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Abstract

While machine learning models rapidly advance
the state-of-the-art on various real-world tasks,
out-of-domain (OOD) generalization remains a
challenging problem given the vulnerability of
these models to spurious correlations. We pro-
pose a causally-motivated balanced mini-batch
sampling strategy to train robust classifiers that
is minimax optimal across a diverse enough en-
vironment space, by utilizing multiple training
sets from different environments. We provide an
identifiability guarantee of the latent covariates
in the proposed causal graph and show that our
proposed approach samples train data from a bal-
anced, spurious-free distribution under an ideal
scenario. Experiments are conducted on three do-
main generalization datasets, demonstrating em-
pirically that our balanced mini-batch sampling
strategy improves the performance of four differ-
ent established domain generalization model base-
lines compared to the random mini-batch sam-
pling strategy.

1. Introduction
Machine learning is achieving tremendous success in many
fields with useful real-world applications (Silver et al., 2016;
Devlin et al., 2019; Jumper et al., 2021). However, machine
learning models often fail to generalize to out-of-domain
(OOD) data sampled from unseen environments (Quiñonero-
Candela et al., 2009; Szegedy et al., 2014). One explanation
for such a failure is that the models are prone to learning
spurious correlations that change between environments.

Recently, various causal-inspired (Pearl, 2009) methods
have been proposed to improve the OOD generalizability
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by considering the invariance of causal features or the un-
derlying causal mechanism through which data is generated.
Such methods often aim to find invariant data representa-
tions using new loss function designs that incorporate the
invariance conditions across different domains into the train-
ing process (Arjovsky et al., 2020; Mahajan et al., 2021;
Liu et al., 2021; Lu et al., 2022; Wald et al., 2021). Unfor-
tunately, these approaches have to contend with trade-offs
between weak linear models or approaches without theoret-
ical guarantees (Arjovsky et al., 2020; Wald et al., 2021),
and empirical studies have shown their utility in the real
world to be questionable (Gulrajani & Lopez-Paz, 2020).

In this paper, we first demonstrate that the Bayes optimal
classifier trained on a balanced (spurious-free) distribution
is minmax optimal across all environments. Then we pro-
pose a two-step method to create such balanced distribution
from multiple train datasets collected form different envi-
ronments: (1) learn the observed data distribution using a
variational autoencoder (VAE) by latent covariate learning,
and (2) use the learned latent covariate to create balanced
mini-batches that follow a balanced distribution. Because
the only modification at train time is a resampling of train
examples, it makes our method lightweight and highly flexi-
ble, enabling seamless incorporation with off-the-shelf do-
main generalization methods (Gulrajani & Lopez-Paz, 2020;
Sagawa et al., 2019; Sun & Saenko, 2016).

Our contributions are as follows: (1) We propose the bal-
anced distribution without spurious correlation and prove
that it can produce mimmax optimal classifiers for OOD
generalization; (2) We demonstrate that the source of spuri-
ous correlation, as a latent variable, can be identified given
a large enough set of training environments under mild
conditions in a nonlinear setting; (3) We propose a novel
balanced mini-batch sampling algorithm that, in an ideal
scenario with exact matches of the true source of spuri-
ous correlation, can remove the spurious correlations in the
observed data distribution; (4) Our empirical results show
that our two-phased method obtains significant performance
gain on three domain generalization datasets, ColoredM-
NIST (Arjovsky et al., 2020), PACS (Li et al., 2017) and
TerraIncognita (Beery et al., 2018), across four different
domain generalization methods over a random sampling
strategy.
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(a) Observed distribution
p(X,Y |E = e)

(b) Balanced distribution
pB(X,Y |E = e)

Figure 1. The causal graphical model assumed for data generation
process in environment e ∈ E . Shaded nodes means being ob-
served and white nodes means not being observed. Black arrows
means causal relations invariant across different environments.
Red dashed line means correlation varies across different environ-
ments.

2. Preliminaries
2.1. Problem Setting

We consider a standard domain generalization setting with a
potentially high-dimensional variable X (e.g. an image), a
label variable Y and a discrete environment (or domain) vari-
able E in the sample spaces X ,Y, E , respectively. Here we
focus on the classification problems with Y = {1, 2, ...,m}
and X ∈ Rd. We assume that the training data are collected
from a finite subset of training environments Etrain ⊂ E . The
training data De = {(xei , yei )}N

e

i=1 is then sampled from the
distribution pe(X,Y ) = p(X,Y |E = e) for all e ∈ Etrain.
Our goal is to learn a classifier Cψ : X → Y that performs
well in a new, unseen environment etest ̸∈ Etrain.

We assume that there is a data generation process of the
observed data distribution pe(X,Y ) represented by an un-
derlying structural causal model (SCM) shown in Figure 1a.
More specifically, we assume thatX is caused by label Y , an
unobserved latent variable Z (with sample space Z ∈ Rn)
and an independent noise variable ϵ with the following for-
mulation:

X = f(Y,Z) + ϵ = fY (Z) + ϵ (1)

Here, we assume the causal mechanism is invariant across
all environments e ∈ E and we further characterize f with
the following assumption:

Assumption 2.1. f : {1, 2, ...,m} × Z → X is injective.
f−1 : X → {1, 2, ...,m} × Z is the left inverse of f .

Note that this assumption forces the generation process of
X to consider both Z and Y instead of only one of them.
Suppose ϵ has a known probability density function pϵ > 0.
Then we have

pf (X|Z, Y ) = pϵ(X − fY (Z)) (2)

While the causal mechanism is invariant across environ-
ments, we assume that the correlation between label Y and
latent Z is environment-variant and Z should exclude Y
information. i.e., Y cannot be recovered as a function of
Z. If Y is a function of Z, the generation process of X can

completely ignore Y and f would not be injective. Z can be
understood as a potentially massive set of latent features that
do not determine the “Y -ness” and that can be spuriously
correlated with environment E.

Let e ∈ E index a family of distributions F =
{pe(X,Y, Z) = pf (X|Z, Y )pe(Z|Y )pe(Y )}e, where
pe(Z|Y ) > 0 and pe(Y ) > 0. Note that any mixture of
distributions from F would also be a member of F .

In this setting, we can see that the correlation between X
and Y would vary for different values of e. We argue that
the correlation Y ↔ Z → X is not stable in an unseen envi-
ronment e ̸∈ Etrain as it involvesE and we only want to learn
the stable causal relation Y → X . However, it is inevitable
that the learned predictor may absorb the unstable relation
between X and Y if we simply train it on the observed
train distribution pe(X,Y ) with empirical risk minimiza-
tion. The causal graphs of two examples of the realization
of our data generation model are shown in Appendix A.

2.2. Balanced Distribution

To avoid learning the unstable relations, we propose to
consider a balanced distribution pB(X,Y, Z) such that
Y ⊥⊥B Z while the causal mechanism Z → X ← Y
unchanged, as shown in Figure 1b, which is defined below:

Definition 2.2. A balanced distribution can be writ-
ten as pB(X,Y, Z) = pf (X|Y,Z)pB(Z)pB(Y ), where
pB(Y ) = U{1, 2, ...,m} and Y ⊥⊥B Z.

In this new distribution, X and Y is only correlated through
the stable causal relation Y → X . Here we do not specify
pB(Z). Note that pB(X|Y,Z) = pf (X|Y, Z) is a result
of the unchanged causal mechanism Z → X ← Y , and
that pB(X,Y,X) ∈ F can also be regarded as from an
environment B ∈ E . Under an additional conditional in-
dependence assumption Y ⊥⊥B Z|X , we can prove that
pB(Y |X) is invariant for any choice of pB(Z). Then we
have the following theorem1:
Theorem 2.3. Consider a classifier Cψ(X) =
argmaxY pψ(Y |X) with parameter ψ. We denote
the cross entropy loss of such a classifier on environment
e by Le(pψ(Y |X)) = −Epe(X,Y ) log pψ(Y |X). Assume
that (1) Y ⊥⊥B Z|X , and (2) E satisfies:

∀e ∈ E ,Y ⊥̸⊥ peZ =⇒ ∃e′ ∈ E s.t.

Le
′
(pe(Y |X))− Le

′
(pB(Y )) > 0 (3)

Then the Bayes optimal classifier trained on any balanced
distribution pB(X,Y ) is a minimax optimal classifier with
respect to cross entropy loss across all environments in E:

pB(Y |X) = argmin
pψ∈F

max
e∈E

Le(pψ(Y |X)) (4)

1See Appendix B for all the proofs.
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The first assumption implies the noise variable ϵ can
be disentangled into (ϵY , ϵZ), such that there exist func-
tions gY ,gZ with (Y,Z) = f−1(X − ϵ) = (gY (X −
ϵY ),gZ(X − ϵZ)). The second assumption implies that the
environment space E is large and diverse enough such that
a perfect classifier on one environment will always perform
worse than random guessing on some other environment.
Under these two assumptions, no other Byes optimal classi-
fier produced by an environment in E would have a better
worst case OOD performance than the balanced distribution.

3. Method
We propose a two-phased method that first use an VAE
to learn the underlying data distribution pe(X,Y, Z) with
latent covariate Z for each e ∈ Etrain, and then use the
learned distribution to calculate a balancing score to create
a balanced distribution based on the training data.

3.1. Latent Covariate Learning

We argue that the underlying joint distribution of
pe(X,Y, Z) can be learned and identified by a VAE, given
a sufficiently large set of train environments Etrain.

To specify the correlation between Z and Y , we assume that
the conditional distribution pe(Z|Y ) is conditional factorial
with an exponential family distribution:
Assumption 3.1. The correlation between Y and Z in envi-
ronment e is characterized by peT,λ(Z|Y ) as follows:

peT,λ(Z|Y ) =

n∏
i=1

Qi(Zi)

W e
i (Y )

exp
[ k∑
j=1

Tij(Zi)λ
e
ij(Y )

]
(5)

where Zi is the i-th element of Z, Q = [Qi]i : Z → Rn
is the base measure, We = [W e

i ]i : Y → Rn is the nor-
malizing constant, T = [Tij ]ij : Z → Rnk is the sufficient
statistics, and λe = [λeij ]ij : Y → Rnk are the Y dependent
parameters.

Here n is the dimension of the latent variable Z, and k is the
dimension of each sufficient statistic determined by the type
of chosen exponential family distribution. The simplified
conditional factorial prior assumption is from the mean-field
approximation, which can be expressed as a closed form of
the true prior (Blei et al., 2017). Note that the exponential
family assumption is not very restrictive as it has universal
approximation capabilities (Sriperumbudur et al., 2017).

We then consider the following conditional generative
model in each environment e ∈ Etrain, with parameters
θ = (f ,T, λ):

peθ(X,Z|Y ) = pf (X|Z, Y )peT,λ(Z|Y ) (6)

We use a VAE to estimate the above generative model with
a variational approximation qeϕ(Z|X,Y ) of the prior proba-

bility of latent variable peθ(Z|X,Y ). We denote the empir-
ical data distribution given by dataset De = {(xei , yei )}N

e

i=1
collected from environment e. The evidence lower bound
(ELBO) of the data log-likelihood in each environment
e ∈ Etrain is then defined as follows:

EqDe [log p
e
θ(X|Y )] ≥ Le(θ, ϕ) :=

EqDe
[
Eqe

ϕ
(Z|X,Y ) [log pθ(X|Z, Y )]

−KL(qeϕ(Z|X,Y )||peθ(Z|Y ))
]

(7)

The KL-divergence term can be calculated analytically. To
sample from the variational distribution qeϕ(Z|X,Y ), we
use reparameterization trick (Kingma & Welling, 2013).

We then maximize the above ELBO 1
|Etrain|

∑
e∈Etrain

Le(θ, ϕ)
over all training environments to obtain model parameters
(θ, ϕ). To show that we can uniquely recover the latent vari-
able Z up to some simple transformations, we want to show
that the model parameter θ is identifiable up to some sim-
ple transformations. That is, for any {θ = (f ,T, λ), θ′ =
(f ′,T′, λ′)} ∈ Θ,

peθ(X|Y ) = peθ′(X|Y ), ∀e ∈ Etrain =⇒ θ ∼ θ′ (8)

where Θ is the parameter space and ∼ represents an equiv-
alent relation. Specifically, we consider the following equiv-
alence relation from (Motiian et al., 2017):

Definition 3.2. If (f ,T, λ) ∼A (f ′,T′, λ′), then there ex-
ists an invertible matrix A ∈ Rnk×nk and a vector c ∈ Rnk,
such that T(f−1(x)) = AT′(f ′−1(x)) + c,∀x ∈ X .

When the underlying model parameter θ∗ can be recovered
by perfectly fitting the data distribution peθ∗(X|Y ) for all
e ∈ Etrain, the joint distribution peθ∗(X,Z|Y ) is also recov-
ered. This further implies the recovery of the prior peθ∗(Z|Y )
and the true latent variable Z∗.

The identifiablity of our proposed latent covariate learning
model can then be summarized as follows:
Theorem 3.3. Suppose we observe data sampled from the
generative model defined according to Equation (6), with
parameters θ = (f ,T, λ). In addition to Assumption 2.1
and Assumption 3.1, we assume the following conditions
holds: (1) The set {x ∈ X |ϕϵ(x) = 0} has measure zero,
where ϕϵ is the characteristic function of the density pϵ.
(2) The sufficient statistics Tij are differentiable almost
everywhere, and (Tij)1≤j≤k are linearly independent on
any subset of X of measure greater than zero. (3) There
exist nk + 1 distinct points (y0, e0), . . . , (ynk, enk) such
that the nk × nk matrix

L = (λe1(y1)− λe0(y0), . . . , λ
enk (ynk)− λe0(y0)) (9)

is invertible. Then we have the parameters θ = (f ,T, λ)
are ∼A-identifiable.

Note that the last assumption in Theorem 3.3 implies that
the product space Y × Etrain has to be large enough to en-
sure the identifiability of θ when perfectly fitting the given
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training data distribution. i.e. We need m|Etrain| > nk. The
invertibility of L implies that λei(yi)− λe0(y0) need to be
orthogonal to each other which further implies the diversity
of environment space E .

3.2. Balanced mini-batch sampling

We consider a classic method that has been widely used in
the average treatment effect (ATE) estimation — balancing
score matching — to sample balanced mini-batches that
mimic a balanced distribution shown in Figure 1b.

Causal effect estimation studies the effect a treatment would
have had on a unit which in reality received another treat-
ment. A causal graph similar to Figure 1a is usually consid-
ered in a causal effect estimation problem, where Z is called
the covariate (e.g. a patient profile), which is observed be-
fore treatment Y ∈ {0, 1} (e.g. taking drug or placebo) is
applied. We denote the effect of receiving a specific treat-
ment Y = y as Xy . Note that this causal graph implies that
we make the Strong Ignorability assumption. i.e. Z includes
all variables that are related to both X and Y .

In the case of a binary treatment, the ATE is defined as
the expected difference of effect after receiving different
treatments: E[X1 −X0] (e.g. difference in blood pressure).
For a randomized controlled trial, we can directly estimate
the difference between E[X|Y = 1] and E[X|Y = 0] from
the observed data as the true treatment effect, as in this
case we force Z ⊥⊥ Y and there would not be systematical
difference between units exposed to one treatments and units
exposed to another.

However, in most observed datasets, Z is correlated with
Y . Thus E[X|Y = 1] and E[X|Y = 0] are not directly
comparable. We can then use balancing score b(Z) (Dawid,
1979) to de-correlate Z and Y :
Definition 3.4. A balancing score b(Z) is a function of
covariate Z s.t. Z ⊥⊥ Y |b(Z).

The ATE can then be estimated by matching units
with same balancing score but different treatments:
Eb(Z) [E[X|Y = 1, b(Z)]− E[X|Y = 0, b(Z)]]. There is
a wide range of functions of Z that can be used as a balanc-
ing score, where the scalar propensity score p(Y = 1|Z) is
the coarsest one and the covariate Z itself is the finest one
(Rosenbaum & Rubin, 1983). To extend this statement to
non-binary treatments, we first define propensity score s(Z)
for Y ∈ Y = {1, 2, ...,m} as a vector:
Definition 3.5. The propensity score for Y ∈ {1, 2, ...,m}
is s(Z) = [p(Y = y|Z)]my=1.

We then have the following theorem that applies to the vector
version of propensity score s(Z):
Theorem 3.6. Let b(Z) be a function of Z. Then b(Z) is a
balancing score, if and only if b(Z) is finer than s(Z). i.e.

exists a function g such that s(Z) = g(b(Z)).

We use be(Z) to denote the balancing score for a specific
environment e. The propensity score in a training environ-
ment e would then be se(Z) = [peθ(Y = y|Z)]my=1, which
can be derived from the learned conditional prior peθ(Z|Y ):

peθ(Y = y|Z) =
peθ(Z|Y = y)pe(Y = y)∑m
i=1 p

e
θ(Z|Y = i)pe(Y = i)

(10)

where pe(Y = i) can be directly estimated from the training
data De.

We propose to construct balanced mini-batches by matching
1 ≤ a ≤ m − 1 examples with a different label Y but
the same/closest balancing score be(Z) for each example
sampled from the training environment e. (The detailed
sampling algorithm is shown in Appendix A.)

With perfect match at every step (i.e., be(zj) = be(z)) and
a = m − 1, we can obtain a completely balanced mini-
batch sampled from the balanced distribution with Y ⊥⊥ Z.
However, an exact match of balancing score is unlikely in
reality, so the quality of matched data point would likely
be lower than the referencing data point in terms of having
the same balancing score. This can be mitigated by choos-
ing a smaller a. However, this would make Y and Z not
completely independent. In fact, if we have exact match of
balancing score, the larger a is, the weaker the correlation
between Y and Z would be. So in practice, the choice of a
reflects a trade-off between the balancing score matching
quality and the degree of dependency between Y and Z.
The above arguments can be summarized as below:

Theorem 3.7. A balanced mini-batch with exact matches
of balancing score and a = m− 1 can be regarded as sam-
pling from the balanced distribution over all training envi-
ronments pB(X,Y, Z). In general, the balanced mini-batch
can be regarded as sampling from a semi-balanced distribu-
tion with p̂B(Y |Z,E) = 1

a+1 (
a

m−1 + m−a−1
m−1 p(Y |Z,E)).

4. Experiments
To verify the effectiveness of our proposed mini-batch bal-
ancing method, we conduct experiments on three domain
generalization datasets: ColoredMNIST (Arjovsky et al.,
2020), PACS (Li et al., 2017) and TerraIncognita (Beery
et al., 2018). We use the training-domain validation as de-
fined in (Gulrajani & Lopez-Paz, 2020) for model selection.

As our method only modifies the mini-batch sam-
pling strategy, we applied our proposed method along
with four widely-used domain generalization baselines:
ERM (Vapnik, 1998), IRM (Gulrajani & Lopez-Paz, 2020),
DRO (Sagawa et al., 2019) and CORAL (Sun & Saenko,
2016), and compare the performance of using our method
with using the usual random mini-batch sampling strategy.
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Table 1. Out-of-domain test accuracy on ColoredMNIST, PACS
and TerraIncognita dataset. Numbers are averaged over all test
environments with 3 runs with standard deviation.

Alg CMNIST PACS TerraIncog

R
an

do
m ERM 51.5 ± 0.1 83.7 ± 0.1 46.1 ± 1.2

IRM 42.5 ± 1.0 81.2 ± 0.4 39.3 ± 1.8

DRO 51.9 ± 0.0 83.7 ± 0.4 43.6 ± 1.2

CORAL 51.4 ± 0.1 84.8 ± 0.2 44.8 ± 0.3

O
ur

s-
Z

ERM 46.5 ± 0.9 85.2 ± 0.3 47.1 ± 0.6

IRM 44.6 ± 4.7 82.6 ± 0.3 40.1 ± 1.4

DRO 49.2 ± 0.7 84.7 ± 0.6 41.6 ± 1.5

CORAL 48.4 ± 1.7 84.3 ± 0.5 47.3 ± 0.4

O
ur

s-
se
(Z

) ERM 58.8 ± 0.5 85.2 ± 0.4 48.1 ± 0.3

IRM 47.6 ± 1.6 82.1 ± 0.6 40.2 ± 2.9

DRO 56.6 ± 2.2 84.3 ± 0.4 43.1 ± 0.6

CORAL 58.6 ± 0.2 85.1 ± 0.4 46.2 ± 0.4

We use both b(Z) = Z and b(Z) = se(Z) to construct
balanced mini-batches. For details, see Appendix C.

ColoredMNIST: In Table 1, b(Z) = se(Z) significantly
outperforms b(Z) = Z, and outperforms the random mini-
batch sampling baseline by more than 5% (absolute) with
all four classifiers. This is likely due to the relatively large
noise (25%) in the label assignment: Z captures all other
features except the ones directly determines the label, while
se(Z) only capture the features that has strong correlation
with the label Y . i.e. the color information. As Z is finer
and contains more information than se(Z), it is likely that
the closest match by b(Z) = Z would be an image of the
same digit with the same color. i.e. The matched example is
likely to be an image labeled with the “wrong” class. This
will hurt the performance as we up-sample the noise data.

PACS and TerraIncognita: Table 1 shows that our bal-
anced mini-batch sampling method outperforms the random
mini-batch sampling baseline on two real-world datasets.
We observe that the performance difference between b(Z) =
se(Z) and b(Z) = Z is not as large as that on the ColoredM-
NIST dataset. It is partially because these two datasets have
less label noise than ColoredMNIST.

If look at performance on each test domain in Appendix C,
our method tends to increase performance more on more
difficult test domains across all three dataset.

5. Related Work
A growing body of work has investigated the out-of-domain
(OOD) generalization problem with causal modeling. One
prominent idea is to learn invariant causal features that de-
scribe the true causal mechanism of interest across domains.

When multiple training domains are available, this can be ap-
proximated by enforcing some invariance conditions across
the observed training domains by adding a regularization
term to the usual empirical risk minimization (Arjovsky

et al., 2020; Krueger et al., 2021; Bellot & van der Schaar,
2020; Wald et al., 2021). However, recent work claims that
many of these approaches still fail to achieve the intended
invariance property (Kamath et al., 2021; Rosenfeld et al.,
2020; Guo et al., 2021), and thorough empirical study ques-
tions the true effectiveness of these domain generalization
methods (Gulrajani & Lopez-Paz, 2020).

Some works propose to use an auxiliary variable different
from the label instead of datasets from multiple domains
to solve the OOD problem (Makar et al., 2022; Puli et al.,
2022).Their methods are two-phased that first balance the
train data distribution with the help of auxiliary variable and
then add invariance regularizations on the training objective.

With appropriate assumptions of the train data distribution,
some other OOD works propose to use variational autoen-
coder (VAE) to learn latent variables in the assumed causal
graph (Liu et al., 2021; Lu et al., 2022), instead of using an
observed auxiliary variable. The identifiability guarantee is
usually based on the pioneer work on identifiable VAE by
(Khemakhem et al., 2020).

Our method is based on the idea of both distribution bal-
ancing and latent variable learning. To better utilize the
learned latent variable, we use a classic method for average
treatment effect (ATE) estimation (Holland, 1986) – balanc-
ing score matching (Rosenbaum & Rubin, 1983). Recently,
perfect match (Schwab et al., 2018) extends this method to
individual treatment effect (ITE) estimation (Holland, 1986)
by constructinng virtually randomized mini-batches with
balancing score.

6. Conclusion
We propose a causality-based domain generalization method
that samples balanced mini-batches to reduce spurious cor-
relations. We show that our assumed data generation model
with invariant causal mechanism can be identified up to sam-
ple transformations. We demonstrate theoretically that the
balanced mini-batch is approximately sampled from a spuri-
ous free data distribution with the same causal mechanism
under idea scenarios. Our experiments empirically show the
effectiveness of our method on both semi-synthetic dataset
and real-world datasets.
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A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kamath, P., Tangella, A., Sutherland, D. J., and Srebro, N.
Does invariant risk minimization capture invariance? In
AISTATS, 2021.

Khemakhem, I., Kingma, D., Monti, R., and Hyvarinen, A.
Variational autoencoders and nonlinear ica: A unifying
framework. In International Conference on Artificial
Intelligence and Statistics, pp. 2207–2217. PMLR, 2020.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Bi-
nas, J., Zhang, D., Le Priol, R., and Courville, A. Out-
of-distribution generalization via risk extrapolation (rex).
In International Conference on Machine Learning, pp.
5815–5826. PMLR, 2021.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Deeper,
broader and artier domain generalization. In Proceedings
of the IEEE international conference on computer vision,
pp. 5542–5550, 2017.

Liu, C., Sun, X., Wang, J., Tang, H., Li, T., Qin, T., Chen, W.,
and Liu, T.-Y. Learning causal semantic representation
for out-of-distribution prediction. Advances in Neural
Information Processing Systems, 34, 2021.

Lu, C., Wu, Y., Hernández-Lobato, J. M., and Schölkopf,
B. Invariant causal representation learning for out-of-
distribution generalization. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=-e4EXDWXnSn.

Mahajan, D., Tople, S., and Sharma, A. Domain generaliza-
tion using causal matching. In International Conference
on Machine Learning, pp. 7313–7324. PMLR, 2021.

Makar, M., Packer, B., Moldovan, D., Blalock, D., Halpern,
Y., and D’Amour, A. Causally motivated shortcut
removal using auxiliary labels. In Camps-Valls, G.,
Ruiz, F. J. R., and Valera, I. (eds.), Proceedings of The
25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine
Learning Research, pp. 739–766. PMLR, 28–30 Mar
2022. URL https://proceedings.mlr.press/
v151/makar22a.html.

Motiian, S., Piccirilli, M., Adjeroh, D. A., and Doretto,
G. Unified deep supervised domain adaptation and gen-
eralization. In Proceedings of the IEEE international
conference on computer vision, pp. 5715–5725, 2017.

Pearl, J. Causality. Cambridge university press, 2009.

Puli, A. M., Zhang, L. H., Oermann, E. K., and Ran-
ganath, R. Out-of-distribution generalization in the
presence of nuisance-induced spurious correlations. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=12RoR2o32T.
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A. Algorithm details
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Figure 2. Annotated example causal graphs of two realizations of the joint distribution p(X,Y,E).

Algorithm 1 Balanced Mini-batch sampling.

Input: |Etrain| training datasets De = {(xei , yei )}N
e

i=1 sampled from distribution P (X,Y |E = e) for all e ∈ Etrain, a
balancing score be(zi) calculated for each training data point (xei , y

e
i ), and a distance metrics d(·, ·) that calculates the

distance between two balancing scores
Dbalanced ← Empty
for e ∈ Etrain do

Randomly sample B data points De
random from De

Add De
random to Dbalanced

for (xe, ye) ∈ De
random do

Uniformly sample α different labels Yalt from Y = {1, 2, ...,m} such that y ̸= ye for all y ∈ Yalt
Suppose the balancing score of (xe, ye) is be(z)
for y ∈ Yalt do

Search across De for the data point (xej , y
e
j ) such that yej = y and has the smallest d(be(zj), be(z))

Add (xej , y
e
j ) to Dbalanced

end for
end for

end for

B. Proofs
In this section, we give full proofs of the main theorems in the paper.

B.1. Balanced mini-batch sampling

B.1.1. PROOF FOR THEOREM 3.6

Our proof of all possible balancing scores is an extension of the proof of Theorem 2 from (Rosenbaum & Rubin, 1983), by
generalizing the binary treatment to multiple treatments.

Proof. First, suppose the balancing score b(Z) is finer than the propensity score s(Z). By the definition of a balancing score
(Definition 3.4) and Bayes’ rule, we have:

p(Y |Z, b(Z)) = p(Y |b(Z)) (11)

On the other hand, since b(Z) is a function of Z, we have:

p(Y |Z, b(Z)) = p(Y |Z) (12)

Equation (11) and Equation (12) give us p(Y |b(Z)) = p(Y |Z). So to show b(Z) is a balancing score, it is sufficient to show
p(Y |b(Z)) = p(Y |Z).
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Let the y-th entry of S(Z) be sy(Z) = p(Y = y|Z), then:

E[sy(Z)|b(Z)] =
∫
Z
p(Y = y|Z = z)p(Z = z|b(Z))dz = p(Y = y|b(Z)) (13)

But since b(Z) is finer than s(Z), b(Z) is also finer than sy(Z), then

E[sy(Z)|b(Z)] = sy(Z) (14)

Then by Equation (13) and Equation (14) we have P (Y = y|Z) = P (Y = y|b(Z)) as required. So b(Z) is a balancing
score.

For the converse, suppose b(Z) is a balancing score, but that b(Z) is not finer than s(Z). Then there exists z1 and z2 such
that s(z1) ̸= s(z2), but b(z1) = b(z2). By the definition of s(·), there exists y such that P (Y = y|z1) ̸= P (Y = y|z2).
This means, Y and Z are not conditionally independent given b(Z), thus b(Z) is not a balancing score. Therefore, to be a
balancing score, b(Z) must be finer than s(Z).

Note that s(Z) is also a balancing score, since s(Z) is also a function of itself.

B.1.2. PROOF FOR THEOREM 3.7

We provide a proof for Theorem 3.7, demonstrating the feasibility of balanced mini-batch sampling.

Proof. In Algorithm 1, by uniformly sampling a different labels such that y ̸= ye, we mean sample Yalt = {y1, y2, ..., ya}
by the following procedure:

y1 ∼ U{1, 2, ...,m} \ {ye}
y2 ∼ U{1, 2, ...,m} \ {ye, y1}

...
ya ∼ U{1, 2, ...,m} \ {ye, y1, y2...ya1}

Where U denotes the uniform distribution. Suppose Dbalanced ∼ p̂B(X,Y ), and data distribution De ∼ p(X,Y |E =
e),∀e ∈ Etrain.

Suppose we have an exact match every time we match a balancing score, then for all e ∈ Etrain, we have

p̂B(Y |be(Z), E = e) =
1

a+ 1
p(Y |be(Z), E = e) +

1

a+ 1
(1− p(Y |be(Z), E = e)

1

m− 1
+

+
1

a+ 1
(1− p(Y |be(Z), E = e)(1− 1

m− 1
)

1

m− 2
+ ...

+
1

a+ 1
(1− p(Y |be(Z), E = e)(1− 1

m− 1
)(1− 1

m− 2
)...(1− 1

m− a+ 1
)

1

m− a

=
1

a+ 1
(

a

m− 1
+
m− a− 1

m− 1
p(Y |be(Z), E = e))

By the definition of balancing score, p(Y |Z,E = e) = p(Y |be(Z), E = e) and p̂B(Y |Z,E = e) = p̂B(Y |be(Z), E = e),
then we have

p̂B(Y |Z,E) =
1

a+ 1
(

a

m− 1
+
m− a− 1

m− 1
p(Y |Z,E)) (15)
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When a = m− 1, we have p̂B(Y |Z,E) = 1
m = U{1, 2, ...,m}, which means p̂B(X,Y, Z) = pB(X,Y, Z). i.e. Dbalanced

can be regarded as sampled from the balanced distribution pB as defined in Definition 2.2.

B.1.3. PROOF FOR THEOREM 2.3

Here we give a proof of the minimax optimality of the Bayes optimal classifier trained on a balanced distribution.

Proof. The Bayes optimal classifier trained on a balanced distribution pB(X,Y ) has pψ(Y |X) = pB(Y |X). Then consider
the expected cross entropy loss of such classifier on an unseen test distribution pe:

Le(pB(Y |X)) = −Epe(X,Y ) log p
B(Y |X) (16)

= −Epe(X,Y ) log p
B(Y ) + Epe(X,Y ) log

pB(Y )

pB(Y |X)
(17)

= Le(pB(Y )) + Epe(X,Y,Z)

[
log

pB(Y )

pB(Y |X)

]
(18)

= Le(pB(Y )) + Epe(Y,Z)

[
EpB(X|Y,Z)

[
log

pB(Y )

pB(Y |X)

]]
(19)

= Le(pB(Y )) + Epe(Y,Z)

[
EpB(X|Y,Z)

[
log

pB(Y |Z)
pB(Y |X,Z)

]]
(20)

= Le(pB(Y ))− Epe(Y,Z)KL[p
B(Y |X,Z)||pB(Y |Z)] (21)

• Equation (16) is the definition of cross entropy loss.

• Equation (18) is obtained by Y ⊥⊥B Z and Y ⊥⊥B Z|X .

Thus we have the cross entropy loss of pB(X,Y ) in any environment e is smaller than that of pB(Y ) = 1
m (random guess):

Le(pB(Y |X))− Le(pB(Y )) ≤ −Epe(Y,Z)KL[p
B(Y |X,Z)||pB(Y |Z)] ≤ 0

Which means:

max
e′∈E

[
Le

′
(pB(Y |X))− Le

′
(pB(Y ))

]
≤ 0

That is, the performance of pB(X,Y ) is at least as good as random guess in any environment. Since we make an assumption
of the environment diversity, that is for any pe with Y ⊥̸⊥ eZ, there exist a environment e′ such that pe(Y |X) performs
worse than random guess. So we have:

max
e′∈E

[
Le

′
(pB(Y |X))− Le

′
(pB(Y ))

]
≤ 0 < max

e′∈E

[
Le

′
(pe(Y |X))− Le

′
(pB(Y ))

]
Now we want to prove that ∀e ∈ E , Y ⊥⊥e Z, Y ⊥⊥e Z|X, pe(Y ) = 1

m =⇒ pe(Y |X) = pB(Y |X). For any Z ∈ Z , we
have:

pe(Y |X) = pe(Y |X,Z) = pe(Y )
pe(X|Y,Z)

Epe(Y |Z)[pe(X|Z, Y )]
= pB(Y )

pB(X|Y,Z)
EpB(Y )[pB(X|Z, Y )]

= pB(Y |X,Z) = pB(Y |X)

Thus we have the following minimax optimality:

pB(Y |X) = argmin
pψ∈F

max
e∈E

Le(pψ(Y |X))
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B.2. Latent Covariate Learning

B.2.1. PROOF FOR THEOREM 3.3

We now prove Theorem 3.3 setting up the identifiability of the necessary parameters that capture the spuriously correlated
covariate features in the VAE. The proof of this Theorem is based on the proof of Theorem 1 in (Motiian et al., 2017), with
the following modifications:

1. We use both E and Y as auxiliary variables.

2. We include Y in the causal mechanism of generating X by X = f(Y,Z) + ϵ = fY (Z) + ϵ.

Proof. Step I. In this step, we transform the equality of the marginal distributions over observed data into the equality
of a noise-free distribution. Suppose we have two sets of parameters θ = (f ,T, λ) and θ′ = (f ′,T′, λ′) such that
pθ(X|Y,E = e) = pθ′(X|Y,E = e), ∀e ∈ Etrain, then:∫

Z
pT,λ(Z|Y,E = e)pf (X|Z, Y )dZ =

∫
Z
PT′,λ′(Z|Y,E = e)p′f (X|Z, Y )dZ (22)

⇒
∫
Z
pT,λ(Z|Y,E = e)pϵ(X − fY (Z))dZ =

∫
Z
pT′,λ′(Z|Y,E = e)pϵ(X − f ′Y (Z))dZ (23)

⇒
∫
X
pT,λ(f

−1(X̄)|Y,E = e)volJf−1(X̄)pϵ(X − X̄)dX̄ =

∫
X
pT′,λ′(f ′−1(X̄)|Y,E = e)volJf ′−1(X̄)pϵ(X − X̄)dX̄ (24)

⇒
∫
Rd

p̃T,λ,f ,Y,e(X̄)pϵ(X − X̄)dX̄ =

∫
Rd

p̃T′,λ′,f ′,Y,e(X̄pϵ(X − X̄)dX̄) (25)

⇒ (p̃T,λ,f ,Y,e ∗ pϵ)(X) = (p̃T′,λ′,f ′,Y,e ∗ PE)(X) (26)
⇒ F [p̃T,λ,f ,Y,e](ω)ϕϵ(ω) = F [p̃T′,λ′,f ′,Y,e](ω)ϕϵ(ω) (27)
⇒ F [p̃T,λ,f ,Y,e](ω) = F [p̃T′,λ′,f ′,Y,e](ω) (28)
⇒ p̃T,λ,f ,Y,e(X) = p̃T′,λ′,f ′,Y,e(X) (29)

• In Equation (24), we denote the volume of a matrix A as volA :=
√
detATA. J denotes the Jacobian. We made the

change of variable X̄ = fY (Z) on the left hand side and X̄ = f̄Y (Z) on the right hand side. Since f is injective, we
have f−1(X̄) = (Y,Z). Here we abuse f−1(X̄) to specifically denote the recovery of Z, i.e. f−1(X̄) = Z.

• In Equation (25), we introduce

p̃T,λ,f ,Y,e(X) = pT,λ(f
−1
Y (X)|Y,E = e)volJf−1

Y
(X)1X (X) (30)

on the left hand side, and similarly on the right hand side.

• In Equation (26), we use ∗ for the convolution operator.

• In Equation (27), we use F [·] to designate the Fourier transform, and the characteristic function of ϵ is ϕϵ = F [pϵ].

• In Equation (28), we dropped ϕϵ(ω) from both sides as it is non-zero almost everywhere (by assumption (1) of the
Theorem).

Step II. In this step, we remove all terms that are either a function of X or Y or e. By taking logarithm on both sides of
Equation (29) and replacing PT,λ by its expression from Equation (3) we get:

log volJf−1(X) +

n∑
i=1

(logQi(f
−1
i (X))− logW e

i (Y ) +

k∑
j=1

Ti,j(f
−1
i (X))λei,j(Y ))

= log volJf ′−1(X) +

n∑
i=1

(logQ′
i(f

′−1
i (X))− logW ′e

i (Y ) +

k∑
j=1

T′
i,j(f

′−1
i (X))λ′ei,j(Y )) (31)



Causal Balancing for Domain Generalization

Let (e0, y0), (e1, y1), ..., (enk, ynk) be the points provided by assumption (3) of the Theorem. We evaluate the above
equations at these points to obtain k + 1 equations, and subtract the first equation from the remaining k equations to obtain:

⟨T(f−1(X)), λel(yl)− λe0(y0)⟩+
n∑
i=1

log
W e0
i (y0)

W el
i (yl)

=⟨T′(f−1(X)), λ′el(yl)− λ′e0(y0)⟩+
n∑
i=1

log
W ′e0
i (y0)

W ′el
i (yl)

(32)

Let L be the matrix defined in assumption (3) and L′ similarly defined for λ′ (L′ is not necessarily invertible). Define

bl =
∑n
i=1 log

W
e′0
i (y0)W

el
i (yl)

W
e0
i (y0)W

e′
L
i (yl)

and b = [bl]
nk
l=1.

Then Equation (32) can be rewritten in the matrix form:

LTT(f−1(X)) = L′TT′(f ′−1(X)) + b (33)

We multiply both sides of Equation (33) by L−T to get:

T(f−1(X)) = AT′(f ′−1(X)) + c (34)

Where A = L−TL′ and c = L−Tb.

Step III. To complete the proof, we need to show that A is invertible. By definition of T and according to Assumption (2),
its Jacobian exists and is an nk × n matrix of rank n. This implies that the Jacobian of T′ ◦ f ′−1 exists and is of rank n and
so is A.

We distinguish two cases:

1. If k = 1, then A is invertible as A ∈ Rn×n.

2. If k > 1, define x̄ = f−1(x) and Ti(x̄i) = (Ti,1(x̄i), ..., Ti,k(x̄i)).

Suppose for any choice of x̄1i , x̄
2
i , ..., x̄

k
i , the family (

dTi(x̄
1
i )

dx̄1
i
, ...,

dTi(x̄
k
i )

dx̄ki
) is never linearly independent. This means

that Ti(R) is included in a subspace of Rk of dimension of most k − 1. Let h be a non-zero vector that is orthogonal
to Ti(R). Then for all x ∈ R, we have ⟨dTi(x)dx ,h⟩ = 0. By integrating we find that ⟨Ti(x),h⟩ = const.

Since this is true for all x ∈ R and for a h ̸= 0, we conclude that the distribution is not strongly exponential.
So by contradiction, we conclude that there exist k points x̄1i , x̄

2
i , ...x̄

k
i such that (dTi(x̄

1
i )

dx̄1
i
, ...,

dTi(x̄
k
i )

dx̄ki
) are linearly

independent.

Collect these points into k vectors (x̄1, ..., x̄k) and concatenate the k Jacobians JT(x̄l) evaluated at each of those
vectors horizontally into the matrix Q = (JT(x̄

1), ..., JT(x̄
k)) and similarly define Q′ as the concatentation of the

Jacobians of T′(f ′−1 ◦ f(x̄)) evaluated at those points. Then the matrix Q is invertible. By differentiating Equation (34)
for each xl, we get:

Q = AQ′ (35)

The invertibility of Q implies the invertibility of A and Q′. This completes the proof.
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C. Experiment Details

Figure 3. Reconstructed ColoredMNIST images from our VAE model. In each sub-figure, we infer Z from the leftmost image, then
generate images with label 0 (middle) and 1 (right).

Baselines: Empirical risk minimization (ERM) is a default training scheme for most machine learning problems, merging
all training data into one dataset and minimizing the training errors across all training domains. Invariant risk minimization
(IRM) learns a data representation such that the optimal linear classifier on top of it is invariant across training domains.
Group distributionally robust optimization (GroupDRO) performs ERM while increasing the weight of the environments
with larger errors. Deep CORAL matches the mean and covariance of feature distributions across training domains.

We use a multi-layer perceptron based VAE (Kingma & Welling, 2013) to learn the latent covariate Z and we choose the
conditional prior pθ(Z|Y,E = e) to be a Gaussian distribution with diagonal covariance matrix. We also choose the noise
distribution pϵ to be a Gaussian distribution with zero mean and fixed variance. For the architecture of the image classifiers
(ERM (Vapnik, 1998), IRM (Gulrajani & Lopez-Paz, 2020), GroupDRO (Sagawa et al., 2019), CORAL (Sun & Saenko,
2016)), following the setting of DomainBed (Gulrajani & Lopez-Paz, 2020), we train a convolutional neural network from
scratch for ColoredMNIST (Arjovsky et al., 2020) dataset, and use a pretrained ResNet50 (He et al., 2016) for PACS (Li
et al., 2017) and TerraIncognita (Beery et al., 2018). Each experiment is repeated with 3 different random seeds.

We perform our experiments on the DomainBed codebase2 and follow its default settings and hyperparameters. For all
datasets, we set the number of matched examples to be a = 1.

Table 2. Out-of-domain test accuracy on ColoredMNIST dataset. Numbers are averaged over 3 runs with standard deviation.
Sampling Alg 0.1 0.2 0.9 Avg

Random

ERM 71.8 ± 0.2 72.5 ± 0.1 10.1 ± 0.1 51.5 ± 0.1

IRM 59.8 ± 1.5 58.1 ± 1.8 9.7 ± 0.0 42.5 ± 1.0

DRO 72.7 ± 0.2 73.0 ± 0.2 10.0 ± 0.2 51.9 ± 0.0

CORAL 71.4 ± 0.2 72.8 ± 0.1 9.9 ± 0.0 51.4 ± 0.1

Ours-Z

ERM 63.5 ± 2.2 66.0 ± 0.8 10.0 ± 0.1 46.5 ± 0.9

IRM 54.4 ± 8.4 69.4 ± 7.5 9.9 ± 0.2 44.6 ± 4.7

DRO 65.7 ± 1.5 67.1 ± 1.8 14.9 ± 4.0 49.2 ± 0.7

CORAL 64.7 ± 0.8 65.5 ± 0.9 14.9 ± 4.1 48.4 ± 1.7

Ours-se(Z)

ERM 72.1 ± 0.1 71.2 ± 0.2 33.1 ± 1.3 58.8 ± 0.5

IRM 69.8 ± 0.6 62.2 ± 5.6 10.9 ± 0.5 47.6 ± 1.6

DRO 72.3 ± 0.2 71.4 ± 0.6 25.9 ± 6.7 56.6 ± 2.2

CORAL 72.0 ± 0.6 71.8 ± 0.6 32.1 ± 0.7 58.6 ± 0.2

ColoredMNIST: The ColoredMNIST (Arjovsky et al., 2020) dataset is generated from the regular MNIST hand-written
digits dataset (Lecun et al., 1998) by first assigning a binary label to indicate whether the digit is smaller than 5 to each MNIST
image with some random noise, and then assigning a binary color (green or red) based on different correlations with the label
across environments. Because of the injected noise in label assignment, the maximum accuracy a classifier can achieve is 75%.
As shown in Table 2, there are in total 3 environments in the dataset, each of which has p(Color=Red|Y = 1) = 0.1, 0.2, 0.9,
with 70,000 examples in each environment. In this case we have |Etrain| = 2 and m = 2. We also set k = 1 by fixing the
variance of the conditional prior pθ(Z|Y,E = e) to be 1. Then we take the maximum possible dimension of the latent Z,
n = 3, according to the identifiability condition in Theorem 3.3. Note that as m = 2, the balanced mini-batches can be
regarded as sampling from a balanced distribution with perfect match in balancing score and a = 1 as stated in Theorem 3.7.

Figure 3 shows three sets of reconstructed images with the same latent variable Z and different label Y using our VAE model.
We can see that Z keeps the color feature and some style features, while the digit shape is changed with corresponding label
Y .

2https://github.com/facebookresearch/DomainBed
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As shown in Table 2, our proposed balanced mini-batch sampling method significantly outperforms random mini-batch
sampling in the worst test environment (0.9) by 20% (absolute), while achieving comparable performance on the other two
environments. Note that 0.9 is the hardest test environment as the train environments 0.1 and 0.2 are significantly different
from it. While the accuracy on 0.9 is low, we are able to get around 75% (maximum) accuracy on the train domain validation
sets.

Table 3. Out-of-domain test accuracy on each domain of the PACS dataset. Numbers are averaged over 3 runs. We use Gaussian
distribution with k = 2 for latent covariate learning and n = 64.

Sampling Alg A C P S Avg

Random

ERM 85.0 ± 1.6 77.9 ± 2.2 95.4 ± 0.3 76.4 ± 1.1 83.7 ± 0.1

IRM 81.4 ± 0.7 76.4 ± 1.3 96.6 ± 0.5 70.5 ± 2.0 81.2 ± 0.4

DRO 83.6 ± 0.8 79.9 ± 1.2 96.4 ± 0.4 74.9 ± 0.3 83.7 ± 0.4

CORAL 86.0 ± 0.6 77.6 ± 0.3 95.7 ± 0.1 80.1 ± 0.1 84.8 ± 0.2

Ours-Z

ERM 85.7 ± 0.7 80.2 ± 0.3 96.4 ± 0.2 78.5 ± 2.2 85.2 ± 0.3

IRM 83.6 ± 1.2 74.7 ± 2.0 96.6 ± 0.3 75.6 ± 1.6 82.6 ± 0.3

DRO 83.6 ± 1.2 80.1 ± 1.2 95.1 ± 0.5 80.2 ± 1.3 84.7 ± 0.6

CORAL 82.2 ± 1.9 79.0 ± 1.1 96.2 ± 0.1 79.7 ± 0.8 84.3 ± 0.5

Ours-se(Z)

ERM 84.3 ± 0.5 79.8 ± 1.0 95.7 ± 0.4 80.9 ± 1.2 85.2 ± 0.4

IRM 84.2 ± 1.7 73.8 ± 0.7 97.1 ± 0.4 73.4 ± 1.2 82.1 ± 0.6

DRO 82.7 ± 0.9 79.0 ± 0.9 95.5 ± 0.3 80.0 ± 1.3 84.3 ± 0.4

CORAL 84.0 ± 1.8 81.6 ± 0.9 94.2 ± 0.9 80.4 ± 1.1 85.1 ± 0.4

Table 4. Out-of-domain test accuracy on on each domain of the TerraIncognita dataset. Numbers are averaged over 3 runs. We use
Gaussian distribution with k = 2 for latent covariate learning and n = 29.

Sampling Alg L100 L38 L43 L46 Avg

Random

ERM 50.6 ± 4.1 42.9 ± 2.6 55.8 ± 0.1 35.1 ± 2.0 46.1 ± 1.2

IRM 34.0 ± 4.3 33.2 ± 9.1 50.4 ± 0.8 9.6 ± 1.1 39.3 ± 1.8

DRO 50.0 ± 1.9 36.5 ± 4.8 56.3 ± 0.8 31.7 ± 3.1 43.6 ± 1.2

CORAL 48.5 ± 2.9 37.9 ± 4.0 55.5 ± 2.1 37.3 ± 0.9 44.8 ± 0.3

Ours-Z

ERM 50.5 ± 2.9 45.1 ± 1.1 55.6 ± 0.9 37.4 ± 1.0 47.1 ± 0.6

IRM 32.0 ± 3.9 40.8 ± 2.9 49.0 ± 1.5 38.7 ± 1.3 40.1 ± 1.4

DRO 48.7 ± 3.1 23.3 ± 4.2 55.7 ± 1.0 38.5 ± 1.4 41.6 ± 1.5

CORAL 54.9 ± 2.8 41.3 ± 0.9 55.2 ± 0.7 37.7 ± 1.7 47.3 ± 0.4

Ours-se(Z)

ERM 51.9 ± 0.4 45.8 ± 2.4 55.0 ± 1.0 39.8 ± 1.3 48.1 ± 0.3

IRM 37.6 ± 7.2 43.0 ± 1.8 43.5 ± 3.8 36.9 ± 1.8 40.2 ± 2.9

DRO 49.7 ± 2.7 34.6 ± 2.5 54.5 ± 1.2 33.4 ± 2.7 43.1 ± 0.6

CORAL 50.1 ± 2.1 42.6 ± 2.1 54.7 ± 0.8 37.3 ± 2.5 46.2 ± 0.4

PACS and TerraIncognita: We also conduct experiments on two more realistic datasets, PACS (Li et al., 2017) and
TerraIncognita (Beery et al., 2018). The PACS dataset has four environments, each indicates an image style: art, cartoons,
photos and sketches, with 9,991 examples in total. There are 7 classes in the dataset, indicating the object in the image. The
TerraIncognita dataset contains photographs of wild animals taken by camera traps at four different locations: L100, L38,
L43 and L46, with 24,788 examples in total. There are 10 classes in the dataset, indicating the animal appears in the image.

In these two datasets, we do not require |Etrain|, m, n and k to explicitly satisfy the identifiability condition in Theorem 3.3,
as the latent variable could require a larger dimensionality n to capture than the dataset allows. Also, as m > 2, a = 1
means we cannot completely eliminate the spurious correlation in the training dataset in the ideal scenario.

All experiments were conducted on NVidia A-100 and Titan X GPUs. The DomainBed codebase is released under an MIT
license at https://github.com/facebookresearch/DomainBed. We utilize versions of the datasets ColoredMNIST, PACS, and
TerraIncognita (Caltech Camera Traps) that are distributed within DomainBed, under the Creative Commons Attribution-
NonCommercial 4.0, CopyLeft/No Rights Reserved, and Community Data License Agreement (CDLA) licenses respectively.
Our code and corresponding instructions are included in the supplementary materials.

https://github.com/facebookresearch/DomainBed

