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ABSTRACT

Adapting foundation models for specific purposes has become a standard ap-
proach in machine learning systems, yet it is an open question which mechanisms
take place during the adaptation. Here we develop PatchSAE to discover inter-
pretable candidate concepts from vision encoders with spatially localized attribu-
tions. We explore how these concepts influence the model behavior and extend it
to investigate how recent state-of-the-art adaptation techniques change the asso-
ciation of model inputs to these concepts. While activations of concepts slightly
change between adapted and non-adapted models, we find that the majority of
gains on common adaptation tasks can be explained with the existing concepts
within the foundation model. This work provides a concrete framework to train
and use SAEs for Vision Transformers and provides insights into explaining adap-
tation mechanisms. We provide an interactive demo1.

1 INTRODUCTION
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Figure 1: Overview. (a) We train our PatchSAE on a frozen CLIP ViT with an MSE loss and an L1
sparsity regularizer (§ 3.1). (b) We analyze the trained SAE by interpreting patch- and image-level
concepts of activated SAE latents (§ 3.2 & 3.3). (c) We then investigate the influence of SAE latents
on the model behavior in classification tasks (§ 4.1) and explain how adaptation methods improve
the downstream task performance (§ 4.2).

Compared to conventional machine learning systems, foundation models excel at fast adaptation to
new tasks and domains with limited extra training data (Radford et al., 2021; Caron et al., 2021). In
the space of vision-language models, CLIP (Radford et al., 2021) is an important example serving
as the backbone for numerous applications (Liu et al., 2024; Li et al., 2023; Rombach et al., 2022).
The CLIP model consists of two transformer networks to encode text and image inputs. Various
parameter-efficient adaptation techniques, such as adopting learnable tokens, have been proposed
targeting either of the systems. While early works targeted the text encoder (Zhou et al., 2022b;a),
more recently it was shown that joint adaptation of both the text and image encoders can further
improve classification performance (Khattak et al., 2023a;b). Despite these advances in adaptation
methods, it remains an open question of how foundation models actually adapt their representations.

Recently, the research field of mechanistic interpretability (Templeton, 2024; Yun et al., 2021)
has gained attention through discovering the potential of understanding the inner workings of
transformer-based foundation models through a dictionary learning (Olshausen & Field, 1997) ap-
proach under linear representation (Mikolov et al., 2013; Park et al., 2023) and superposition (Elhage

1Demo on Huggingface: huggingface.co/spaces/iclranonym/paper14240, Screenshot: Fig. 12
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et al., 2022) hypotheses. Specifically, Sparse Autoencoders (SAEs; Bricken et al., 2023; Cunning-
ham et al., 2023) emerged as a tool to map dense model representations to discrete concepts.

In this work, we develop a new SAE model, named PatchSAE, that allows patch-wise attribution of
concepts to the tokens within a CLIP vision encoder (Fig. 1(a)). We train the SAE on all image to-
kens including the class (CLS) token, allowing a spatially localized understanding of multiple visual
attributes that can be simultaneously captured from different regions of a single image (Fig. 1(b)).
Before analyzing model behaviors through the SAE, we first validate PatchSAE as an interpretabil-
ity tool. Our PatchSAE identifies diverse interpretable concepts, provides localized interpretation,
and performs well across multiple datasets (§ 3.3). We then explore the influence of interpretable
concepts on the final output of the CLIP model through classification tasks.

We use our PatchSAE to shed light on the internal mechanisms of foundation models during adapta-
tion tasks. Recent state-of-the-art adaptation methods for CLIP (Zhou et al., 2022a;b; Khattak et al.,
2023a;b) add trainable, dataset specific tokens for adaptation, akin to a system prompt in LLMs.
Through extensive analysis, we reveal a wide range of interpretable concepts of CLIP, including
simple visual patterns to high-level semantics, employing our PatchSAE as an interpretability tool
(Fig. 1(b)). We also localize the recognized concepts through token-wise inspections of SAE la-
tent activations, while extending it to image-, class-, and task-wise understandings. Furthermore,
we demonstrate that the SAE latents have a crucial impact on the model prediction in classification
tasks through ablation studies. Lastly, we show evidence that prompt-based adaptation gains the
performance improvement by tailoring the mapping between recognized concepts and the learned
task classes (Fig. 1(c)).

Our paper proceeds as follows: First, we introduce PatchSAE, a sparse autoencoder which allows to GMQj-
W2
67Ef-
W4
h3c2-
W2

discover concepts for each token within a vision-transformer with spatial attributions (§ 3). We train
this model on CLIP, and show the interpretability and generalizability of ImageNet-scale trained
SAE across domain-shifted and finer-grained benchmark datasets. We explore the CLIP behavior in
classification tasks and how adding learnable prompts changes the model behavior using PatchSAE
(§ 4). In the end, we discuss conclusions and broader implications (§ 5).

2 RELATED WORK

Sparse autoencoders for mechanistic interpretability. Mechanistic interpretability (Elhage
et al., 2021) aims to interpret how neural networks infer their outputs. To achieve this, it is nat-
ural to seek a deeper understanding of which feature (concept) is recognized by each neuron in
the neural network (Olah et al., 2020). For instance, the logit lens (Nostalgebraist, 2020) approach
attempts to understand the intermediate layer output by mapping it into the final classification or
decoding layer. However, understanding neurons in human interpretable form is challenging due to
the polysemantic (Elhage et al., 2022) nature of neurons, where each neuron activates for multiple
unrelated concepts. This property is attributed to superposition (Elhage et al., 2022), where neural
networks represent more features than the number of dimensions.

To overcome the superposition phenomenon in neural network interpretation, sparse autoencoders
(SAEs) (Sharkey et al., 2022; Bricken et al., 2023) have recently gained significant attention. SAEs
decompose model activations into a sparse latent space, representing them as dictionary of high
dimensional vectors. Several studies (Yun et al., 2021; Cunningham et al., 2023) have applied SAEs
to language models. Using SAEs, Templeton (2024) discovered bias- and safety-related features in
large language models (LLMs), demonstrating that these features can be steered to alter the behavior
of LLMs. Recent research extended the application of SAEs to vision-language models, such as
CLIP (Radford et al., 2021). Fry (2024) and Daujotas (2024a) extracted interpretable concepts from
the vision encoder of CLIP and Daujotas (2024b) utilized these features to edit image generation
in a diffusion model. Rao et al. (2024) named the SAE concepts using word embeddings from the
CLIP text encoder and used them for a concept bottleneck model.

Distinct from previous works, we propose to use patch-level image tokens for SAEs which allows GMQj-
W2
67Ef-
W4
h3c2-
W2

intuitive and localized understanding of SAE latents and easily transformable to higher (image- /
class- / dataset-) level of analysis. Furthermore, we adopt SAE latents masking method to examine
the relationship between interpretable concepts and downstream task-solving ability. For the first
time, this allows precise investigation of how foundation models behave during adaptation, and how
concepts are re-used across datasets.

2
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Prompt-based adaptation. Adapting vision-language foundation models like CLIP through fine-
tuning requires large datasets and significant computation resources. In addition, the generaliza-
tion ability of the model may be compromised after fine-tuning. As an alternative, prompt-based
adaptation has recently emerged, training only a few learnable tokens while keeping the weight of
pre-trained models fixed. CoOp (Zhou et al., 2022b) proposed adapting CLIP in few-shot learn-
ing setting by optimizing learnable tokens in the language branch, while Bahng et al. (2022) applied
prompt adaptation to the vision branch. MaPLe (Khattak et al., 2023a) improved few-shot adaptation
performance by jointly adding learnable tokens to both the vision and language branches and con-
sidered as a base structure for more recent multimodal prompt adaptation methods (Khattak et al.,
2023b). Although these studies demonstrate that prompt learning is effective for adapting CLIP,
there is still a lack of research focusing on how and why prompt learning enables such adaptation.

Our work focuses on exploring the CLIP image encoder using an SAE on a vision transformer. We
choose MaPLe as a representative structure of multimodal prompt adaptation and investigate the
internal work of adaptation methods.

3 PATCHSAE: SPATIAL ATTRIBUTION OF CONCEPTS IN VLMS

In this section, we revisit the basic concept of sparse autoencoders (SAE) and introduce our new
PatchSAE model in § 3.1. We then discuss how we discover interpretable SAE latent directions in
§ 3.2. Our analysis includes computing summary statistics of SAE latents, that indicate how often
and how strongly one latent is fired, detecting model-recognized concepts by inspecting reference
images with high SAE latent activations, and spatially localizing SAE concepts in the image space
(Fig. 2).

3.1 PATCHSAE ARCHITECTURE AND TRAINING OBJECTIVES

SAEs typically consist of a single linear layer encoder, followed by a ReLU non-linear activation
function, and a single linear layer decoder (Bricken et al., 2023; Cunningham et al., 2023). To
train an SAE on CLIP Vision Transformer (ViT), we hook intermediate layer outputs from the pre-
trained CLIP ViT and use them as self-supervised training data. We leverage all tokens including
class (CLS) and image tokens from the residual stream output 2 (Fig. 9(c)) of an attention block and
feed them to the SAE. Formally, we take ViT hook layer output as an SAE input z, multiply it with
the encoder layer weight WE ∈ RdViT×dSAE , pass to the ReLU activation ϕ, then multiply with the
decoder layer weight WD ∈ RdSAE×dViT 3. The column (or row) vectors of the encoder (or decoder),
dSAE vectors size of RdViT , correspond to the candidate concepts, i.e., SAE latent directions. We call
the output vector of the activation layer (size of RdSAE ) as SAE latent activations. For simplicity, we
use f for the encoder and g for the decoder:

z = ViT(x)[hook layer], SAE(z) = (g ◦ ϕ ◦ f)(z) = W⊤
Dϕ(W⊤

E z). (1)

To train the SAE, we minimize the mean squared error (MSE) as a reconstruction objective, and use
L1 regularization on the SAE latent activations to learn sparse concept vectors (Fig. 1(a)):

LSAE = ∥SAE(z)− z∥22 + λl1∥ϕ(f(z))∥1. (2)

An ideal SAE encoder maps the dense model representations into multiple monosemantic concepts
and an ideal decoder reconstructs the original vector by linearly combining these distinct concepts.

Training details. We use a CLIP model with an image encoder of ViT-B/16, which results in 14×14
image tokens and a CLS token as input. It has 12 attention layers with model dimension dViT of 768.
For PatchSAE, we set the expansion factor to 64 that multiplies with dViT, which results in a SAE
latent dimension dSAE of 49,152. We take the ViT output from the residual stream of the second
last attention layer (i.e., 11-th layer output). Note that we use all image tokens, so the input and
output of SAE have a size of (number of samples, token length, model dimension dViT). We average
the training loss across all individual tokens. We evaluate the trained SAE for reconstruction ability
and the sparsity. We report the training performance of different configurations (§A.1) and show
variations for training the SAE on different layers (§A.2) in the Appendix.

2The residual stream is the sum of the attention block’s output and its input, see Fig. 9(c).
3We use bias terms for linear layers and centralize z, i.e., SAE(z− bdec).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2. Analyzing SAE features
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Figure 2: Analyzing SAE latents. (a) We obtain a mean pooled SAE activation vector from every
input. For each SAE dimension, we record reference image indices, labels, and corresponding
activation values by selecting top-k images having the highest activation value. (b) From the SAE
activation of each token, we can interpret which concepts are captured. Furthermore, we represent
image- and group-wise concepts by aggregating token-level SAE activations. (c) By visualizing the
segmentation of the latent, we provide spatial attribution of the concept.

3.2 ANALYSIS METHOD AND EVALUATION SETUP 67Ef-
W1After training, we validate our PatchSAE model by interpreting the activated SAE latents from

input examples. We first discover the candidate concepts – the SAE latent directions–by collecting
reference images that maximally activate each SAE latent and compute their summary statistics.
Then, we investigate the SAE latent activation to see how much the given input aligns with the
corresponding SAE latent directions. The token-wise (i.e., patch-wise) investigation allows spatially
localized understandings of an image. To derive a global interpretation of the image for an SAE
latent, we aggregate the patch-level activations into an image-level activation by counting the number
of patches activating the corresponding latent. Similarly, we extend it to class- and dataset-level
analysis (Eq. 5).

Reference images for SAE latents. As a first step of discovering the interpretable concepts that
SAE represents, we consider a set of images that maximally activate each SAE latent as reference
images. Given a trained SAE and a dataset, we keep the top-k images having the highest SAE latent
activation value for each latent dimension, i.e., we have k × dSAE reference images in total. Here,
we use image-level activations to select top-k images. Fig. 2(a) illustrates the procedure.

Summary statistics of SAE latents. To inform the general trend of an SAE latent, we compute sum- qx77-
W1mary statistics of the activation distribution (Bricken et al., 2023). We use the activated frequency

and the mean activation values over a subset of training images. Using the class label informa-
tion from a classification benchmark dataset such as ImageNet, we compute the label entropy (Fry,
2024) and standard deviation from the reference images. Specifically, we compute and interpret the
statistics as follows:

• Sparsity (activated frequency) represents how frequently this latent is activated. We count
the number of images having positive SAE latent activations and divide by the total number of
seen images. An SAE latent with a high frequency either represents a common concept or is an
uninterpretable (noisy) latent.

• Mean activation value is computed by averaging the positive activation value among the ac-
tivated samples. The mean activation value implies the SAE model’s confidence. A latent
direction is more likely to represent a meaningful concept if it has a high mean activation value.

• Label entropy measures how many unique labels activate the latent. Precisely, we compute the
probability of a label based on its activation value and compute the entropy as

probc =
sumc∑
c∈C sumc

, entropy = −
∑
c∈C

(probc log probc), (3)

where sumc is the summed activation values for label c ∈ C. The entropy being equal to zero
indicates that all reference images have exactly the same label. Higher entropy indicates that
more labels contribute to the latent’s activation.

• Label standard deviation. In ImageNet, class labels are organized in a hierarchical structure
based on WordNet’s semantic relationships (Deng et al., 2009; Miller, 1995). We leverage this

4
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(a) uninterpretable (b) text of “MILK”

(c) comic book style (d) Granny apple
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Figure 3: SAE latents statistics and reference images. Left: Scatter plot of SAE latent statistics
(x-axis: log10 of activated frequency, y-axis: log10 of mean activation) colored by label entropy.
Right: Reference images from Imagenet of four SAE latents in different regions.

label structure and use the label standard deviation of reference images as a clue for the semantic
granularity besides the label entropy when exploring the latents. We discuss more in § A.1.

Discovering active SAE latents in diverse levels. Using the reference images as an interpretable
proxy for SAE latent directions and the SAE latent activation of an input as the similarity with the
corresponding latent, we examine which concepts are how strongly active for the input. As depicted
in Fig. 2(b) and (c), the patch-level SAE latent activations inform the recognized concepts from
each patch. For example, for the input patch containing the “dog’s nose”, the SAE latent having the
reference images of “dog’s nose” is active.

To obtain a global concept from the image, we transform the patch-level activations into an image-
level activation. In speicif terms, we first binarize the SAE latent activation of the i-th image at
j-th token for the s-th SAE latent hi,j [s] = ϕ(f(z))i,j [s] ∈ R using a small positive number τ as
a threshold. We call the SAE latent above the threshold as an active latent, otherwise an inactive
latent. Then we count the number of patches that activate the latent s and consider it as the image-
level activation ai[s]. Similarly, we obtain the class- (ac[s]) and dataset-level (aD[s]) activation
by incorporating ai[s] for the images with the same class or dataset, respectively. Formally, we
represent this as below:

ai,j [s] = I(hi,j [s] > τ), where 1 ≤ s ≤ dSAE, (4)

ai[s] =

ni∑
j=1

ai,j [s], ac[s] =
∑
i∈Ic

ai[s], aD[s] =
∑
i∈D

ai[s]. (5)

From the class- or dataset-level activations, we discover the shared concept within the group. We use
these group-wise active SAE latents to analyze the relationship between the interpretable concepts
and the model behavior in § 4.1.

Localizing patch-level SAE latent activations. PatchSAE allows localizing an active latent in the
image space. We treat the patch-level latent activation as a soft segmentation mask. Precisely, given
an image xi and an SAE latent index s, we multiply each patch xi,j with the corresponding latent
activation value hi,j [s] for visualization. For example in Fig. 2(c), we highlight “yellow flowers” or
“dogs with black, white, and brown colors” concepts from the input image. Separating the patches
relevant to the targeting latent from the input and reference images shows a clearer view of the
concept4.

3.3 PATCHSAE DISCOVERS SPATIALLY DISTINCT CONCEPTS IN CLIP h3c2-
W1More examples in the following sections are provided in the interactive demo (Fig. 12).

PatchSAE identifies diverse interpretable concepts. As depicted in Fig. 3, we explore the SAE
latents guided by the statistics. We observe two big clusters of rarely activated with low activation

4We recommend trying on/off segmentation mask option in the interactive demo.
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(a) (a)

(b)

(c)(b)

(c)

(c)

Input image Image-level SAE latent activations Reference images Segmentation mask

Figure 4: Localizing SAE latent activations under a covariate shift. Given two input images
of class hen, we show image-level aggregated SAE latent activations (x-axis: SAE latents index
y-axis: image-level activation), reference images from ImageNet, and segmentation masks for each
input are shown. Among top 10 latents for each input, we pick three interpretable indices where (a)
and (b) represent different domains (image style or background) and (c) shows the shared concept.

value (bottom left) and frequently activated with high activation (top right), and one small cluster
near the center. Although the statistics do not ensure the interpretability of the latents, we find
several interesting patterns. Many latents from the bottom left region with high label entropy are
uninterpretable (Fig. 3(a)). We find more interpretable latents from the second large cluster (top right
region). For interpretable latents, lower entropy (Fig. 3(d)) indicates more distinctive semantics such
as a specific class, while the higher entropy latent (Fig. 3(c)) represents the shared style of reference
images. We also observe multimodal latents that activate when certain text appears in the image.
For example, Fig. 3(b) latent detects the text MILK. More examples are in Fig. 13.

PatchSAE provides spatial attribution of concepts. As a case study, we compare a pair of images
having the same class label but different domains (covariate shift) in Fig. 4. The commonly activat-
ing SAE latent from both images shows the shared concept hen (Fig. 4(c)). From both images, the
hen latent is activated by the relevant regions. Exclusively activating latents (Fig. 4(c) & (d)) repre-
sent discrete concepts such as yellow or net. The segmentation map highlights the contributing
patches for the concepts.

PatchSAE generalizes across multiple datasets. Although we train our PatchSAE model only
using ImageNet training data, we find that the interpretability of SAE latents is transferrable to
different datasets. We show that an SAE latent retrieves a consistent concept from different datasets
if such concept exists in the dataset. Otherwise, the mean activation value is low and/or the retrieved
images are uninterpretable (§A.3). Fig. 10 shows reference images from ImageNet and four fine-
grained datasets for two SAE latents and Fig. 14 shows reference images of top-1 task-wise latent.

4 ANALYZING CLIP BEHAVIOR VIA PATCHSAE

In this section, we seek the relationship between SAE latents and model behaviors under classifi-
cation tasks. By replacing the model’s intermediate layer output with SAE reconstructed one and
ablating the latents used for the SAE decoder, we find that SAE latents contain class discrimina-
tive information (§ 4.1). Comparing the behaviors of CLIP models before and after adaptation on
downstream tasks, we explain the major performance gain stems from adding new mappings at SAE
latents to downstream task classes, rather than firing additional class discriminative concepts (§ 4.2).

4.1 IMPACT OF SAE LATENTS ON CLASSIFICATION

We explore the influence of SAE latents on the final model prediction in classification tasks. We
replace the intermediate layer representation of CLIP image encoder with the SAE reconstructed
output to steer the model output5 (Templeton, 2024) by selectively using a subset of SAE concepts.

5We add reconstruction score when replacing the intermediate layer output with SAE reconstructed one
following Templeton (2024).
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Figure 5: Top-k SAE latent masking. (a) Top-k SAE latent masking implementation for CLIP
and MaPLe. MaPLe adds learnable prompt tokens upon CLIP. (b) CLIP (zero-shot) classification
accuracy on ImageNet-1K for different SAE latent masking. Top-k selection based on class-level
latent activations crucially affects the accuracy while random or dataset-level based selections show
marginal or no impact. (c) Example images and top-k class-level masking experiment for 11 tasks.

Then we compute cosine similarity between text and image encoder outputs for the classification
task. Fig. 5(a) summarizes the procedure.

4.1.1 ANALYSIS METHOD AND EXPERIMENT SETUP

Zero-shot classification. We conduct ImageNet-1K (Deng et al., 2009) zero-shot classification us-
ing OpenAI CLIP ViT-B/16 with an ensemble of 80 OpenAI ImageNet templates (Radford et al.,
2021) to compute text features for each class and conduct classification by computing cosine simi-
larity between image features out text features (Fig. 5(a)).

Top-k SAE latent masking. To select the subset of SAE latents that are used for the linear combi- h3c2-
Q2nation in the SAE decoder, we search for class-wise representative concepts. We utilize class-level

activations (Eq. 5). In short, we aggregate SAE latent activations from a group of images having
the same class label using the training split of each downstream task dataset and find the top-k most
frequently activated latents per class. We then control the active latents via masking the SAE latent
activation vector before feeding it into the decoder. We replace the original model representations
with the reconstructed ones by the masked SAE. We compare the classification accuracies by vary-
ing the mask. For example, “on top-k” refers to using the mask of a one-hot vector where only the
top-k latent indices are 1s (active) and the others are 0s (inactive). Contrastingly, “off top-k” refers
to using a mask filled with 1s except for top-k indices being 0s. As ablation, we provide comparisons
on using the same number of randomly selected indices and dataset-level representative latents (i.e.,
frequently activated across all classes within the same dataset).

4.1.2 KEY FINDINGS h3c2-
W1
67Ef-
W1
qx77-
W1
qx77-
Q1

SAE latents have class discriminative information. The results for the top-k SAE latent masking
experiments are shown in Fig. 5(b)&(c). Using all SAE latents (on all; identity mask) recovers the
original classification performance (i.e., using the original model representation without replacing it
with the SAE output) with small reconstruction errors (64.82% for the identity mask and 68.25% for
the original). Using the all-zero mask (off all) removes all relevant information, and hence results
in the accuracy of 0.1%. Ablating randomly selected or task-wise latents do not show significant
affect to the classification accuracy until we use sufficient number of latents. On the other hand,
ablating the per-class top activating latents shows a crucial impact on classification performance.
We observe a clear performance improvement or degradation in accordance with the increased or
decreased number of active SAE latents, respectively. The results of this analysis show that some
SAE latents contain rich information that is critical for class discrimination. Moreover, the search
for such latents can be narrowed down to the top activating SAE latents that are frequently activated
across inputs with the same ground-truth class.
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Table 1: Comparison on class-level SAE latents. The first six columns show the average number
of class-level latents in three groups: high, high-to-low, low-to-high groups per class. Details about
three groups are provided in Figure 17. Gray colored for values below 0.1. The next four columns
show the accuracy (the same results as dashed lines in Fig. 5(c)) and the final last column shows the
performance improvement rate ∆ (§ 4.2.1). Rows are sorted by ∆.

SAE latents count (average) Accuracy (%)
high high-to-low low-to-high CLIP MaPLe ∆(%) ↑

Dataset base novel base novel base novel base novel base novel base
StanfordCar 11.18 11.10 0.00 0.12 0.12 0.16 53.45 66.46 56.16 60.63 5.82
FGVC Aircraft 10.10 10.57 0.31 0.32 0.00 0.03 21.72 28.09 31.19 30.07 12.10
ImageNet 11.05 10.82 0.02 0.02 0.12 0.22 69.88 67.23 73.80 68.24 13.01
Food101 11.24 11.58 0.00 0.00 0.00 0.00 84.85 86.65 87.26 89.14 15.91
SUN397 11.20 11.31 0.00 0.01 0.02 0.02 68.74 72.27 77.89 76.26 29.27
UCF101 10.90 11.10 0.01 0.01 0.07 0.06 66.56 68.80 81.13 71.40 43.57
OxfordPet 11.11 11.73 0.00 0.00 0.24 0.16 85.41 95.26 92.04 94.99 45.44
DTD 8.85 8.96 0.32 0.36 1.68 2.02 53.12 53.44 75.17 55.62 47.03
EuroSAT 6.90 8.70 0.50 1.00 4.10 2.30 42.61 62.42 73.07 55.77 53.08
Caltech101 11.25 11.32 0.02 0.00 0.00 0.00 92.57 93.47 97.49 94.29 66.22
Flowers102 10.81 11.47 0.01 0.00 0.01 0.01 56.32 69.26 88.07 68.41 72.69

4.2 UNDERSTANDING ADAPTATION MECHANISMS

To understand how models are adapted to downstream tasks based on our findings in § 4.1, we
come up with the following research questions: Do the adaptations make models more actively fire
class discriminative concepts? Or, do they define new mappings between the fired concepts and the
downstream task classes? The former question refers to the model improving its perception ability
by adaptation (i.e., adapted models capture additional class discriminative latents). The latter implies 67Ef-

W3that both models recognize similar concepts, but the adaptation adds new connections between the
fired concepts and the downstream task classes (i.e., adaptation uses the fired concepts, that are not
closely related to certain classes previously, as class discriminative information).

To answer the questions, we investigate whether the class discriminative SAE latents of zero-shot
and adapted models overlap or not. We observe a large overlap between before and after adaptation,
which indicates that similar concepts are recognized by the two methods even though the adaptation
shows distinctive performance improvement. We thereby conclude our analysis that the major per-
formance gain via prompt-based adaptation stems from tailoring the mapping between (commonly)
fired concepts and the downstream task classes.

4.2.1 ANALYSIS METHOD AND EXPERIMENT SETUP

Base-to-novel classification. Following the setup introduced by Zhou et al. (2022b), we split the
downstream task dataset classes into two groups and consider the first half as base and the re-
maining as novel classes, then conduct classification on two groups separately. We use total 11
benchmark datasets: ImageNet-1K (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), Oxford-
Pets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman,
2008), Food101 (Bossard et al., 2014), FGVC Aircraft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), and UCF101 (Soomro, 2012).

Prompt-based adaptation methods append learnable tokens to a frozen pretrained CLIP and train qx77-
W2the added tokens on downstream tasks. Specifically, MaPLe (Khattak et al., 2023a) adds learnable

tokens at the input layer and the first few layers both for text and image encoders (see Fig. 5(a)). In
the base-to-novel setting, MaPLe uses few-shot samples from each of the base classes to train the
learnable tokens. We use officially released MaPLe weights for the experiments for each task.

Performance improvement via prompt-based methods. Table 1 (the last four columns) sum-
marizes the reproduced classification results of CLIP and MaPLe in base-to-novel settings. We
notice that both zero-shot performance and performance improvement by adaptation vary in a wide
range across different datasets. To measure the improvement apart from its zero-shot performance,
we compute the improvement rate as (adapted - zero-shot) / (100 - zero-shot) and denote it as ∆.
∆ measures the improvement via adaptation relative to the remaining potential improvement from
zero-shot performance.
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Figure 6: Different impact of SAE latents. We show two example cases of Flowers102 (left) and
EuroSAT (right). In each figure, we show two example images of the ground-truth (GT) class, a
scatter plot view of class-level SAE latent activations comparison (x-axis: CLIP, y-axis: MaPLe
trained on the base classes of downstream task), reference images from ImageNet and the down-
stream dataset for top latents, and the top-k masking results as a prediction heatmap. We show
reference images with segmentation mask in the EuroSAT case.

Transferring SAEs to adapted methods. Leveraging that prompt-based methods keep model pa- GMQj-
Q2
67Ef-
W2
qx77-
Q2

rameters intact as frozen while adding the learned parameters as additional input tokens, we share
our PatchSAE trained on the default CLIP model to both CLIP and MaPLe. This allows us to un-
derstand the internal mechanisms of the adaptation method by comparing the model behaviors in
the shared SAE latent space. We demonstrate the transferability of CLIP-based trained PatchSAE to
MaPLe by repeating the top-k SAE latent masking experiment with variations to SAE training back-
bones, SAE latent computing backbones (image encoder), and classification inference backbones
(text and image encoder) as CLIP or MaPLe (see §A.4). The results validate the transferability of
our PatchSAE to the adapted models under all base-to-novel settings.
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Figure 7: Scatter plot re-
gions (see Fig. 17).

Comparing top SAE latents. We compute class-level top activating
SAE latents using the shared PatchSAE for backbone image encoders
CLIP and MaPLe for each task. We plot the comparison of class-level
latent activations as a scatter plot (Fig. 6), where each point represents
the class-level activation of the latent s; ac[s] (Eq. 5) with backbones
CLIP and MaPLe in x and y axes, respectively. We divide the points into
several groups including high (high in both), high-to-low (high before
and low after adaptation), and low-to-high (low before and high after
adaptation) (Fig. 7). We set the upper and lower bounds using top-50
and top-100 values, and we use class- and dataset-level activations to
analyze class- and task-wise performance improvement, respectively.

4.2.2 KEY FINDINGS h3c2-
W1Top activating SAE latents mostly overlap for CLIP and MaPLe. The first six columns of h3c2-
Q2Table 1 show the normalized count of top activating SAE latents in three groups: high, high-to-low,

and low-to-high. For example of EuroSAT base classes, 6.9 latents are highly active in both before
and after adaptation, 0.5 previously highly fired latents become non-active after adaptation, and 4.1
previously not actively fired latents become active after adaptation on average. In most cases, SAE
latents rarely place in off-diagonal regions. We provide scatter plots for the same comparison in
Fig. 20, where we can observe the SAE latent activations are highly correlated. We notice that
EuroSAT shows distinctive improvement through MaPLe and the highest count in the low-to-high
group and discuss in §B.1.

Influence of top SAE latents in CLIP and MaPLE are different. We compare the impact of the 67Ef-
W3
h3c2-
Q1

same SAE latent for CLIP and MaPLe. Similar to § 4.1, we conduct the top-k masking experiment.
We provide the results in Fig. 5(c) and deeper case studies in Fig. 6. In Fig. 5(c), regardless of the
top-k latent selection backbones, MaPLe consistently show better performance using the same num-
ber of SAE latents. The result implies that MaPLe makes a better use of the same (number of) SAE
latents for classification than CLIP does. For deeper analysis, we choose two cases in Flowers102
(case 1) and EuroSAT (case 2) that show large performance improvements by adaptation and top-k
masking while the former task is a finer-grained classification and the latter is classification in spe-
cial domains. We observe that zero-shot and adapted models activate SAE latents in similar patterns
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for images of the same class, while the two models show different predictions. In both cases, top
activating latents recognize visual attributes that seem providing representative information relevant
ground-truth class. Using this same set of latents, MaPLe makes correct predictions while CLIP
does not. This result exemplifies MaPLe adding new connections between commonly fired concepts
and the downstream tasks.

In essence, our analysis shows that the performance gain of prompt-based adaptation on CLIP can
be explained by adding new mappings between the recognized concepts, which do not change much
by adaptation, and the downstream task classes.

5 DISCUSSION
GMQj-
W2
67Ef-
W4
h3c2-
W2

Adopting SAEs to vision models. By adopting SAEs, actively studied on LLMs, to vision models,
this work contributes to the understanding of the vision part of vision-language foundation models.
By following basic settings in previous works, evaluating the training performance including re-
construction and sparsity objectives, and performance comparison with the original model in down-
stream tasks, we validate our design choices. We propose PatchSAE that provides spatial attribution
of the candidate concepts, which advances the interpretability. Through extensive qualitative analy-
sis, we demonstrate the interpretability of our SAE. Furthermore, we provide an interactive demo to
share abundant results with transparency. The scope of this work focuses on CLIP vision encoder.
We believe that the analysis of different vision encoders and extending it to jointly analyzing the
multimodality could provide a more comprehensive understanding of large vision-language models.
We leave this as future work.

Understanding adaptation methods. We use SAEs to shed light on model behaviors and adapta-
tion mechanisms. In order to use the same SAE for both non-adapted and adapted approaches, we
focus on prompt-based adaptation method which does not directly update the model parameter but
appends learnable tokens as inputs. We choose MaPLe as the prompt-based method because this
approach uses learnable tokens in the vision encoder (note that simpler baseline CoOp uses learn-
able tokens only in text encoder) and shows competitive performance with state-of-the-art methods
regardless of its simplicity. Exploring different adaptation methods (e.g., full fine-tuning) as future
work could provide deeper insights to adaptation mechanisms of foundation models.

6 CONCLUSION

Adapting foundation models to specific tasks has become a standard in recent machine learning
systems. Despite their use in a wide range of applications, the internal workings of models and
adaptation mechanisms to target tasks remains as an open question. To address that, we introduced
PatchSAE, a sparse autoencoder that extracts interpretable concepts with spatial attributions from
input images. We provide a detailed framework to train and analyze PatchSAE models on vision
transformers. Through controlled experiments on 11 adaptation tasks, we study how adaptation
changes the relation between class outputs and concepts. Surprisingly, our analysis finds that on
almost none of the studied tasks, new concepts are drastically introduced during adaptation. Adapta-
tion rather assigns the right existing concepts to the correct classes, and in only one task with drastic
distribution shift (EuroSAT), we found a non-negligible number of concepts that got suppressed or
newly introduced by the adaptation mechanism. Our analysis is an example for leveraging Patch-
SAE to “debug” adaptation techniques and highlight their inner workings. We believe that methods
like PatchSAE will become useful in categorizing algorithms to edit foundation models, and finding
ways to build conceptually new techniques.

REPRODUCIBILITY STATEMENT

Code and model weights. We used publicly available model checkpoints for CLIP (link) and
MaPLe (link). We used OpenAI ImageNet templates for zero-shot classification (link). We will
open source our code, SAE model weights and raw results for secondary analysis upon publication
of the paper.

Datasets. We only used publicly available datasets following official implementation of MaPLe
dataset descriptions.
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A SAE TRAINING DETAILS AND ABLATION STUDIES

In this section, we provide details about training SAE.

• § A.1 summarizes the training performance of SAEs used for hyperparameter tuning.

• § A.2 shows SAE layer ablation study results.

• § A.3 shows SAE’s generalizability to different datasets.

• § A.4 justifies SAE’s transferability to adapted models.

A.1 TRAINING PERFORMANCE 67Ef-
W1
qx77-
W3

Quantitative metrics. We follow literatures on SAEs (Bricken et al., 2023; Templeton, 2024) to
set quantitative metrics. The mean squared error (MSE) loss indicates reconstruction ability. Con-
trastive loss with and without SAE informs the reconstruction ability as well. Close contrastive
losses indicate that the SAE reconstructs the input better. The L1 loss and the L0 metric indicate the
sparsity of SAE. The lower the values are, the less number of SAE latents are activated for the given
input. We start by reproducing training performance as reported in previous studies (Fry, 2024).
Then we ablated training hyperparameters λl1 , expansion factor, ghost gradient technique6, and the
initialization of decoder bias term (mean vs. geometric median of the training dataset). Furthermore,
we ablated model architectures (ViT-B/16 and ViT-L/14), training tokens (CLS vs. all), and hook
layers.

Hyperparameters. We set the coefficient for L1 regularizer λl1 as 8e-5, the learning rate as 4e-
4 with a constant warmup scheduling with warmup step of 500, and initialized decoder bias with
geometric median. We train SAE using 2,621,440 samples from ImageNet training dataset using
ghost gradient. We set the threshold τ , that we use for transforming patch-level activations into
global views (Eq. 4), to 0.2 (log 10 value of -0.7).

Supplements to summary statistics. In addition to the frequency and the mean value of activation
distribution (Bricken et al., 2023), we use the label entropy (Fry, 2024) and the label standard de-
viation that can give an intuition about concept granularity. The label standard deviation is tailored
for a labeled dataset such as ImageNet, where the label structure contains a hierarchical structure of
English words. In this case, the standard deviation indicates whether the latent is capturing a distinct
label from ImageNet dataset or other attributes such as the style (or domain) or patterns of image.
For example, the dog latent might be fired by different breeds of dogs, so the number of unique
labels is high (high entropy) but the gap between labels might be low (low standard deviation). On
the other hand, blue color latent might be activated by diverse blue objects or scenes whose
labels can be very far away (high entropy and high standard deviation).

Although the quantitative metrics of reconstruction and sparsity validate that SAE is trained as in-
tended, they do not provide rich information about the validity and interpretability of SAEs. There-
fore, we utilize SAE latent summary statistics and reference images for qualitative evaluation. We
mostly follow the configurations as selected by Fry (2024), confirming that the chosen setup shows
reasonable performance. To be compatible with both zero-shot and adapted method MaPLe, which
releases official weight on ViT-B/16, we choose model architecture as CLIP ViT-B/16. For a deeper
understanding, we use all image tokens in addition to the CLS token. We also note recent progress
of SAE architectures and training techniques such as gated SAE (Rajamanoharan et al., 2024), using
SAE on other components’ output (such as attention output or MLP output), but we focus on the
base architecture of SAEs (Bricken et al., 2023) treating the advanced techniques as out-of-scope.

A.2 SAES ON DIFFERENT LAYERS GMQj-
Q1
qx77-
W3

We ablated the model layers to train SAEs. Using ViT-B/16 that has 12 residual block layers, we
choose four layers: 2, 5, 8, and 11. We train SAEs for each layers (Fig. 9). We find that the SAE
latents on the deeper layers (i.e., closer to the output) provides semantically richer information
with high confidence (high activation value) than the ones on the shallower layers. Segmentation

6Ghost gradient is introduced as an improvement of neuron resampling Bricken et al. (2023) that addresses
dead neurons due to sparsity regularization of training
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Table 2: SAE training configurations and performance. We share results for six design choices:
ViT hooking layer, training tokens, ViT architecture, L1 coefficient λl1 , expansion factor (dViT ×
(expansion factor) = dSAE), using ghost gradient technique, and initialization of decoder bias term.
Default configurations are colored as gray. CL indicates the contrastive loss. ∗ indicates baseline
result Fry (2024). Italic indicates the ablated configuration.

Layer Tokens Arch. λl1 Expan. Ghost Dec. bias MSE CL SAE CL Org. L1 L0
11∗ cls∗ L/14∗ 8e-5∗ 64∗ T∗ geom.∗ 0.0027 1.775 1.895 13.900 26.00
11 cls L/14 8e-5 64 T geom. 0.0026 1.702 1.859 13.823 29.48

11 cls L/14 0.00 64 T geom. 0.0000 1.926 1.927 N/A 17570.57
11 cls L/14 8e-5 64 T geom. 0.0026 1.702 1.859 13.823 29.48
11 cls L/14 8e-4 64 T geom. 0.0069 1.693 1.856 0.077 5.57

11 cls L/14 8e-5 32 T geom. 0.0028 1.690 1.859 13.608 35.71
11 cls L/14 8e-5 64 T geom. 0.0026 1.702 1.859 13.823 29.48
11 cls L/14 8e-5 128 T geom. 0.0025 1.689 1.816 14.506 28.43

11 cls L/14 8e-5 64 F geom. 0.0026 1.663 1.753 13.957 19.35
11 cls L/14 8e-5 64 T geom. 0.0026 1.702 1.859 13.823 29.48

11 cls L/14 8e-5 64 T mean 0.0027 1.693 1.859 14.050 32.47
11 cls L/14 8e-5 64 T geom. 0.0026 1.702 1.859 13.823 29.48

11 cls L/14 8e-5 64 T geom. 0.0026 1.702 1.859 13.823 29.48
11 cls B/16 8e-5 64 T geom. 0.0009 1.904 1.986 5.501 25.23

11 cls B/16 8e-5 64 T geom. 0.0009 1.904 1.986 5.501 25.23
11 all B/16 8e-5 64 T geom. 0.0025 1.885 1.962 28.300 148.56
8 all B/16 8e-5 64 T geom. 0.0010 2.034 2.063 14.730 182.07
5 all B/16 8e-5 64 T geom. 0.0007 2.039 2.039 10.670 298.97
2 all B/16 8e-5 64 T geom. 0.0005 - - 10.164 242.97

Figure 8: SAE statistics comparisons

masks show that top-3 SAE latents represent the semantic of the major object (the Golden Gate
Bridge) in layer 11 while layer 8 and 5 see the triangle shape of the object. Top latents are less inter-
pretable for layer 2. This is unsurprising as the segmentation mask and the activation value indicate
the latent is activated by the specified token (local attention), not interpreting a meaningful pattern
from the entire semantics. The segmentation mask in reference images separates the concept from
the reference images, which enhances the interpretability. We use the same training configuration
for all four SAEs.

A.3 SAE TRANSFERABILTIY TO DIFFERENT DATASETS

In Fig. 10, we show reference images from ImageNet and four fine-grained datasets (Flow-
ers102, Caltech101, OxfordPets, and Food101) for two SAE latents. For the Christmas latent
(Fig. 10(a)), we retrieve images containing Christmas-related objects or styles. Fig. 10(b) latent
represents hockey and/or skate. From Flowers102 and OxfordPets, the mean activation value
of this latent was low, which explains unclear relationship between reference images and the con-
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cept of the latent. The mean activation value is higher in Food101, where the retrieved images are
more related to the concept: the left top image shows hockey game in the background and the
left bottom image shows a game character wearing roller skates. The results demonstrate
that a SAE latent retrieves a consistent concept from different datasets if such concept exists in the
dataset). Otherwise, the mean activation value is low and the retrieved images are uninterpretable.
See another example in Fig. 14.

A.4 SAE TRANSFERABILTIY TO ADAPTED MODELS GMQj-
Q2
67Ef-
W2
qx77-
Q2

To justify using CLIP-based trained SAE for analyzing MaPLe, we repeat top-k SAE latent masking
experiment under various settings. We observe consistent results whether using CLIP or MaPLe-
based SAE latents and demonstrate the transferability of SAE for multimodal prompt-based adapta-
tion method.

In Fig. 11, we use SAE trained on MaPLe (trained on ImageNet-1K). We compare four settings
where classification backbone can be either CLIP or MaPLe and SAE can be either CLIP-based or
MaPLe-based trained models.

Fig. 15 and 16 shows top-k SAE latent masking results on 11 datasets. Here, we fix to use class-level
activations to select top-k latents and to use CLIP-based trained SAE. We compare four settings of
adopting CLIP or MaPLe as SAE activation computing backbone and classification backbone. Using
different classification backbone showed different patterns while selecting SAE activation backbone
does not show significant difference, which supports the transferability of our SAEs under all base-
to-novel settings.

B ADDITIONAL RESULTS AND SUPPORTING FIGURES

• Fig. 12 shows a screenshot of interactive demo short instruction.
• Fig. 13 shows an example of multimodal SAE latents.
• Fig. 14 task-wise reference images across datasets.
• Fig. 15 and 16 show full results of top-k SAE latent masking experiment using MaPLe

adapted on each dataset.
• Fig. 17 explains three groups in top activating SAE latent comparison scatter plots.
• Fig. 18 and 19 shows off-diagonal SAE latents case studies in EuroSAT, DTD and

UCF101 datasets.
• Fig. 20 shows the scatter plot of aggregated class-level SAE latents in 11 datasets.
• Fig. 21 shows a detailed confusion matrix of Flowers102.
• Fig. 22 supplements Fig. 6 and provides more case studies for remapping.

B.1 TOP ACTIVATING SAE LATENTS

We notice that the EuroSAT dataset shows distinctive performance improvement through MaPLe,
low correlation in Fig. 20, and the highest count in the low-to-high group (Table 1). We conduct
case studies for classes showing large class-level performance improvement. As shown in Fig. 18,
we assess confusion matrices and choose class 2, where the class accuracy improves from 42.61%
to 73.07%. We find the class-specific concept latents are found from low-to-high regions (i.e., get
activated by adaptation), while concepts irrelevant to the classes are deactivated (high-to-low). We
find concepts that are generally related to the task (satellite or pictures from an airplane) in the high
(diagonal) group. We provide more case study results in Fig. 19. The results yield positive initial
findings for the first research question–adaptation activates additional class-related latents– and
suggest the need to examine the possibility of adaptation improving perceptual ability. We leave this
as future work.
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Figure 9: SAEs on different layers. We pass an (a) input image to (b) a vision transformer and
collect (c) residual stream output from layers 2, 5, 8, and 11. (d-g) shows the token-level SAE latent
activations (x-axis: SAE latents index y-axis: activation value) from the image token at the patch
highlighted in (a), (left), reference images and segmentation mask of top-3 latents (middle), and the
summary statistics of the corresponding SAE (right) for each layer.
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ImageNet Flowers102 Caltech101 OxfordPets Food101

(a)

(b)

(f: -0.08, a: -1.63, e:1.08) (f: -0.12, a: -1.32, e:-0.00) (f: -0.79, a: -1.67, e:2.53) (f: -0.75, a: -1.49, e:1.90) (f: -0.09, a: -1.72, e:2.50)

(f: -0.23, a: -2.00, e:0.19) (f: -0.62, a: -2.74, e:1.86) (f: -0.95, a: -1.92, e:0.39) (f: -1.09, a: -2.32, e:2.41) (f: -0.27, a: -2.32, e:2.73)

Figure 10: SAE latents are generalizable to different datasets. Reference images of two SAE
latents (a) (top) and (b) (bottom) from five datasets. We present label and class name above each
image. The latent statistics log10 of activated frequency, log10 of mean activation, and label entropy
values computed from each dataset are summarized as (f, a, e) below four reference images. More
examples are shown in interactive demo.

A
cc

ur
ac

y 
(%

)

60


50


40


30


20


10


0

1    10   100  1000  all 1    10   100  1000  all 
off top-k on top-k

A
cc

ur
ac

y 
(%

)

60


50


40


30


20


10


0

1    10   100  1000  all 1    10   100  1000  all 
off top-k on top-k

A
cc

ur
ac

y 
(%

)

60


50


40


30


20


10


0

1    10   100  1000  all 1    10   100  1000  all 
off top-k on top-k

Classification using ZS, masking with SAE_ZS Classification using MaPLe, masking with SAE_ZS

Classification using ZS, masking with SAE_MaPLe Classification using MaPLe, masking with SAE_MaPLe

(a) SAE trained on ZS
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Figure 11: Comparison on SAEs trained on (a) CLIP (zero-shot) and (b) MaPLe (adapted on
ImageNet-1K dataset) models. Left: The scatter plot shows the summary statistics of SAE latents.
Right: We repeat the SAE latent masking experiment done in § 4.1 for four combinations of varying
the classification model and the SAE model between CLIP and MaPLe. The top left plot is the same
plot from Fig. 5(b).
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(a) (b-1)

(d)

(e)

(c)

(b)

(c-2)

(c-1)

Figure 12: interactive demo. (a) Select input image. Specifying patch is also available. (b)
Select image encoder backbone for SAE latents. We provide CLIP as default and MaPLe trained on
different datasets for comparisons. We show image-level and patch-level (if a patch is specified) SAE
latent activations. (c) Top SAE latents (commonly / only in CLIP / only in MaPLe) are selectable.
We show (d) segmentation mask and (e) reference images (and activation value of each image) for
the selected index. We provide (c-1) on/off option for segmentation mask in reference images. (c-2)
shows reference images with segmentation mask.
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Figure 13: SAE latents can be multimodal. We find multimodal SAE latents that activate from both
text and images of the same concept. Each row shows different SAE latent. The first column shows
the segmenation mask from the input image and the right five columns are reference images. From
top to bottom, each latent represents blue, tooth, (cup)cake, mouse (as a representative animation
character), good, Christmas, and greetings (hello and welcome). SAE latent activation value and
more examples are provided in the interactive demo.
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Figure 14: Reference images for task-wise most representative SAE feature. (i, j)-th element
indicates the reference image from j-th dataset for i-th task-wise feature. From left to right (same
order from top to bottom), datasets are ImageNet, Imagenet-Sktech, Caltech101, Flowers102, CI-
FAR100, Food101, and OxfordPet.
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Figure 15: SAE feature masking on base-to-novel classification task (Base split). The legend
indicates (backbone for SAE latent selection)-(backbone for classification inference). Blue and
orange colors for CLIP and MaPLe as classification inference backbones, respectively.
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Figure 16: SAE feature masking on base-to-novel classification task (Novel split).
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Figure 17: SAE latent comparison scatter plot. We compare group (class or dataset) level SAE
latents of two backbone image encoders CLIP and MaPLe and plot it as a scatter plot. Each point
represents group-level activation (Eq. 5) of CLIP (x-axis) and MaPLe (y-axis). We set upper and
lower bounds using union top-50 and top-100, respectively. We focus on three groups: high (high
in both), high-to-low (high before and low after adaptation), and low-to-high (low before and high
after adaptation).
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Figure 18: Case study on EuroSAT. (a) Images of classes with low classification performance
in the CLIP model. (b) After adaptation, classification performance improves for these classes.
(c) Representative images of features that show distinct activation patterns: those that were highly
activated before adaptation but decreased afterward (high-to-low), those that had low activation
before adaptation but increased afterward (low-to-high), and those that remained highly activated
both before and after adaptation.

Figure 19: Class-level SAE latents in three regions on DTD and UCF101. We show reference
images of highly activated before adaptation but decreased afterward (high-to-low), latents with low
initial activation that increased after adaptation (low-t0-high), and latents that remained consistently
highly activated both before and after adaptation (high).
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Figure 20: Task-wise latents scatter plot on base-to-novel classification task (Base split). SAE
features for each of CLIP and MaPLe mostly follow the diagonal line.
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Figure 21: Confusion matrix for Flowers102 dataset

predicted

CLIP

M
aP

Le

CLIP

MaPLe
1

2

5

10

50

100

1000

all

1

2

5

10

50

100

1000

all

Flowers102 class 28 (Correlation 0.98)
ground-truth

up to

top-k

Im
ag

eN
et

Fl
ow

er
s1

02

top-2

Im
ag

eN
et

Fl
ow

er
s1

02

top-1

predicted

CLIP

M
aP

Le

CLIP

MaPLe
1

2

5

10

50

100

1000

all

1

2

5

10

50

100

1000

all

Flowers102 class 42 (Correlation 0.99)
ground-truth

up to

top-k

Im
ag

eN
et

Fl
ow

er
s1

02

top-2

Im
ag

eN
et

Fl
ow

er
s1

02

top-1

class 42 sword lily

class 28 artichoke

Figure 22: Supplements for Fig. 6.
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