exploration. The sensitivity analysis in Figure
4 highlights the critical balance involved. A low threshold (e.g., τstag = 1) makes the system hy-
persensitive, frequently interrupting the refinement of promising solutions due to minor stochastic
fluctuations. This prevents the algorithm from fully exploiting local basins of attraction. Conversely,
a high threshold (e.g., τstag = 5) renders the framework sluggish. Given the constrained evolutionary
window (typically 12 generations) and the high cost of LLM inference, waiting for 5 generations
represents a significant waste of the computational budget on unproductive search. The default value
of τstag = 3 provides a trade-off, allowing for rapid detection of diminishing returns while filtering
out transient noise in the optimization trajectory.

Figure 4: Parameter sensitivity analysis of population size, maximum generations, insight pool
size, stagnation threshold and diversity threshold.

C.7 ADDITIONAL ABLATION STUDIES AND ANALYSIS

To provide a comprehensive understanding of the internal mechanisms of HiFo-Prompt and to dis-
sociate the contribution of specific components from the overall framework, we conducted a series
of additional ablation studies. These experiments investigate the architectural necessity of the In-
sight Pool, the efficacy of the adaptive Evolutionary Navigator, the behavioral dynamics of regime
switching, and the fine-grained design of the utility function.

Architectural Necessity of the Insight Pool. To determine whether the performance gains of
HiFo-Prompt stem principally from the initialization with high-quality seed insights or from the
framework’s capability to manage them, we injected the identical set of seed insights into the initial
populations or prompts of four state-of-the-art baselines: EoH, ReEvo, HSEvo, and MCTS-AHD.
As detailed in Table 13, the incorporation of seed insights into these baselines yields negligible
performance improvements, and in certain cases (e.g., MCTS-AHD), results in slight performance
degradation due to interference with their native search logic. This stands in sharp contrast to the
significant gains achieved by HiFo-Prompt. These results substantiate that standard LLM-based

27

Published as a conference paper at ICLR 2026

evolutionary methods lack the necessary architectural mechanisms—specifically, the Insight Pool
and the Hindsight reflection process—to effectively retain, retrieve, and utilize abstract knowledge.
Consequently, the superior performance of HiFo-Prompt is attributed to its unique ability to leverage
high-level guidance rather than merely the quality of initialization.

Table 13: Impact of seed insights on baselines, using TSP construction as an example. The results
show the objective function values. Lower is better.

Method TSP10 TSP20 TSP50 TSP100 TSP200

EoH (w/ seed insight) 3.024 4.233 6.512 8.998 12.470
EoH (w/o seed insight) 3.049 4.252 6.441 8.990 12.514

ReEvo (w/ seed insight) 2.993 4.132 6.344 8.759 12.198
ReEvo (w/o seed insight) 2.994 4.126 6.294 8.773 12.324

HSEvo (w/ seed insight) 3.064 4.324 6.452 8.842 12.270
HSEvo (w/o seed insight) 3.001 4.170 6.307 8.729 12.183

MCTS-AHD (w/ seed insight) 2.938 4.142 6.294 8.724 12.076
MCTS-AHD (w/o seed insight) 2.983 4.174 6.317 8.769 12.176

Efficacy of Adaptive Regime Switching. The Evolutionary Navigator is designed to dynamically
switch between Explore, Exploit, and Balance regimes based on real-time population states. To
validate the necessity of this adaptive control, we compared the full HiFo-Prompt against a variant
fixed permanently in the Balance mode, which attempts to combine exploration and exploitation in
every prompt without explicit directional guidance. Table 14 demonstrates that the adaptive mecha-
nism significantly outperforms the fixed strategy. This performance gap widens as the problem scale
increases (e.g., reducing the gap on TSP200 from 22.115% to 8.877%). This indicates that a static
prompt strategy is insufficient for navigating complex search landscapes. The Navigator’s ability
to explicitly enforce exploration during stagnation and exploitation during progress is critical for
escaping local optima and refining solutions efficiently.

Table 14: Ablation study of the Evolutionary Navigator’s adaptive mechanism vs. a fixed strategy.
Method TSP10 TSP20 TSP50 TSP100 TSP200

HiFo-Prompt (adaptive) 1.654% 3.619% 6.625% 8.582% 8.877%
HiFo-Prompt (fixed Balance) 5.812% 9.676% 15.599% 18.924% 22.115%

Behavioral Analysis of the Evolutionary Navigator. To further elucidate the operational behav-
ior of the Navigator, we analyzed the frequency of each regime triggered during the evolutionary
process across three independent runs. As shown in Table 15, the system exhibits a balanced distri-
bution of states. While Balance is the most frequent state (providing stability), the system frequently
triggers Explore (avg. 102.3 times) and Exploit (avg. 83.7 times). This confirms that the diversity
(δp) and stagnation (τstag) thresholds are actively functioning, ensuring the search dynamically os-
cillates between structural diversification and local refinement rather than converging prematurely.

Table 15: Frequency statistics of Evolutionary Regimes triggered by the Navigator.
Regime run 1 run 2 run 3 avg.

Explore 110 95 102 102.3
Exploit 81 88 82 83.7
Balance 129 137 136 134.0

Synergistic Effect of Utility Function Components. The utility function U(ki, t) is not merely a
sum of terms but establishes a dynamic interplay among three constituents to ensure stable, conver-
gent selection. The learned effectiveness Ei(t) serves as the dominant, low-variance signal reflecting

28

Published as a conference paper at ICLR 2026

long-term value via Exponential Moving Average (EMA). The usage penalty and recency bonus act
as critical modulating factors. Specifically, the usage penalty employs a logarithmic growth design
(log(Ni(t) + 1)); this ensures the penalty saturates quickly, meaning an insight’s priority is gently
down-weighted rather than suffering a precipitous decline. This prevents sharp priority reversals
and oscillatory behavior while preserving diversity. Conversely, the recency bonus injects a fixed,
time-dependent reward to encourage search continuity along recently validated trajectories.

The ablation study in Table 16 empirically confirms this synergy. Removing the penalty (wu = 0)
leads to inferior results, indicating that without exploration pressure, the system over-exploits early
dominant insights, leading to premature knowledge collapse. Removing the reward (τr = 0) sim-
ilarly harms performance, as the search loses its momentum and explores widely but inefficiently.
The poorest performance occurs when both modulators are removed, validating that the simultane-
ous application of penalizing overuse and rewarding recency is essential for robust credit assignment.

Table 16: Ablation analysis of usage penalty (wu) and recency bonus (τr) in the Utility Function.
Setting run 1 run 2 run 3 avg.

wu > 0, τr > 0 (default) 5.885 5.838 5.873 5.866
wu = 0, τr > 0 (w/o penalty) 5.958 5.989 5.978 5.975
wu > 0, τr = 0 (w/o reward) 5.954 5.972 5.979 5.968
wu = 0, τr = 0 (w/o both) 5.984 6.026 5.982 5.997

Calibration of Base Credit Assignment. Finally, we analyzed the sensitivity of the base credit
assignment coefficients defined in Eq. 3 (graw

eff). In Table 17, each configuration is presented as a
triplet [βbest, βinc, βpen], representing the base intercept values for three distinct performance tiers:
the first value (βbest) rewards offspring that surpass the current population best (paradigm-shifting);
the second (βinc) rewards those improving upon the average but not the best (incremental); and the
third (βpen) penalizes individuals performing below the average (sub-optimal).

Table 17: Sensitivity analysis of base reward configurations.
Configuration run 1 run 2 run 3 avg.

[0.8, 0.2, 0.0] 6.046 5.976 5.998 6.007
[1.0, 0.1,−0.5] 5.921 5.932 5.902 5.918
[0.6, 0.3,−0.1] 5.916 5.917 5.915 5.916
[0.8, 0.2,−0.3] (default) 5.885 5.838 5.873 5.866

Our default configuration [0.8, 0.2,−0.3] is not arbitrary but follows a specific asymmetric design
philosophy: Elite Reward ≫ |Penalty| ≳ Incremental Reward. The substantial elite reward (0.8)
provides a strong signal for breakthroughs, prioritizing paradigm discovery. The incremental reward
(0.2) acknowledges smaller gains, while the penalty (-0.3)—larger in magnitude than the incremen-
tal reward—effectively prunes unproductive directions. This asymmetry improves search efficiency
by aggressively filtering noise while amplifying true innovations. Additionally, the coefficients fol-
low a ∧-shaped sensitivity design, where the intermediate tier receives the largest gradient to encour-
age rapid upward transitions, while the elite tier is assigned lower sensitivity to maintain stability.
The results in Table 17 confirm that this theoretically grounded configuration yields the lowest ob-
jective value. Deviating towards more aggressive rewards (e.g., [1.0, 0.1,−0.5]) or different penalty
structures disrupts this balance, resulting in inferior performance.

Standard Deviation Analysis. To comprehensively evaluate the stability and consistency of the
models, we conducted three independent runs of all LLM-based AHD methods on several repre-
sentative scales. We then summarized the objective function values of each run and reported their
average (avg.) and standard deviation (std.), as shown in Table 18. These statistics provide a clear
indication of the variability across runs, offering a more reliable basis for subsequent performance
comparison and robustness analysis.

29

Published as a conference paper at ICLR 2026

Table 18: Objective function values of three run and their average(avg.) and standard deviation(std.).
Task Method run1 run2 run3 avg. std.

TSP50-construction EoH 6.369 6.554 6.401 6.441 0.09887534
ReEvo 6.264 6.298 6.320 6.294 0.02821347
HSEvo 6.348 6.259 6.314 6.307 0.04491102
MCTS-AHD 6.359 6.288 6.303 6.317 0.03742103
Ours 6.135 6.087 6.041 6.088 0.04700355

TSP100-GLS EoH 7.738 7.738 7.739 7.738 0.00034451
ReEvo 7.742 7.741 7.738 7.740 0.00173957
HSEvo 7.739 7.737 7.753 7.743 0.00894281
Ours 7.737 7.737 7.738 7.737 0.00007013

Online BPP 5k C100 EoH 2028 2027 2025 2027 1.11355287
ReEvo 2021 2023 2022 2022 0.60880932
HSEvo 2022 2024 2088 2045 37.59627641
MCTS-AHD 2027 2026 2026 2026 0.66901381
Ours 2019 2020 2021 2020 0.64291005

FSSP-GLS n100 m10 EoH 5640 5645 5644 5643 2.60832002
Ours 5635 5638 5638 5637 1.67470225

C.8 CONSUMPTION OF TIME AND TOKEN

Compared to other LLM-based AHD methods, our approach demonstrates advantages in both time
and token consumption, with particularly significant reductions in computational time. Based on
qwen2.5-maxmodel, we calculated the runtime and token consumption of various methods across
three problem domains: TSP-construction, Online BPP, and BO-CAF in Table 19.

Table 19: Time and token consumption with different methods.
Methods Consumption TSP-construction Online BPP BO-CAF

EoH
Time 1.2h 1h 2h
Input Token 0.8M 0.5M 1.2M
Output Token 0.2M 0.2M 0.5M

ReEvo
Time 2h - -
Input Token 1.1M - -
Output Token 0.4M - -

MCTS-AHD
Time 4h 3h 14h
Input Token 1M 1M 1.3M
Output Token 0.3M 0.2M 0.6M

Ours
Time 40 min 36min 1h
Input Token 0.5M 0.28M 0.8M
Output Token 0.2M 0.12M 0.2M

D LIMITATION AND FUTURE WORK

D.1 LIMITATION

While HiFo-Prompt demonstrates significant advancements in automated heuristic design, its cur-
rent architecture possesses inherent limitations that define the boundaries of its present capabilities.

First, the core decision-making mechanism of the Evolutionary Navigator is predicated on a static,
handcrafted control logic. This rule-based system, while interpretable, lacks the capacity for self-
adaptation. Its fixed thresholds for stagnation, progress, and diversity are calibrated for the evaluated

30

Published as a conference paper at ICLR 2026

problems but may not be universally optimal, potentially constraining its performance on novel
problem landscapes or over different evolutionary timescales. The Navigator can react to predefined
states but cannot learn or refine its control strategy from experience.

Second, the knowledge evolution within the Insight Pool is fundamentally intra-task. The framework
excels at capturing, refining, and reusing design principles within the context of a single optimization
problem. However, the true generalizability of these learned insights across different problem do-
mains remains an unevaluated and open question. We have not yet systematically validated whether
insights distilled from solving one problem class can effectively bootstrap the learning process on a
structurally different, unseen one.

D.2 FUTURE WORK

The limitations mentioned above naturally chart a course for several high-impact avenues for future
research, aimed at enhancing the framework’s autonomy, generality, and strategic depth.

A primary research thrust will be to transcend the Evolutionary Navigator’s current heuristic-driven
design by developing it into a learned metacontroller. We propose parameterizing its control func-
tion and leveraging techniques from the domain of Meta-Reinforcement Learning (Meta-RL). In
this paradigm, the Navigator would operate as a high-level agent, learning a control policy that
dynamically maps observational data from the evolutionary process—such as population diversity
metrics, fitness landscape topology, and rates of convergence—to a nuanced control vector. This
vector would modulate critical evolutionary parameters in real-time, including operator probabili-
ties, selection pressure, and even strategic alterations to the LLM prompts themselves. The reward
signal for this meta-agent would be carefully engineered to reflect overarching goals of evolutionary
efficiency, such as maximizing the rate of fitness improvement or minimizing the computational cost
to reach a performance threshold. Successfully implementing this would elevate the framework from
a system guided by static rules to one capable of learning and deploying its own adaptive control
strategies online, thereby achieving a superior order of autonomy and problem-specificity.

Another critical, complementary direction is the systematic investigation of inter-task knowledge
transfer, intending to evolve the framework from a single-task solver into a more general algo-
rithmic discovery platform. This research will proceed along two parallel vectors. First, we will
conduct a rigorous empirical evaluation of the framework’s zero-shot and few-shot transfer capa-
bilities. By applying a mature Insight Pool—developed for a source task—to novel target domains,
we can precisely quantify the generality of the learned principles and measure the extent to which
discovery costs can be amortized across problems. Second, we will pioneer the exploration of more
abstract and powerful knowledge representations that transcend the inherent ambiguities of natural
language strings. This includes investigating structured canonical forms, such as predicate logic or
probabilistic program sketches, and rich semantic representations like knowledge graphs. The cen-
tral hypothesis is that such formalisms can more effectively decouple a core algorithmic invariant
from its domain-specific instantiation, thereby creating a more robust foundation for seamless and
compositional cross-domain knowledge transfer.

E PROMPTS WITH FORESIGHT AND HINDSIGHT

This section provides the specific, concrete templates of the prompts used to guide the LLM, of-
fering a transparent and reproducible view of the core interaction engine at the heart of our HiFo-
Prompt framework. The HiFo (Hindsight-Foresight) name is not arbitrary; it directly reflects our
core methodology: the strategic deployment of distinct, context-aware prompts at different stages of
the evolutionary process. Foresight prompts are strategically employed during the initial generation
and creative mutation stages, encouraging the LLM to explore a diverse space of novel heuristic
possibilities. In stark contrast, Hindsight prompts play a critical role in reflection and data-driven
refinement, leveraging empirical performance feedback from past evaluations to methodically prune
the search space and systematically improve promising solutions.

To ground these abstract concepts and make our prompts tangible, we anchor our examples in the
canonical Online Bin Packing (OBP) problem. The objective in OBP is to assign an incoming
sequence of items of varying sizes into a minimum number of fixed-capacity bins, with the crucial
constraint that each item must be placed without knowledge of future items. Within this problem

31

Published as a conference paper at ICLR 2026

context, our framework’s specific task is to evolve a high-performance Python scoring function,
score(item, bin), which acts as the core decision-making logic. This function evaluates the suitability
of a specific candidate bin for an incoming item. A higher returned score signifies a more desirable
placement, and the overarching control logic of the framework places the item in the bin that yields
the maximum score. The following subsections provide verbatim templates for each distinct phase
of the evolutionary process, clearly demonstrating how the system’s guidance dynamically shifts its
focus—from broad exploration to focused exploitation—as the search progresses.

E.1 INITIAL PROMPT STRATEGY I1

The i1 operator uses the following prompt template to generate the initial population of heuristics.
The guidance provided to the LLM at this stage comes from the initial state of the framework’s
components, including a set of high-quality seed insights.

Prompt for Operator i1

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
First, describe your new algorithm and main steps in one sentence. The description must be inside a
brace. Next, implement it in Python as a function named score.
This function should accept 2 input(s): ’item’, ’bins’.
The function should return 1 output(s): ’scores’.
The score function is designed to evaluate the placement options for a given item. It takes the item
to be placed and the current list of bins as input. It returns a list of numerical scores, with each score
corresponding to a bin in the input list. This list of scores guides the heuristic in selecting the most
suitable bin for the item according to the generated logic.
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle...>

For the evolutionary regime, please pay special attention to: <A specific instruction
from Design Directive>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

E.2 RECOMBINATION PROMPT STRATEGY E1

The following template for the e1 operator is a representative example of a prompt used during the
main evolutionary loop. It demonstrates how parent heuristics and the full, dynamic guidance from
the meta-cognitive components are integrated.

Prompt for Operator e1

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have k existing algorithms with their codes as follows:
No.1 algorithm and the corresponding code are:
<Description of the first algorithm>
<The Python code implementation of the first algorithm>
. . .
No.k algorithm and the corresponding code are:
<Description of the last algorithm>
<The Python code implementation of the last algorithm>
Please help me create a new algorithm that has a totally different form from the given ones.

32

Published as a conference paper at ICLR 2026

First, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Next,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle...>

For the evolutionary regime, please pay special attention to: <A specific Design
Directive for promoting structural novelty, preserving diversity,
and avoiding premature convergence>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

E.3 RECOMBINATION PROMPT STRATEGY E2

The e2 operator focuses on ”motivated recombination.” It prompts the LLM to first identify a com-
mon ”backbone” or core principle shared by the parent heuristics and then to create a new, improved
algorithm based on that shared foundation.

Prompt for Operator e2

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have k existing algorithms with their codes as follows:
No.1 algorithm and the corresponding code are:
<Description of the first algorithm>
<The Python code implementation of the first algorithm>
. . .
No.k algorithm and the corresponding code are:
<Description of the last algorithm>
<The Python code implementation of the last algorithm>
Please help me create a new algorithm that has a totally different form from the given ones but can be
motivated from them.
Firstly, identify the common backbone idea in the provided algorithms. Secondly, based on the back-
bone idea, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Thirdly,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle>

For this recombination, please pay special attention to: <A specific Design Directive
for simplification prune low-impact features>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

E.4 MUTATION PROMPT STRATEGY M1

The M1 operator implements a form of targeted mutation, generating a single-parent descendant
by refining its most critical components. It performs surgical modifications to elements like scor-
ing rules or parameter weights, while meticulously safeguarding the parent’s established, high-
performing logic. This process is not random; it is guided by a synthesis of recent, high-utility
insights and a high-level strategic directive. By injecting controlled, purposeful diversity, M1 en-

33

Published as a conference paper at ICLR 2026

ables the search to escape local optima without dismantling the parent’s effective architecture. This
deliberate balance between exploitation (refining what works) and exploration (seeking novelty) is
crucial for accelerating convergence towards superior heuristics.

Prompt for Operator m1

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have one algorithm with its code as follows:
Algorithm description: <Description of the parent algorithm>
Code:
<The Python code implementation of the parent algorithm>
Please assist me in creating a new algorithm that has a different form but can be a modified version of
the algorithm provided.
First, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Next,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle>

For this mutation, please pay special attention to: <A specific Design Directive for
mutation>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

E.5 MUTATION PROMPT STRATEGY M2

The M2 operator implements parameter mutation, a targeted process to modify a heuristic’s numer-
ical behavior. It instructs the LLM to first deconstruct the parent’s score function to identify its key
hyperparameters. Following this analysis, the model is prompted to generate a new set of parameter
values. This generation can either explore novel configurations through significant changes or fine-
tune existing ones via subtle adjustments. This surgical approach methodically injects parametric
diversity into the population while preserving the integrity of the core algorithmic logic.

Prompt for Operator m2

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have one algorithm with its code as follows:
Algorithm description: <Description of the parent algorithm>
Code:
<The Python code implementation of the parent algorithm>
Please identify the main algorithm parameters and assist me in creating a new algorithm that has
different parameter settings of the score function provided.
First, describe your new algorithm and main steps in one sentence, enclosed in braces {}. Next,
implement it in Python as a function named score. This function should accept 2 input(s): <’item’,
’bins’>. The function should return 1 output(s): <’scores’>. <Additional info on
inputs & outputs> <Other constraints or requirements>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle>

When adjusting parameters, please pay special attention to: <A specific Design
Directive for parameter tuning>

34

Published as a conference paper at ICLR 2026

Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

E.6 MUTATION PROMPT STRATEGY M3

The M3 operator is designed for structural simplification to enhance heuristic robustness and com-
bat overfitting. It instructs the LLM to perform a critical analysis of the parent score function,
specifically targeting components suspected of being over-specialized to in-distribution data. These
potentially brittle or overly complex segments are then strategically pruned or streamlined. The out-
come is a more parsimonious and computationally lean implementation that is theorized to exhibit
superior generalization to out-of-distribution scenarios, all while preserving the original function
signature to ensure architectural compatibility.

Prompt for Operator m3

Given a sequence of items and a set of identical bins with a fixed capacity, you need to assign each
item to a bin to minimize the total number of bins used. The task can be solved step-by-step by taking
the next item and deciding which bin to place it in based on a score.
I have one algorithm with its code as follows:
Code:
<The Python code implementation of the parent algorithm>
First, identify the main components in the function above. Next, analyze which of these components
may be overfitting to the in-distribution instances. Then, simplify those components to enhance gen-
eralization to out-of-distribution cases. Finally, provide the revised code, keeping the function name,
inputs, and outputs unchanged.
Provide the complete revised function implementation, preserving its original signature. <The
function name, inputs & outputs specification from your prompt>
Consider these successful design principles I’ve observed recently:
• <A successful design principle from Insights pool>

• <Another successful design principle>

When simplifying, please pay special attention to: <A specific Design Directive for
simplification>
Depending on the regime, try significantly different parameter values (focus exploration), or fine-tune
existing ones (focus exploitation), or combine both strategies (balanced search).
Do not give additional explanations.

F MANAGING FORESIGHT AND HINDSIGHT KNOWLEDGE

F.1 HINDSIGHT EVOLUTION VIA INSIGHT DISTILLATION

To continually enrich our system’s understanding of effective optimization strategies, we employ
a Large Language Model (LLM) to distill high-level design principles from high-performing al-
gorithms. This process is guided by a structured prompt, shown below, which provides the LLM
with the descriptions and/or code of elite solutions discovered during an evolutionary run. The core
instruction tasks the model with synthesizing concise, generalizable, and performance-positive pat-
terns, drawing insights from both the conceptual descriptions and the code implementations. This
automated extraction mechanism allows our system to learn from its own successes and progres-
sively build a more sophisticated knowledge base.

35

Published as a conference paper at ICLR 2026

Prompt Template for Insight Extraction

The following are core descriptions and/or code of high-performance optimization algorithms
evolved recently:
Algorithm 1: <Natural language description and/or code of elite
individual 1>
Algorithm 2: <Natural language description and/or code of elite
individual 2>
Algorithm n: ... (and so on for the top 30% of the population)

Please extract 1-2 concise, generic, and performance-positive [design principles] or [effective pat-
terns] from the above algorithms. These principles should be applicable to various combinatorial
optimization problems, not just the specific problem domain. When formulating these principles, it
is essential to draw insights from both the conceptual natural language descriptions and their cor-
responding code implementations. Focus on identifying the underlying strategic design choices and
algorithmic methodologies rather than superficial characteristics or specific implementation minutiae.

Each principle/pattern must be expressed as an independent sentence in the following format:
• Balance local optimization with global solution structure when making decisions.

• Prioritize choices that maintain flexibility for future decision-making steps.

• Implement adaptive mechanisms that respond to problem instance characteristics.

Provide only the list of principles, without any preamble or other explanatory text.

F.2 THE DIRECTIVE POOL FOR FORESIGHT

To operationalize the Evolutionary Navigator’s high-level strategy, we map the chosen
regime—Exploration, Exploitation, or Balance—to a specific Design Directive. Each directive is
a fine-grained textual instruction, uniformly sampled from a predefined pool corresponding to the
active regime. This sampled directive is then integrated into the generation prompt. This two-tiered
mechanism facilitates fine-grained control over the generation process, ensuring model outputs are
precisely aligned with the overarching evolutionary objective.

Design Directive

• Balance:
– Optimizing objective function evaluation criteria.
– Considering the long-term impact of current decisions.
– Balancing local optimality with global search strategies.
– Improving algorithm robustness across different problem instances.
– Managing computational complexity and time efficiency.

• Exploitation:
– Refining core evaluation and scoring functions.
– Fine-tuning critical algorithm parameters and thresholds.
– Improving the precision of existing heuristics and rules.
– Reducing unnecessary computational overhead.

• Exploration:
– Exploring novel solution construction methodologies.
– Investigating alternative problem decomposition approaches.
– Introducing new randomization or adaptive mechanisms.
– Experimenting with hybrid strategy combinations.

36

Published as a conference paper at ICLR 2026

F.3 INSIGHT SEED POOL

At the inception of the framework’s execution, the LLM bootstraps the heuristic generation process
by drawing from a curated repository of Seed Insights, a mechanism designed to mitigate the classic
cold start problem and channel the model’s creativity. These insights, which encapsulate established
principles and canonical rules-of-thumb distilled from decades of human expertise in heuristic de-
sign—such as the Shortest Processing Time principle in scheduling or the Nearest Neighbor concept
in routing—are not rigid constraints but rather high-level conceptual guidelines. They are strate-
gically injected into the foundational prompts, often framed within a dedicated human knowledge
block, to act as an intellectual scaffold. This initial infusion of well-vetted knowledge serves to
ground the search, preventing the generation of naive or logically flawed heuristics and providing a
potent directional bias that immediately steers the early stages of algorithmic evolution away from
vast, unproductive regions of the design space. By ensuring the process begins not from a tabula rasa
but from a high-quality, well-founded starting point, these seed insights exert a persistent influence
that accelerates convergence and significantly enhances the quality and novelty of all subsequent
automated discovery.

Seed Insights

• Design adaptive hybrid meta-heuristics synergistically fusing multiple search paradigms and
dynamically tune operator parameters based on search stage or problem features.

• Employ machine learning to mine problem structures and use learned insights to intelligently
bias towards promising search regions.

• Explore objective function engineering by introducing auxiliary objectives or dynamically
adjusting weights to reshape the search landscape.

• Construct problem-specialized solution representations and co-design dedicated operators to
fully leverage the representation’s structure.

• Implement intelligent diversification based on solution feature space analysis to systemati-
cally target uncovered regions and escape local optima.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Throughout the drafting and revision process of this manuscript, we employed Google’s Gemini
large language model as an advanced writing and editing tool. Its use was strictly limited to refining
the language and presenting our existing ideas and research. The model’s contributions include:
(1) correcting grammatical, spelling, and punctuation errors; (2) rephrasing complex sentences to
improve readability and precision; and (3) suggesting adjustments to tone and style to ensure con-
sistency with academic standards.

Critically, the LLM was not used for any substantive intellectual contribution. All aspects of the
research, including the formulation of research questions, literature review, methodology, data anal-
ysis, and the drawing of conclusions, were conducted exclusively by the human authors. The authors
critically evaluated each suggestion provided by the LLM for accuracy and appropriateness, and we
retain full responsibility for all claims, arguments, and the final articulation of the work.

H GENERATED HEURISTICS

In this section, we compile the most successful heuristics produced by HiFo-Prompt, spanning the
entire suite of experimental settings.

H.1 THE BEST TSP-CONSTRUCTIVE HEURISTIC

37

Published as a conference paper at ICLR 2026

Listing 1: Python Implementation of the Node Selection Strategy� �
import numpy as np

def select_next_node(current_node, destination_node, unvisited_nodes,
distance_matrix):
"""
Selects the next node to visit based on a hybrid scoring mechanism
involving
MST lookahead and cluster-aware simulation.
"""

def calculate_pruned_mst_cost(nodes):
"""Calculates the MST cost for a subset of nodes."""
if len(nodes) <= 1:

return 0
Create edges only between relevant nodes
edges = [(distance_matrix[i][j], i, j)

for i in nodes for j in nodes if i < j]
edges.sort(key=lambda x: x[0])

parent = {node: node for node in nodes}
def find(u):

while parent[u] != u:
parent[u] = parent[parent[u]]
u = parent[u]

return u

mst_cost = 0
for cost, u, v in edges:

root_u, root_v = find(u), find(v)
if root_u != root_v:

parent[root_v] = root_u
mst_cost += cost

return mst_cost

def perform_cluster_aware_simulation(node):
"""Simulates a greedy path from the candidate node."""
future_nodes = [n for n in unvisited_nodes if n != node]
total_cost = distance_matrix[current_node][node]
current = node

while future_nodes:
Greedy selection based on normalized distance
next_candidate = min(

future_nodes,
key=lambda x: distance_matrix[current][x] /

(np.median(distance_matrix[x]) + 1e-9)
)
total_cost += distance_matrix[current][next_candidate]
current = next_candidate
future_nodes.remove(current)

total_cost += distance_matrix[current][destination_node]
return total_cost

def evaluate_candidate(node):
"""Computes the weighted score for a candidate node."""
future_nodes = [n for n in unvisited_nodes if n != node]

1. MST Cost (Lookahead)
pruned_mst_cost = calculate_pruned_mst_cost(future_nodes + [

destination_node])

2. Normalized Immediate Cost

38

Published as a conference paper at ICLR 2026

normalized_cost = distance_matrix[current_node][node] /
(np.max(distance_matrix[current_node]) + 1e-9)

3. Simulation Cost
simulation_cost = perform_cluster_aware_simulation(node)

Dynamic Weighting based on search progress
progress_ratio = len(unvisited_nodes) / len(distance_matrix)
weight_mst = 0.4 - 0.15 * progress_ratio
weight_normalized = 0.3 + 0.1 * progress_ratio
weight_simulation = 0.3

return (weight_mst * pruned_mst_cost +
weight_normalized * normalized_cost +
weight_simulation * simulation_cost)

Beam search filtering to reduce computation
beam_width = max(2, min(6, len(unvisited_nodes) // 3))
Pre-filter candidates using a simple heuristic
candidates = sorted(

unvisited_nodes,
key=lambda x: distance_matrix[current_node][x] /

(np.mean(distance_matrix[current_node]) + 1e-9)
)[:beam_width * 3]

scored_candidates = []
for candidate in candidates:

eval_score = evaluate_candidate(candidate)
scored_candidates.append((eval_score, candidate))

Select the node with the minimum weighted score
next_node = min(scored_candidates, key=lambda x: x[0])[1]
return next_node� �

H.2 THE BEST ONLINE BIN PACKING HEURISTIC

Listing 2: Evolved Scoring Function for Online BPP� �
import numpy as np

def score(item, bins):
"""
Calculates the placement scores for candidate bins given an item.
Higher scores indicate better placement suitability.
"""

Compute residuals (remaining space) after placing the item
residuals = bins - item

Stochastic perturbation for enhanced exploration
Helps break ties and avoid deterministic local optima
perturbation = np.random.normal(1.0, 0.2, size=len(bins))

Cubic residual scoring to emphasize finer space usage precision
Smaller residuals yield significantly higher base scores
residual_scores = 1 / (1 + residuals ** 3) * perturbation

Delayed penalty adjustment based on long-term impact of
underutilization
Adaptive threshold with increased sensitivity
threshold = np.mean(bins) * 0.4
delayed_penalty = np.where(residuals > threshold,

1 / (1 + residuals ** 2),
0)

39

Published as a conference paper at ICLR 2026

Reward function for bins maintaining balanced utilization over time
Gaussian-like reward centered around the threshold
balanced_utilization_reward = np.exp(

-np.abs(residuals - threshold) ** 2 / (threshold ** 2)
)

Dynamic scaling factor based on cumulative fit ratio and trends
fit_ratios = item / bins
scaling_factor = 0.6 + 0.4 * np.tanh(fit_ratios * 5) # Sharper
scaling

Combine components:
Emphasizes long-term efficiency via scaling and delayed penalties
scores = (scaling_factor * (residual_scores +
balanced_utilization_reward)

- delayed_penalty)

return scores� �
H.3 THE BEST TSP-GLS HEURISTIC

Listing 3: Hybrid Edge Update Function for TSP� �
import numpy as np

def update_edge_distance(edge_distance, local_opt_tour, edge_n_used):
"""
Updates the edge distance matrix to penalize edges used in local
optima,
facilitating escape from local basins using a hybrid penalty strategy
.
"""

Parameters for the novel hybrid strategy
learning_rate = 0.3
diversity_factor = 0.4
penalty_decay = 0.85
min_penalty = 0.01
smoothing_term = 1e-6

Compute normalized edge usage probabilities
total_usage = np.sum(edge_n_used) + smoothing_term
edge_probabilities = edge_n_used / total_usage

Measure global asymmetry to gauge search bias
asymmetry = np.abs(edge_probabilities - edge_probabilities.T).mean()
Normalize asymmetry to [0, 1] range
normalized_asymmetry = asymmetry / (1 + smoothing_term)

Identify edges in the local optimal tour
tour_edges = [

(local_opt_tour[i], local_opt_tour[i+1])
for i in range(len(local_opt_tour)-1)

]
tour_edges.append((local_opt_tour[-1], local_opt_tour[0])) # Close
loop

updated_edge_distance = edge_distance.copy()

for (i, j) in tour_edges:
if i > j: # Ensure symmetry handling

i, j = j, i

40

Published as a conference paper at ICLR 2026

Phase 1: Adaptive learning penalty
learning_penalty = learning_rate * (

1 - np.exp(-edge_probabilities[i, j])
)

Phase 2: Diversity-driven modulation
diversity_penalty = (diversity_factor * normalized_asymmetry *

np.log(1 + edge_probabilities[i, j]))

Dynamic weight modulation based on edge usage frequency
modulation_factor = penalty_decay ** (

edge_n_used[i, j] + smoothing_term
)

combined_penalty = (learning_penalty + diversity_penalty) * \
modulation_factor

Add stochastic noise to encourage exploration
noise = np.random.uniform(0, 1.5)
exploration_noise = min_penalty + noise * modulation_factor

Combine penalties and update edge distance (symmetric)
total_penalty = combined_penalty + exploration_noise
updated_edge_distance[i, j] += total_penalty
updated_edge_distance[j, i] += total_penalty

return updated_edge_distance� �
H.4 THE BEST FSSP-GLS HEURISTIC

Listing 4: Chaotic Matrix Adjustment and Job Selection� �
import numpy as np
from sklearn.cluster import KMeans

def get_matrix_and_jobs(current_sequence, time_matrix, m, n):
"""
Generates a perturbed time matrix using chaotic dynamics and
identifies
critical jobs to disturb based on clustering dispersion patterns.
"""

def calculate_makespan(sequence, matrix, m):
"""Helper to compute the makespan of a sequence."""
machine_times = [0] * m
for job in sequence:

machine_times[0] += matrix[job, 0]
for i in range(1, m):

machine_times[i] = (max(machine_times[i], machine_times[i
-1])

+ matrix[job, i])
return max(machine_times)

Step 1: Compute current makespan baseline
current_makespan = calculate_makespan(current_sequence, time_matrix,
m)

Step 2: Chaotic adjustment using Logistic Map dynamics
Introduces non-linear variance to escape local optima
new_matrix = time_matrix.copy()
chaos_factor = 3.99 # Parameter near the edge of chaos
chaotic_values = np.random.rand(n, m)

for _ in range(10): # Iterative chaotic updates

41

Published as a conference paper at ICLR 2026

chaotic_values = chaos_factor * chaotic_values * (1 -
chaotic_values)

Scale chaotic values to a perturbation range [0.9, 1.1]
chaotic_perturbation = 0.9 + 0.2 * chaotic_values
new_matrix *= chaotic_perturbation
new_matrix = np.clip(new_matrix, 1, None) # Ensure valid processing
times

Step 3: Cluster jobs based on execution time patterns
Fit KMeans on the perturbed matrix regarding the current sequence
kmeans = KMeans(

n_clusters=max(2, n // 10),
random_state=42,
n_init=’auto’

).fit(new_matrix[current_sequence])

job_labels = kmeans.labels_

Calculate dispersion: average std deviation within each cluster
cluster_dispersion = np.array([

np.std(new_matrix[current_sequence][job_labels == c], axis=0).
mean()

for c in range(kmeans.n_clusters)
])

Assign scores: jobs in highly dispersed clusters get higher
priority
job_scores = np.array([cluster_dispersion[label] for label in
job_labels])

Select top diverse jobs for structural perturbation
num_perturb = max(1, n // 6)
perturb_jobs = np.argsort(-job_scores)[:num_perturb]

return new_matrix, perturb_jobs� �

42

	Introduction
	Related Work
	Methodology
	Guided Prompt Synthesis for AHD
	Hindsight: Mechanisms of the Self-Evolving Insight Pool
	Foresight: The Evolutionary Navigator for State-Aware Guidance

	Experiments
	Conclusion
	Preliminary
	Problem Formulation of Automatic Heuristic Design
	LLM-driven Evolutionary Computation
	Knowledge-Augmented Evolutionary Computation

	Optimization Problem Details
	Traveling Salesman Problem
	Online Bin Packing Problem
	Flow Shop Scheduling Problem
	Bayesian Optimization

	More Results
	Traveling Salesman Problem
	Online Bin Packing Problem
	Flow Shop Scheduling Problem
	Bayesian Optimization
	Comparative Results
	Parameter Sensitivity Analysis
	Additional Ablation Studies and Analysis
	Consumption of Time and Token

	Limitation and Future Work
	Limitation
	Future Work

	Prompts with Foresight and Hindsight
	Initial Prompt Strategy I1
	Recombination Prompt Strategy E1
	Recombination Prompt Strategy E2
	Mutation Prompt Strategy M1
	Mutation Prompt Strategy M2
	Mutation Prompt Strategy M3

	Managing Foresight and Hindsight Knowledge
	Hindsight Evolution via Insight Distillation
	The Directive Pool for Foresight
	Insight Seed Pool

	The Use of Large Language Models (LLMs)
	Generated heuristics
	The Best TSP-Constructive Heuristic
	The Best Online Bin Packing Heuristic
	The Best TSP-GLS Heuristic
	The Best FSSP-GLS Heuristic

