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ABSTRACT

Sparse novel view synthesis is a challenging problem due to the limited infor-
mation available. While recent 3D Gaussian Splatting (3DGS) approaches have
leveraged monocular depth or diffusion priors to improve reconstruction quality,
they struggle to generate multi-view consistent geometry efficiently. To address
this problem, we propose an Instance-aware Progressive Geometry Rectification
method, namely PG-Rec, to reconstruct the high-fidelity geometry from sparse
inputs. Notably, our approach progressively and jointly optimizes 3D Gaussian
representations by leveraging reliable pseudo-view images, along with instance-
level and scene-level depth regularization, which promotes the reconstruction of
high-fidelity 3D geometry with implicit cross-view semantic consistency. Con-
sidering insufficient information from sparse views, we employ instance-level and
scene-level depth regularization to refine the 3D geometry cooperatively. The
instance depth guides the 3D Gaussians to move toward their corresponding ob-
ject, while the global depth maintains the relative spatial positions of Gaussians
in different instances. With geometry refined by depth regularization, 3DGS ren-
ders more realistic images that guide diffusion to generate reliable pseudo-views.
These pseudo-views are then used to further refine geometry. By combining depth
regularization with high-fidelity pseudo-view rendering, our method progressively
mitigates reconstruction defects from sparse inputs and acquires high-fidelity ren-
dering images. Extensive experiments demonstrate that our PIGR outperforms
current state-of-the-art methods in sparse novel view synthesis.

1 INTRODUCTION

Gaussian Primitive

Update Direction

Patch-level depth 

regularization

Instance-level depth 

regularization

Figure 1: Comparison of depth regularization
methods. Patch-level depth regularization often
leads to ambiguities in positioning Gaussian prim-
itives. In contrast, instance-level depth super-
vision enforces object-specific alignment, effec-
tively promoting cross-view semantic consistency.

Novel view synthesis (NVS) with sparse in-
puts aims to reconstruct photorealistic scenes,
which presents a significant challenge in com-
puter vision due to the limited information
available. Methods such as Neural Radiance
Field (NeRF) (Mildenhall et al., 2021) and
3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023a) have excelled in rendering high-quality
novel views using dense and largely overlap-
ping training images. However, in real-world
scenarios where dense view information can-
not be easily obtained, these methods risk pro-
ducing unreliable artifacts due to the scarcity of
scene information.

To prevent artifacts from appearing in novel
views, regularization is crucial during geome-
try reconstruction. It helps to constrain the po-
sitions and colors of Gaussian primitives. Re-
cently, depth constraints have gained significant attention as an effective method for improving
reconstruction quality. For instance, DNGaussian (Li et al., 2024a) introduces patch-level depth

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

constraints that limit the movement of 3D Gaussian primitives. However, this approach divides the
image into fixed-size patches, which can disrupt both semantic and geometric consistency—such as
splitting a single object across multiple patches—and introduce object-level ambiguities (e.g., seg-
menting multiple objects within the same patch). These limitations hinder 3D Gaussian ellipsoids
from accurately adapting to the correct objects, resulting in insufficient rendering fidelity and mutual
interference between objects, yielding blurred and unreliable content in novel views.

Given the continuity of object distributions in 3D scenes, it is essential to impose geometry reg-
ularization at the instance level. To achieve this, we utilize object-level depth supervision from
Depth Anything V2 (DA-V2) (Yang et al., 2024), a powerful large-scale monocular depth estimator.
Using derived instance masks from SAM (Kirillov et al., 2023), the resulting depth maps demon-
strate implicit cross-view semantic consistency. This signal guides 3D Gaussian primitives to align
more accurately with the correct geometrical positions that cover each object. However, monocu-
lar depth estimation models typically predict relative depth values and rely solely on instance-level
local depth regularization, which can lead to inconsistent depth scales across various objects. To
rectify this issue, we incorporate global depth regularization to maintain a consistent depth scale
for the entire scene and prevent erroneous relative updates of Gaussian ellipsoids between different
instances. Thus, we propose a combined approach that integrates instance-level depth regularization
with scene-level global depth supervision to improve the geometry of the 3D scene. The local depth
guides the 3D Gaussian ellipsoids of each object to their correct positions in 3D space, while the
global depth ensures that the relative spatial relationships among different instances are preserved.

Additionally, the sparsity of viewpoints limits the scene information, making it challenging to learn
accurate 3D representations. Our aim is to optimize scene geometry with depth supervision while
generating reliable pseudo-views from the current structure. These pseudo-views provide 2D image
priors from unseen viewpoints, enhancing 3D representations. By using robust depth estimators, we
extract reliable depth maps. Combining RGB and depth maps from pseudo-views improves scene
geometry recovery. Inspired by diffusion-based generative models, we found that synthesized novel
views from reliable viewpoints, although slightly imperfect, still offer sufficient depth cues to opti-
mize 3D geometry. We use both RGB and depth maps to correct scene geometry, with depth regu-
larization enhancing accuracy while realistic renderings provide useful pseudo-supervision. This
combined approach helps repair reconstruction flaws caused by sparse viewpoints, significantly
improving geometric fidelity and enabling realistic novel view synthesis. The proposed IPG-Rec,
combined with an instance-aware progressive geometry rectification framework, can generate high-
fidelity novel views while addressing geometric defects and viewpoint sparsity, achieving state-of-
the-art performance.

Our primary contributions are as follows:

• We propose IPG-Rec, an Instance-aware Progressive Geometry Rectification framework
that jointly optimizes 3D Gaussian representations by integrating reliable pseudo-view im-
ages with multi-level depth regularization. This collaborative optimization enables the re-
construction of high-fidelity geometry constrained by implicit cross-view semantic consis-
tency from sparse inputs.

• We introduce a dual-depth regularization strategy that combines instance-level supervision
to guide Gaussians toward their corresponding objects and scene-level supervision to main-
tain relative spatial consistency across objects. This design enforces both local precision
and global structural coherence, effectively mitigating reconstruction defects caused by
sparse views.

• Extensive experiments demonstrate the superiority of IPG-Rec against existing methods for
sparse novel view synthesis.

2 RELATED WORK

2.1 FEW-SHOT NOVEL VIEW SYNTHESIS

Novel view synthesis (NVS) aims to generate images from unobserved viewpoints based on a limited
set of input views. Neural Radiance Fields (NeRF) achieve high-quality rendering through volumet-
ric techniques, but they typically require numerous input views, making it challenging to balance

2
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Figure 2: Comparison of novel view synthesis and corresponding geometry rendering with 3
training views. The proposed method produces novel views with more consistent geometry and
improved realism.

quality and efficiency. Recently, a few practical, few-shot methods have emerged to handle sparse
inputs, which can be grouped into two main approaches. Firstly, applying NeRF with regularization
strategies (Niemeyer et al., 2022b); (Wang et al., 2023a), incorporating depth supervision (Roessle
et al., 2022), geometric and appearance constraints (Wang et al., 2023a), and knowledge distilla-
tion (Kim, 2023), enables scene reconstruction from sparse viewpoints. While these methods benefit
from NeRF’s strong representation ability, decreasing the number of input views can still degrade
synthesis quality, and the computational cost of the backbone limits efficiency. The second approach
relies on 3D Gaussian Splatting (3DGS) or generative methods. Initially proposed by Kerbl et al.
(Kerbl et al., 2023a), 3DGS explicitly models scenes with Gaussian primitives, enhancing training
and inference speed. Subsequent works (Li et al., 2024a); (Xu et al., 2024) add additional constraints
to improve sparse-view reconstruction, such as monocular supervision (FSGS (Zhu et al., 2023)),
floating-primitive pruning (SparseGS (Xiong et al., 2023)), primitive-view and motion constraints
(CoherentGS (Paliwal et al., 2024)), and depth regularization (DNGaussian (Li et al., 2024a)).
3DGS-based methods can achieve near-NeRF reconstruction quality with fewer views while reduc-
ing computational costs, but it remains challenging to obtain globally consistent reconstruction with
sparse inputs.

2.2 DEPTH REGULARIZATION FOR NVS

To improve the generalization of Neural Radiance Fields (NeRF) with sparse viewpoints while bal-
ancing reconstruction quality and inference speed, various prior-based strategies have been pro-
posed. These include semantic similarity (Fridovich-Keil et al. (2022)), normal vectors (Wang
et al. (2022)), and ground-truth or estimated depth information. Among these, depth-prior-based
approaches are particularly effective in enhancing reconstruction quality. DSNeRF (Deng et al.,
2022); GeoNeRF (Johari et al., 2022); ENeRF (Wang et al., 2023b), incorporate ground-truth depth
to impose geometric constraints, while SCADE (Uy et al., 2023) and FSGS (Zhu et al., 2023) in-
troduce a 3DGS densification strategy based on a zero-shot depth estimator, and NerfingMVS (Wei
et al., 2021) employs depth reconstructed via the motion recovery framework COLMAP to train
depth predictors. Monocular depth-based methods, however, face limitations when input views are
sparse and can be unstable. To address these issues, SparseNeRF (Wang et al., 2023a); NeRDi (Deng
et al., 2023), and NeuralLift-360 (Xu et al., 2023) leverage pre-trained depth models to obtain ro-
bust depth ordering information, thereby enhancing spatial coherence, while RegNeRF (Niemeyer
et al., 2022b) and DONeRF (Neff et al., 2021) incorporate geometric regularization, intelligent sam-
pling, and probabilistic depth supervision, respectively, to improve rendering quality. Despite their
effectiveness, depth priors used for regularization are often too coarse, and inpainting may introduce
artifacts, both of which can reduce realism.
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Figure 3: IPG-Rec pipeline. Our method follows the procedure outlined below. First, we train
the 3DGS model in the early training stage with RGB image supervision, along with the proposed
instance-level depth and global regularization. Next, we employ a one-step pre-trained diffusion
model to eliminate artifacts of pseudo-view generated progressively over a few iterations. The re-
sulting clean images are then incorporated into the training set and used for both image and depth
supervision to rectify fine-grained and consistent geometry of a scene.

2.3 DIFFUSION PRIORS FOR NVS

Generative models, leveraging their strong prior knowledge, are increasingly applied to improve
novel view synthesis. Some studies employ diffusion models to generate neural radiance fields
(NeRFs) for optimizing rendering results. For instance, DreamFusion (Poole et al., 2022) enhances
view synthesis through language guidance, GAUDI (Bautista et al., 2022) trains diffusion models in
the NeRF latent space, and NeRDI (Deng et al., 2023) constrains novel view distributions using fea-
tures from input images. Other approaches achieve zero-shot view synthesis conditioned on images
and poses via model fine-tuning (Chan et al., 2023); (Tung et al., 2024); (Yu et al., 2024), or perform
inpainting on warped images using text-to-image models (Li et al., 2024b); (Engstler et al., 2025).
However, these methods often suffer from artifacts and accumulated errors in general scenes. In ad-
dition, methods such as Deceptive-NeRF (Liu et al., 2023);3DGS-Enhancer (Liu et al., 2024); and
DIFIX3D+ (Wu et al., 2025) leverage diffusion priors to enhance “pseudo-observations” rendered
from 3D representations, expanding the training set and fine-tuning the 3D representations. Never-
theless, they still face challenges in removing artifacts and maintaining long-range consistency.

3 METHOD

In this section, we present the details of the proposed IPG-Rec algorithm, as summarized in Al-
gorithm 1. The whole pipeline of our model is illustrated in Figure 3. The IPG-Rec incorporates
2D image priors progressively and applies depth regularization continuously, enabling joint opti-
mization of 3D geometry. In Sec. 3.1, we first review 3D Gaussian Splatting (3DGS). Then, we
introduce depth-induced geometry rectification in Sec. 3.2, which includes instance-level depth reg-
ularization and scene-level depth regularization, and then we introduce diffusion-based progressive
pseudo-view Geometry refinement in Sec. 3.3. The full loss and training details in Sec . 3.4.

The IPG-Rec framework jointly optimizes 3D Gaussian representations by integrating reliable
pseudo-view images with multi-level depth regularization. This collaborative optimization enables
the reconstruction of high-fidelity geometry constrained by implicit cross-view semantic consistency
from sparse inputs.
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3.1 PRELIMINARY OF 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (Kerbl et al., 2023b) explicitly models a scene through a collection of
anisotropic 3D Gaussian primitives, each defined by a center µ ∈ R3, an anisotropic covariance
matrix Σ ∈ R3×3, an alpha value α ∈ [0, 1] representing opacity, and spherical harmonics coeffi-
cients (SH). Given a 3D position x ∈ R3, the probability density function of 3D Gaussian is defined
as equation (1), in which (·)T represents a transpose operation and (·)−1 denotes matrix inversion.

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

To render 3D Gaussians in 2D, we project their mean positions by point projection, and project their
covariance using the following equation (2), where W ∈ R3×3 is the viewing transformation and
J ∈ R3×3 is the Jacobian of the affine approximation of the projective transformation.

Σ′ = JW ΣWTJT (2)

To optimize covariance matrices, we use an equivalent representation (3), in which R ∈ R3×3 and
S ∈ R3×3 are rotation and scaling matrices, respectively.

Σ = RSSTRT (3)

Gaussian Splatting also includes spherical harmonics coefficients to model the appearance of the
scene. Gradients for all parameters are derived explicitly to avoid overhead during training. Each
Gaussian encodes the color c using spherical harmonics, which gives a value depending on the
viewing directions. The α−blending point-based rendering for a pixel color c is done by blending
N points in the depth order from front to back. The definition of c is given in Equation (4), where αi

is given by a 2D Gaussian multiplied by a learned per-Gaussian opacity. Besides, to achieve better
geometry, we compute camera parameters and 3D point clouds using an off-the-shelf structure-from-
motion system, COLMAP (Schönberger & Frahm, 2016; Schönberger et al., 2016).

c =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (4)

3.2 DEPTH-INDUCED GEOMETRY RECTIFICATION

Instance-level Depth Regularization. Incorporating a few 2D pseudo-view images is not suffi-
cient for 3D optimization. To learn the fine-grained geometry, existing local depth regularization for
3DGS employs fixed-size patches. However, these patches often span across object boundaries and
include multiple instances simultaneously, leading to the depth variance within a patch being typi-
cally large. Moreover, the depth values of the background near object edges are typically set to zero
during normalization, which hinders the accurate reconstruction of irregular object boundaries. In
addition, this approach does not focus on semantic cues within the scene and can hardly reconstruct
well for promoting cross-view geometric consistency. To mitigate this issue, we introduce an object-
level depth regularization method that computes the difference of each segmented irregular object
region in both the monocular and predicted depth maps by the 3DGS model. This instance-aware
approach enables 3D Gaussians to rectify the fine-grained geometry in local regions and maintain
semantic consistency across views. Specifically, given an RGB image I ∈ R3×H×W , we employ
the pre-trained SAM (Kirillov et al., 2023) to segment the picture and obtain a set of instance-level
masks. Then, we binarize each mask by initializing a tensor of size H ×W filled with zeros. The
pixel positions corresponding to a mask are set to 1, while all other positions remain 0. In this way,
we obtain n mask maps, denoted as M = {M1,M2, ...,Mn}, where the pixels with a value of 1 in
each mask represent the same instance, such as a flower, a leaf, or a house.

Moreover, we adopt the Depth Anything V2 (Yang et al., 2024) pretrained on a large-scale dataset
to predict the monocular depth Dgt ∈ RH×W for each input image, enabling finer and more robust
depth regularization. Since the estimated monocular depth maps are relative values, whereas the
rendered depths are COLMAP-anchored. Inspired by (Xiong et al., 2023), we incorporate Pearson
correlation across the same instance region between monocular and rendered depth maps to compute
similarity. Utilizing the Pearson correlation loss promotes high cross-correlation between the same
objects in both depth maps, regardless of variations in depth value ranges. Thus, the instance-
aware depth loss between the monocular depth map and the rendered depth map Dre ∈ RH×W
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is computed after applying each object mask Mi to the corresponding regions in both depth maps.
This process is illustrated in Equations (5), where D′

gt, D
′
re ∈ RH×W denote the ground-truth and

rendered depth values within the same object region, respectively. Depth values outside this region
are set to zero and excluded from the loss computation. The Lobj represents the instance-aware loss,
and the definition of PCC(X,Y ) follows (Xiong et al., 2023).

D′
gt = Mi ·Dgt,

D′
re = Mi ·Dre,

Lobj =
1

n

∑
i∈n

(1− PCC(D′
gt, D

′
re)),

PCC(X,Y ) =
E[XY ]− E[X]E[Y ]√

E[Y 2]− E[Y ]2
√

E[X2]− E[X]2)
.

(5)

Algorithm 1 Progressive Instance-aware Ge-
ometry Rectification

Input:sparse views {Ii}
Nsparse
i=1 , 3DGS model R,

Monocular depth map Dgt, Target views {Vi}
Nsparse
i=1 ,

Reference views Vr, Pretrianed one-step diffusion
model D, Perturbation step size ∆pose, Refinement
steps {s1, s2, ..., sn}
Output:High-fidelity Novel views Vnovel.
1: # Optimize 3D gaussian primitives
2: Compute mask maps {Mi}ni=1of the input image
3: Initialize pseudo pose set P = ∅
4: while step < iterations do
5: # generate pseduo camera poses
6: if step == s1 then
7: for j = 1 to Nsparse do
8: pseudo pose pj ← Ij +∆pose
9: Ppose = pj ∪ Ppose

10: if step ∈ {s2, s3, ..., sn} then
11: for j = 1 to Nsparse do
12: pick Pnear, j ∈ Ppose nearest to Vi
13: pseudo pose pj ← Pnear, j +∆pose

14: for each pseudo pose do
15: Render pseudo-view images Ipse
16: Iclean ← D(Ipse)

17: {Ii}N+1
i=1 ← {Ii}

N
i=1 ∪ Iclean

18: Compute Lrgb, Lobj , Lglobal, L with Dgt
19: UpdateR via gradient descent

Scene-level Depth Regularization. We ob-
served that segmentation models may struggle
to accurately segment the corresponding masks
due to the presence of numerous small back-
ground objects and occlusions. Moreover, dur-
ing the early stages of training, the limited
3D representation capability of 3DGS leads to
poor-quality rendered depth maps. Thus, calcu-
lating local depth loss within each object mask
is insufficient to overall geometry rectification.
To address these issues and improve the ren-
dering ability of 3D Gaussian primitives in the
scene, we introduce global depth supervision
for the entire image. Similar to the instance-
aware loss, the global depth loss is formally de-
fined as equation (6), where Dgt is the monoc-
ular depth and Dre is the rendered depth by
3D Gaussians. Intuitively, the Lglobal facili-
tates the optimization of holistic scene geom-
etry, thereby improving the fidelity of the 3D
representation.

Lglobal =
1

n

∑
i∈n

(1− PCC(Dgt, Dre)). (6)

3.3 DIFFUSION-BASED PROGRESSIVE
PSEUDO-VIEW GEOMETRY REFINEMENT

We employ the generative image priors of SD-Turbo (Sauer et al., 2024), a pre-trained one-step
diffusion model, which enables high efficiency of our method. Following DIFIX3D+ (Wu et al.,
2025), we find that the difix model, which was pre-trained on the DL3DV (Ling et al., 2024) bench-
mark dataset, exhibits impressive performance on eliminating Gaussian artifacts from our generated
pseudo views, as shown in Figure 5. Thus, we utilize the pre-trained difix model as a fixer to elimi-
nate the artifacts of pseudo-view images and obtain clean pseudo-images.

Specifically, we first optimize the 3DGS model in the early training stage to learn the basic 3D
structure, and then add pseudo-views in fixed steps. From each scene dataset, we compute the Nsparse
validation views that exhibit the greatest discrepancy from the Nsparse sparse inputs, ensuring that
the progressively generated pseudo-views contain more under-observed image priors information.
Furthermore, to constrain the difix model to generate content pertinent only to the current scene, we
select a reference image with a viewpoint similar to that of each newly generated viewpoint. Both
the reference and the Gaussian-rendered pseudo-image are input into the difix model for denoising,
producing clean pseudo-images, which are then added to the training set for 2D image augmentation.
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Figure 4: Qualitative comparisons on LLFF (the left three columns) and IBRNet (the right
two columns) datasets with three training views. The reconstruction of our method is more
accurate and exhibits finer details.

3.4 OVERALL PIPELINE

Loss function. The loss function consists of three parts (equation (7)): the original photometric loss
Lrgb(equation (8)), the global depth regularization loss Lglobal(equation (6)), and the instance-level
depth regularization loss Lobj (equation (5)). During training, we set β = 0.1, δ = 0.1, and λ = 0.2.

L = Lrgb + βLglobal + δLobj , (7)

Lrgb = L1(Î , I) + λLssim(Î , I). (8)

4 EXPERIMENTS

4.1 SETTINGS.

Table 1: Quantitative comparisons on the LLFF and IBRNet datasets with three training views.
Best results are in bold. We run our method 5 times and report the error bar in the appendix.

Method Approach
LLFF IBRNet

PSNR ↑ SSIM ↑ LPIPS ↓ AVG ↓ PSNR ↑ SSIM ↑ LPIPS ↓ AVG ↓

Mip-NeRF (Barron et al., 2021)

NeRF-based

14.62 0.351 0.495 0.246 15.83 0.406 0.488 0.223
RegNeRF (Niemeyer et al., 2022a) 19.08 0.587 0.336 0.149 19.05 0.542 0.377 0.152
FreeNeRF (Yang et al., 2023) 19.63 0.612 0.308 0.134 19.76 0.588 0.333 0.135
SparseNeRF (Wang et al., 2023a) 19.86 0.624 0.328 0.127 19.90 0.593 0.364 0.137
3DGS (Kerbl et al., 2023a)

3DGS-based

16.46 0.440 0.401 0.192 17.79 0.538 0.377 0.166
FSGS (Zhu et al., 2023) 20.43 0.682 0.248 - 19.84 0.648 0.306 0.130
DNGaussian (Li et al., 2024a) 19.12 0.591 0.294 0.132 19.01 0.616 0.374 0.151
SCGaussian (Peng et al., 2024) 20.41 0.705 0.218 0.105 21.59 0.731 0.233 0.097
DropGaussian (Park et al., 2025) 20.76 0.713 0.200 - - - - -
IPG-Rec (Ours) 21.44 0.731 0.183 0.078 22.14 0.700 0.205 0.091

Datasets and Metrics. We conduct our experiments on three datasets representing generic scenes
with complex textures: LLFF (Mildenhall et al., 2019), Tanks and Temples (T&T) (Knapitsch et al.,
2017), and IBRNet (Wang et al., 2021). The LLFF dataset is a forward-facing dataset that contains
eight complex real-world scenes and multiple irregular objects, where camera trajectories exhibit
limited variation. For LLFF and IBRNet dataset partitioning, we adopt a uniform sampling strategy.
Specifically, every 8th image is selected and assigned to the validation set. From the remaining
images, we again uniformly sample every 8th frame for the training set, while all remaining images
are allocated to the test set. Following (Peng et al., 2024; Li et al., 2024a), we use 9 scenes for
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evaluation. T&T is a large-scale dataset collected from challenging real-world environments, en-
compassing both indoor and outdoor scenes. We use 8 scenes for evaluation and follow the same
splitting protocol as LLFF. We report PSNR, SSIM, and LPIPS scores to evaluate our reconstruction
performance following previous works (Li et al., 2024a; Peng et al., 2024). Additionally, we also re-
port the geometric average (AVG) of MSE = 10−PSNR/10,

√
1− SSIM, and LPIPS as in (Niemeyer

et al., 2022a). The detailed settings of these three datasets are provided in A.1 of the Appendix.

Baselines. Following the prior works (Li et al., 2024a; Peng et al., 2024), we compare our
model against both NeRF-based and 3DGS-based few-shot NVS methods. We take current clas-
sic approaches like Mip-NeRF (Barron et al., 2021), RegNeRF (Niemeyer et al., 2022a), Reg-
NeRF (Niemeyer et al., 2022a), SparseNeRF (Wang et al., 2023a), 3DGS (Kerbl et al., 2023a),
FSGS (Zhu et al., 2023), DNGaussian (Li et al., 2024a), SCGaussian (Peng et al., 2024) and Drop-
Gaussian (Park et al., 2025) for comparison. We reproduce the source code of SCGaussian in LLFF
and T&T datasets.

Implementation Details. We utilize the pre-trained SAM ViT-B/16 model to segment the masks of
each image for instance-level depth regularization. For each scene, we train it for 10,000 iterations
to optimize the parameters of 3D Gaussians. We set the perturbation steps to 3000, 5000, 7000 to
generate pseudo views for both image and depth augmentation. All experiments are implemented
on an NVIDIA A800 GPU.

Table 2: Quantitative comparisons on the T&T dataset with 3 training views.

Method Approach PSNR ↑ SSIM ↑ LPIPS ↓
MipNeRF (Barron et al., 2021)

NeRF-based

12.57 0.241 0.623
RegNeRF (Niemeyer et al., 2022a) 13.12 0.268 0.618
FreeNeRF (Yang et al., 2023) 12.30 0.308 0.636
SparseNeRF (Wang et al., 2023a) 13.66 0.331 0.615
3DGS (Kerbl et al., 2023a)

3DGS-based

17.14 0.493 0.397
FSGS (Zhu et al., 2023) 20.01 0.652 0.323
DNGaussian (Li et al., 2024a) 18.59 0.573 0.437
SCGaussian (Peng et al., 2024) 20.98 0.703 0.303
IPG-Rec (Ours) 21.38 0.707 0.286

4.2 PERFORMANCE EVALUATION.

Results on LLFF, IBRNet and T&T Datasets. Following prior works (Park et al., 2025; Peng
et al., 2024; Li et al., 2024a), we employ the aforementioned split method to sample three images
for training. The quantitative results on three datasets with recent state-of-the-art (SOTA) methods
are summarized in Tables 1 and 2. All results demonstrate that the proposed IPG-Rec achieves
SOTA performance on most of the metrics across multiple real-world scenes. It is worth noting
that in LLFF and T&T datasets, which contain numerous small background objects and irregular
scene structures with substantial semantic variations among internal objects of scenes, our proposed
method achieves significant improvements across all metrics. As illustrated in Figure 2 and 4,
the reconstruction comparisons with top two SOTA approaches show that our approach accurately
reconstruct fine and sharp object boundaries embedded in complex backgrounds, such as the railings
of distant spiral staircases, the edges of tiny blades of grass, and the intricate structures of flower
stamens. The qualitative results of our method consistently surpass recent baselines and nearly
reproduce the ground-truth viewpoints. Together, these strong quantitative and qualitative results
demonstrate that our proposed instance-level depth regularization effectively guides 3D Gaussians to
learn fine-grained local geometry details. Moreover, the integration of unseen 2D image priors with
monocular-depth-based supervision provides complementary optimization, enabling 3D Gaussian
representations to capture high-fidelity geometry with latent cross-view semantic consistency. In
addition, we provide the comparisons between our IPG-Rec and the top two approaches Peng et al.
(2024); Li et al. (2024a) on each subset of the LLFF dataset in A.2 of the Appendix.

4.3 ABLATION STUDY
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PSNR: 23.203

Clean ViewPseudo ViewClean ViewPseudo View

Figure 5: The visualization of eliminating artifacts with a pre-trained difix model.

Table 3: Ablation studies on LLFF
Dataset. Bold font indicates the better
results.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Baseline 18.804 0.595 0.305
W/ scene-level depth 18.883 0.585 0.304
W/ instance-level depth 19.152 0.622 0.271
W/ progressive pesudo views 21.442 0.731 0.183

Table 4: Using different depth regularization for
sparse novel pose synthesis on LLFF dataset.

Method PSNR↑ SSIM↑ LPIPS↓
Our Backbone 20.406 0.712 0.213
Gaussian Rendered depth 20.145 0.646 0.297
Monocular depth (Depth Anything V2) 21.442 0.731 0.183

Rendered Depth Anything V2

Figure 6: Comparison of Depth Estimations.
The depth estimates from Depth Anything

V2 (Yang et al., 2024) serve as a more effective
optimization constraint due to their superior

smoothness and accuracy over rendered depth.

To evaluate the effectiveness of each individ-
ual strategy in the IPG-Rec algorithm, we con-
ducted ablation studies on the LLFF dataset,
with the results summarized in Table 3. Specif-
ically, we ablate the scene-level depth regular-
ization, the instance-level local depth regular-
ization, and the progressive 2D pseudo views
augmentation. On the one hand, integrating the
baseline with the instance-level depth regular-
ization strategy improved the PSNR by 0.079
and reduced the LPIPS by 0.001. On the other
hand, adding progressive pseudo views on top
of the baseline DNGaussian (Li et al., 2024a)
increased PSNR and SSIM by 0.348 and 0.027,
respectively, while decreasing LPIPS by 0.034, demonstrating that our pseudo-label generation strat-
egy significantly enhances novel view synthesis. Finally, combining scene-level and instance-level
depth regularization with progressive pseudo views resulted in improvements of 2.638, 0.136, and
0.122 in PSNR, SSIM, and LPIPS, respectively, indicating that these proposed strategies comple-
ment each other and enable IPG-Rec to achieve new state-of-the-art performance in novel view
synthesis.

Besides, on the LLFF dataset, we compared our backbone with the depth map supervised by Gaus-
sian rendering and directly with the depth extracted by the pre-trained, powerful depth estimation
model Depth Anything V2. The depth map from the Gaussian rendering is relatively poor. It can
be seen in Table 4 that Depth Anything V2 Yang et al. (2024) provides smoother and more accurate
depth estimation compared to Gaussian rendered depth, making it a more suitable constraint for
model optimization. The comparison between the two approaches is shown in Figure 6.

5 CONCLUSION

In this work, we propose IPG-Rec, a novel view synthesis algorithm for 3D scenes from sparse in-
put views. The method incorporates local instance-aware and global multi-view depth regularization
strategies, along with a one-step diffusion model that progressively supplements unseen view data.
IPG-Rec achieves new state-of-the-art performance on the task of sparse-view based novel view syn-
thesis, delivering superior results on popular benchmarks including LLFF Mildenhall et al. (2019),
IBRNet Wang et al. (2021), and T&T Knapitsch et al. (2017), with PSNR scores of 21.44, 22.14,
and 21.38, respectively. The approach enables high-fidelity, fine-grained rendering with multi-view
consistency in complex scenes while maintaining efficiency and strong generalization capability. It
effectively mitigates challenges associated with irregular object instances and intricate textures in
real-world sparse-view 3D reconstruction.

9
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6 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The implementation
details of IPG-Rec, including network architecture, training strategies, and optimization settings,
are provided in Section X of the main paper and further elaborated in the appendix. Complete
descriptions of the datasets (LLFF, IBRNet, etc.), data preprocessing steps, and the evaluation pro-
tocol are also included in the supplementary materials. To facilitate reproduction of our results,
we will release the anonymized source code, training scripts, and configuration files as part of the
supplementary submission. In addition, we provide proofs of the theoretical claims in the appendix
and ablation studies that validate the effectiveness of each component, including instance-level and
scene-level depth regularization. Together, these resources should allow researchers to fully repro-
duce and extend our results in sparse novel view synthesis.
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A APPENDIX

You may include other additional sections here.

A.1 BENCHMARK DATASETS

We evaluate our algorithm on three benchmark datasets: LLFF (Mildenhall et al., 2019), IBR-
Net (Wang et al., 2021), and Tanks and Temples (T&T) (Knapitsch et al., 2017). The LLFF dataset
consists of scenes such as Fern, Flower, Horns, Room, Leaves, Orchids, Trex, and Fortress (Milden-
hall et al., 2019). The IBRNet dataset includes scenes like Giraffe Plush, Yamaha Piano, Sony
Camera, Japanese Camellia, Scaled Model, Dumbbell Jumprope, Hat on Fur, Roses, and Plush
Toys (Wang et al., 2021). For both LLFF and IBRNet, every 8th image is held out for testing, and
three sparse views are uniformly sampled from the remaining images for training. The T&T dataset
contains a variety of indoor and outdoor complex scenes, including Ballroom, Barn, Church, Fam-
ily, Francis, Horse, Ignatius, and Museum (Knapitsch et al., 2017). The same training and testing
protocol is applied: every 8th image is reserved for testing, while three sparse views are uniformly
sampled from the rest for training. Quantitative results in terms of PSNR, SSIM, and LPIPS are
reported for all three datasets.

A.2 MORE EXPERIMENTAL DETAILS

The comparison of IPG-Rec and DNGaussian (Li et al., 2024a) across LLFF subcategories is pre-
sented in Table 5. IPG-Rec demonstrates particularly strong performance on “Flower,” “Fortress,”
and “Horns.” For example, on the “Fortress” scene, PSNR and SSIM improved by 5.740 and 0.405,
respectively. Across all subcategories, the average improvements in PSNR and SSIM were 2.638
and 0.136, respectively. Similarly, we report the performance of IPG-Rec and SCGaussian (Peng
et al., 2024) on the LLFF dataset, as shown in Table 6. For the Flower, Fortress, Horns, Room, and
Trex subsets, IPG-Rec achieves a PSNR improvement of more than 1.2 over SCGaussian. In terms
of SSIM, IPG-Rec shows a notable advantage on Horns and Trex, with gains of approximately 0.6.
Moreover, for these two subsets, our method reduces the LPIPS score by more than 0.03 compared
to SCGaussian.The proposed IPG-Rec algorithm exhibits strong robustness and generalization ca-
pability across different subcategories.

Table 5: Performance comparison of the proposed IPG-Rec and DNGaussian (Li et al., 2024a)
on the LLFF subcategories. Blue font indicates substantial improvement of the proposed IPG-
Rec.

Subcategory
DNGaussian IPG-Rec (Ours)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Fern 20.670 0.672 0.268 22.506 (+1.836) 0.749 (+0.077) 0.232 (-0.036)
Flower 19.438 0.584 0.299 22.781 (+3.343) 0.721 (+0.137) 0.209 (-0.090)
Fortress 20.335 0.441 0.380 26.075 (+5.740) 0.846 (+0.405) 0.130 (-0.250)
Horns 18.054 0.616 0.353 21.257 (+3.203) 0.768 (+0.152) 0.206 (-0.147)
Leaves 16.427 0.548 0.279 17.159 (+0.732) 0.535 (-0.013) 0.348 (+0.069)
Orchids 14.630 0.405 0.347 17.210 (+2.580) 0.558 (+0.153) 0.276 (-0.071)
Room 20.733 0.779 0.270 23.203 (+2.470) 0.852 (+0.073) 0.184 (-0.086)
Trex 20.144 0.715 0.242 21.347 (+1.203) 0.817 (+0.102) 0.185 (-0.057)

Average 18.804 0.595 0.305 21.442 (+2.638) 0.731 (+0.136) 0.221 (-0.084)

A.3 MORE DISCUSSION ON DEPTH REGULARIZATION

As shown in Figure 7, compared with DNGaussian (Li et al., 2024a), our proposed instance-level
local depth regularization captures sharp edges of irregular objects in complex textures and fine
background regions, enabling the recovery of high-fidelity object appearance and geometric struc-
ture.
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Table 6: Performance comparison of the proposed IPG-Rec and SCGaussian (Peng et al., 2024)
on the LLFF subcategories. Blue font indicates substantial improvement of the proposed IPG-
Rec over the SOTA method.

Subcategory
SCGaussian IPG-Rec (Ours)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Fern 22.131 0.733 0.191 22.506 (+0.375) 0.749 (+0.016) 0.232 (+0.041)
Flower 21.512 0.688 0.223 22.781 (+1.269) 0.721 (+0.033) 0.209 (-0.014)
Fortress 24.480 0.810 0.139 26.075 (+1.595) 0.846 (+0.036) 0.130 (-0.009)
Horns 19.337 0.709 0.246 21.257 (+1.920) 0.768 (+0.059) 0.206 (-0.040)
Leaves 17.625 0.624 0.271 17.159 (-0.466) 0.535 (-0.089) 0.348 (+0.077)
Orchids 16.490 0.530 0.256 17.210 (+0.720) 0.558 (+0.028) 0.276 (+0.020)
Room 21.560 0.849 0.157 23.203 (+1.643) 0.852 (+0.003) 0.184 (+0.027)
Trex 20.114 0.754 0.218 21.347 (+1.233) 0.817 (+0.063) 0.185 (-0.033)

Average 20.406 0.712 0.213 21.442 (+1.036) 0.731 (+0.019) 0.221 (+0.009)
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Figure 7: Comparison of Geometric Regularization Approaches. DNGaussian (Li et al., 2024a)
utilizes depth map patches to regularize the Gaussian field. In contrast, our method uses object-
level and global geometry supervision, resulting in cleaner edges and more coherence between input
views and synthesized novel views.
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