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Abstract

In-context learning (ICL) enables Large Lan-
guage Models (LLMs) to adapt to new tasks us-
ing few examples, with task vectors—specific
hidden state activations—hypothesized to en-
code task information. Existing studies are
limited by small-scale benchmarks, restrict-
ing comprehensive analysis. We introduce
QUITEAFEW, a novel dataset of 3,096 diverse
few-shot tasks, each with 30 input-output pairs
derived from the Alpaca dataset. Experiments
with Llama-3-8B on QUITEAFEW reveal: (1)
task vector performance peaks at an interme-
diate layer (e.g., 15th), (2) effectiveness varies
significantly by task type, and (3) complex
tasks rely on multiple, subtask-specific vec-
tors rather than a single vector, suggesting dis-
tributed task knowledge representation.

1 Introduction

Transformer-based Large Language Models
(LLMs) (Vaswani et al., 2017) excel at in-context
learning (ICL), adapting to new tasks via a few
prompt-based examples without weight updates
(Brown et al., 2020) and have shown impressive
empirical results (Liu et al., 2023; Dong et al.,
2022). This capability enables rapid task adapta-
tion; however, how LLMs internally represent and
apply task information remains unclear. Recent
work points to “task vectors” (Hendel et al., 2023)
or “function vectors” (Todd et al., 2024) — specific
hidden state activations — as the mechanism for
encoding task rules.

Prior studies, such as Hendel et al. (2023), sug-
gest that ICL compresses demonstration sets into
task vectors that guide query processing. Todd
et al. (2024) used causal analysis to locate these
vectors, showing they capture semantic task aspects.
While techniques like sparse autoencoders (SAEs)
have begun to shed light on the interpretable fea-
tures within a given task vector (Kharlapenko et al.,

Work

Task Categories & Examples

Hendel et al.

Algorithmic: Next letter, List first, List last, To

(2023) uppercase
(11 tasks) Translation: Fr — En, Es — En
Linguistic: Present — Gerund, Singular — Plu-
ral
Knowledge: Country — Capital, Person — Lan-
guage
Kharlapenko Linguistic: Antonyms, Present Tense — Past
et al. (2024) Tense
(9 tasks) Translation: En — Es, En — Fr, Es — En

Knowledge: Country — Capital, Person — Pro-
fession, Location — Language, Location — Re-
ligion

Luo et al

Knowledge: Country — Capital, Country —

(2024) Currency, Animal — Latin, Animal — Young,
(6 tasks) Food — Color, Food — Flavor
Todd et al. Linguistic (e.g.): Antonyms, Present — Past,
(2024) Singular — Plural
(Over 40 tasks)  Knowledge (e.g.): Country — Capital
Translation (e.g.): English — French
Text Manipulation (e.g.): Capitalize
QUITEAFEW Split into categories by the first word of the task:
(Ours) Given: 294 tasks

(3,096 tasks)

Generate: 193 tasks
Rewrite: 178 tasks
Create: 159 tasks
Classify: 125 tasks
Identify: 110 tasks
Write: 107 tasks
Find: 99 tasks
Other: 1,657 tasks

Table 1: Task Dataset Comparison on Task Vectors

investigation.

2024), the fundamental question of whether a sin-
gle such vector suffices for complex, multi-faceted
tasks remains largely unexplored. Luo et al. (2024)
extended this to vision-language models, demon-
strating that task vectors are cross-modal, cluster-
ing by task rather than input modality (e.g., text
or image) and emerging at intermediate layers to
summarize tasks before generation. On some tasks,
task vectors achieve near-excellent performance,
often over 90% accuracy. However, current stud-



Instruction Example Input Category Explanation

Answer this question with ayes ~ Will I be able to go to the park INVALID Requires future knowledge or personal
or no. tomorrow? context that an Al cannot predict

Find a good restaurant near the 660 Lexington Avenue, New INVALID Needs real-world data; “good restau-
given address York, NY 10022 rant” is subjective

What is the largest city on this  Africa LIMITED Limited size of a category, insufficient

continent?

for 30+ diverse examples

Table 2: Examples of Alpaca entries filtered out due to being unsuitable for few-shot generation.

ies mainly utilize toy, manually crafted datasets
(see Tab. 1), which limits our understanding of task
vector dynamics in diverse, large-scale settings.

To address this gap, we introduce QUITEAFEW,
a novel dataset comprising 3,096 diverse few-
shot learning tasks, each with 30 unique input-
output pairs derived from the Alpaca dataset (Taori
et al.,, 2023). This dataset spans a broad spec-
trum of tasks, from algorithmic operations to open-
ended generative challenges, enabling a compre-
hensive exploration of in-context learning (ICL).
Through experiments with (Grattafiori et al., 2024)
on QUITEAFEW, we uncover key insights into
task vector dynamics. Task vector performance
consistently peaks at a specific (such as the 15th
on Llama-3-8B) intermediate layer, across diverse
task categories like algorithmic processing and text
rewriting. However, the effectiveness of single task
vectors varies significantly depending on the task
type, with some categories demonstrating robust
results while others experience notable declines.
Our analysis reveals that instead of relying on a
single task vector, models utilize multiple subtask-
specific vectors, indicating a more distributed task
representation within the model.

2 Methodology

2.1 Introduction to Task Vectors

Formally, a task vector is the hidden state at a des-
ignated layer for a specific token in the few-shot
prompt, often the separator token (e.g., —> ) mark-
ing the transition from input to output. For a prompt
with k input-output pairs (e.g., big -> small), the
task vector v; is extracted as the hidden state at
layer [ after processing the final token -> .

To apply a task vector, we employ a causal in-
tervention during zero-shot inference. For a new
input (e.g., hot ->), the model processes the input
up to the token ->, at which point the hidden state
at layer [ is replaced with v;. The model then gener-
ates the output autoregressively, using this modified
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Figure 1: Average task vectors performance on
QUITEAFEW dataset.

hidden state as part of its standard computation.

2.2 Dataset Collection

We built QUITEAFEW by expanding the Al-
paca dataset (Taori et al., 2023), which contains
instruction-following entries from OpenAl’s text-
davinci_003. Many Alpaca entries include an
instruction paired with an example input and
output, providing a structure ideal for generating
diverse few-shot learning tasks. The instruction
(e.g., “Rewrite the given sentence to incorporate
a hyperbole”) specifies the task, while the exam-
ple input (e.g., “The house was very old.”) and
output (e.g., “The house was older than the hills.”)
demonstrate the expected transformation, enabling
the creation of varied examples (e.g., “The water
was very cold.” — “The water was colder than the
depths of Antarctica.”). The instructions cover a
wide range of tasks, and could be categorized by
their initial verb (e.g., “generate”, clas-
sify”), as shown in Tab. 1.

However, not all Alpaca entries were suitable for
few-shot task generation. Some contained errors
(e.g., incorrect calculations or factual inaccuracies),
while others were too restrictive (e.g., tasks with
limited input diversity). Examples of such problem-
atic entries are listed in Tab. 2. To ensure quality,
we applied a filtering process to select instructions
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Figure 2: Marks distribution on QUITEAFEW dataset.

appropriate for creating diverse, high-quality few-
shot examples.

We used Qwen-2.5-72B with a tailored classifi-
cation prompt (see Appendix A) to evaluate each
Alpaca entry’s suitability. The prompt assessed
whether an instruction and its example input
could support generating at least 30 distinct input-
output pairs. The evaluation criteria were:

* The instruction must allow for > 30 meaning-
fully different inputs.

* The output’s correctness for a given input
must be clearly verifiable.

Instructions were classified as:

* GOOD: Capable of yielding 30+ diverse
input-output pairs.

e LIMITED: Unsuitable due to insufficient in-
put variety (< 30).

e INVALID: Unsuitable due to reliance on ex-
ternal knowledge, impossibility, or single-
output constraints.

This process identified 3,096 GOOD instructions
for inclusion in QUITEAFEW.

For each GOOD instruction, we generated
30-50 new input-output pairs using Qwen-2.5-
72B and Qwen-3-235B-A22B (Yang et al., 2025)
with a dedicated prompt (see Appendix B).
Specifically, Qwen-3-235B-A22B generated 2,072

tasks, and Qwen-2.5-72B generated 1,024 tasks.
The prompt instructed the model to analyze
the original instruction, example_input, and
example_output and produce 30 diverse inputs
while maintaining the output format and style. The
original example served as a template to ensure
consistency.

The resulting QUITEAFEW dataset comprises
3,096 tasks, each with an original instruction and
30 unique input-output pairs. This structure sup-
ports robust few-shot ICL prompts and enables
comprehensive analysis of task vector dynamics
across diverse task types.

2.3 Task Performance Analysis

Prior work evaluating task vectors used tasks with
clear, verifiable answers (e.g., antonym genera-
tion), enabling simple accuracy metrics. In contrast,
QUITEAFEW includes diverse tasks, many lacking
a single correct output, e.g., rewriting text in a spe-
cific style. To uniformly evaluate all tasks, we used
an LLM-based judging approach (see Appendix C),
scoring responses on format (0-10, adherence to
expected output type) and correctness (0-10, accu-
racy or appropriateness).

For each task, we randomly select 8 examples.
Of these, 7 are used to construct the few-shot
prompt, while the remaining one serves as the test
example for zero-shot evaluation with the task vec-
tor. This process is repeated 10 times and the re-
sults are then averaged.
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Figure 3: Layer-wise Task Vector Performance across different task categories.

We now turn to evaluating how effectively task
vectors encode and apply task-specific information
across diverse task types. The following experi-
ments investigate task vector performance, layer-
wise dynamics, and their limitations in handling
complex, multi-faceted tasks.

3 Experiments and Evaluation

3,096t learning, we conduct a series of experiments
aiming to: (1) assess the layer-wise performance
of task vectors across diverse task categories (Sec.
3.1), (2) evaluate their effectiveness compared to
zero-shot and full few-shot baselines (Sec. 3.2).
Unless otherwise specified, all experiments uti-
lize the Llama-3-8B model. First, we analyzed task
vector performance across all layers of Llama-3-
8B using a randomly selected subset of 1,000 tasks
from QUITEAFEW. The experimental procedure
for processing one such scenario was as follows:

3.1 Layer-wise Performance

1. For each layer [/ in the model, extract the fi-
nal token’s hidden state after processing the
few-shot prompt, yielding a layer-specific task
vector v;.

2. Inject v; into the model’s hidden state at layer
[ at the end of the input for a new zero-shot
example.

3. Generate an output for this new example with
an injected task vector.
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Figure 4: Dual-axis analysis of task vector effectiveness
on QUITEAFEW, showing performance boost over zero-
shot inference versus deficit relative to full few-shot
learning.

4. Evaluate the output using the LLM-based
judging prompts (Appendix C), obtaining for-
mat and correctness scores.

5. Average the scores across all evaluated tasks
for each layer [ and compute per-category av-
erages for key task categories (e.g., Classify,
Rewrite, Generate).

Our analysis, visualized in Fig. 3, reveals a con-
sistent performance peak around the 15th layer
across different task categories, that correlates with
existing results, that intermediate layers are critical



Method Output

Task: Translate the given document into French.

Input: The novel explores the complexities of human relationships in a dystopian future.

Zero-shot
personal interactions.

Task Vector

Few-shot

The novel examines the fragility of human connections in a world where technology has replaced

Ce livre explore les complexités des relations humaines dans un futur dystopique.
Le roman explore les complexités des relations humaines dans un futur dystopique.

Task: Classify the following topic as either technology, business, travel, or sports.

Input: World Cup football results

Zero-shot A list of the
Task Vector Sports
Few-shot Sports

Task: Re-write the given sentence in the imperative form.
Input: It’s crucial to save water.

Zero-shot Saving water is crucial.
Task Vector Save water.
Few-shot Save water.

Table 3: Examples of tasks from Region 1 (see Fig. 4), where task vectors perform well, showing significant
improvement over zero-shot and approaching few-shot performance.

Method Output

Task: Categorize the given items by type.
Input: Banana, Pen, Shark

Zero-shot Banana, Shark, Pen
Task Vector Banana, Pen, Shark
Pen, Banana, Shark
Pen, Shark, Banana
Few-shot

Banana: Fruit, Pen: Writing Instrument, Shark: Animal

Task: Analyze the given sentence and classify it into the parts of speech.

Input: We love to travel in the summer.

Zero-shot We love to travel in the summer.
Task Vector We love to travel in the summer.
Few-shot

We (pronoun) love (verb) to (adverb) travel (verb) in (preposition) the (article) summer (noun).

Table 4: Examples of tasks from Region 2 (see Fig. 4), where task vectors perform poorly, often no better than

zero-shot, despite few-shot success.

for encoding task-specific information. Specifi-
cally, task categories such as convert, classify, ana-
lyze, etc. exhibit a significant correctness increase
at layer 15. However, categories like edit and de-
scribe exhibit more or less the same behavior across
all layers.

Since on the 1,000 tasks the most effective was
the 15th layer, for all other experiments we stick to
only the 15th layer.

The experiments highlight variability in how
effectively the model performs in-context learn-
ing across the diverse tasks (Fig. 2). As a sanity
check, we compared the performance of task vec-
tors against full few-shot performance and a base-
line where no task vector was provided in zero-shot
settings.

The Format Score for task vectors consistently

exceeded the Correctness Score. This might sug-
gest that the model understood it needed to classify

into specific classes (e.g., A, B, C, D) but couldn’t
recall what each option represented. Nevertheless,
this indicates that the task vector contains some use-
ful signal necessary for task execution, surpassing
the baseline, though not as strong as full few-shot
performance.

The other thing to notice, that task vectors do
not always successfully handle tasks in terms of
Correctness Score, which indicates that there is
only a small subset of tasks where task vectors
perform effectively out of the box. In the following
sections we will investigate it more.

3.2 What tasks are best for task vectors?

Fig. 4 illustrates the effectiveness of task vectors by
simultaneously measuring their performance boost
compared to zero-shot inference and their deficit
relative to full few-shot learning. This dual-axis
analysis is crucial because strong raw performance



from a task vector does not solely indicate its effi-
cacy; it might be an easy task where even zero-shot
performs well.

Tab. 3 presents examples illustrative of tasks
found in Region 1. In these instances, the appli-
cation of a task vector leads to outputs that are
significantly improved compared to zero-shot and
closely match the quality of full few-shot prompt-
ing.

Conversely, Tab. 4 showcases examples repre-
sentative of tasks from Region 2. For these tasks,
the task vector provides little to no improvement
over zero-shot inference, and in some cases, may
even lead to a degradation in performance, despite
full few-shot prompting demonstrating the task’s
solvability.

This motivates a deeper investigation into why
task vectors might fail for certain types of tasks.

4 Analysis on Complex Tasks

While task vectors have demonstrated utility, our
experiments reveal that their effectiveness is lim-
ited. But why do task vectors sometimes fail?
There are at least two possible explanations: (1)
all necessary information for task completion is
present within the task vector but is obfuscated by
noise, or (2) not all the critical task information
is captured by the single task vector, instead this
information residing elsewhere in the model’s rep-
resentations.

We hypothesize that many real-world tasks are
inherently compound, comprising multiple sub-
tasks. In such cases, a single task vector may
not naturally emerge to represent the entire task.
Instead, the model develops multiple task vec-
tors—each corresponding to a specific subtask.

4.1 A Motivating Observation

To test this hypothesis, we constructed a synthetic
dataset that emulates a realistic complex task: con-
verting unstructured textual descriptions into struc-
tured schema representations. Specifically, we syn-
thesized automobile descriptions and required the
model to transform these descriptions into a prede-
termined JSON format specified through few-shot
examples.

For instance, given an unstructured input descrip-
tion of a car, such as:
dream: red

Performance enthusiast’s

Rolls-Royce Cullinan EWB (2006). Unleash

564 HP from the 6.75L Twin-Turbo
V12, reaching 210 km/h. RWD, Cognac
Nappa leather, panoramic roof, rear

entertainment, premium audio. Located in
Sydney, 3,580 km, VIN: WXZFZXBGE96XAUD55.
Priced at $210,000.

The model was expected to produce a JSON
object:

{"color":"red","city":"Sydney",
"model”:"Cullinan”}

In this setup, the few-shot prompts consist of
seven examples, each pairing a unique automo-
bile description with its corresponding JSON rep-
resentation. These JSON object are always con-
sist of three attributes (each of which is a single
token)— color , city, and model —always in
that order. Here we distinct from the conventional
task vector method where a single hidden state
intervention occurs after the input description, typi-
cally at the -> token. Instead, at each step of gen-
erating the zero-shot JSON output, we test the influ-
ence of injecting each of the hidden states from the
output of the last few-shot example. Specifically,
for the current token being generated, we make
a series of experiments, each time substituting its
layer 15 hidden state with each hidden state from
every token position within the JSON output of
the last few-shot example, and recording the result-
ing next-token prediction. This is also compared
against natural generation without intervention.

To illustrate, Fig. 5 visualizes this process. Rows
represent tokens in the output sequence being gen-
erated in the zero-shot setting, while columns rep-
resent tokens from the output of the last few-shot
example. Each cell contains a binary value: 1 in-
dicates that substituting the hidden state from the
column token (from the few-shot example) at layer
15 during generation of the row token (in zero-
shot) correctly predicts the next token; 0 indicates
incorrect prediction. This visualization allows us
to identify which specific hidden states from the
few-shot example contribute to correct predictions
for each token in the zero-shot generation.

The token red in zero-shot was restored when
substituting the hidden state of token ":" with the
state of the corresponding token ":" in few-shot,
where it is followed by token green . The token

Sy — the beginning of the word “Sydney” in zero-

n,n

shot — was restored from token , followed by
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Figure 5: Token-level influence of few-shot hidden states on zero-shot JSON generation. Rows represent tokens
being generated in the zero-shot output. Columns represent tokens from the last few-shot example’s output, plus a
[NATURAL] states for the natural continuation without intervention.

token Berlin in few-shot. And the token C —
the beginning of the word “Culinan” in zero-shot —

was restored from token ":" , followed by token
FB in few-shot.

The similar behavior holds and for attribute
names: the first attribute color is correctly pre-
dicted by substituting the hidden state of the token

G{" , followed by token color infew-shot. Same

for the second attribute city , which was restored
from the hidden state of the token "," , preced-
ing the token city from the few-shot example;

and for the third: model , was restored using to-
ken ",", preceding the token model from the
few-shot example.

It is interesting that the first “real” task vector
was not in the G->, butin the {" .

It is interesting that the first “real” task vector
was not at the beginning of the output sequence
(e.g., associated with the G-> token), but rather
emerged at the token {” , which directly precedes
the first attribute name. This might suggest that the
model activates task-specific representations closer
to the point of use for each sub-component of the
complex output.

4.2 Investigating Task Vector Specialization

We further investigate this phenomenon and quan-
tify the potential insufficiency of a single, global
task vector for such compositional tasks, we con-
ducted a scaled experiment using a set of 100 (few-
shot, test sample) pairs of such automobile descrip-
tions. Our evaluation focused on the model’s ability
to predict specific tokens within the target JSON
output. We aimed to measure how effectively dif-

0.0 0.2 0.4 0.6 0.8 1.0
Average Probability of Target Token

B Natural B Classic Task Vector ~ mEM Sub-Task Vector

Figure 6: Comparison of token prediction probabilities
for JSON generation across 100 automobile descrip-
tions, evaluating Natural Generation, Classic Task Vec-
tor, and Sub-Task Vectors strategies.

ferent task vector injection strategies could guide
the model in generating both fixed structural el-
ements of the JSON, such as tokens for attribute
keys (e.g., color, city ), and dynamic, context-
dependent content, namely the attribute values ex-
tracted from the input description (e.g., the tokens
for color green or city Berlin ). We assessed
performance under three distinct conditions:

1. Natural Generation: The model generates
the output token by token without any task
vector intervention, serving as a baseline.



2. Classic Task Vector: A single task vector, ex-
tracted from the hidden state at the position of
the final G-> token in the few-shot prompt’s
output, is injected at the position of the G->
token in the zero-shot input. This evaluates
the conventional single task vector approach.

3. Sub-Task Vectors: Here we just use the hid-
den states from the corresponding token from
the few-shot as a sub-task vectors (it’s i-th
token ":" for attribute values, and tokens

G{" or "," for attribute names).

The results, summarized in Fig. 6. In contrast,
and consistent with our motivating observation, the
use of sub-task vectors provides a substantial in-
crease in the average probability for the correct
target token. This improvement is evident both for
predicting fixed attribute keys (e.g., token color
which are identical across examples) and for pre-
dicting the dynamic attribute values (e.g., the spe-
cific color term, which varies between the few-shot
demonstration and the zero-shot query). For in-
stance, predicting the token color after token

{" sees its probability rise significantly with a
sub-task vector, as does the prediction of the actual
color value after tokens color ":".

It is noteworthy that for later attributes in the se-
quence, such as the values for city and model ,
the probabilities under Natural Generation are al-
ready considerably above random chance. This can
be attributed to the model having already processed
preceding parts of the JSON structure, thereby
gaining contextual cues about the expected format
and the current attribute being populated. How-
ever, even in these instances where the baseline
is stronger, the application of an appropriate sub-
task vector still markedly outperforms both Natural
Generation and the Classic Task Vector approach.
This further reinforces the idea that task execution
for complex outputs relies on a sequence of more
specialized, context-dependent activations rather
than a single, overarching task representation.

Thus, in this case we need to talk not about one
task vector for the entire task, but about many task
vectors for the task.

5 Conclusion

To our knowledge, this is a first study to systemat-
ically evaluate task vectors on diverse set of NLP
tasks.

We found out that optimal task vector perfor-
mance consistently emerges around a specific inter-
mediate model layer (e.g., the 15th layer of Llama-
3-8B) across a wide variety of task types. Second,
the overall effectiveness of these vectors varies sub-
stantially depending on the intrinsic nature of the
task, with some task categories yielding strong per-
formance while others show considerable degrada-
tion.

Further, our case analysis of composite tasks re-
veals a fundamental limitation: a single task vector
often fails to capture the full scope of a task. In-
stead, multiple subtask-specific vectors, distributed
across the output sequence, are required to effec-
tively represent and execute complex tasks. This
finding challenges the notion that task vectors are
inherently noisy approximations of task knowledge,
demonstrating that critical task information may be
absent from a single vector.

Future research should therefore explore these
distributed and compositional mechanisms of task
representation and execution in LLMs to develop
a more nuanced understanding of in-context learn-
ing.

Limitations

First, all experiments were conducted on a single
model, Llama-3-8B. Findings regarding optimal
layer performance and task-type variability may
not generalize to models with different architec-
tures, parameter counts, or from different families.
Second, we employed LLM-based evaluation due
to the diversity of tasks in QUITEAFEW, precluding
the use of a single standard metric like F1-score.
This approach, while versatile, can introduce eval-
uator biases and complicates direct comparisons
with studies using task-specific metrics. Third, our
generation process used a fixed temperature for all
evaluations. Varying decoding parameters might
yield different insights into task vector efficacy, an
aspect not explored here.

Ethics

This study examines the working mechanisms of
large language models and, therefore, does not
introduce risks beyond those typically associated
with natural language processing or computational
linguistics research.

We utilize the Alpaca dataset (Taori et al., 2023),
which is licensed under the CC BY-NC 4.0 license,
a license suitable for research purposes.



Use of Al Assistants We utilize Grammarly to
enhance and proofread the text of this paper, cor-
recting grammatical, spelling, and stylistic errors,
as well as rephrasing sentences. Consequently, cer-
tain sections of our publication may be identified
as Al-generated, Al-edited, or a combination of
human and Al contributions.
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A Instruction Dataset Classification Prompt

Your task is to classify each instruction based on how suitable it is for creating
few-shot examples. An instruction is good for few-shots if you can generate many
different input-output pairs (at least 30) where:
- The same instruction works for all pairs
- Each input is meaningfully different from others
- The output’s correctness can be clearly evaluated

Output pure CSV starting with this header:
instruction|example_input|category|explanation

Categories:

GOOD = Good for few-shots: you can create many (30+) valid input examples

LIMITED = Bad for few-shots: cannot generate enough different examples (requires
explanation)

INVALID = Invalid: impossible to complete with given input (requires explanation)

Technical rules:

- Start immediately with header

- Process **all** instructions exactly as written, in order
- No quotes in output

- Explain both LIMITED and INVALID cases

Listing 1: Prompt for filtering Alpaca instructions

B Few-Shot Creation Prompt

You are a specialized AI assistant tasked with generating diverse and meaningful
examples based on given instructions. Your task is to generate {num_examples}
different, high-quality input examples for a given instruction, along with
corresponding outputs. Each example should be unique and demonstrate different
aspects or applications of the instruction.

Here is the instruction and an example input-output pair for reference:

[INSTRUCTION]
{instruction}

Example format:
Input: {example_input}
Output: {example_output}

Your task is to:

1. Analyze the instruction and understand its scope

2. Generate {num_examples} different, realistic, and diverse inputs that could be
used with this instruction

3. For each input, provide an appropriate output following the pattern shown in the
example

4. Ensure each input-output pair is unique and demonstrates different aspects of the

instruction

5. Format your response exactly as a CSV table with three columns with a header:

counter |input|output

Requirements:

- Generate exactly {num_examples} examples

- Ensure all examples are distinct and non-repetitive

- Maintain consistent quality across all examples

- Follow the same style and format as the provided example

- Ensure inputs are realistic and contextually appropriate

- Make outputs match the format and style of the example output

Format your response exactly like this:

e

counter|input|output
1|[first input]|[corresponding output]
2|[second input]|[corresponding output]
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{num_examples}|[{num_examples}th input]|[corresponding output]
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Important notes:

- Do not include explanations or additional text

- Start directly with the CSV format

- Use | as separator

- Escape any special characters within the text using double quotes
- Maintain consistent formatting throughout

- Ensure each row follows the exact same pattern

- Do not skip numbers or leave gaps in the counter

Begin your response now by outputting exactly {num_examples} examples in the
specified CSV format with | as a separator.

Listing 2: Prompt for generating few-shot examples

C Answer Quality Evaluation Prompts

You are a judge evaluating responses to tasks. You must provide exactly two scores:

1. Format score (0-10): How well the response matches the semantic type required by
the task

- Score 10: Response provides exactly the type of answer requested (e.g.,
classification label for classification tasks, Yes/No for yes/no questions)

- Score 7-9: Provides the right type of answer with minor formatting issues

- Score 4-6: Partially attempts to provide the required type (e.g., some
classifications missing in classification task)

- Score 1-3: Attempts to answer but mostly missing required type markers

- Score @0: No attempt to provide the required type of answer

2. Correctness score (0-10): How accurate/correct the actual answer is within its
task domain

- Score 10: Completely correct task completion

- Score 7-9: Mostly correct task completion with minor issues

- Score 4-6: Partial task completion with significant issues

- Score 1-3: Minimal correct task completion

- Score @: No actual task completion (e.g., just repeating input, missing
classifications)

Important: Simply repeating input or providing incomplete answers does not count as
task completion. The response must actually perform the requested operation (
classify, summarize, etc.) to receive any correctness points.

For classification tasks, any classification label gets a high format score even if
wrong (e.g., answering "Opinion"” for a fact still gets a high format score). For
Yes/No tasks, any Yes/No answer gets a high format score regardless of
correctness.

You must output your scores in exactly this format (without quotation marks):
FORMAT_SCORE , CORRECTNESS_SCORE

For example, the output might be:
8,3

Do not provide any explanations or additional text. Only output two numbers
separated by a comma.

Listing 3: System prompt part of evaluating answer quality prompt

You are a judge evaluating responses to tasks. You must provide exactly two scores:
1. Instruction: """{instruction}"""
2. Sample Input: """{example_input}

3. Expected Output: """{example_output}
4. Submission to evaluate: """{output_to_evaluate}

nnn

nnn

nnn

Listing 4: User prompt part of evaluating answer quality prompt
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