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Abstract

In-context learning (ICL) enables Large Lan-001
guage Models (LLMs) to adapt to new tasks us-002
ing few examples, with task vectors—specific003
hidden state activations—hypothesized to en-004
code task information. Existing studies are005
limited by small-scale benchmarks, restrict-006
ing comprehensive analysis. We introduce007
QUITEAFEW, a novel dataset of 3,096 diverse008
few-shot tasks, each with 30 input-output pairs009
derived from the Alpaca dataset. Experiments010
with Llama-3-8B on QUITEAFEW reveal: (1)011
task vector performance peaks at an interme-012
diate layer (e.g., 15th), (2) effectiveness varies013
significantly by task type, and (3) complex014
tasks rely on multiple, subtask-specific vec-015
tors rather than a single vector, suggesting dis-016
tributed task knowledge representation.017

1 Introduction018

Transformer-based Large Language Models019

(LLMs) (Vaswani et al., 2017) excel at in-context020

learning (ICL), adapting to new tasks via a few021

prompt-based examples without weight updates022

(Brown et al., 2020) and have shown impressive023

empirical results (Liu et al., 2023; Dong et al.,024

2022). This capability enables rapid task adapta-025

tion; however, how LLMs internally represent and026

apply task information remains unclear. Recent027

work points to “task vectors” (Hendel et al., 2023)028

or “function vectors” (Todd et al., 2024) – specific029

hidden state activations – as the mechanism for030

encoding task rules.031

Prior studies, such as Hendel et al. (2023), sug-032

gest that ICL compresses demonstration sets into033

task vectors that guide query processing. Todd034

et al. (2024) used causal analysis to locate these035

vectors, showing they capture semantic task aspects.036

While techniques like sparse autoencoders (SAEs)037

have begun to shed light on the interpretable fea-038

tures within a given task vector (Kharlapenko et al.,039

Work Task Categories & Examples

Hendel et al.
(2023)
(11 tasks)

Algorithmic: Next letter, List first, List last, To
uppercase
Translation: Fr → En, Es → En
Linguistic: Present → Gerund, Singular → Plu-
ral
Knowledge: Country → Capital, Person → Lan-
guage

Kharlapenko
et al. (2024)
(9 tasks)

Linguistic: Antonyms, Present Tense → Past
Tense
Translation: En → Es, En → Fr, Es → En
Knowledge: Country → Capital, Person → Pro-
fession, Location → Language, Location → Re-
ligion

Luo et al.
(2024)
(6 tasks)

Knowledge: Country → Capital, Country →
Currency, Animal → Latin, Animal → Young,
Food → Color, Food → Flavor

Todd et al.
(2024)
(Over 40 tasks)

Linguistic (e.g.): Antonyms, Present → Past,
Singular → Plural
Knowledge (e.g.): Country → Capital
Translation (e.g.): English → French
Text Manipulation (e.g.): Capitalize

QUITEAFEW
(Ours)
(3,096 tasks)

Split into categories by the first word of the task:
Given: 294 tasks
Generate: 193 tasks
Rewrite: 178 tasks
Create: 159 tasks
Classify: 125 tasks
Identify: 110 tasks
Write: 107 tasks
Find: 99 tasks
Other: 1,657 tasks

Table 1: Task Dataset Comparison on Task Vectors
investigation.

2024), the fundamental question of whether a sin- 040

gle such vector suffices for complex, multi-faceted 041

tasks remains largely unexplored. Luo et al. (2024) 042

extended this to vision-language models, demon- 043

strating that task vectors are cross-modal, cluster- 044

ing by task rather than input modality (e.g., text 045

or image) and emerging at intermediate layers to 046

summarize tasks before generation. On some tasks, 047

task vectors achieve near-excellent performance, 048

often over 90% accuracy. However, current stud- 049
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Instruction Example Input Category Explanation

Answer this question with a yes
or no.

Will I be able to go to the park
tomorrow?

INVALID Requires future knowledge or personal
context that an AI cannot predict

Find a good restaurant near the
given address

660 Lexington Avenue, New
York, NY 10022

INVALID Needs real-world data; ”good restau-
rant” is subjective

What is the largest city on this
continent?

Africa LIMITED Limited size of a category, insufficient
for 30+ diverse examples

Table 2: Examples of Alpaca entries filtered out due to being unsuitable for few-shot generation.

ies mainly utilize toy, manually crafted datasets050

(see Tab. 1), which limits our understanding of task051

vector dynamics in diverse, large-scale settings.052

To address this gap, we introduce QUITEAFEW,053

a novel dataset comprising 3,096 diverse few-054

shot learning tasks, each with 30 unique input-055

output pairs derived from the Alpaca dataset (Taori056

et al., 2023). This dataset spans a broad spec-057

trum of tasks, from algorithmic operations to open-058

ended generative challenges, enabling a compre-059

hensive exploration of in-context learning (ICL).060

Through experiments with (Grattafiori et al., 2024)061

on QUITEAFEW, we uncover key insights into062

task vector dynamics. Task vector performance063

consistently peaks at a specific (such as the 15th064

on Llama-3-8B) intermediate layer, across diverse065

task categories like algorithmic processing and text066

rewriting. However, the effectiveness of single task067

vectors varies significantly depending on the task068

type, with some categories demonstrating robust069

results while others experience notable declines.070

Our analysis reveals that instead of relying on a071

single task vector, models utilize multiple subtask-072

specific vectors, indicating a more distributed task073

representation within the model.074

2 Methodology075

2.1 Introduction to Task Vectors076

Formally, a task vector is the hidden state at a des-077

ignated layer for a specific token in the few-shot078

prompt, often the separator token (e.g., -> ) mark-079

ing the transition from input to output. For a prompt080

with k input-output pairs (e.g., big -> small), the081

task vector vl is extracted as the hidden state at082

layer l after processing the final token -> .083

To apply a task vector, we employ a causal in-084

tervention during zero-shot inference. For a new085

input (e.g., hot ->), the model processes the input086

up to the token -> , at which point the hidden state087

at layer l is replaced with vl. The model then gener-088

ates the output autoregressively, using this modified089
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Figure 1: Average task vectors performance on
QUITEAFEW dataset.

hidden state as part of its standard computation. 090

2.2 Dataset Collection 091

We built QUITEAFEW by expanding the Al- 092

paca dataset (Taori et al., 2023), which contains 093

instruction-following entries from OpenAI’s text- 094

davinci 003. Many Alpaca entries include an 095

instruction paired with an example input and 096

output, providing a structure ideal for generating 097

diverse few-shot learning tasks. The instruction 098

(e.g., “Rewrite the given sentence to incorporate 099

a hyperbole”) specifies the task, while the exam- 100

ple input (e.g., “The house was very old.”) and 101

output (e.g., “The house was older than the hills.”) 102

demonstrate the expected transformation, enabling 103

the creation of varied examples (e.g., “The water 104

was very cold.” → “The water was colder than the 105

depths of Antarctica.”). The instructions cover a 106

wide range of tasks, and could be categorized by 107

their initial verb (e.g., “generate”, “rewrite”, “clas- 108

sify”), as shown in Tab. 1. 109

However, not all Alpaca entries were suitable for 110

few-shot task generation. Some contained errors 111

(e.g., incorrect calculations or factual inaccuracies), 112

while others were too restrictive (e.g., tasks with 113

limited input diversity). Examples of such problem- 114

atic entries are listed in Tab. 2. To ensure quality, 115

we applied a filtering process to select instructions 116
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Figure 2: Marks distribution on QUITEAFEW dataset.

appropriate for creating diverse, high-quality few-117

shot examples.118

We used Qwen-2.5-72B with a tailored classifi-119

cation prompt (see Appendix A) to evaluate each120

Alpaca entry’s suitability. The prompt assessed121

whether an instruction and its example input122

could support generating at least 30 distinct input-123

output pairs. The evaluation criteria were:124

• The instruction must allow for ≥ 30 meaning-125

fully different inputs.126

• The output’s correctness for a given input127

must be clearly verifiable.128

Instructions were classified as:129

• GOOD: Capable of yielding 30+ diverse130

input-output pairs.131

• LIMITED: Unsuitable due to insufficient in-132

put variety (< 30).133

• INVALID: Unsuitable due to reliance on ex-134

ternal knowledge, impossibility, or single-135

output constraints.136

This process identified 3,096 GOOD instructions137

for inclusion in QUITEAFEW.138

For each GOOD instruction, we generated139

30-50 new input-output pairs using Qwen-2.5-140

72B and Qwen-3-235B-A22B (Yang et al., 2025)141

with a dedicated prompt (see Appendix B).142

Specifically, Qwen-3-235B-A22B generated 2,072143

tasks, and Qwen-2.5-72B generated 1,024 tasks. 144

The prompt instructed the model to analyze 145

the original instruction, example input, and 146

example output and produce 30 diverse inputs 147

while maintaining the output format and style. The 148

original example served as a template to ensure 149

consistency. 150

The resulting QUITEAFEW dataset comprises 151

3,096 tasks, each with an original instruction and 152

30 unique input-output pairs. This structure sup- 153

ports robust few-shot ICL prompts and enables 154

comprehensive analysis of task vector dynamics 155

across diverse task types. 156

2.3 Task Performance Analysis 157

Prior work evaluating task vectors used tasks with 158

clear, verifiable answers (e.g., antonym genera- 159

tion), enabling simple accuracy metrics. In contrast, 160

QUITEAFEW includes diverse tasks, many lacking 161

a single correct output, e.g., rewriting text in a spe- 162

cific style. To uniformly evaluate all tasks, we used 163

an LLM-based judging approach (see Appendix C), 164

scoring responses on format (0–10, adherence to 165

expected output type) and correctness (0–10, accu- 166

racy or appropriateness). 167

For each task, we randomly select 8 examples. 168

Of these, 7 are used to construct the few-shot 169

prompt, while the remaining one serves as the test 170

example for zero-shot evaluation with the task vec- 171

tor. This process is repeated 10 times and the re- 172

sults are then averaged. 173
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Figure 3: Layer-wise Task Vector Performance across different task categories.

We now turn to evaluating how effectively task174

vectors encode and apply task-specific information175

across diverse task types. The following experi-176

ments investigate task vector performance, layer-177

wise dynamics, and their limitations in handling178

complex, multi-faceted tasks.179

3 Experiments and Evaluation180

3,096t learning, we conduct a series of experiments181

aiming to: (1) assess the layer-wise performance182

of task vectors across diverse task categories (Sec.183

3.1), (2) evaluate their effectiveness compared to184

zero-shot and full few-shot baselines (Sec. 3.2).185

Unless otherwise specified, all experiments uti-186

lize the Llama-3-8B model. First, we analyzed task187

vector performance across all layers of Llama-3-188

8B using a randomly selected subset of 1,000 tasks189

from QUITEAFEW. The experimental procedure190

for processing one such scenario was as follows:191

3.1 Layer-wise Performance192

1. For each layer l in the model, extract the fi-193

nal token’s hidden state after processing the194

few-shot prompt, yielding a layer-specific task195

vector vl.196

2. Inject vl into the model’s hidden state at layer197

l at the end of the input for a new zero-shot198

example.199

3. Generate an output for this new example with200

an injected task vector.201
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Figure 4: Dual-axis analysis of task vector effectiveness
on QUITEAFEW, showing performance boost over zero-
shot inference versus deficit relative to full few-shot
learning.

4. Evaluate the output using the LLM-based 202

judging prompts (Appendix C), obtaining for- 203

mat and correctness scores. 204

5. Average the scores across all evaluated tasks 205

for each layer l and compute per-category av- 206

erages for key task categories (e.g., Classify, 207

Rewrite, Generate). 208

Our analysis, visualized in Fig. 3, reveals a con- 209

sistent performance peak around the 15th layer 210

across different task categories, that correlates with 211

existing results, that intermediate layers are critical 212
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Method Output

Task: Translate the given document into French.
Input: The novel explores the complexities of human relationships in a dystopian future.
Zero-shot The novel examines the fragility of human connections in a world where technology has replaced

personal interactions.
Task Vector Ce livre explore les complexités des relations humaines dans un futur dystopique.
Few-shot Le roman explore les complexités des relations humaines dans un futur dystopique.

Task: Classify the following topic as either technology, business, travel, or sports.
Input: World Cup football results
Zero-shot A list of the
Task Vector Sports
Few-shot Sports

Task: Re-write the given sentence in the imperative form.
Input: It’s crucial to save water.
Zero-shot Saving water is crucial.
Task Vector Save water.
Few-shot Save water.

Table 3: Examples of tasks from Region 1 (see Fig. 4), where task vectors perform well, showing significant
improvement over zero-shot and approaching few-shot performance.

Method Output

Task: Categorize the given items by type.
Input: Banana, Pen, Shark
Zero-shot Banana, Shark, Pen
Task Vector Banana, Pen, Shark

Pen, Banana, Shark
Pen, Shark, Banana

Few-shot Banana: Fruit, Pen: Writing Instrument, Shark: Animal

Task: Analyze the given sentence and classify it into the parts of speech.
Input: We love to travel in the summer.
Zero-shot We love to travel in the summer.
Task Vector We love to travel in the summer.
Few-shot We (pronoun) love (verb) to (adverb) travel (verb) in (preposition) the (article) summer (noun).

Table 4: Examples of tasks from Region 2 (see Fig. 4), where task vectors perform poorly, often no better than
zero-shot, despite few-shot success.

for encoding task-specific information. Specifi-213

cally, task categories such as convert, classify, ana-214

lyze, etc. exhibit a significant correctness increase215

at layer 15. However, categories like edit and de-216

scribe exhibit more or less the same behavior across217

all layers.218

Since on the 1,000 tasks the most effective was219

the 15th layer, for all other experiments we stick to220

only the 15th layer.221

The experiments highlight variability in how222

effectively the model performs in-context learn-223

ing across the diverse tasks (Fig. 2). As a sanity224

check, we compared the performance of task vec-225

tors against full few-shot performance and a base-226

line where no task vector was provided in zero-shot227

settings.228

The Format Score for task vectors consistently229

exceeded the Correctness Score. This might sug-230

gest that the model understood it needed to classify231

into specific classes (e.g., A, B, C, D) but couldn’t 232

recall what each option represented. Nevertheless, 233

this indicates that the task vector contains some use- 234

ful signal necessary for task execution, surpassing 235

the baseline, though not as strong as full few-shot 236

performance. 237

The other thing to notice, that task vectors do 238

not always successfully handle tasks in terms of 239

Correctness Score, which indicates that there is 240

only a small subset of tasks where task vectors 241

perform effectively out of the box. In the following 242

sections we will investigate it more. 243

3.2 What tasks are best for task vectors? 244

Fig. 4 illustrates the effectiveness of task vectors by 245

simultaneously measuring their performance boost 246

compared to zero-shot inference and their deficit 247

relative to full few-shot learning. This dual-axis 248

analysis is crucial because strong raw performance 249
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from a task vector does not solely indicate its effi-250

cacy; it might be an easy task where even zero-shot251

performs well.252

Tab. 3 presents examples illustrative of tasks253

found in Region 1. In these instances, the appli-254

cation of a task vector leads to outputs that are255

significantly improved compared to zero-shot and256

closely match the quality of full few-shot prompt-257

ing.258

Conversely, Tab. 4 showcases examples repre-259

sentative of tasks from Region 2. For these tasks,260

the task vector provides little to no improvement261

over zero-shot inference, and in some cases, may262

even lead to a degradation in performance, despite263

full few-shot prompting demonstrating the task’s264

solvability.265

This motivates a deeper investigation into why266

task vectors might fail for certain types of tasks.267

4 Analysis on Complex Tasks268

While task vectors have demonstrated utility, our269

experiments reveal that their effectiveness is lim-270

ited. But why do task vectors sometimes fail?271

There are at least two possible explanations: (1)272

all necessary information for task completion is273

present within the task vector but is obfuscated by274

noise, or (2) not all the critical task information275

is captured by the single task vector, instead this276

information residing elsewhere in the model’s rep-277

resentations.278

We hypothesize that many real-world tasks are279

inherently compound, comprising multiple sub-280

tasks. In such cases, a single task vector may281

not naturally emerge to represent the entire task.282

Instead, the model develops multiple task vec-283

tors—each corresponding to a specific subtask.284

4.1 A Motivating Observation285

To test this hypothesis, we constructed a synthetic286

dataset that emulates a realistic complex task: con-287

verting unstructured textual descriptions into struc-288

tured schema representations. Specifically, we syn-289

thesized automobile descriptions and required the290

model to transform these descriptions into a prede-291

termined JSON format specified through few-shot292

examples.293

For instance, given an unstructured input descrip-294

tion of a car, such as:295

Performance enthusiast’s dream: red296

Rolls-Royce Cullinan EWB (2006). Unleash
564 HP from the 6.75L Twin-Turbo
V12, reaching 210 km/h. RWD, Cognac
Nappa leather, panoramic roof, rear
entertainment, premium audio. Located in
Sydney, 3,580 km, VIN: WXZFZXBGE96XAUD55.
Priced at $210,000. 297

The model was expected to produce a JSON 298

object: 299

{"color":"red","city":"Sydney",
"model":"Cullinan"} 300

In this setup, the few-shot prompts consist of 301

seven examples, each pairing a unique automo- 302

bile description with its corresponding JSON rep- 303

resentation. These JSON object are always con- 304

sist of three attributes (each of which is a single 305

token)— color , city , and model —always in 306

that order. Here we distinct from the conventional 307

task vector method where a single hidden state 308

intervention occurs after the input description, typi- 309

cally at the -> token. Instead, at each step of gen- 310

erating the zero-shot JSON output, we test the influ- 311

ence of injecting each of the hidden states from the 312

output of the last few-shot example. Specifically, 313

for the current token being generated, we make 314

a series of experiments, each time substituting its 315

layer 15 hidden state with each hidden state from 316

every token position within the JSON output of 317

the last few-shot example, and recording the result- 318

ing next-token prediction. This is also compared 319

against natural generation without intervention. 320

To illustrate, Fig. 5 visualizes this process. Rows 321

represent tokens in the output sequence being gen- 322

erated in the zero-shot setting, while columns rep- 323

resent tokens from the output of the last few-shot 324

example. Each cell contains a binary value: 1 in- 325

dicates that substituting the hidden state from the 326

column token (from the few-shot example) at layer 327

15 during generation of the row token (in zero- 328

shot) correctly predicts the next token; 0 indicates 329

incorrect prediction. This visualization allows us 330

to identify which specific hidden states from the 331

few-shot example contribute to correct predictions 332

for each token in the zero-shot generation. 333

The token red in zero-shot was restored when 334

substituting the hidden state of token ":" with the 335

state of the corresponding token ":" in few-shot, 336

where it is followed by token green . The token 337

Sy — the beginning of the word “Sydney” in zero- 338

shot — was restored from token ":" , followed by 339
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Figure 5: Token-level influence of few-shot hidden states on zero-shot JSON generation. Rows represent tokens
being generated in the zero-shot output. Columns represent tokens from the last few-shot example’s output, plus a
[NATURAL] states for the natural continuation without intervention.

token Berlin in few-shot. And the token C —340

the beginning of the word “Culinan” in zero-shot —341

was restored from token ":" , followed by token342

FB in few-shot.343

The similar behavior holds and for attribute344

names: the first attribute color is correctly pre-345

dicted by substituting the hidden state of the token346
_G{" , followed by token color in few-shot. Same347

for the second attribute city , which was restored348

from the hidden state of the token "," , preced-349

ing the token city from the few-shot example;350

and for the third: model , was restored using to-351

ken "," , preceding the token model from the352

few-shot example.353

It is interesting that the first “real” task vector354

was not in the _G-> , but in the {" .355

It is interesting that the first “real” task vector356

was not at the beginning of the output sequence357

(e.g., associated with the _G-> token), but rather358

emerged at the token {" , which directly precedes359

the first attribute name. This might suggest that the360

model activates task-specific representations closer361

to the point of use for each sub-component of the362

complex output.363

4.2 Investigating Task Vector Specialization364

We further investigate this phenomenon and quan-365

tify the potential insufficiency of a single, global366

task vector for such compositional tasks, we con-367

ducted a scaled experiment using a set of 100 (few-368

shot, test sample) pairs of such automobile descrip-369

tions. Our evaluation focused on the model’s ability370

to predict specific tokens within the target JSON371

output. We aimed to measure how effectively dif-372
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ferent task vector injection strategies could guide 373

the model in generating both fixed structural el- 374

ements of the JSON, such as tokens for attribute 375

keys (e.g., color , city ), and dynamic, context- 376

dependent content, namely the attribute values ex- 377

tracted from the input description (e.g., the tokens 378

for color green or city Berlin ). We assessed 379

performance under three distinct conditions: 380

1. Natural Generation: The model generates 381

the output token by token without any task 382

vector intervention, serving as a baseline. 383
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2. Classic Task Vector: A single task vector, ex-384

tracted from the hidden state at the position of385

the final _G-> token in the few-shot prompt’s386

output, is injected at the position of the _G->387

token in the zero-shot input. This evaluates388

the conventional single task vector approach.389

3. Sub-Task Vectors: Here we just use the hid-390

den states from the corresponding token from391

the few-shot as a sub-task vectors (it’s i-th392

token ":" for attribute values, and tokens393

_G{" or "," for attribute names).394

The results, summarized in Fig. 6. In contrast,395

and consistent with our motivating observation, the396

use of sub-task vectors provides a substantial in-397

crease in the average probability for the correct398

target token. This improvement is evident both for399

predicting fixed attribute keys (e.g., token color ,400

which are identical across examples) and for pre-401

dicting the dynamic attribute values (e.g., the spe-402

cific color term, which varies between the few-shot403

demonstration and the zero-shot query). For in-404

stance, predicting the token color after token405

{" sees its probability rise significantly with a406

sub-task vector, as does the prediction of the actual407

color value after tokens color ":" .408

It is noteworthy that for later attributes in the se-409

quence, such as the values for city and model ,410

the probabilities under Natural Generation are al-411

ready considerably above random chance. This can412

be attributed to the model having already processed413

preceding parts of the JSON structure, thereby414

gaining contextual cues about the expected format415

and the current attribute being populated. How-416

ever, even in these instances where the baseline417

is stronger, the application of an appropriate sub-418

task vector still markedly outperforms both Natural419

Generation and the Classic Task Vector approach.420

This further reinforces the idea that task execution421

for complex outputs relies on a sequence of more422

specialized, context-dependent activations rather423

than a single, overarching task representation.424

Thus, in this case we need to talk not about one425

task vector for the entire task, but about many task426

vectors for the task.427

5 Conclusion428

To our knowledge, this is a first study to systemat-429

ically evaluate task vectors on diverse set of NLP430

tasks.431

We found out that optimal task vector perfor- 432

mance consistently emerges around a specific inter- 433

mediate model layer (e.g., the 15th layer of Llama- 434

3-8B) across a wide variety of task types. Second, 435

the overall effectiveness of these vectors varies sub- 436

stantially depending on the intrinsic nature of the 437

task, with some task categories yielding strong per- 438

formance while others show considerable degrada- 439

tion. 440

Further, our case analysis of composite tasks re- 441

veals a fundamental limitation: a single task vector 442

often fails to capture the full scope of a task. In- 443

stead, multiple subtask-specific vectors, distributed 444

across the output sequence, are required to effec- 445

tively represent and execute complex tasks. This 446

finding challenges the notion that task vectors are 447

inherently noisy approximations of task knowledge, 448

demonstrating that critical task information may be 449

absent from a single vector. 450

Future research should therefore explore these 451

distributed and compositional mechanisms of task 452

representation and execution in LLMs to develop 453

a more nuanced understanding of in-context learn- 454

ing. 455

Limitations 456

First, all experiments were conducted on a single 457

model, Llama-3-8B. Findings regarding optimal 458

layer performance and task-type variability may 459

not generalize to models with different architec- 460

tures, parameter counts, or from different families. 461

Second, we employed LLM-based evaluation due 462

to the diversity of tasks in QUITEAFEW, precluding 463

the use of a single standard metric like F1-score. 464

This approach, while versatile, can introduce eval- 465

uator biases and complicates direct comparisons 466

with studies using task-specific metrics. Third, our 467

generation process used a fixed temperature for all 468

evaluations. Varying decoding parameters might 469

yield different insights into task vector efficacy, an 470

aspect not explored here. 471

Ethics 472

This study examines the working mechanisms of 473

large language models and, therefore, does not 474

introduce risks beyond those typically associated 475

with natural language processing or computational 476

linguistics research. 477

We utilize the Alpaca dataset (Taori et al., 2023), 478

which is licensed under the CC BY-NC 4.0 license, 479

a license suitable for research purposes. 480
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Use of AI Assistants We utilize Grammarly to481

enhance and proofread the text of this paper, cor-482

recting grammatical, spelling, and stylistic errors,483

as well as rephrasing sentences. Consequently, cer-484

tain sections of our publication may be identified485

as AI-generated, AI-edited, or a combination of486

human and AI contributions.487
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A Instruction Dataset Classification Prompt538

539
Your task is to classify each instruction based on how suitable it is for creating540

few -shot examples. An instruction is good for few -shots if you can generate many541
different input -output pairs (at least 30) where:542

- The same instruction works for all pairs543
- Each input is meaningfully different from others544
- The output ’s correctness can be clearly evaluated545

546
Output pure CSV starting with this header:547
instruction|example_input|category|explanation548

549
Categories:550
GOOD = Good for few -shots: you can create many (30+) valid input examples551
LIMITED = Bad for few -shots: cannot generate enough different examples (requires552

explanation)553
INVALID = Invalid: impossible to complete with given input (requires explanation)554

555
Technical rules:556
- Start immediately with header557
- Process **all** instructions exactly as written , in order558
- No quotes in output559
- Explain both LIMITED and INVALID cases560561

Listing 1: Prompt for filtering Alpaca instructions

B Few-Shot Creation Prompt562

563
You are a specialized AI assistant tasked with generating diverse and meaningful564

examples based on given instructions. Your task is to generate {num_examples}565
different , high -quality input examples for a given instruction , along with566
corresponding outputs. Each example should be unique and demonstrate different567
aspects or applications of the instruction.568

569
Here is the instruction and an example input -output pair for reference:570

571
[INSTRUCTION]572
{instruction}573

574
Example format:575
Input: {example_input}576
Output: {example_output}577

578
Your task is to:579
1. Analyze the instruction and understand its scope580
2. Generate {num_examples} different , realistic , and diverse inputs that could be581

used with this instruction582
3. For each input , provide an appropriate output following the pattern shown in the583

example584
4. Ensure each input -output pair is unique and demonstrates different aspects of the585

instruction586
5. Format your response exactly as a CSV table with three columns with a header:587

counter|input|output588
589

Requirements:590
- Generate exactly {num_examples} examples591
- Ensure all examples are distinct and non -repetitive592
- Maintain consistent quality across all examples593
- Follow the same style and format as the provided example594
- Ensure inputs are realistic and contextually appropriate595
- Make outputs match the format and style of the example output596

597
Format your response exactly like this:598
‘‘‘599
counter|input|output600
1|[ first input ]|[ corresponding output]601
2|[ second input ]|[ corresponding output]602
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... 603
{num_examples }|[{ num_examples}th input ]|[ corresponding output] 604
‘‘‘ 605

606
Important notes: 607
- Do not include explanations or additional text 608
- Start directly with the CSV format 609
- Use | as separator 610
- Escape any special characters within the text using double quotes 611
- Maintain consistent formatting throughout 612
- Ensure each row follows the exact same pattern 613
- Do not skip numbers or leave gaps in the counter 614

615
Begin your response now by outputting exactly {num_examples} examples in the 616

specified CSV format with | as a separator. 617618

Listing 2: Prompt for generating few-shot examples

C Answer Quality Evaluation Prompts 619

620
You are a judge evaluating responses to tasks. You must provide exactly two scores: 621

622
1. Format score (0-10): How well the response matches the semantic type required by 623

the task 624
- Score 10: Response provides exactly the type of answer requested (e.g., 625

classification label for classification tasks , Yes/No for yes/no questions) 626
- Score 7-9: Provides the right type of answer with minor formatting issues 627
- Score 4-6: Partially attempts to provide the required type (e.g., some 628

classifications missing in classification task) 629
- Score 1-3: Attempts to answer but mostly missing required type markers 630
- Score 0: No attempt to provide the required type of answer 631

632
2. Correctness score (0-10): How accurate/correct the actual answer is within its 633

task domain 634
- Score 10: Completely correct task completion 635
- Score 7-9: Mostly correct task completion with minor issues 636
- Score 4-6: Partial task completion with significant issues 637
- Score 1-3: Minimal correct task completion 638
- Score 0: No actual task completion (e.g., just repeating input , missing 639

classifications) 640
641

Important: Simply repeating input or providing incomplete answers does not count as 642
task completion. The response must actually perform the requested operation ( 643
classify , summarize , etc.) to receive any correctness points. 644

645
For classification tasks , any classification label gets a high format score even if 646

wrong (e.g., answering "Opinion" for a fact still gets a high format score). For 647
Yes/No tasks , any Yes/No answer gets a high format score regardless of 648

correctness. 649
650

You must output your scores in exactly this format (without quotation marks): 651
FORMAT_SCORE ,CORRECTNESS_SCORE 652

653
For example , the output might be: 654
8,3 655

656
Do not provide any explanations or additional text. Only output two numbers 657

separated by a comma. 658659

Listing 3: System prompt part of evaluating answer quality prompt
660

You are a judge evaluating responses to tasks. You must provide exactly two scores: 661
1. Instruction: """{ instruction }""" 662
2. Sample Input: """{ example_input }""" 663
3. Expected Output: """{ example_output }""" 664
4. Submission to evaluate: """{ output_to_evaluate }""" 665666

Listing 4: User prompt part of evaluating answer quality prompt
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