
RITT: A Retrieval-Assisted Framework with Image and Text Table
Representations for Table Question Answering

Wei Zhou1,3 Mohsen Mesgar1 Heike Adel2 Annemarie Friedrich3

1Bosch Center for Artificial Intelligence, Renningen, Germany
2Hochschule der Medien, Stuttgart, Germany 3University of Augsburg, Germany

{wei.zhou|mohsen.mesgar}@de.bosch.com
annemarie.friedrich@uni-a.de adel-vu@hdm-stuttgart.de

Abstract
Tables can be represented either as text or as
images. Previous works on table question an-
swering (TQA) typically rely on only one rep-
resentation, neglecting the potential benefits
of combining both. In this work, we explore
integrating textual and visual table representa-
tions using multi-modal large language mod-
els (MLLMs) for TQA. Specifically, we pro-
pose RITT, a retrieval-assisted framework that
first identifies the most relevant part of a table
for a given question, then dynamically selects
the optimal table representations based on the
question type. Experiments demonstrate that
our framework significantly outperforms the
baseline MLLMs by an average of 13 Exact
Match and surpasses two text-only state-of-the-
art TQA methods on four TQA benchmarks,
highlighting the benefits of leveraging both tex-
tual and visual table representations.

1 Introduction

Previous approaches in table question answering
(TQA) represent tables as either textual sequences
(Herzig et al., 2020; Jiang et al., 2022; Zhang et al.,
2023a) or as images (Zheng et al., 2024; Deng et al.,
2024a), and process them by large language mod-
els (LLMs) or multi-modal large language models
(MLLMs) accordingly. However, in real-life sce-
narios, tables often exist in both forms (e.g., HTML
tables), or one form can be easily converted to the
other via optical character recognition (OCR) or
HTML rendering. This leads to increased interest
in approaches that leverage both visual and textual
table representations (Deng et al., 2024b; Liu et al.,
2025; Zhou et al., 2025).

Current approaches using both representations
either fine-tune an existing MLLM using prefer-
ence data collected by prompting MLLMs with dif-
ferent table representations of a TQA problem (Liu
et al., 2025), or leverage instance-level features
(e.g., table size) to determine the best representa-
tion for an MLLM to process (Zhou et al., 2025).

Name | Type | Abilities
 Bulbasaur | Grass | Overgrow
 Charmander | Fire | Blaze
 Squirtle | Water | Rain Dish

MLLM

LLM

image-only

text-only

image+text

Figure 1: Three current approaches for representing and
processing tables. Our framework RITT uses both table
images and texts.

The former requires careful data collection and
training (Feng et al., 2024), while the latter strug-
gles to effectively handle large tables due to the
inherent limitations of current MLLMs (Li et al.,
2023; Zhou et al., 2025).

This work builds upon the latter approach, fo-
cusing on designing a training-free framework that
can be easily applied across different datasets. We
adopt the core idea proposed in FRES (Zhou et al.,
2025) to select the most suitable table representa-
tion of a TQA problem based on its question type.
Questions are classified as either retrieval ques-
tions, which only require locating information to
be solved, or reasoning questions, which require
both retrieval and reasoning.

However, unlike FRES, we introduce a novel a
sub-table retriever that selects the most relevant
part of a table to reduce input size. The module pro-
duces relevant table texts and images, which can
be combined with the original full table and passed
to an MLLM for reasoning. To determine the op-
timal representation combinations for an MLLM,
we extend the analysis from Zhou et al. (2025) to
explore combinatorial scenarios, such as pairing
retrieved table images with original textual rep-
resentations and vice versa. Our results indicate

that combining textual and visual representations
yields the best performance for reasoning questions,
while textual representation alone is sufficient for
retrieval questions.

Based on these findings, we propose RITT, a
training-free Retrieval-assisted framework lever-
aging Image and Text representations of Tables.
It comprises four modules: a sub-table retriever,
a question classifier, a table reformatter, and an
MLLM reasoner. Experimental results show that
RITT outperforms baseline MLLMs by an average
of 13 exact match (EM) points, and surpasses two
state-of-the-art text-only TQA systems, demonstrat-
ing the clear benefits of leveraging both table rep-
resentations. Lastly, we provide an ablation study
highlighting the contribution of each component.

2 Related Work

Sub-table Retrieval. Both LLMs and MLLMs
have been shown to struggle with large tables (Lin
et al., 2023; Wang et al., 2024a). To address this
issue, prior work either fine-tunes smaller retriever
models using annotated gold sub-tables (Lin et al.,
2023; Lee et al., 2024), or utilizes LLMs as retriev-
ers via in-context learning (Chen et al., 2024; Li
et al., 2024b; Ye et al., 2023). In this work, we
propose an LLM-based sub-table retriever. Unlike
existing approaches that rely solely on semantic
matching between headers and cells (Chen et al.,
2024; Li et al., 2024b), our method further narrows
down relevant cells by explicitly formulating and
executing filtering logic. In contrast to methods
that directly output relevant row indices using an
LLM (Ye et al., 2023), our retriever ensures faith-
ful generation using code execution for relevant
content filtering.

Table Representations for TQA. Most prior
work processes tables as texts (Zhang et al., 2023a;
Wang et al., 2024c) or as images (Zheng et al.,
2024). Liu et al. (2025) fine-tune an existing
MLLM using preference data collected by prompt-
ing an MLLM with different table representations.
Zhou et al. (2025) propose a rule-based framework
FRES to select the best table representation for an
MLLM. They obtain the rules by comparing dif-
ferent representations under varying scenarios con-
trolled by table size and question type. Their find-
ings indicate that different representations perform
differently under varying conditions. For instance,
passing large tables in textual format to LLMs can
lead to better performance than passing large tables

in images to MLLMs. Though the textual format is
more robust than the visual format when handling
larger tables, it still faces challenges with large ta-
bles. In this work, we propose a sub-table retriever
to mitigate the impact of table size on representa-
tion selection. Moreover, we extend existing anal-
yses to cover combinatorial cases where retrieved
sub-tables are combined with original tables.

3 Framework

Figure 2 shows an overview of our proposed system
RITT. It contains four parts: a sub-table retriever
that filters for the most relevant cells, a question
classifier to determine a question type, a table re-
formatter to reformat a retrieved sub-table based
on question type, and a table reasoner MLLM to
output an answer to a given TQA problem.

3.1 Sub-table Retrieval

We define a table T as a set of headers H ,
values V , and a schema function S that maps
values to their corresponding headers. H can
be further represented as {∅, {ht1, . . . , htm}} ∪
{∅, {hl1, . . . , hln}}, where ht and hl stands for
top and left headers, respectively, and m and n
represent the number of columns and rows, respec-
tively. We use ∅ to denote the absence of a header.
For instance, the table in Figure 2 features only
top headers. As a result, H can be represented as
{“Country”, “Result”, “Year”, “Score”}. The task
of sub-table retrieval involves locating relevant top
headers, htr, relevant left headers hlr, and a set of
cell values Vr indexed by those headers. As shown
in the yellow box in Figure 2, an LLM takes in a
TQA problem and can perform two tasks: header
prediction and question parsing. Header prediction
requires an LLM to predict the most relevant head-
ers given a problem. Prompts for header prediction
are shown in Figure 4. For a table that features both
ht and hl, we directly aggregate cells indexed by
predicted headers as a sub-table.

However, when either ht or hl is missing,1 sim-
ply filtering based on available headers may still
yield overly large sub-tables. To address this is-
sue, we additionally ask the LLM to parse a ques-
tion into filtering conditions in natural language (A
prompt is shown in Figure 5). The same LLM then
translates these conditions into executable Python
code (A prompt is shown in Figure 6), which is run

1It is more common to have missing hl, e.g., relational
tables, than missing ht.

Q: How many countries
won after Spain when
it scored 33 ?

Table Reasoner (MLLM)reasoning Q

Country Result Year Score

Spain win 1988 33

France loss 1992 16

Germany win 1993 42

… … …

Country Result Year Score

Germany win 1993 42

… … … …

Find the row that Spain
scored 33 and filter for rows
below it with winning results

def filter
…parse Q

+ heuristic headers:

[“Country”, “Score”]

Sub-table retriever

coding

predict headersLLM
[“Score”,
“Result”]

merge headers

[“Score”, “Result”,
“Country”]

LLM

exec

+ heuristic rows:
Spain win 1988 33

select column

Country Result Score
Spain win 33

Germany win 42
… … …

Question Classifier

+Answer in table?
Require comparison?

Table Reformatter

T→(img, txt) if reasoning Q
T→ txt if retrieval Q

AnswerLLM

Figure 2: Given a table and question pair, a sub-table retriever outputs relevant cells. A question classifier is applied
to distinguish retrieval and reasoning questions. Based on the question type, a table reformatter prepares an input
table for a table reasoner, which outputs a final answer based on relevant cells and a question.

via a Python interpreter to further filter a table. If
the code execution fails, we revert to the original ta-
ble. Finally, we filter a retrieved sub-table based on
relevant headers predicted by the LLM previously
to produce a final sub-table.

To ensure the retrieved sub-table preserves es-
sential information to solve a question, we also
apply a heuristic: we include rows and columns
that contain tokens in the question (referred to as
heuristic rows/columns). For example, as shown
in Figure 2, the heuristic headers “Country” and
“Score” and heuristic rows mentioning “Spain” and
“33” are added back to the final sub-table.

3.2 Question Classifier & Table Reformatter
Given a retrieved sub-table in textual format, the
next step is to determine which table representa-
tions to pass to the table reasoner. Motivated by
previous findings that MLLMs with table images
manifest stronger reasoning abilities (Zhou et al.,
2025), we consider determining table representa-
tions based on question type. Following Zhou et al.
(2025), we classify questions into two categories:
retrieval and reasoning. Retrieval questions are
those whose answers can be directly located verba-
tim in the table cells, whereas reasoning questions
require additional inference, involving numerical,
temporal, or commonsense reasoning.

To investigate the effectiveness of table repre-
sentations with different question types, we use
the dataset provided by Zhou et al. (2025), which
contains 1,600 instances from six common TQA
datasets: WTQ (Pasupat and Liang, 2015), TabFact
(Chen et al., 2020), HiTab (Cheng et al., 2022),
CRT (Zhang et al., 2023b), TabMWP (Lu et al.,
2022), and TempTabTQA (Gupta et al., 2023), with
800 instances for each question type. We examine
multiple methods of passing retrieved sub-tables to
the table reasoner: rc: passing only relevant head-
ers in a prompt. rt: passing only relevant cells in

40

50

60

70

Retrieve

E
M

20

25

30

Reasoning

rc ri rt ri+t rt+i rt+ri

Figure 3: Comparing the effectiveness of different meth-
ods under varying question types. rc stands for passing
relevant headers in a prompt. ri and rt represent passing
only relevant table images and texts, respectively. ri+t
stands for passing relevant cells as images and a full
table as text. rt+i refers to passing relevant cells as texts
and passing the original table as images. Lastly, rt+ti
refers to passing both relevant cells as texts and images.
We employ the Exact Match (EM) metric.

a prompt. ri: passing relevant cells converted into
image format. rt+ri: passing relevant cells in both
text and image formats. Since providing only rele-
vant cells may result in information loss, we also
explore combining relevant cells with the original
table: ri+t: passing relevant cells as images and the
original table as text. rt+i: passing relevant cells
as text and the original table as an image.

We evaluate these methods using six open-
weight MLLMs as in Zhou et al. (2025): Qwen-2-
VL-7b (Wang et al., 2024b), Pixtral-12b (Agrawal
et al., 2024), Phi-3.5-vision-instruct-4b (Abdin
et al., 2024), LLaVA-Next-7b (Li et al., 2024a),
GLM-4v-9b (Zeng et al., 2024), and InternVL2-
8b.2 Exact Match is used for evaluation, which
checks if a predicted answer and a ground truth are
the same. To obtain relevant cells, we apply the
method proposed in Section 3.1 on the evaluation
dataset, with Qwen-2-72b as the backbone LLM.

2https://internvl.github.io/blog/
2024-07-02-InternVL-2.0/

https://internvl.github.io/blog/2024-07-02-InternVL-2.0/
https://internvl.github.io/blog/2024-07-02-InternVL-2.0/

As Figure 3 shows, different question types ben-
efit from different representations. For reasoning
questions, passing relevant cells simultaneously as
texts and images (rt+ri) to MLLMs achieves the
best performance. In contrast, table text represen-
tation suffices when a question is of type retrieval.
The observations align with findings in (Zhou et al.,
2025). We do not observe a clear advantage from
combining relevant table information with the orig-
inal table information. We suspect this might be
because adding the original table information back
increases the input size. Detailed results for each
MLLM are reported in Appendix A.3. Based on
these observations, our table reformatter encodes
sub-tables as both images and texts when a ques-
tion is of type reasoning. Otherwise, only table
texts are passed to the final reasoner. We adopt
the question type classifier proposed by Zhou et al.
(2024), which combines rule-based heuristics and
an LLM. Details are represented in Appendix A.2.

4 Experiments

Datasets. We evaluate RITT with the test sets
of three aforementioned TQA benchmarks used
during our analysis in Section 3.2: WTQ, TabFact
(small test), and HiTab. We also include one addi-
tional dataset, WikiSQL (Zhong et al., 2017), that
has not been used in our analysis to test the gener-
alizability of our method.

Models and Baselines. Our framework con-
tains an MLLM table reasoner and an LLM re-
triever/classifier.3 For MLLMs, we choose the
best performing MLLM from our previous anal-
ysis: Pixtral-12b (see A.3 for individual model’s
performance) as well as a fine-tuned MLLM for
TQA: TableLlaVA-7b (Zheng et al., 2024). We
use Qwen-2-72b as the LLM backbone in our
framework. As baselines, we choose the backbone
MLLM without applying RITT. In addition, we
compare RITT with two SoTA frameworks that use
only table text representations: TableRAG (Chen
et al., 2024) and GraphOTTER (Li et al., 2024b).
Both frameworks involve relevant cell retrieval
and are inference-based methods utilizing LLMs.
For fair comparisons, we replace the LLM back-
bones used in previous work and this work with an

3The retriever/classifier can be replaced by the MLLM
reasoner. We do not find big performance differences between
an LLM and an MLLM of the same size and series.

Systems WTQ TabFact HiTab WiKiSQL

Pixtral-12b 52.5 75.9 62.2 60.1
+RITT 54.4 (+1.9) 76.8 (+0.9) 68.0 (+5.8) 62.7 (+2.6)
TableLlaVA-7b 17.2 60.9 16.3 29.5
+RITT 39.7(+22.5) 64.5 (+3.6) 61.8 (+45.5) 52.0 (+22.5)

Qwen2-VL-72b 62.6 86.7 73.4 77.6
+RITT 63.4 86.0 76.4 78.0
TableRAG 60.8 79.3 65.3 77.9
GraphOTTER 59.4 81.8 71.6 75.6

Table 1: Model performances on four TQA benchmarks.
The first four rows show the results of direct inference
with MLLMs and applying our framework. The last
four rows compare the performance of our framework
with two SoTA systems using the same model.

MLLM (Qwen-2-VL-72b).4 As a result, all com-
pared frameworks use the same backbone model.

5 Results and Discussions

Results. Table 1 shows the results averaged
across three runs. The top section of the table com-
pares direct inference using the backbone MLLMs
against the same models enhanced by RITT. The
bottom section compares our method to two state-
of-the-art frameworks (TableRAG and GraphOT-
TER) using the same underlying backbone model.
Applying RITT consistently improves performance,
with notable gains on the HiTab dataset, achieving
increases of 5.8 and 45.5 EM points for Pixtral-
12b and TableLLaVA-7b, respectively. Differences
in improvement can be attributed to the capabili-
ties of the base models: Pixtral-12b generally ex-
hibits stronger multi-modal reasoning capabilities
than TableLlaVA and can handle longer inputs,
resulting in smaller performance improvements.
Moreover, our framework consistently outperforms
both TableRAG and GraphOTTER across all four
datasets. When using a larger MLLM model
(Qwen-2-72b), we still observe improvements in
three out of four datasets, though these improve-
ments are relatively smaller compared to those ob-
served with smaller models. We hypothesize this
is because larger models inherently have stronger
capabilities in handling longer and more complex
table-question instances, leaving less room for im-
provement from additional retrieval steps.

Ablation. We conduct an ablation study to an-
alyze the contribution of each component. We
present results categorized by table size to under-
stand how each component performs on tables of

4We do not find a significant performance difference when
switching from a text-only model to a multi-modal model.

System 0-50 50-100 100-200 >200
#Instances 187 413 466 518

MLLM 74.3 63.7 61.6 57.3
+ st +4.1 +1.6 +2.9 +7.5

+ st+tr +3.8 +2.9 +4.3 +10.3
+ st+tr (oracle) +4.3 +3.1 +5.1 +11.7

Table 2: Ablation study of our framework on HiTab
using Pixtral-12b. st stands for sub-table retriever, and tr
stands for table reformatter. tr (oracle) refers to passing
the oracle question type obtained from the dataset.

varying sizes. When ablating the table reformat-
ter, retrieved sub-tables are passed to an MLLM as
both images and texts. We pass the oracle question
types obtained from the dataset annotation to in-
vestigate the effectiveness of the question classifier.
Table 2 shows results on the HiTab dataset, chosen
as it exhibits the largest performance gains using
RITT. We observe that both the sub-table retriever
and table reformatter contribute to the overall per-
formance. The sub-table retriever demonstrates
greater performance enhancement compared to the
table reformatter. Additionally, we note that overall
system performance tends to decline as the table
size increases, aligning with previous findings (Lin
et al., 2023). Interestingly, the benefit provided by
the sub-table retriever becomes more pronounced
on larger tables, highlighting its effectiveness in
handling large tables.

Effectiveness of Sub-table Retriever. We com-
pare our proposed sub-table retriever with two cur-
rent state-of-the-art LLM-based retrievers (intro-
duced in Section 4) on 800 instances from the
HiTab evaluation subset described in Section 3.2.
We chose this dataset as it provides manual annota-
tions of relevant table cells required to answer each
question. The results are shown in Table 3. Our
proposed sub-table retriever achieves the highest
F1 score among the three methods, demonstrating
its effectiveness in accurately identifying relevant
table cells. Nevertheless, the high recall and rela-
tively large average number of cells (8.65 compared
to the gold standard of 5.34) indicate that our sub-
table retriever identified irrelevant cells with regard
to answering a question.

Error Analysis. We randomly sample 100 in-
stances on which applying RITT with Pixtral-12b
fails, with each investigated dataset 25 instances,
and perform an error analysis. For each instance,
we manually check (1) whether a retrieved sub-

Methods Precision Recall F1 # Cells

GraphOTTER 47.4 51.1 46.8 4.56
TableRAG 17.6 40.3 22.7 13.8

RITT 41.0 92.6 51.2 8.65

Table 3: Comparing our sub-table retriever with two
state-of-the-art sub-table retrievers.#Cells shows the av-
erage number of identified relevant cells. For gold rele-
vant cells, the number is 5.34.

table contains the relevant information needed to
answer a question, and (2) whether the question
type is predicted correctly. We find that for ap-
proximately 23% of instances, the retrieved sub-
tables do not contain the information needed to
answer questions, leading to information loss. In
contrast, only 7% of instances are predicted with
wrong question types, suggesting the task is rel-
atively easy. We observe that in the majority of
cases, the relevant information is present in the
retrieved sub-tables, and the question type is cor-
rectly identified. However, Pixtral-12b still fails to
provide the correct answer. This might be because
the retrieved sub-tables are still large, due to code
execution errors during row filtering. The failure af-
fects instances with reasoning questions more than
retrieval questions, given that both table images
and table texts are passed when a question is of
type reasoning. An example is provided in Figure
7. Our analysis suggests that future work should fo-
cus on developing methods that reduce table sizes
effectively without losing necessary information.

6 Conclusions

In this paper, we explored leveraging both tex-
tual and visual table representations using MLLMs
for TQA. To handle the challenges of large table
inputs and representation selection, we proposed
RITT, a retrieval-assisted framework that retrieves
the most relevant sub-table, classifies the question
type, and dynamically determines the optimal rep-
resentations to an MLLM reasoner based on the
question type. Extensive experiments on four TQA
benchmarks demonstrated the advantages of our
framework over baseline MLLMs as well as frame-
works utilizing only textual representations. Abla-
tion studies further confirmed the effectiveness of
each proposed component. Our findings highlight
the benefits and promising potential of integrating
both table representations for TQA.

Limitation

We explore utilizing both textual and visual table
representations. Nevertheless, the underlying as-
sumption that table images and table texts both ex-
ist and can be easily converted might not hold for
every case. For instance, converting large table im-
ages to texts using OCR tools can suffer from infor-
mation loss. We leave these for further exploration.
Secondly, due to a limited number of existing large
MLLMs, we specifically focus on evaluating and
designing methods for small MLLMs. Last but
not least, RITT is a pipeline method, consisting of
several components. As a result, it requires longer
inference time than end-to-end systems.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad

Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-
san Awadalla, Nguyen Bach, Amit Bahree, Arash
Bakhtiari, Harkirat Singh Behl, Alon Benhaim,
Misha Bilenko, Johan Bjorck, Sébastien Bubeck,
Martin Cai, Caio C’esar Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allison Del
Giorno, Gustavo de Rosa, Matthew Dixon, Ronen El-
dan, Dan Iter, Abhishek Goswami, Suriya Gunasekar,
Emman Haider, Junheng Hao, Russell J. Hewett,
Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero
Kauffmann, Nikos Karampatziakis, Dongwoo Kim,
Young Jin Kim, Mahoud Khademi, Lev Kurilenko,
James R. Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang,
Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon
Norick, Barun Patra, Daniel Perez-Becker, Thomas
Portet, Reid Pryzant, Heyang Qin, Marko Radmi-
lac, Corby Rosset, Sambudha Roy, Olli Saarikivi,
Amin Saied, Adil Salim, Michael Santacroce, Shital
Shah, Ning Shang, Hiteshi Sharma, Xianmin Song,
Olatunji Ruwase, Praneetha Vaddamanu, Xin Wang,
Rachel Ward, Guanhua Wang, Philipp Witte, Michael
Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang,
Ziyi Yang, Donghan Yu, Cheng-Yuan Zhang, Cyril
Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang,
Yunan Zhang, and Xiren Zhou. 2024. Phi-3 technical
report: A highly capable language model locally on
your phone. ArXiv, abs/2404.14219.

Pravesh Agrawal, Szymon Antoniak, Emma Bou
Hanna, Devendra Singh Chaplot, Jessica Chud-
novsky, Saurabh Garg, Théophile Gervet, Soham
Ghosh, Am’elie H’eliou, Paul Jacob, Albert Q.
Jiang, Timothée Lacroix, Guillaume Lample, Diego
de Las Casas, Thibaut Lavril, Teven Le Scao, Andy
Lo, William Marshall, Louis Martin, Arthur Men-
sch, Pavankumar Reddy Muddireddy, Valera Nemy-
chnikova, Marie Pellat, Patrick von Platen, Nikhil
Raghuraman, Baptiste Rozière, Alexandre Sablay-
rolles, Lucile Saulnier, Romain Sauvestre, Wendy
Shang, Roman Soletskyi, Lawrence Stewart, Pierre

Stock, Joachim Studnia, Sandeep Subramanian,
Sagar Vaze, and Thomas Wang. 2024. Pixtral 12b.
ArXiv, abs/2410.07073.

Si-An Chen, Lesly Miculicich, Julian Martin Eisen-
schlos, Zifeng Wang, Zilong Wang, Yanfei Chen,
Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and
Tomas Pfister. 2024. Tablerag: Million-token ta-
ble understanding with language models. ArXiv,
abs/2410.04739.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact : A large-scale
dataset for table-based fact verification. In Inter-
national Conference on Learning Representations
(ICLR), Addis Ababa, Ethiopia.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094–1110, Dublin,
Ireland. Association for Computational Linguistics.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Ger-
stein, and Arman Cohan. 2024a. Investigating data
contamination in modern benchmarks for large lan-
guage models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
8706–8719, Mexico City, Mexico. Association for
Computational Linguistics.

Naihao Deng, Zhenjie Sun, Ruiqi He, Aman Sikka,
Yulong Chen, Lin Ma, Yue Zhang, and Rada Mihal-
cea. 2024b. Tables as texts or images: Evaluating
the table reasoning ability of LLMs and MLLMs.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 407–426, Bangkok,
Thailand. Association for Computational Linguistics.

Duanyu Feng, Bowen Qin, Chen Huang, Zheng Zhang,
and Wenqiang Lei. 2024. Towards analyzing and
understanding the limitations of dpo: A theoretical
perspective.

Vivek Gupta, Pranshu Kandoi, Mahek Vora, Shuo
Zhang, Yujie He, Ridho Reinanda, and Vivek Sriku-
mar. 2023. TempTabQA: Temporal question answer-
ing for semi-structured tables. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 2431–2453, Singapore.
Association for Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:273229118
https://api.semanticscholar.org/CorpusID:273185974
https://api.semanticscholar.org/CorpusID:273185974
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2024.naacl-long.482
https://doi.org/10.18653/v1/2024.naacl-long.482
https://doi.org/10.18653/v1/2024.naacl-long.482
https://doi.org/10.18653/v1/2024.findings-acl.23
https://doi.org/10.18653/v1/2024.findings-acl.23
http://arxiv.org/abs/2404.04626
http://arxiv.org/abs/2404.04626
http://arxiv.org/abs/2404.04626
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu-
big, and Weizhu Chen. 2022. OmniTab: Pretraining
with natural and synthetic data for few-shot table-
based question answering. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 932–942, Seattle,
United States. Association for Computational Lin-
guistics.

Wonjin Lee, Kyumin Kim, Sungjae Lee, Jihun Lee, and
Kwang In KIm. 2024. Piece of table: A divide-and-
conquer approach for selecting sub-tables in table
question answering.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang,
Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
2024a. Llava-next-interleave: Tackling multi-image,
video, and 3d in large multimodal models. ArXiv,
abs/2407.07895.

Qianlong Li, Chen Huang, Shuai Li, Yuanxin Xiang,
Deng Xiong, and Wenqiang Lei. 2024b. Graphot-
ter: Evolving llm-based graph reasoning for complex
table question answering.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo
Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. 2023. Monkey: Image resolution and
text label are important things for large multi-modal
models. 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 26753–
26763.

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adria
de Gispert, and Gonzalo Iglesias. 2023. An inner
table retriever for robust table question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 9909–9926, Toronto, Canada.
Association for Computational Linguistics.

Zhenghao Liu, Haolan Wang, Xinze Li, Qiushi Xiong,
Xiaocui Yang, Yu Gu, Yukun Yan, Qi Shi, Fangfang
Li, Ge Yu, and Maosong Sun. 2025. Hippo: En-
hancing the table understanding capability of large
language models through hybrid-modal preference
optimization.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and A. Kalyan. 2022. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. ArXiv, abs/2209.14610.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin,
Wenyuan Wang, Tunyu Zhang, Akshay Uttama
Nambi, Tanuja Ganu, and Hao Wang. 2024a. Mul-
timodal needle in a haystack: Benchmarking long-
context capability of multimodal large language mod-
els. ArXiv, abs/2406.11230.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Ke-Yang Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang,
Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin.
2024b. Qwen2-vl: Enhancing vision-language
model’s perception of the world at any resolution.
ArXiv, abs/2409.12191.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024c. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
ArXiv, abs/2401.04398.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’23, page 174–184, New
York, NY, USA. Association for Computing Machin-
ery.

Team Glm Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Ji-
adai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,
Lucen Zhong, Ming yue Liu, Minlie Huang, Peng
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu-
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiaoyu Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yi An,
Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi
Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhenyi
Yang, Zhengxiao Du, Zhen-Ping Hou, and Zihan
Wang. 2024. Chatglm: A family of large language
models from glm-130b to glm-4 all tools. ArXiv,
abs/2406.12793.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2023a. Tablellama: Towards open large generalist
models for tables. In North American Chapter of the
Association for Computational Linguistics.

Zhehao Zhang, Xitao Li, Yan Gao, and Jian-Guang Lou.
2023b. CRT-QA: A dataset of complex reasoning
question answering over tabular data. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 2131–2153,
Singapore. Association for Computational Linguis-
tics.

https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2022.naacl-main.68
https://api.semanticscholar.org/CorpusID:274610123
https://api.semanticscholar.org/CorpusID:274610123
https://api.semanticscholar.org/CorpusID:274610123
https://api.semanticscholar.org/CorpusID:271088459
https://api.semanticscholar.org/CorpusID:271088459
https://api.semanticscholar.org/CorpusID:274437685
https://api.semanticscholar.org/CorpusID:274437685
https://api.semanticscholar.org/CorpusID:274437685
https://api.semanticscholar.org/CorpusID:265150038
https://api.semanticscholar.org/CorpusID:265150038
https://api.semanticscholar.org/CorpusID:265150038
https://doi.org/10.18653/v1/2023.acl-long.551
https://doi.org/10.18653/v1/2023.acl-long.551
http://arxiv.org/abs/2502.17315
http://arxiv.org/abs/2502.17315
http://arxiv.org/abs/2502.17315
http://arxiv.org/abs/2502.17315
https://api.semanticscholar.org/CorpusID:252595921
https://api.semanticscholar.org/CorpusID:252595921
https://api.semanticscholar.org/CorpusID:252595921
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://api.semanticscholar.org/CorpusID:270559255
https://api.semanticscholar.org/CorpusID:270559255
https://api.semanticscholar.org/CorpusID:270559255
https://api.semanticscholar.org/CorpusID:270559255
https://api.semanticscholar.org/CorpusID:272704132
https://api.semanticscholar.org/CorpusID:272704132
https://api.semanticscholar.org/CorpusID:266899992
https://api.semanticscholar.org/CorpusID:266899992
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://api.semanticscholar.org/CorpusID:270562306
https://api.semanticscholar.org/CorpusID:270562306
https://api.semanticscholar.org/CorpusID:265213406
https://api.semanticscholar.org/CorpusID:265213406
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2023.emnlp-main.132

Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaoqiao She,
Zheng Lin, Wenbin Jiang, and Weiping Wang. 2024.
Multimodal table understanding. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9102–9124, Bangkok, Thailand. Association
for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Wei Zhou, Mohsen Mesgar, Heike Adel, and Annemarie
Friedrich. 2024. FREB-TQA: A fine-grained robust-
ness evaluation benchmark for table question answer-
ing. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (Volume 1: Long Papers), pages 2479–2497,
Mexico City, Mexico. Association for Computational
Linguistics.

Wei Zhou, Mohsen Mesgar, Heike Adel, and Annemarie
Friedrich. 2025. Texts or images? a fine-grained
analysis on the effectiveness of input representations
and models for table question answering.

A Appendix

A.1 Prompts

We present prompts used in sub-table retriever in
Figure 4, 5 and 6.

A.2 Datasets

Question Type Classification. We use the ques-
tion type classifier proposed in Zhou et al. (2024):
a rule-based method is applied first. If an answer is
not in a table, a question is classified as a reasoning
question. If a question contains comparative terms
(detected using NLTK), the question is classified
into a reasoning question. Next, an LLM takes in
a question and table and returns a predicted ques-
tion type. We replace the LlaMA-2-13b used in
the original paper with Qwen-2-72b for its better
general capabilities but keep the prompt the same.

Dataset Licenses WTQ (Pasupat and Liang,
2015), TabFact (Chen et al., 2020), HiTab (Cheng
et al., 2022) and WikiSQL (Zhong et al., 2017),
they are under the license of CC-BY-SA-4.05,
MIT, BSD-3 CLAUSE6 and C-UDA7 respectively.

5https://creativecommons.org/licenses/by-sa/4.
0/

6https://opensource.org/license/bsd-3-clause
7https://github.com/microsoft/HiTab?tab=

License-1-ov-file

A.3 MLLMs
Table 4 shows performances of individual MLLMs
on the evaluation set. We find that Pixtral 12b per-
forms the best among all evaluated small models.

https://doi.org/10.18653/v1/2024.acl-long.493
https://doi.org/10.18653/v1/2024.naacl-long.137
https://doi.org/10.18653/v1/2024.naacl-long.137
https://doi.org/10.18653/v1/2024.naacl-long.137
http://arxiv.org/abs/2505.14131
http://arxiv.org/abs/2505.14131
http://arxiv.org/abs/2505.14131
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.org/license/bsd-3-clause
https://github.com/microsoft/HiTab?tab=License-1-ov-file
https://github.com/microsoft/HiTab?tab=License-1-ov-file

Header prediction prompt for hierarchical tables:
Your task is to find out the relevant headers based on the question.
Return the answer in json format: {'top_header':[(relevant top header tuple),...], 'left_header':[(relevant
left header tuple),...]}
Below is an example:
top header: [('club',),('season',),('league','division'),('league','apps'),('league', 'goals'), ('total','apps'),
('total','goals')]
left header: [('Gillingham',),('Stevenage',),('Bristol City',)]
question: How many goals did this player score in total for Bristol City and Stevenage in League One?
answer: {'top_header':[('club,'), ('league', 'division'), ('league','goals'), ('total', 'goals')],
'left_header':[('Stevenage',),('Bristol City',)]}
now find out the relevant headers for the following instance:
top header: {top_header}
left header: {left_header}
question: {question}
answer:

Header prediction prompt for flat tables:
Your task is to find out the relevant headers to answer the question.
Return the answer in list format: ["relevant_header_a", "relevant_header_b",...] and nothing else.
Below is an example:
table: | country | result | year | score |
Example Row 1: | Spain | win | 2000 | 33 |
Example Row 2: | Germany | win | 2001 | 17 |
question: What is the next country to win after Germany?
Answer: ["country", "result", "year"]
now find the relevant headers for the following instance:
table: {table}
question: {question}

Figure 4: Prompts for header selection.

Model QT rc rt+i rt ri+t ri rt+ri

Qwen2 7b Retrieve 50.7 57.2 81.2 79.8 75.9 79.7
Reasoning 24.4 29.1 37.0 35.8 38.2 42.0

Pixtral 12b Retrieve 57.1 77.9 76.5 71.4 68.4 72.7
Reasoning 32.2 40.1 39.7 41.1 39.9 41.6

Phi-3.5 4b Retrieve 52.8 71.9 77.4 74.9 69.8 76.1
Reasoning 17.4 28.3 28.2 27.3 24.7 30.9

LlaVA 7b Retrieve 10.8 48.3 68.5 51.9 49.3 67.7
Reasoning 3.85 12.0 20.4 12.9 9.9 23.2

GLM-4 9b Retrieve 22.8 26.8 33.0 22.1 22.3 23.5
Reasoning 10.5 12.2 12.6 11.1 13.3 13.9

Intern-8b Retrieve 29.8 71.1 72.4 73.2 63.1 68.9
Reasoning 18.3 37.7 40.2 34.7 34.1 39.5

Average Retrieve 37.3 58.8 68.1 62.2 58.1 64.7
Reasoning 17.7 26.5 29.6 27.2 26.6 31.8

Table 4: Exact Match of different MLLMs. QT stands for question type. rc refer to passing relevant column names
in a prompt. ri and rt represent passing only relevant table images and texts, respectively. ri+t stands for passing
relevant cells as images and full table as texts. rt+i refers to passing relevant cells as texts and passing original table
as images. rt+ti refers to passing both relevant cells as texts and images. We employ the Exact Match (EM) metric.

Prompt for generating filtering conditions:

You are skilled at translating questions into filtering conditions and adhering to instructions. Your task is
to convert a question into a dictionary containing filtering conditions and relevant columns. The
dictionary should be structured as: {"general filtering statement: specific instructions for filtering":[list
of relevant headers]}. Adhere strictly to this format. Use only words from the table's header when listing
relevant columns. Only a portion of the table is shown for data type reference. Do not provide an answer
to the question. Examples are provided below for clarity:

Example 1:
Table Header: | country | result | year |
Example Row 1: | Spain | win | 2000 |
Example Row 2: | Germany | win | 2001 |
Question: How many times did Spain win after 2001?
Answer: The question requires filtering for occurrences where Spain won after 2001. This involves
checking rows where "country" is "Spain", "result" is "win", and "year" is after 2001. Relevant columns
are ["country", "result", "year"]. Hence, the dictionary is: {"filter for rows where Spain won after 2001:
find rows where country is Spain, result is win, and year is after 2001":["country", "result", "year"]}

Example 2:
Table Header: | country | result | year |
Example Row 1: | Spain | win | 2000 |
Example Row 2: | Germany | win | 2001 |
Question: What is the next country to win after Germany?
Answer: This question seeks the next winning country after Germany. It requires identifying when
Germany won, then filtering for rows where "year" is greater than that year and "result" is "win". Relevant
columns are ["country", "result", "year"]. The dictionary is: {"filter for rows where a win occurred after
Germany: first identify the year Germany won, then find rows where year is later and result is
win":["country", "result", "year"]}

Example 3:
Table Header: | team | scores |
Example Row 1: | Navi | 3 |
Example Row 2: | Spirit | 5 |
Question: What is the total score for Navis and G2?
Answer: This question asks for the total score of Navi and G2, requiring filters for rows where the team is
either 'Navi' or 'G2'. Relevant column is ["team"]. The dictionary is: {"filter for rows where team is either
Navis or G2: find rows where team is either Navi or G2":["team"]}

Now, based on the given table and question, compose the filtering conditions:
Table: {table}
Question: {question}
Answer:

Figure 5: Prompts for generating filtering conditions.

Prompt for code parsing:

Your task is to write a function 'filtering' to filter out irrelevant rows from a dataframe object, based on a
given condition.
The given condition might not match the values or datatype in the dataframe. Therefore, you will
have to translate the given condition into the dataframe operatable Python code or converting the data
(type) in the dataframe. Return the filtered df in the variable 'df_filtered'
Below is an example:

df = pd.DataFrame.from_dict({{'country':['Spain', 'Germany', 'France', 'Norway'], 'year':['2000', '2001',
'2002','1998']}})
condition = 'filter for rows that won after Germany: first find the year Germany won. Then filter for rows
where year is later than the year Germany won’

answer: The condition selects rows where the 'year' should be larger than (after) the year when Germany
won. We have to first find out when Germany won, and then filtering for rows that satisfy the condition.
The corresponding Python code is:

```
def filtering(df):
# convert data type
  df['year'].astype('int64')

# find out the year when Germany won
  germany_won_year = df[df['country']=='Germany]['year'].tolist()[0]

# filter the table for rows that won after Germany won year 
  df_filtered = df[df['year']>germany_won_year]

return df_filtered
```

Now please think carefully and write Python code to select relevant rows for the following dataframe
based on the condition.
df = pd.DataFrame.from_dict({df_dict})
condition = {cond}
answer:

Figure 6: Prompts for code generation.

Question: What is the value Others% when the value Others# is greater than 147 and the value
Kerry% is 39.6%?

Question type: reasoning

County Kerry% Kerry# Bush% Bush# Others% Others#

Adams 52.1% 5,447 46.8% 4,890 1.1% 119

…remaining 32 rows not shown…

Sheboygan 44.1% 27,608 55.0% 34,458 0.9% 559

Kerry% Kerry# Others% Others#

52.1% 5,447 1.1% 119

…remaining 32 rows not shown…

44.1% 27,608 0.9% 559

Original table

Sub-table

Pixtral (12b)
image + text

Predicted answer: 1.3%

Gold answer: 1.1%

Figure 7: An error case of large sub-tables.

