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Abstract
The ability to perform complex tasks from de-
tailed instructions is key to the remarkable
achievements of our species. As humans, we are
not only capable of performing a wide variety of
tasks but also very complex ones that may en-
tail hundreds or thousands of steps to complete.
Large language models and their more recent mul-
timodal counterparts that integrate textual and vi-
sual inputs have achieved unprecedented success
in performing complex tasks. Yet, most exist-
ing benchmarks are largely confined to single-
modality inputs (either text or vision), narrow-
ing the scope of multimodal integration assess-
ments, particularly for instruction-following in
multimodal contexts. To bridge this gap, we in-
troduce the instructed-Virtual VISual Decision
Making (iWISDM) environment, engineered to
generate a limitless array of vision-language tasks
of varying complexity. Using iWISDM, we com-
piled three distinct benchmarks of instruction-
following visual tasks across varying complex-
ity levels and evaluated several newly developed
multimodal models on these benchmarks. Our
findings establish iWISDM as a robust bench-
mark for assessing the instructional adherence of
both existing and emergent multimodal models
and highlight a large gap in these models’ ability
to follow instructions.

1. Introduction
A typical day in most people’s lives involves hundreds or
thousands of tasks. Most of which are performed with-
out explicit attention. Just in between getting up and get-
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ting to work, one may have already performed 5-15 tasks
(taking a shower, shaving, making coffee, getting dressed,
etc.). Teaching artificial agents to perform similar seem-
ingly mundane tasks has proven to be an extremely difficult
computational problem (Konar, 2018). The challenge be-
comes more apparent when one realizes that each of these
seemingly mundane tasks such as making coffee involves
performing tens of steps/actions (Appendix A Figure. 3).
The challenge becomes increasingly more significant once
we consider more complex tasks such as operating a device
or assembling a piece of furniture from its instruction man-
ual. And yet, these tasks are performed proficiently by most
individuals in most situations.

Large Multimodal Models (LMMs) offer a possible avenue
for solving multimodal multi-step decision-making tasks.
Several benchmarks have been developed to evaluate these
models. However, the existing benchmarks for assessing
such models face several shortcomings: (1) Most multi-
modal benchmarks like FLEURS (audio-based, (Conneau
et al., 2023)) and VATEX (video-based, (Wang et al., 2019))
are still unimodal in their inputs, and do not permit de-
tailed assessment of models’ capacity to integrate infor-
mation across modalities towards task goals. (2) Visual
Question-Answering (VQA) datasets like VQAv2 (Goyal
et al., 2017) and CLEVR (Johnson et al., 2017) assess rea-
soning with visual information in static images without
addressing temporal information integration and sequential
decision-making. (3) Open-ended learning environments
such as XLand (Team et al., 2021), Crafter (Hafner, 2021),
and Minecraft (Guss et al., 2019) have been utilized for
training reinforcement learning agents. It remains unclear
whether and how they can be adapted to benchmark LMMs.
(4) To the best of our knowledge, none of the existing bench-
marks specifically assess models’ ability to precisely follow
instructions in decision-making tasks, an important measure
of reliability and trustworthiness. Despite its importance,
conducting such assessments has been particularly chal-
lenging because of the difficulty of collecting samples of
multi-step tasks with ground truth information. (5) More
recent benchmarks such as MME (Fu et al., 2023), Mm-
bench (Liu et al., 2023c) and MMvet (Yu et al., 2023)
cover a wide range of cognitive tasks that start to adopt
manually-generated or GPT-powered responses. However,
those benchmarks are difficult to scale, which makes them
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inconvenient when investigating the scaling properties of
LMMs. In addition, benchmarks such as OwlEval (Ye et al.,
2023) and LVLMeHub (Xu et al., 2023) rely on subjective
human responses that often show high variability across
individuals.

To address this gap in evaluation, we designed the instructed-
Virtual Visual Decision Making (iWISDM), a virtual en-
vironment that enables procedural generation of complex,
multi-step decision-making tasks that test an agent’s capac-
ity to process visual information guided by natural language
instructions.

Our main contributions are:

• We introduce iWISDM, a virtual environment for
the procedural generation of limitless visual decision-
making tasks accompanied by natural language instruc-
tions.

• We use iWISDM to construct three vision-language
multimodal benchmarks with varying complexity lev-
els to probe LMMs’ ability to follow natural language
instructions.

• We test recently developed LMMs and human subjects
on these benchmarks and identified a notable shared
weakness across existing LMMs compared to humans
in their ability to precisely follow instructions in the
context of visual decision-making tasks.

2. Methodology
We developed iWISDM to streamline the procedural gener-
ation of diverse visual reasoning tasks, which vary in com-
plexity and require minimal user intervention. These tasks
engage executive functions, such as action inhibition, work-
ing memory, attentional set, task switching, and schema
generalization (Fuster, 2015; Sun et al., 2023), tradition-
ally associated with the prefrontal cortex, a critical area for
advanced cognitive processes in the brain. The iWISDM
task space is also designed to accommodate working mem-
ory and decision-making tasks commonly studied in neuro-
science and cognitive science research (Rigotti et al., 2013;
Goldman-Rakic, 1992; Fuster, 2009).

Inspired by prior work (Yang et al., 2018), iWISDM gen-
erates task trials in 3 steps: (1) task graph construction (2)
node initialization (3) trial instantiation. Task graphs pro-
vide the general framework for defining an iWISDM task,
node initialization further specifies task details, and the last
step, trial instantiation, generates the trial instance based
on the initialized task graphs. See Figure 1 for examples
of operators and task graphs. For detailed task construction
procedures, see Appendix A.2.

At its core, iWISDM is designed to be scalable and exten-

sible. Its tasks can be readily decomposed into simpler
subtasks that involve fewer sensory observations and cog-
nitive operations. We focus on 2 types of compositionality:
logical compositionality where decisions can be combined
hierarchically through logical boolean operators, and tempo-
ral compositionality where tasks require multiple decisions
to be made in sequence or in parallel.

Another important feature of iWISDM is the vastness of its
task space. This feature is enabled via the logical and tem-
poral compositionality during task generation. The ability
to produce a large number of distinct tasks is important for
the robust evaluation of large multimodal models that are
trained on increasing volumes of information from the web.

Natural language provides a rich and convenient way of com-
municating complex information to biological or artificial
agents. It has been shown that improvements in language
understanding in LLMs directly enhance their generality
(performing many tasks) and adaptation (0-shot generaliza-
tion) (Brown et al., 2020; Radford et al., 2019). Therefore,
each task in iWISDM is accompanied by a simplified natu-
ral language instruction.

In contrast to prior virtual environments tailored for cogni-
tive or neuroscience investigations (Molano-Mazon et al.,
2022), iWISDM can not only generate hand-crafted cog-
nitive tasks such as classical decision-making tasks (e.g.
contextual decision-making and n-back, Appendix Figure
1), but also allow procedural task generation from a user
pre-specified task space.

We envision the future of iWISDM as a framework fur-
ther developed and expanded by the larger community of
machine learning scientists, cognitive scientists, and neu-
roscientists. For this reason, we have designed iWISDM
to be highly customizable and extendable. First, users
can define new task operators by inheriting the Operator
class. Second, iWISDM allows any natural image set to
be used as the stimulus set. Finally, users can define arbi-
trary object/stimuli properties to be used by the environment
during task generation.

For more details regarding features of iWISDM, please refer
to Appendix A.3. The code of iWISDM is available on
GitHub at https://github.com/BashivanLab/
iWISDM.

3. Evaluation
3.1. Models & Humans

Using the AutoTask framework in iWISDM, we created
three benchmarks corresponding to low, medium, and high
complexity tasks. These levels are set by task generation
settings such as the number of Switch operators, trial
frames, and possible actions. For further details refer to
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Figure 1. Description of operators and task graph examples in the core build of iWISDM. a) Two main types of operators are considered.
Functional operators: Select retrieves stimuli according to specified attributes such as time and location; Switch accepts boolean
values and directs the task logic to different subtasks; GetAttribute takes stimuli as input and outputs the corresponding attribute
values of those stimuli. Boolean operators take boolean values as inputs and produce another boolean value based on their logic. b-d)
Using the operators defined in panel a, we create tasks from pre-specified rules. Panels b, c, and d display the task graphs for the three
typical cognitive tasks illustrated in Figure 4b, demonstrating the structures of these specific tasks in iWISDM. For instance, the task
instruction for panel d is: “category of object 1 equals category of object 2?”, “if category of object 1 equals category of object 3, then
category of object 2 equals category of object 3, else category of object 2 equals category of object 4?”. The task instruction for panel c is
similar to panel b but repeated across time.

Appendix Table 1. For trial examples, refer to Appendix
Figure 6, 7, 8.

As a preliminary evaluation, we test the capabilities of
GPT-4V, Gemini-Pro-1.0, Claude-3 , and InternLM- XCom-
poser2, and MMICL in solving iWISDM tasks. The set
of tested models was limited due to the scarcity of appli-
cable models. Many popular open-source LMMs, such as
MiniGPT4 and LLaVa, were unable to perform the task
simply due to their limited image sequence lengths. A mini-
mum image sequence length of ten is needed to complete
all complexity levels. We were able to properly evaluate
two open-source models, InternLM-XComposer2-7b and
MMICL-Instructblip-T5-xl. For samples of prompts used
to evaluate each model see Appendix A.5.

We also collected responses from 6 human subjects tasked to
answer three sets of randomly selected trials (Figure 6, 7, 8),
each set sampled from a different complexity level (total of
150 trials). The task trials were displayed in a way similar to
that of the models, where images can be seen alongside the
task’s text instruction following a general task description.
We compare LMMs’ performance to human baselines and
find a notable gap in the multi-image instruction-following
task capabilities of existing LMMs.

In addition to the above 3 benchmarks and to further investi-
gate the performance upper bound of the selected models,

we evaluated them on two sets of simple single-frame tasks
(location only and category only). See Figure 11 for results.

3.2. Results

Figure 2a shows the accuracy of actions taken by the models
plotted against the complexity level for each type of prompt.
GPT-4V generally achieves the best model scores, with the
largest performance gap on the low and high complexity
tasks. However, relative to Human performance these gaps
are marginal at best. Broadly, MMICL and Gemini-Pro-1.0
were the worst-performing models. The expected inverse
correlation between complexity and action accuracy was
only captured clearly by the GPT-4V and Gemini-Pro-1.0
results.

In contrast to model performance, human subjects scored
much more accurately, with scores ranging from 0.78 to
0.98 across complexities. This model-human gap in per-
formance indicates a significant shortcoming of LMMs on
multi-image instruction following tasks. This shortcoming
is unlikely due to insufficient feature understanding, as the
high single-frame category task performance (Figure 2b)
conflicts with the observed weak category task performances
across complexities.

We also analyzed how each model performed on subsets
of tasks where single or multiple object properties were
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Figure 2. a) Average accuracy of LMMs and Humans on iWISDM benchmarks of varying complexity, and prompt type. b), c), & d)
Average accuracy of applicable models on low, medium, and high complexity tasks for each feature type. Chance level represents the
baseline accuracy of randomly guessing one of the applicable actions.

involved. Figure 2b-e shows the average accuracy of all
models conditioned on task properties and complexity level.
We did not include the object-identity subgroup in the high
complexity plot of Figure 2e as non-boolean response types
for object identity tasks are not feasible. The performances
on high complexity tasks show a clear ranking between
the abilities of GPT-4V and Gemini-pro models on tasks
with diverse response options. For almost all models and
complexities, location-only tasks posed the most difficul-
ties. This finding confirms previous analyses of GPT-4V,
which found that it often struggles to correctly recognize an
object’s position within an image1 (Majumdar et al., 2024).

To further investigate the response patterns of the LMMs we
performed further analyses on a subset of the models seen
in Appendix Figures 11, 12, 13, and 14. To determine the
effects of delay frames on model performance a set of sim-
ple delayed-match-to-sample tasks were generated which
only differed in difficulty by the number of delay frames.
Appendix Figure 11 shows that for InternLM-XComposer2,
MMICL, and GPT-4v, the addition of single or multiple
delay frames in a task has little effect on task performance.
Next, we explored how the number of different boolean oper-
ators affected open-source model (InternLM-XComposer2
& MMICL) performance. The Appendix Figure 12a-d re-
sults show that, generally, across all boolean operators an
increase in their abundance within a task leads to worse
model performance, which is expected. In Appendix Figure
13 we examined how the number of stimuli affected task
performance across complexities. We expected to see that
as the number of stimuli increases, the task performance
would decrease. This was found to be the case for Low com-
plexity tasks, which can be seen in Appendix Figure 13a.
However, Medium and High complexity tasks displayed an

1https://blog.roboflow.com/gpt-4v-object-detection

inverse trend, seen in Appendix Figure 13b and c. We were
unable to find a plausible explanation for this unexpected
inverse trend; as such, further analyses are required. Fi-
nally, we investigated the exact effect that different required
response types had on accuracy for the High complexity
benchmark. As Appendix Figure 14 shows, when tasks
required a response that was a non-boolean type word, the
models performed significantly worse.

4. Conclusion and Future Directions
We introduced iWISDM as a platform for validating mul-
timodal models. As a benchmark, our primary focus is
on assessing the ability of LMMs to follow instructions
in visual-language decision-making tasks. We developed
three benchmarks of incremental complexity and evaluated
several LMMs and human performance. The gap between
LMMs and humans indicates that LMMs still lack key abili-
ties to solve instruction-following tasks. Through a detailed
analysis of LMMs’ behaviour patterns, we identified dimin-
ished spatial recognition ability and decreased performance
with increased task complexity. We believe iWISDM will be
an important benchmark that complements existing bench-
marks which evaluate LMM capabilities in areas such as
commonsense reasoning, numerical computation, or rela-
tional inferences (Fu et al., 2023). Future work could probe
the separate components of LMMs and further identify the
specific weaknesses in their instruction-following abilities.
We can then address these weaknesses and improve exist-
ing models. Finally, we are in the process of fine-tuning
LMM models on iWISDM and evaluating them on other
benchmarks.
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6. Limitations
iWISDM was evaluated on a limited number of open-source
models. During the development of this work, more models
were released.

The stimuli dataset used during trial instantiation was ren-
dered from ShapeNet. It can be argued that this limits the
evaluation of LMM models on naturalistic stimuli. We are
in the process of extending iWISDM to employ stimuli from
the COCO dataset (Lin et al., 2014). We also argue that our
ShapeNet stimuli have less noise than naturalistic stimuli,
so they are appropriate for evaluating model performance.

Although the current version of iWISDM cannot probe
LMM functions such as numerical computation and rela-
tional inference, it could cover some of these additional
capabilities by adding new operators like Count (to tally
specific objects) or Relative (to identify properties like loca-
tion relative to other objects).

7. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Apart from the many potential soci-
etal consequences of progressing in this field, we would like
to acknowledge that with fast-paced progress in develop-
ing more capable LMMs, their comprehensive assessments,
especially in the context of instruction following, become
ever-important. iWISDM addresses this question in a scal-
able and customizable way. We hope iWISDM will lead to
better and safer models while inspiring further analyses of
LMM behaviour.
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A. Appendix
A.1. Related Works

A.1.1. LARGE MULTIMODAL MODELS

Continual advancements in pretrained large-scale multimodal models are driving progress in a wide array of downstream
tasks. Given the significant computational expense associated with end-to-end pretraining, it is common to utilize readily
available pretrained vision models alongside Large Language Models (LLMs) such as (OPT (Zhang et al., 2022), FlanT5
(Chung et al., 2022), Vicuna (Chiang et al., 2023), LLaMA (Touvron et al., 2023)). Pioneering LMMs such as VisualGPT
(Chen et al., 2022) and Frozen (Tsimpoukelli et al., 2021) have highlighted the advantages of leveraging pre-trained
multimodal models. The primary challenge lies in achieving cross-modal alignment, given that LLMs typically lack
exposure to images during their unimodal pretraining phase. LMM research is coalescing around a key strategy known as
the “visual instruction tuning”, which involves a two-phase training process: firstly, a vision-language alignment pretraining
stage, and secondly, a visual instruction tuning stage.

A range of methods and models have been developed to enhance the capabilities of LMMs. Early approaches uses a frozen
object detector for visual feature extraction (Chen et al., 2020; Li et al., 2020; Zhang et al., 2021) while LiT (Zhai et al.,
2022) borrowed a frozen pretrained image encoder from CLIP (Radford et al., 2021). More recently, Frozen (Tsimpoukelli
et al., 2021) and Flamingo (Alayrac et al., 2022) have adopted an image-to-text generation approach, prompting the language
model to generate text based on an input image. However, in BLIP-2 (Li et al., 2023b), it was shown that this approach is
not adequate for overcoming the modality gap and instead proposed a Querying Transformer (Q-Former), acting as a visual
resampler, and a two-stage bootstrapping pretraining method, which led to models that outperformed Flamingo80B (Alayrac
et al., 2022) in zero-shot VQAv2 tasks with fewer trainable parameters. The Q-former architecture was also adopted by later
work such as InstructBLIP (Dai et al., 2023) and Qwen-VL (Bai et al., 2023).

Moreover, GPT-4 (Achiam et al., 2023) has demonstrated remarkable proficiency in multi-modal dialogues with humans.
Models like LLaVA (Liu et al., 2023b) and MiniGPT-4 (Zhu et al., 2023) have sought to emulate its performance by
integrating a fully connected vision-language cross-modal connector, which significantly reduces the need for paired image-
text data during pretraining. Both have shown notable proficiency in following natural instructions and visual reasoning.
Beyond image-based LMMs, there have been developments in models that specialize in video information processing.
PaLM-E (Driess et al., 2023) incorporates continuous real-world sensor data into LMMs, facilitating the unification of
real-world perceptions with human language. Video ChatCaptioner (Chen et al., 2023a) leverages ChatGPT’s conversational
interface to enhance its understanding of video spatiotemporal contexts.

A.1.2. MULTIMODAL BENCHMARKS

The rapid progression of LMMs has driven the need for comprehensive benchmarks to assess their multifaceted capabilities.
Traditionally, datasets primarily focus on computer vision tasks – classification, detection, segmentation, captioning, visual
generation, and editing (Computer-Vision-in-the-Wild, 2024) – where instructions are implicitly integrated. However, these
primarily unimodal datasets do not adequately test the models’ proficiency in multimodal information alignment, revealing a
limitation in our ability to fully evaluate the LMMs.

To address this, the community has turned to human-annotated datasets like MS-COCO (Lin et al., 2014) and web-scraped
collections such as YFCC-100M (Goyal et al., 2019) to forge better-aligned multimodal datasets. Enhanced by additional
data cleansing methods and supported by CLIP-like models, datasets like Conceptual 3M/12M (Lai et al., 2023) and
LAION-5B (Schuhmann et al., 2022) have not only improved in descriptive quality and text-image alignment but also in
scale. Despite these advancements, a crucial capacity of LMMs which is to effectively follow multimodal vision-language
instructions, remains inadequately assessed by current benchmarks. To address this gap, several benchmarks have pivoted
toward evaluating cognitive skills and systematic, quantitative assessments. Visual Question Answering (VQA) datasets like
ScienceQA (Saikh et al., 2022) play a crucial role in examining LMMs’ multimodal reasoning capabilities. More recent
benchmarks such as MME (Fu et al., 2023) and LLaVA-Bench (Liu et al., 2023a) utilize manually crafted questions and
answers for precise evaluations, while platforms like MMBench (Liu et al., 2023c) adopt ChatGPT-driven techniques for
data creation and response generation. Notably, ShareGPT4V (Chen et al., 2023b) introduces a dataset with high-quality
captions, initially derived from GPT4-Vision and subsequently expanded, reflecting a trend towards more sophisticated and
scalable evaluation frameworks.

The exploration into video-based datasets expands the assessment scope to include temporal integration, covering areas like
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video captioning, event segmentation, and action prediction. Datasets from video game environments (e.g. Minecraft (Guss
et al., 2019), XLand (Team et al., 2021), and Crafter (Hafner, 2021)) and Video Question Answering tasks (e.g. YouCook2
(Zhou et al., 2018)) are pivotal in evaluating models’ strategic understanding and instructional adherence. Additionally,
benchmarks like Seed-Bench-2 (Li et al., 2023a) and various perception tests pose further challenges for LMMs by testing
their efficacy in navigating and interpreting complex, multimodal data streams. Yet, a gap persists in evaluating models’
precision in following instructions across sequential images, a gap that the iWISDM environment aims to bridge.

A.2. iWISDM Construction Details

Inspired by prior work (Yang et al., 2018), iWISDM generates tasks through a 3-phase procedure: (1) Task graph construction;
(2) Node initialization and; (3) Trial instantiation. Dividing the generation procedure into distinct phases eliminates the
necessity of constructing the task graph anew for each task trial. Once all properties associated with the nodes in a given task
graph have been specified (phase 2), the user can generate any number of trials of that particular task, each with potentially
different stimuli, ground-truth actions, as well as any other inherent stochastic values such as the number of delay frames. In
general, iWISDM creates tasks following:

f, i, r = iWISDM(G)

where, G denotes the task graph, f the sequence of visual frames, i the corresponding language instructions, and r the
sequence of ground-truth actions for each visual frame within f according to the instruction i.

The task graph G can either be specified by the user or generated automatically via AutoTask. The major distinction
between the two resides in the initial task graph construction phase (phase 1). In contrast to the user-specified mode, where
the user needs to manually define the task graph, in AutoTask mode, the user needs to only specify the paramters listed in
the following section.

A.2.1. TASK GRAPH CONSTRUCTION

In iWISDM, tasks are instantiated as directed, acyclic, connected task graphs. Each node represents a predefined operator
that specifies the logic of the task (we use the terms “node” and “operator” interchangeably). Task operators take downstream
stimuli/actions as input and output stimuli/actions based on their definitions. All operators must have parent/upstream
operators except, root operators that define the actions of a task. Collection of interconnected operators form minimal
sub-graphs that define sub-tasks (e.g. Get operators are root operators that define the subtask: What is the attribute of an
object?). Under user-defined connectivity constraints, sub-graphs can be combined to generate corresponding compositional
tasks. The depth of the graph is measured by the longest path from the root operator to any other operator within the graph.

Each operator has a customizable set of rules that constrains its connections. The specific operators and their permissible
connections are described below: (see Appendix A Figure 1 for visualization):

• Functional Operators: Select: This operator retrieves stimuli based on three criteria: i) “When”: the frame on
which a stimulus appears; ii) “Where”: the location on the frame in which the stimulus appears, and; iii) “What”:
depending on the particular stimulus set, other details of the object that determines its identity. For example, when
using the default ShapeNet stimulus set, the stimuli have three attributes: category (such as car versus plane), identity
(which specific car), and view angle (the angle from which the stimulus is rendered). Select operators that have no
downstream connections are the terminal nodes of the graph. Conversely, their potential downstream operators may
include any Get* functional operator. Switch: Based on the output action of a boolean task, this operator connects the
logic to one of two possible paths. Its compulsory downstream connection must be a boolean operator, while its typical
upstream connections are subtasks graphs. Get*: This group of operators is responsible for fetching specific properties
of stimuli, such as category, location, or identity, exemplified by operators like GetCategory, GetLocation, and
GetIdentity. Its direct downstream connection is always a Select operator, and its upstream connections can be
any boolean operator. CONST: The simplest form of operator, CONST represents a fixed value. It is often used as a
downstream connection for boolean operators that compare attributes.

• Boolean Operators: Exist: Paired with a specific property value (e.g. “Desk”), this operator tests whether an object
with the property value (“Desk”) exists and generates a boolean output which can function as an action generator or as
a downstream connection for Switch and other boolean operators. And, IsSame, NotSame, Or: These boolean
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operators process inputs from two boolean operators to produce a boolean outcome. They are critical for constructing
logical conditions within the task graph.

Using these operators, iWISDM provides two possible modes of constructing task graphs: user-specified and automatic.

• User-specified task graph construction. In this mode, users have the freedom to fully specify the task graph by
manually creating an instance of NetworkX directed graph. Doing so requires a manual definition of all nodes
(operators) and edges (connection between operators) within a task graph, thereby establishing the desired task
operation logic. Subsequently, the task graph can be fed to the generator function (write trial instance) to
yield the corresponding task trials. One potential application of this mode is to replicate trials from a specific task such
as the n-back or contextual decision-making tasks. In our core build of iWISDM, we have incorporated a collection of
classic tasks from neuroscience and cognitive science literature that users can readily access.

• AutoTask graph construction. In AutoTask mode, users can define a custom task space with a set of hyperpa-
rameters to procedurally generate tasks. A task space delineates the complexity and permissible operations pertinent
to task construction. The available hyperparameters include: (1) number of compositions, i.e. maximum number of
Switch operators to compose subtasks (2) each task graph’s maximum depth and maximum number of operators (3)
set of operators to sample from.

In addition to above hyperparameters, in AutoTask mode, the allowed task structure is further constrained by the permitted
connectivity for various operators (e.g. And operators must be followed by other boolean operators such as IsSame,
NotSame, And, Or). A default operator connectivity is defined for all existing operators in our core build, but new
connectivity rules could easily be added for any new user-defined operators. This is done through a Python dictionary,
which details the allowed input and output operators for additional operator. By specifying these hyperparameters, iWISDM
autonomously generates random runnable task graphs derived from the predefined task space. Each resultant task graph can
then be used to generate specific trials.

To assure each task graph would comply with the connectivity rules between operators, we follow a backwards initialization
process during AutoTask (Appendix A Figure.5). The task generation process starts from the root node and descends
recursively. For each current node/operator n in the graph, its downstream operators Cn are randomly sampled based
on the connectivity rules. As the graph depth approaches the specified maximum depth, the permissible operators with
the shortest possible subtask depth are sampled into Cn. For instance in our core build, if n is the And operator, then
only IsSame, NotSame are sampled since they have shorter subgraph depths than And, Or. Through this procedure,
iWISDM AutoTask facilitates sampling from diverse task spaces with varying degrees of complexity specified by the user.
The utilization of the connectivity rule dictionary and Switch operator guarantees the logical and feasible nature of the
generated tasks, providing researchers with an extensive pool of tasks for investigation and exploration.

Together, iWISDM’s two operating modes provide users with the flexibility to use the environment to either train or evaluate
models on specific tasks (e.g. classic tasks from literature), as well as a wide variety of tasks adhering to specific guidelines
as stipulated by the specified hyperparameters.

A.2.2. NODE INITIALIZATION

The second step assigns values to each node within the task graph, thereby conferring logically coherent tasks. There are
two critical challenges: the initialization of an independent task graph and the integration of multiple graphs in time.

A.2.3. TASK TRIAL INSTANTIATION

Regardless of the selected operation mode, for each task trial, iWISDM yields a frame sequence, an accompanying natural
language instruction, and an action sequence. As delineated above, with graphs that define the task logic. The task graph
then serves as the basis for instantiating task trials. Distractors and fixation cues are also added during this step. Each task
trial comprises of the following distinct components:

• Frame sequence. The frame sequence consists of a array of images. They display visual information at each time step
of the trial. Each frame is accompanied by a dictionary that contains the object properties within that frame. Images are
stored as PNG files.
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• Natural language instructions. Each trial is accompanied by a natural language instruction that explains the task steps
and decision criteria. Natural language instructions are generated concurrently during task instantiation. A partial string
is assigned to each operator in the task graph depending on its definitions and initialization (see Appendix Figure.6
for an example). This approach allows iWISDM to automatically produce contextually relevant natural language
instructions that describe the task in a human-readable format for each task.

• Action sequences. Each trial also consists of an array of ground-truth actions at each frame of the trial. The action
sequences could be used for supervised training and validation of the agents on the generated trials.

• Distractors (optional). To generate more attention-demanding tasks, users could opt-in for adding distractors to the
visual frames. By specifying parameters during trial generation, distractors can be added without causing conflicts with
existing task rules. We use the task-irrelevant stimulus properties to disambiguate the task-relevant stimuli from the
distractors in the task instruction,. An example can be seen in Appendix Figure 9.

A.3. Main Features

At its core, iWISDM is designed to be scalable and extensible. To do so, we adopted a modular framework in which task
rules are constructed compositionally by combining functional and boolean operators. The combination of these operators
give rise to distinct tasks. Likewise, task spaces (i.e. collections of instantiable task graphs) are spanned by specifying the
set of allowable operators and operator-operator connection rules (see Appendix A.2 for detailed definitions). We detail
iWISDM’s main features below:

Compositionality. Real world tasks are fundamentally compositional, as most tasks can be readily decomposed into
sets of simpler subtasks that involve fewer sensory observations and cognitive operations. There are two crucial facets of
compositionality that need to be considered: logical and temporal compositionality, both of which are common in daily
human behavior, and allow individuals to efficiently handle complex tasks and adapt to dynamic environments. Cognitive
processes involving task decomposition (i.e. breaking tasks into subtasks) and temporal combination of decision rules (i.e.
combining the outcomes of subtasks) are fundamental to our ability to navigate the world around us.

Logical Compositionality: An agent’s action can be viewed as a function of sensory observations, internalized world
knowledge, prior actions, and its objectives (Ha & Schmidhuber, 2018). Yet, as outlined in the introduction, the decision-
making process frequently decomposes into sub-decisions and information processing steps that are temporally constrained
and required fewer observations. We define logical compositionality as how decisions can be combined hierarchically
through boolean (i.e. And, Or, etc) and functional operators (i.e. Switch operator that asks for if...then...). As an example,
consider the contextual decision making task (ctxDM, see Appendix Figure 4b or Figure 1d). In the task in Appendix Figure
1d, the subject needs to first compare the category of the objects in the first and third frames. If their categories are the same,
then compare the category of the objects from the second and third frames. Otherwise, compare the category of the objects
from the second and fourth frames. For this task, the task rule of the second task is conditioned upon the result of the first
task, which makes a logical composition. As the depth and the total number of operators involved in the task grows, we can
compose more complex logical structures.

Temporal Compositionality: Temporal compositionality is concerned with how different decision rules should be combined
together to construct a complex task that extends in time. In real-world scenarios, individuals often face tasks that require
multiple decisions to be made in sequence or in parallel. For instance, making coffee involves following decision rules to
accomplish a sequence of tasks such as grinding the coffee beans, brewing, and pouring (Appendix Figure 4). While rule
compositionality has been explored in several prior works (Lake & Baroni, 2023; Liška et al., 2018; Loula et al., 2018), the
topic of temporal compositionality has attracted less attention in the field. This is potentially due to a lack of proper datasets
or virtual environments that could enable such investigations. iWISDM is precisely engineered to fill this gap by enabling
the generation of temporally compositional tasks made from combining simpler tasks in time (Appendix Figure 4).

Vast Task Space.Another important feature of iWISDM is the vastness of its task space. This feature naturally extends
from the compositionality that is inherent to iWISDM’s task generation procedure. The ability to produce a large number
of distinct tasks is critically important for the robust evaluation of large multimodal models that are trained on increasing
volume of information from the web.

Moreover, the vast number of instantiable tasks in iWISDM provides an opportunity for training or fine-tuning large
multimodal models to improve their ability to follow instructions in a vision-language context.
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Natural Language Task Instruction. Natural language provides a rich and convenient way of communicating complex
information to biological or artificial agents. It has been shown that improvements on language understanding in LLMs
directly enhances their generality (performing many tasks) and adaptation (0-shot generalization) (Brown et al., 2020;
Radford et al., 2019). Due to their capacity to compress enormous knowledge bases, these models have been useful in
various applications where traditionally human supervision had been necessary (Shah et al., 2023; Dasgupta et al., 2023).
Perhaps for similar reasons, natural language input constitutes the core of most existing multimodal models and they are
heavily trained on large text corpuses among others.

For this reason, in iWISDM, each task is accompanied by a simplified natural language instruction (See examples Appendix
Figure5). When completing complex tasks, the instruction communicates first the task structure in terms of upcoming
observations, then the task rules that determine the relationship between observations and the actions.

Automatic Task Generation. In contrast to prior virtual environments tailored for the purposes of cognitive or neuroscience
investigations (Molano-Mazon et al., 2022), iWISDM can not only generate hand-crafted cognitive tasks such as classical
decision making tasks (e.g. contextual decision making and n-back, Appendix Figure 1), but also allow procedural task
generation from a pre-specified task space defined by a small set of hyperparameters (See Section 3.2 for details).

Customizability and Extensibility. We envision the future of iWISDM as a framework that will be continuously developed
and expanded by the larger community of machine learning scientists, cognitive scientists, and neuroscientists. For this
reason, we have designed iWISDM to be highly customizable in several ways.

• Task operators. iWISDM task rules are constructed from the interconnection of various building blocks called task
operators. Task operators themselves are highly customizable and extensible, allowing users to define new task logic by
inheriting the Operator class and overriding the get expected input function. Our core task operator set is
adopted from a prior work (Yang et al., 2018) and includes Get, IsSame, NotSame, And, Or.

• Visual inputs. iWISDM allows any natural image set to be used as the stimulus set. In our core build, we use 2D
projection of 3D object models from the ShapeNet dataset (Chang et al., 2015), where each stimuli is defined by a
parameter vector consisting of category, identity, pose angle, location. We provide a template that
allows users to seamlessly import alternative stimulus datasets.

• Stimulus properties. In addition to the visual stimuli themselves, users can define arbitrary object/stimuli properties to
be used by the environment during task generation. In our core build of iWISDM, we use category, identity,
pose angle, location. as the default object properties used during task generation. These properties are attached
to each individual object in our stimulus set via an accompanying JSON file. Users can add custom properties by
editing the accompanying JSON files for their stimuli of choice.

A.4. Additional Figures
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a.

c.

d.

e.

b.

Figure 3. Illustration of coffee making task as an example real world compositionally constructed task. a) Cartoon depiction of
a kitchen with typical objects within. The dialogue boxes highlight the relevant properties of the grinder, coffee bag, and boiler; b)
Pseudocode detailing the coffee-making task, encompassing three subtasks – obtaining coffee powder, brewing the coffee, and returning
the coffee; c) Graphical representation of the three subtasks as computational graphs. Blue text highlights the properties associated with
each operator; d) An abstraction of the real-life coffee-making task as a task within the iWISDM environment. Frame sequences are
generated using the task graphs illustrated in c; e) Graphic depiction of object properties actively in use (top) and subtasks (bottom). The
colored bars in the upper panel signify the persistence of each object property during the execution of coffee-making task. The lower
panel depicts the interrelations between the subtasks and various temporal compositional operations.

a. b.

Figure 4. Illustration of various temporal compositional structures used in iWISDM and their application in instantiating classic decision
making tasks. a) Four distinct temporal composition operations including Queue: where one task is completed before starting the next;
Overlap: where two or more tasks share common information; Interleave: depicting the interwoven acquisition of information related
to different tasks and; Condition: where the execution of a subsequent task depends on the outcome of the preceding one. An example
compositional task consisting of multiple temporal relationships is shown. Frames are colored differently to highlight distinct tasks,
with multicolored frames indicating shared information across tasks; b) Three classic cognitive tasks are exemplified: Delayed Match to
Sample; 2-Back; and Contextual Decision Making.
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a. b.

str: category of _ str: category of _

str: category of _str: location of _

str: object 1 str: object 2

str: object 1 str: object 2

str: _ equals _ ?

str: if _ then _ else _ ?

task str: cateogry of object 1 equals category of object 2?

task str: if desk exists, then location of object 1 else category of object 2? 

instruction: observe object 1, observe object 2, observe object 3, observe object 4, 
category of object 1 equals category of object 4? 
if desk exists, then location of object 4, else category of object 2?

Figure 5. Task graph initialization and modification in iWISDM. This figure demonstrates the process iWISDM follows to initialize and
modify a set of task graphs. We demonstrate the process using two examples: Graph 1 and Graph 2. Backward Initialization (a): Step 1:
Identify all operators linked to explicit (e.g.IsSame operator in Graph 1, operators in Graph 2) or implicit responses (where agents decide
without a direct response, typically preceding the Switch operator, like the Exist operator in Graph 2), and assign responses to each of
these operators, manually balancing output action. Step 2: Propagate properties to downstream operators. For example, if the response to
IsSame is True, then the children GetCategory operators must have the same output. The Select operator usually receives one
property from upstream operators, such as the category Desk in Graph 2’s bottom Select operator. The “when” and “where” properties
are randomly sampled and marked with asterisks. To illustrate instruction generation, the operator partial strings are shown as “str: ”, and
the blanks are filled by its children operators, following the direction of the arrows. However, during temporal composition, backward
initialization can create conflicts between graphs, which leads Forward modification phase (b) to resolve these issues. Step 1: For each
graph, gather properties from each Select operator and compare those with matching “when” to identify conflicts. For instance, a
conflict is found in the “what” property at frame 4; Graph 1 Select assigns “Desk” while Graph 2’s assigns “Plane”
. Conflicts can also occur with the “where” property. Preference is given to modifying randomly assigned properties in
subsequent graphs to minimize upstream modifications. Step 2: Adjust the “what” property in Graph 2 to “Desk”, aligning
with the Select operator in Graph 1. Step 3: Post-modification, it may be necessary to update actions or properties of
upstream operators. In this scenario, tracing back to the GetLocation operator in Graph 2 shows that no changes are
required for the “where” property, as it remains consistent with the Select operator’s assignment.

Figure 6. An example of low complexity task generated by iWISDM. Instruction: “observe object 1, observe object 2, delay, observe
object 3, observe 4, location of object 3 equals location of object 2 or location of object 1 equals location of object 4?”
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Figure 7. An example of medium complexity task generated by iWISDM. Instruction: “observe object 1, observe object 2, observe object
3, observe 4, observe object 5, observe object 6, observe object 7, observe 8, if location of object 7 equals location of object 2 or location
of object 8 equals location of object 4, then location of object 3 equals location of object 1? else location of object 6 equals location of
object 5?”

Figure 8. An example of high complexity task generated by iWISDM. Instruction: “observe object 1, observe object 2, delay, observe
object 3, observe 4, observe object 5, delay, observe object 6, observe object 7, if location of object 3 not equals top right and location of
object 2 equals location of object 5, then location of object 7 equals top left and location of object 6 equals location of object 4? else
location of object 1?”
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Figure 9. An example trial with distractors. Instruction: “observe object 1, observe object 2, category of object 2 not equals category of
object 1? observe object 3,observe object 4 with location:, top left, category of object 4 equals couches or identity of object 3 equals
identity of object 1? delay, observe object 5, observe object 6, delay, observe object 7, identity of object 7 equals identity of object 6 and
identity of object 4 equals identity of object 3?”
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Figure 10. Human response times across complexity levels.
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Figure 11. Average accuracy of GPT-4v, xcomposer2, and MMICL across a varying number of delay frames. Left is location-only features
and right is category-only features .
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Figure 12. a) The performance accuracy of xcomposer2 and MMICL over the number of Equal/Not Equal boolean task operators. b)
The performance accuracy of xcomposer2 and MMICL over the number of And boolean task operators. c) The performance accuracy of
xcomposer2 and MMICL over the number of Or boolean task operators. d) The performance accuracy of xcomposer2 and MMICL over
the number of Switch task operators.
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Figure 13. a) The performance accuracy of xcomposer2 and MMICL on low complexity tasks with varying numbers of object stimuli. b)
The performance accuracy of xcomposer2 and MMICL on medium complexity tasks with varying numbers of object stimuli. c) The
performance accuracy of xcomposer2 and MMICL on high complexity tasks with varying numbers of object stimuli.
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A.5. Model evaluation prompts

A.5.1. GPT-4V, CLAUDE-3, & GEMINI-PRO LOW/MEDIUM COMPLEXITY (ALL PROPERTIES + EXAMPLES INCLUDED)

In this task we will show you a series of frame images. Each frame will
either be blank (delay frame) or contain a 3D object. The objects within the
task will ALWAYS be from one of 8 categories: benches, boats, cars, chairs,
couches,lighting, planes, and tables. For each of these 8 categories there are 8
unique objects that could be used in the task. Any object which is sampled will
be displayed as an image taken from a random viewing angle. The objects will be
placed in one of four locations: top left, top right, bottom left, and bottom
right.

A written instruction will be provided. Your goal is to follow the instructions
and answer the question contained in the instruction. Answers will ALWAYS be one
of the following: true, false.

Here is a simple example of the task ...

Task instruction: "observe object 1, observe object 2, location of object 1 not
equal location: bottom left?"

Here are the corresponding frames ...

Answer: false. This is because the location of object 1 IS in the bottom left
location.

Here is a simple example of the task...

Task instruction: "observe object 1, delay, observe object 2, category of object
1 equals category of object 2 ?"

Here are the corresponding frames ...

Answer: true. This is because the category of object 1 (lighting) IS equal to
the category of object 2 (lighting).

Here is a simple example of the task...

Task instruction: "observe object 1, observe object 2, identity of object 1
equals identity of object 2 ?"

Here are the corresponding frames ...

Answer: true. This is because object 1 (a white table) IS identical to object 2
(the same white table).

Now please solve the following new task...

Task instruction: "observe object 1, observe object 2, delay, observe object 3,
observe object 4, category of object 2 not equal category of object 3 or category
of object 1 equals category of object 4 ?"

Here are the corresponding frames ...

What is the correct answer to this task? (respond EXACTLY and ONLY with one of
the following answers: true, false). Provide your answer here:

A.5.2. GPT-4V SINGLE-FRAME COMPLEXITY (LOCATION PROPERTY + NO EXAMPLES INCLUDED)

In this task we will show you an image. Each image will contain a 3D object.
The objects within the task will ALWAYS be from one of 8 categories: benches,
boats, cars, chairs, couches,lighting, planes, and tables. For each of these 8
categories there are 8 unique objects that could be used in the task. Any object
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which is sampled will be displayed as an image taken from a random viewing angle.
The object will be placed in one of four locations: top left, top right, bottom
left, and bottom right.

A written instruction will be provided. Your goal is to follow the instructions
and answer the question contained in the instruction. Answers will ALWAYS be one
of the following: true, false.

Now please solve the following new task...

Task instruction: "observe object 1, category of object 1 not equals planes?"

Here are the corresponding frames ...

What is the correct answer to this task? (respond EXACTLY and ONLY with one of
the following answers: true, false). Provide your answer here:

A.5.3. GPT-4V, CLAUDE-3, & GEMINI-PRO HIGH COMPLEXITY (ALL PROPERTIES + EXAMPLES INCLUDED)

In this task we will show you a series of frame images. Each frame will
either be blank (delay frame) or contain a 3D object. The objects within the
task will ALWAYS be from one of 8 categories: benches, boats, cars, chairs,
couches,lighting, planes, and tables. For each of these 8 categories there are 8
unique objects that could be used in the task. Any object which is sampled will
be displayed as an image taken from a random viewing angle. The objects will be
placed in one of four locations: top left, top right, bottom left, and bottom
right.

A written instruction will be provided. Your goal is to follow the instructions
and answer the question contained in the instruction. Answers will ALWAYS be one
of the following: true, false, bottom right, bottom left, top left, top right,
benches, boats, cars, chairs, couches, lighting, planes, tables .

Here is an example of the task...

Task instruction: "observe object 1, observe object 2, location of object 1 not
equal location: bottom left ?"

Here are the corresponding frames ...

The correct answer: bottom right. This is because object 2 is located in the
bottom right.

Here is a simple example of the task...

Task instruction: "observe object 1, delay, observe object 2, category of object
1 equals category of object 2 ?"

Here are the corresponding frames ...

Answer: lighting. This is because object 1 (a lamp) belongs to the category of
lighting.

Here is a simple example of the task...

Task instruction: "observe object 1, observe object 2, identity of object 1
equals identity of object 2?"

Here are the corresponding frames ...

Answer: true. This is because object 1 (a white table) IS identical to object 2
(the same white table).

Now please solve the following new task...
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Task instruction: "observe object 1, observe object 2, delay, observe object 3,
observe object 4, observe object 5, if location of object 5 not equal location of
object 2 , then location of object 1? else category of object 4 not equal tables
or category of object 3 not equal couches?"

Here are the corresponding frames ...

What is the correct answer to this task? (respond EXACTLY and ONLY with one of
the following answers: true, false, bottom right, bottom left, top left, top
right, benches, boats, cars, chairs, couches, lighting, planes, tables). Provide
your answer here:

A.5.4. INTERNLM-XCOMPOSER2 & MMICL LOW COMPLEXITY (ALL PROPERTIES INCLUDED + EXAMPLES
EXCLUDED)

In this task we will show you a series of frame images. Each frame will
either be blank (delay frame) or contain a 3D object. The objects within the
task will ALWAYS be from one of 8 categories: benches, boats, cars, chairs,
couches,lighting, planes, and tables. For each of these 8 categories there are 8
unique objects that could be used in the task. Any object which is sampled will
be displayed as an image taken from a random viewing angle. The objects will be
placed in one of four locations: top left, top right, bottom left, and bottom
right.

A written instruction will be provided. Your goal is to follow the instructions
and answer the question contained in the instruction. Answers will ALWAYS be one
of the following: true, false .

Please solve the following task...

Task instruction: "observe object 1, delay, observe object 2, observe object 3,
observe object 4, location of object 1 equals location of object 2 and category
of object 3 equals category of object 4?"

Here are the corresponding frames ... <ImageHere> <ImageHere> <ImageHere>
<ImageHere> <ImageHere> <ImageHere> What is the correct answer to this task?
(respond EXACTLY and ONLY with one of the following answers: true, false).
Provide your answer here:

A.5.5. INTERNLM-XCOMPOSER2 HIGH COMPLEXITY (ALL PROPERTIES INCLUDED + EXAMPLES EXCLUDED)

In this task we will show you a series of frame images. Each frame will
either be blank (delay frame) or contain a 3D object. The objects within the
task will ALWAYS be from one of 8 categories: benches, boats, cars, chairs,
couches,lighting, planes, and tables. For each of these 8 categories there are 8
unique objects that could be used in the task. Any object which is sampled will
be displayed as an image taken from a random viewing angle. The objects will be
placed in one of four locations: top left, top right, bottom left, and bottom
right.

A written instruction will be provided. Your goal is to follow the instructions
and answer the question contained in the instruction. Answers will ALWAYS be one
of the following: true, false, bottom right, bottom left, top left, top right,
benches, boats, cars, chairs, couches, lighting, planes, tables .

Please solve the following task...

Task instruction: "observe object 1, observe object 2, observe object 3, observe
object 4, delay, observe object 5, observe object 6, delay, observe object 7, if
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location of object 6 not equal location of object 2 or category of object 3 not
equal category of object 4, then location of object 7 equals location of object
5? else category of object 1 ?"

Here are the corresponding frames ... <ImageHere> <ImageHere> <ImageHere>
<ImageHere> <ImageHere> <ImageHere> <ImageHere> <ImageHere> <ImageHere> What
is the correct answer to this task? (respond EXACTLY and ONLY with one of the
following answers: true, false, bottom right, bottom left, top left, top right,
benches, boats, cars, chairs, couches, lighting, planes, tables). Provide your
answer here:
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Table 1. Benchmark details for each level of complexity

Complexity

# of allowed
and/or
operators
in task

# of switch
operators

# of trial
frames

root
operators

boolean
operators

Low 1 0 6
IsSame, And,
Or, NotSame

IsSame, And,
Or, NotSame

Medium 1 1 8
IsSame, And,
Or, NotSame

IsSame, And,
Or, NotSame

High 1-2 1 9

IsSame, And,
Or, NotSame,
GetLoc,
GetCategory

IsSame, And,
Or, NotSame
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