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Abstract

Accurate protein representations that integrate sequence and three-dimensional (3D) struc-
ture are critical to many biological and biomedical tasks. Most existing models either ignore
structure or combine it with sequence through a single, static fusion step. Here we present
FusionProt, a unified model that learns representations via iterative, bidirectional fusion be-
tween a protein language model and a structure encoder. A single learnable token serves as
a carrier, alternating between sequence attention and spatial message passing across layers.
FusionProt is evaluated on Enzyme Commission (EC), Gene Ontology (GO), and mutation
stability prediction tasks. It improves Fp.x by a median of +1.3 points (up to +2.0) across
EC and GO benchmarks, and boosts AUROC by +3.6 points over the strongest baseline
on mutation stability. Inference cost remains practical, with only ~ 2-5% runtime over-
head. Beyond state-of-the-art performance, we further demonstrate FusionProt’s practical
relevance through representative biological case studies, indicating that the model captures
biologically relevant features.

1 Introduction

Proteins are essential for biological processes and for understanding complex mechanisms in living organisms.
They comprise linear chains of amino acids that fold into a specific three-dimensional (3D) structure, which
underscores their functional diversity and dynamic behaviors (Zhang et al.;|2023b). An effective understand-
ing of proteins is essential for understanding disease mechanisms and synthetic biology and for advancing
drug development (Liu et al., 2024)).

Current methodologies for protein representation primarily emphasize the exploration of proteins’ one-
dimensional (1D) structures, specifically the relationships between amino acids. These approaches, such
as ProteinBERT (Brandes et al.| [2021) and ESM (Rives et all 2019; |Lin et al., 2023)), often utilize text-
based techniques and transformer architectures (Vaswani et al.,|2017)), which are trained on extensive protein
sequence datasets. These models take an amino acid sequence as input and typically produce protein repre-
sentations by averaging the representations of individual amino acids. However, this narrow focus on amino
acid sequences neglects crucial protein structure details, thereby limiting the effectiveness of these methods.

The intricate 3D structure of proteins is crucial, as the conformation plays a pivotal role in determining their
activities (Zhang et al.| |2023a). Proteins possess specific active sites for interactions with other molecules,
which are defined by the 3D arrangement of amino acids. This 3D structure determines the specificity and
affinity of binding interactions, aspects that a 1D representation cannot adequately capture (Kastritis &
Bonvin, 2013} |Yan et al., 2013). Furthermore, drug design relies on an understanding of 3D structures to
identify binding sites and find molecules that modulate protein function (Luo, 2022; |Liu et al., 2022)). One of
the state-of-the-art (SOTA) techniques today for 3D protein representation is GearNet (Zhang et al.l |2023b).
This approach converts the 3D structure of a protein into a graph that captures its biological characteristics.
Subsequently, graph neural network techniques (Kipf & Welling), 2017; [Schlichtkrull et al., 2017)) are applied
to this graph, facilitating the creation of comprehensive protein representations.

Recent research emphasizes the importance of comprehensive protein representation that includes both
1D and 3D structures to capture the protein’s functional and interactional properties accurately. ESM-
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GearNet (Zhang et al., [2023al) was one of the first approaches to integrate these modalities. Although the
study explored various fusion strategies, empirical results showed that the most effective method is using a
large protein language model (PLM) such as ESM (Lin et al.| [2023) to generate representations, which were
then used as context for a graph encoder like GearNet (Zhang et al. 2023b)). Other approaches, such as
SaProt (Su et al., |2024), leverage an AlphaFold-based model (van Kempen et al., 2022) to reduce the 3D
structure to tokens and train them along with amino acid tokens using a traditional PLM. However, these
approaches are limited as they reduce one modality into context for another model, which potentially leads
to the loss of critical structure information.

In this study, we introduce FusionProt (See Figure [1)), a novel approach designed to learn a unified rep-
resentation of the 1D and 3D structures of proteins simultaneously. Despite the vast number of proteins
in nature, the number of known 3D structures remains limited (Varadi et al., |2023). To address this, we
leverage an AlphaFold model (Jumper et al.| |2021)) for accurate protein structure predictions. We introduce
an innovative learnable fusion token that serves as an adaptive bridge, enabling an iterative exchange of
information between a PLM and the protein’s 3D structure graph. This token is integrated into the training
process of both modalities, enabling seamless propagation of information and facilitating comprehensive rep-
resentation through iterative learning cycles. In practice, this token is concatenated to the sequence, allowing
attention mechanisms to query the unique fusion token alongside the amino acids. This process extracts
and integrates valuable information, enhancing the learning of amino acid representations. Then, the fusion
token is incorporated as an additional node in the graph representing the protein’s 3D structure, connected
to all nodes. A graph encoder (i.e., a structure model) processes this graph, generating a new representation
for the fusion token, which is subsequently used in the PLM training over the amino acids. Through this
iterative process, the model representations are combined to form a refined protein representation.

Unlike prior models such as ESM-GearNet (Zhang et al., 2023a)), which perform static or one-shot fusion,
such as simple concatenation after independent encoding, FusionProt introduces a dynamic mechanism
where the fusion token continuously evolves through repeated interaction across layers. This design allows
sequence and structure modalities to co-adapt throughout training, resulting in richer, functionally informed
representations that better capture the complexity of protein behavior.

We perform an empirical evaluation over several protein tasks, spanning a broad spectrum of biological
domains, comparing numerous methods of protein representations and achieving SOTA performance across
various benchmarks, with statistical significance improvements. We present ablation tests to better study
the performance of the algorithm.

The contributions of this study are threefold: (1) We introduce FusionProt, a novel approach that learns a
unified representation for both the 1D and 3D structures of proteins simultaneously. Our main focus is on
the fusion of 1D and 3D models in an effective manner. Our method enhances the accuracy of capturing
functional and interactional properties of proteins, addressing limitations of previous methods that treated
these structures separately; (2) We propose a novel fusion architecture that utilizes a specialized learnable
fusion token, enabling an iterative exchange of information between a PLM and the protein’s 3D structure
graph. This token is integrated into the training process of both modalities, enabling seamless propagation
of information and facilitating comprehensive representation through iterative learning cycles. The iterative
process facilitates the exchange of contextually relevant structure and sequential features, improving the
model’s ability to capture both 1D and 3D protein characteristics; (3) We conduct an empirical evaluation
of our work over several protein tasks establishing SOTA results and presenting biological case studies that
further demonstrate the model’s strengths. Also, we contribute our code to the community El

Thttps://anonymous.4open.science/r/FusionProt-4554
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2 Related Work

2.1 Sequence-based Representation Learning

Proteins are comprised of sequences of amino acids, that establish a natural analogy to tokens in natural
language processing. Recently, the adoption of unsupervised deep learning techniques has become prevalent
in modeling protein sequence data.

The advent of Transformers (Vaswani et al. 2017) has led to the development of numerous PLMs such as
MSA Transformer (Rao et al., 2021), ProteinBERT (Brandes et al. |2021), ProteinLM (Xiao et al., 2021,
ProtBERT-BFD (Elnaggar et al., 2021)), ProtTrans (Elnaggar et al., [2022), ESM-1b (Rives et al.,[2019), and
ESM-2 (Lin et al., [2023)) which is considered as the SOTA PLM. These models were trained on data from
UniRef (Suzek et al. [2007) which contains hundreds of billions of protein sequences, via masked language
modeling (Devlin et al., 2019)).

A protein’s biological function hinges on its 3D native structure (Dill & MacCalluml [2012). However, many
PLMs do not explicitly encode protein 3D structures, which are pivotal in understanding protein functions.

In this work, we aim to overcome this limitation by enhancing a PLM through novel fusion algorithms
that integrate protein 3D structure models into the protein embedding. This approach seeks to capture
both sequential and structure attributes of proteins, thereby advancing the capabilities of existing PLMs in
biological research and applications.

2.2 Structure-based Representation Learning

The rising success of AlphaFold (Jumper et all 2021} [Senior et al., [2020) in predicting the 3D structure of
proteins has led to deeper insights into their functional roles. Moreover, the release of more than 200 million
protein structures in AlphaFoldDB (Véradi et all 2023} [2021)) has significantly advanced the development
of large-scale protein structure models (van der Weg et al., |2025).

Protein structures are commonly represented as graphs, where amino acids serve as the nodes. Therefore,
utilizing protein structure models on these graphs is a common practice. Models such as GVP
2021), CDConv and GearNet (Zhang et al., [2023b) have shown promising results, with
different learning techniques. GearNet, which incorporates a Multiview Contrastive pre-training algorithm,
is considered SOTA (Zhang et al.,|2023b) and has outperformed the IEConv model (Hermosilla et al., 2021)),
which proposed to apply a learnable kernel function on edge features. Furthermore, CDConv (Fan et al.,
has outperformed HoloProt (Somnath et al., [2022) and ProNet (Wang et all 2022a) in a recent

study (Liu et al} [2023).

Foldseek (van Kempen et al [2022) suggested a different approach, optimized for protein structural search,
which utilizes a VQ-VAE (van den Oord et al., 2017) to encode protein structures into informative tokens.
Then, SaProt integrates residue and structure tokens during training, derived from encoding
3D protein structures using Foldseek.

In this study, we enhance the structure-based representation learning approach by integrating sequential
information, thus capturing both sequential and structure attributes of proteins.

2.3 Joint Representation Learning

The integration of protein sequence-based models with protein structure models has gained popularity in
recent years (Quan et al| 2024 [Ko et all [2024; Wu et all [2022} [Li et al) [2024). Early efforts, such as
LM-GVP (Wang et al., [2022b) or MIF-ST (Yang et al., 2022), aimed to combine PLMs with Graph Neu-
ral Networks (GNNs) (Scarselli et al., 2009). More recently, ESM-GearNet (Zhang et al., [2023a) proposed
to incorporate sequential information into distinct residue-level models such as GearNet, GVP, and CD-
Conv (Zhang et al., [2023a). SaProt-GearNet also integrates GearNet and achieves similar
results. However, these approaches are limited by reducing one modality into context for another model,
potentially losing critical structure information.
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Figure 1: The FusionProt pre-training architecture. The model is trained on amino acid sequences and
their corresponding 3D structures, utilizing the SOTA AlphaFold2 (Jumper et al.| [2021)) for accurate protein
structure predictions. We introduce an innovative learnable fusion token that serves as an adaptive bridge,
enabling an iterative exchange of information between a PLM and the protein’s 3D structure graph. This
token is concatenated to the protein sequence, allowing attention mechanisms to query the unique fusion
token alongside the amino acids. Then, the fusion token is incorporated as an additional node in the
graph representing the protein’s 3D structure, connected to all nodes. A graph encoder (i.e., a structure
model) processes this graph, generating a new representation for the fusion token. This representation is
subsequently used in the PLM’s sequential layers. A learnable linear transformation is applied between each
sequential and structure layer pair to align and adapt their distinct modality spaces. Through this iterative
process, the model representations are combined to form a refined protein representation.

Unlike earlier approaches, we introduce a novel fusion architecture that simultaneously learns a unified
representation for both the 1D and 3D structures of proteins. To the best of our knowledge, no existing
PLMs are based on an iterative fusion of structure and sequential models simultaneously.

3 Methods

We introduce the FusionProt model (See Figure . Given a protein p = (S, R), which combines its amino
acid sequence S and its 3D structure R, FusionProt simultaneously learns a unified representation for both
the 1D and 3D structures of the protein. We propose a specialized learnable fusion token designed to enable
an iterative exchange of information between a PLM and the protein’s 3D structure graph.

In this section, we formally define sequential (1D) and structure (3D) protein layers, which are used in the
model as part of the protein representation learning, and present the FusionProt algorithm. Information
from both layers is fused simultaneously during learning throughout the proposed specialized fusion token.

3.1 Protein Sequential Layer
3.1.1 Protein Sequence

The simplest level of protein structure, known as the primary structure, is a 1D structure, consisting of a
linear sequence of amino acids, referred to as residues. The protein sequence exhibits similarities with natural
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language sequences, making the application of language models a common practice in this domain (Xiao et al.)
2021} Brandes et al.| 2021]).

Given a protein sequence S = [s1, S2, ..., S|, where n denotes the number of residues, the sequential model
aims to capture the essential features of the protein sequence and outputs a protein representation denoted
by 2z = [21, 22, ..., 2n] € R™*Pwhere D is the embedding dimension.

3.1.2 Sequential Layer Definition

We utilize ESM-2 (Lin et al.l |2023)) as our sequential model, leveraging its superior performance as a PLM.
Alternatively, other advanced sequential models (i.e., PLMs) can be used.

Within the context of a given sequential layer denoted by I, we denote z(!) as the output representation

of this layer, initialized with zl-(o) = Embedding(s;) € RP, where D denotes the embedding representation
dimension. The layer performs the following update:

20 = Attention (z%l_l), 251_1)7 e 27(1[_1))

where n denotes the number of residues in the protein, and Attention is a multi-head self-attention
layer (Vaswani et al., [2017).

3.2 Protein Structure Layer
3.2.1 Protein 3D Structure

A protein 3D structure is uniquely determined by its primary structure (amino acid sequences) (Dill & Mac-
Callum, 2012). There are only 20 standard residue (amino acid) types, each containing multiple components
connected to a central carbon atom known as alpha carbon. Following GearNet (Zhang et all [2023b), we
use only alpha carbons to represent the main backbone structure of each protein. Therefore, we define a
protein 3D structure as R = [r1, ra...r,] € R"*3, where r; represents the Cartesian coordinates of the i — th
alpha carbon atom of each amino acid, and n denotes the number of residues, which is the sequence length.

3.2.2 Protein Structure Graph

We represent proteins using a multi-relational residue graph G = (V, E, T)), where V is the set of residues, E
is the set of edges, and T is the edge types. The set of edges E consists of three directed edge types, namely
sequential edges, radius edges, and KNN edges:

Eseq = {(1,7) | 1,5 € V) |j —i] < dseq}
Eradivs = {(4,5) | 1,5 € V,|rj — ri| < dradius}
Exnn ={(i,7) | i,j € V,j € KNN(i)}
E = Egeq U Eradius U FxNN

where dgeq = 3 defines the sequential distance threshold, dradius = 10A = 1 [nm| defines the spatial dis-
tance threshold, and KNN(7) indicates the K-nearest neighbors (Peterson, 2009) of node ¢ with & = 10 (all
parameters were set as reported in GearNet (Zhang et al., [2023D).

3.2.3 Structure Layer Definition

We utilize GearNet (Zhang et al.l [2023b) as the structure model, leveraging its contextual understanding
of protein structures. Alternatively, other advanced structure models can be used in the algorithm (See

Section .

Given a protein’s 3D structure, R, we construct its corresponding protein structure graph G = (V, E,T)
(See Section [3.2.2). Then, the structure layer employs a relational message passing procedure, based on a
relational graph convolutional neural network (Schlichtkrull et al., [2017)).
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Within the context of a given structure layer denoted by I, we denote u") as the output representations
of this layer, initialized with ugo) = Embedding(v;) € RP, where v; € V, and D denotes the embedding

representation dimension. The layer performs the following update:

ugz) _ uglfl) g (ZteT W, Zje/\a(i) u§_171))

where AN (7) is the set of neighbors of 4 with edge type ¢, o(-) is a ReLU activation function, and the weight
matrix W; is learned per edge type ¢t. This approach allows the model to incorporate various types of
relational information, thereby enhancing its ability to learn comprehensive protein representations.

3.3 FusionProt
3.3.1 Fusion Design

We introduce a specialized learnable fusion token, designed to enable an iterative exchange of information
between a PLM and the protein’s 3D structure graph. This fusion token serves as a dynamic bridge, enabling
iterative information exchange between the two modalities. During training (See Figure 7 the specialized
fusion token, holds information from both models, the sequential and the structure. In practice, the amino
acids query the associated unique fusion token to extract and integrate valuable information for learning
amino acid representations via attention mechanisms. Additionally, the fusion token is incorporated as an
additional node in the graph representing the protein’s 3D structure. We connect it to all nodes, with a new
edge type, thus enabling the structure model to learn important features from the sequential model. Hence,
the token enables a novel fusion between both models, leading to an enhanced protein representation.

The choice to connect the fusion token to all nodes in the 3D graph is informed by principles from
GNNs (Scarselli et all 2009), where nodes exchange information to capture global and local dependencies.
The fusion token is not merely an addition to the sequence or structure; rather, it mediates the dynamic
interaction between the two modalities, ensuring iterative refinement of the protein representation. This
approach contrasts with previous methods that simply concatenate or independently process the sequence
and structure information. This novel fusion mechanism leverages multi-modal learning and graph-based
information propagation. By iteratively combining the 1D protein sequence and 3D structure features, Fu-
sionProt captures both local and global dependencies, enabling the model to learn richer and more holistic
representations of proteins.

3.3.2 Fusion Algorithm

We provide a formal description of the FusionProt algorithm in Algorithm

Given a protein p = (S, R), which combines its amino acid sequence S and its 3D structure R, FusionProt
concatenates the learnable fusion token to the sequence, resulting in a new sequence S’ = [s1, S2, ..., Sy, f]
with a length of n + 1. Then, it is used to initialize the sequential embedding layer:

Vs; € S+ 2(” = Embedding(s;)

Within the context of a given sequential layer denoted by [, the algorithm yields a sequence representation:

2 = Attention (zil_l), zél_l), 2T, z,(LlJ:ll))

where szlJ:l) is the intermediate representation of the fusion token. Then, the fusion token representation is

passed into the corresponding structure layer [, represented as node n + 1, while connecting to all nodes in
the 3D structure graph, yielding a structure representation:

l -1 1—1
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Algorithm 1 FusionProt Algorithm

Input: Protein p = (S, R) with sequence S = [s1, ..., 8,], and 3D structure R = [rq,...,7,] € R"*3, Sequen-
tial encoder with L; layers, Structure encoder Ly layers.
Output: Unified protein representation h
: Create a learnable fusion token s,41 = f
: Augment sequence: S’ = [s1, ..., Sn, Sn+1]
. Initialize sequential embeddings: zi(o) = Embedding(s;) Vi € [1,...,n + 1]
: Construct graph G = (V, E,T) from R
: Add node v,41 to G, connect v, 41 <> v; with edge type t5 Vi € [1,...,n]
: Set ul(-o) = Embedding(v;) for all v; € V
: for [ =1 to Ly do
for j =1to L1 + Lo do
2W) = Attention(z%lrl), oy 2dT, zr(llj_zl))
end for
uglll ) = Linearl(zgi)l)
(1-1)

Update node v, 41 in graph G with u,,,

ugl) = Ugl_l) +o (ZteT Wi ZjENt(i) u§l—1)) Vui €V

15: zflli)l = Linear) (ugll)

16: end for
17: Concatenate final embeddings: h = [45}’, ugLﬁ)]
18: return h

© N T W N e

e el e
L i

where u{'7}) = Linear, (zfj;l”), T =TU{t;}, Niy,(n+1) =V, and Vi € [1,...,n] : Ny, (i) = {n + 1}, as
we connected the fusion token to all residues in the protein structure graph with a new type of edge ¢; (in
both directions). To bridge the gap between the sequential and structure representation space, we utilize an
affine transformation Linear; (a linear layer) per each structure layer [ to project these representations into
the same space. Subsequently, we set the fusion token representation ugll as the input for the following

sequential layer [ 4 1, resulting in:

zfﬁ_l = Lineary (uﬁll)
where Linear; is the affine transformation in the opposite direction (i.e., structure to sequential space or
vice versa).

The protein representation undergoes transformations across the structure and sequential layers, where L,
and Lo are the number of sequential and structure layers, respectively, and L1 > Lo (note that L; need not
be equal to Ly). Our aim is to uniformly integrate 3D structure information across the L; sequential and
L5 structure layers. Therefore, the fusion token is passed after L, + Ly sequential layers into the structure
model. Then, the fusion token is passed back into the sequential model after every structure layer.

Lastly, the final hidden states of both the sequential and structure layers are concatenated to form the final
protein output representation, which is:

h— {Z@l),uwz)]

3.4 Pre-training Objective

Following GearNet (Zhang et al., |2023b)) and ESM-GearNet (Zhang et al., [2023a)), we use Multiview Con-
trastive learning as our pre-training objective, for a fair comparison. Other pre-training algorithms could
also be applied. We compare different pre-training algorithms in Section [5.3

The Multiview Contrastive objective is to preserve the similarity between correlated protein subcompo-
nents when mapped to a lower-dimensional latent space. Therefore, for a protein structure graph, we ran-
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domly select consecutive subsequences and apply random edge masking to hide 15% of edges in the protein
graph, generating diverse views. Then, we align their representations in the latent space with an InfoNCE
loss (van den Oord et al., [2018]).

4 Empirical Results

In this section, we present our empirical results. For each task, we report the mean and standard deviation
of FusionProt’s performance over five independent fine-tuning runs (with different random seeds) to ensure
reproducibility. Additionally, we validate the statistical significance of performance differences, using a two-
tailed paired t-test with a 95% confidence level (p < 0.05), comparing observations from the tested models.
The normality of the paired differences was confirmed using the Shapiro-Wilk test (Shapiro & Wilk] |1965]).
Significant results are marked with an asterisk (*) in the tables.

Finally, we compute Cohen’s d effect sizes (Cohenl |1969) to quantify the magnitude of FusionProt’s improve-
ments over baselines on each task. We observe large effects (d > 0.8) across all tasks, indicating that the
improvements are not only statistically significant but also practically meaningful.

In Supplementary Section we outline our empirical setting, including the pre-training dataset, task
details, baselines, implementation details, and a computational complexity analysis.

Table 1: Evaluation results on EC and GO prediction under various pre-trained baseline models. “PLM”
and “Structure Info.” indicate the usage of protein language models and structure information in the model,
respectively. The Fi,.x score is the evaluation metric. Statistically significant results (p < 0.05) using a
paired t-test across proteins in the test set are marked with an asterisk (*). For FusionProt, we report
the mean and standard deviation over 5 independent fine-tuning runs (different seeds; EC: n = 1604, GO:
n = 3350). The best result is highlighted in bold.

Method PLM Stril:l(t:;)ure EC GO-BP GO-MF GO-CC
' Fmax Fmax Fmax Fmax
ProtBERT-BFD (Elnaggar et al.|2021) v/ X 0.838 0.279 0.456 0.408
DeepFRI (Gligorijevic et al.|[2021) v X 0.631 0.399 0.465 0.460
ESM-1b (Rives et al.|[2019 v X 0.859 0.320 0.661 0.392
ESM-2 (Lin et al.|[2023 v X 0.877 0.345 0.668 0.411
GVP dJing et al.| [2021) X v 0.886 0.495 0.672 0.420
CDConv (Fan et al.|[2023 X v 0.820 0.453 0.654 0.479
GearNet (Zhang et al.|[2023b X v 0.871 0.481 0.650 0.476
MIF-ST (]Yang et al.| [2022) v v 0.803 0.239 0.627 0.322
ESM-GearNet (Zhang et al.|[2023a) v v 0.886 0.512 0.670 0.495
SaProt (Su et al.|[2024) v v 0.884 0.486 0.678 0.479
SaProt-GearNet (Su et al.|[2024) v v 0.886 0.512 0.672 0.504
FusionProt v v 0.904*+0.003 0.524*+0.004 0.689*+0.002 0.518*+0.004

4.1 Task 1: EC Number Prediction

In Table [T we compared the performance of FusionProt with eleven baseline methods on the EC number
prediction task. In particular, FusionProt significantly outperformed all baseline methods, achieving the
highest Fihax score.

PLMs such as ProtBERT-BFD (Elnaggar et al., [2021) or ESM-2 (Lin et al., [2023), which rely solely on
sequence data, produced substantially lower F,.x scores, compared to FusionProt. This highlights the
benefit of incorporating 3D structure information into representation learning.

Similarly, FusionProt, which leverages both structure and sequential information, performed better than
SOTA structure models such as GearNet (Zhang et al., [2023b) or CDConv (Fan et al., [2023), which trained
only on 3D structure data. This indicates that while structure models are strong, they are not sufficient alone,
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as they require PLMs for optimal performance, probably due to their effective self-attention layers (Vaswani
et al., 2017)).

While models such as MIF-ST (Yang et al., 2022)), ESM-GearNet (Zhang et al., 2023a)), and SaProt-
GearNet (Su et al., [2024)) also attempt to utilize both types of information, they reduce one modality into a
context for another model, leading to a loss of critical structure information. In addition, the importance of
the fusion technique is emphasized by the significant underperformance of MIF-ST compared to other fusion
models. Similarly to ESM-GearNet, MIF-ST uses outputs from a pre-trained sequence-only PLM as input
to a structure model.

By integrating 1D and 3D protein structure information synergistically, FusionProt attempts to capture
subtle structure features that influence enzyme specificity and activity, which are crucial for EC prediction.
This performance improvement is essential for real-world applications, such as the diagnosis of enzyme
deficiency-related diseases (Li et al., [2017)).

4.2 Task 2: GO Term Prediction

Table [I] presents the results of the GO term prediction tasks compared to eleven baseline methods, including
PLMs, structure models, and ensemble models. FusionProt showed strong performance across the board,
achieving the highest Fi,ax scores in all tasks, with a statistical significance.

The results demonstrate that sequential or structure information alone is insufficient, similarly to the EC
prediction task (See Section [4.1)). This indicates that the novel fusion of FusionProt is critical for achieving
superior performance.

In the GO-BP task, which involves predicting a protein’s role in biological processes, FusionProt achieves
an Fiax score of 0.524, significantly outperforming the next-best method. Biological processes often rely
on long-range structural interactions and cooperative protein functions, which makes this task particularly
sensitive to accurate 3D structure representations. The substantial performance gap between SaProt and
SaProt-GearNet further emphasizes the critical role of structure in this setting, a factor that FusionProt
leverages more effectively through early integration.

In the GO-CC task, which predicts the cellular component of proteins, FusionProt achieves an Fy,,, of 0.518,
outperforming all baselines including ESM-GearNet (Zhang et al.l 2023a)), probably due to the more direct
connection between 3D structure characteristics and subcellular localization (Gillani & Pollastri, [2024)). The
prediction of cellular components is strongly based on the spatial organization of proteins within the cell,
which is well represented by detailed 3D structures (Song et al., [2022).

This reliance on structural information benefits models such as CDConv (Fan et al., [2023), although it
exhibits weaker performance in EC prediction. In contrast, predicting molecular functions involves complex
interactions and dynamic changes that are less directly captured by 3D structures (Sarag et al. 2010),
resulting in a comparatively smaller performance gap than in the other tasks.

4.3 Task 3: Mutation Stability Prediction

Tablereports the results for the Mutation stability prediction (MSP) task, which evaluates a model’s ability
to assess the effect of amino acid substitutions on protein stability, a critical problem in protein engineering,
variant effect prediction, and drug design.

Following the evaluation protocol of ESM-GearNet (Zhang et all 2023a)), we compare FusionProt on the
MSP task against the SOTA structure-based method for this task, GVP (Jing et all [2021]) and the joint
sequence-structure baseline ESM-GearNet (Zhang et al., [2023a). Sequence-only PLMs do not take structural
inputs and therefore cannot address structure-dependent tasks such as MSP (Zhang et al.| [2023a).

FusionProt achieves the highest AUROC among all evaluated methods, reaching 0.745 with statistical signif-
icance (p < 0.05), outperforming both structure-aware (GVP) and sequence-structure fused (ESM-GearNet)
baselines. Notably, FusionProt improves upon ESM-GearNet by approximately 24.37%, and surpasses the
current SOTA GVP by 5.1%. This highlights the effectiveness of our iterative fusion mechanism in pre-
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serving and integrating long-range sequence and structural dependencies, which are especially important for
modeling stability changes that may arise from distal or context-dependent mutations.

Compared to GVP, which is limited to local spatial interactions, and ESM-GearNet, which performs shallow
one-shot fusion, FusionProt allows multi-layer cross-modal refinement via a learnable token and bidirectional
interaction path. This enables a more expressive and biologically grounded representation, particularly for
capturing distributed compensatory effects in allosteric regions, commonly overlooked in residue-centric
models.

Table 2: Evaluation results on MSP prediction across different models. “PLM” and “Structure” indicate the
usage of protein language models and structure information in the model, respectively. The AUROC score is
used as the evaluation metric. Statistically significant results (p < 0.05) using a paired t-test across proteins
in the test set are marked with an asterisk (*). For FusionProt, we report the mean and standard deviation
over 5 independent fine-tuning runs (different seeds; MSP: n = 347). The best result is highlighted in bold.

Method PLM Structure MSP (AUROC)
ESM-GearNet (Zhang et al., 2023a) v/ v 0.599

GVP (Jing et all, [2021) (SOTA) X v 0.709
FusionProt v v 0.745*£0.006

5 Ablation and Analysis

We conduct a series of ablation and diagnostic studies to evaluate the key design decisions behind FusionProt.
These include varying the fusion-injection frequency, comparing different structure encoders, and testing
alternative pre-training objectives. We also assess the model’s robustness to noise in predicted 3D structures.
Finally, we present biological case studies that highlight FusionProt’s practical utility in real-world tasks such
as drug discovery and disease research.

5.1 Ablation on Fusion-Injection Frequency

We aimed to determine the optimal number of fusion injections in our FusionProt model, which fused
information between the structure and sequential models using a specialized learnable fusion token. In
our standard method, given a sequential model with Ly layers and a structure model with Ly layers, where
Ly > Lo, the fusion token is passed after L; + Lo sequential layers into the structure model (See Section|3.3.2)).
Then, the fusion token is passed back into the sequential model after every structure layer. In this ablation,
we experimented with different injection frequencies: half the regular number (every 2 - (L; + L) sequential
layers and two structure layers) and one-third the regular number (every 3 - (L; + Ls) sequential layers
and three structure layers). The results in Table [3| indicate that the standard fusion injection frequency
consistently provides the best performance across tasks. Reducing fusion injections negatively impacted
performance, highlighting the importance of the fusion token. By decreasing the frequency of injections, the
model’s ability to integrate these two types of information is compromised, leading to suboptimal predictions.

Table 3: Ablation test for the number of fusion injections in FusionProt. Statistically significant results with
p < 0.05 using a t-test are marked with an asterisk (*). The best result is highlighted in bold.

Number of Fusion EC GO-BP GO-MF GO-CC

Fmax Fmax Fmax Fmax
Few (One-Third) 0.876 0.511 0.659 0.498
Medium (Half) 0.882 0.514 0.669 0.504
Full (Standard) 0.904" 0.524" 0.689" 0.518"
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5.2 3D Structure Models Comparison

FusionProt is designed to be flexible and modular, allowing the structure encoder component to be replaced
with alternative architectures. The ablation study for various SOTA 3D structure models is detailed in
Table We evaluated several structure models, including GearNet (Zhang et al., 2023b)), GVP (Jing
et al., 2021), and CDConv (Fan et al.l [2023). For each structure model, we applied our fusion technique
and compared its performance with FusionProt, which utilizes the GearNet (Zhang et al., [2023b) model
(See Section [3.2.3). The GVP model replaces standard MLPs (Murtaghl [1991) in GNN (Scarselli et al.
2009) layers with generalized vector perceptrons, which handle scalar and geometric features as vectors that
adapt to spatial rotations. In contrast, CDConv utilizes GearNet’s multi-type message passing to capture
sequential and spatial interactions among residues. For consistency, we follow the model selection protocol
of ESM-GearNet (Zhang et al., 2023a)). Our results demonstrate that the FusionProt model, utilizing the
GearNet structure, consistently achieves superior performance compared to other models. This aligns with
previous studies (Zhang et al., [2023al), which have also established GearNet as a SOTA approach for joint
representation learning.

Table 4: Ablation test for various structure models used by FusionProt. For all models, the PLM is the
ESM-2 (Lin et al.l |2023)). Statistically significant results with p < 0.05 using a t-test are marked with an
asterisk (*). The best result is highlighted in bold.

EC GO-BP GO-MF GO-CC

Method

Fmax Fmax Fmax Fmax
FusionProt (GVP) 0.889 0.507 0.677 0.462
FusionProt (CDConv)  0.837 0.478 0.665 0.497

FusionProt (GearNet) 0.904"  0.524" 0.689" 0.518"

5.3 Pre-training Algorithm Ablation

Table |5 compares FusionProt, trained with Multiview Contrastive learning (Section , with other pre-
training algorithms. First, we tested self-prediction methods (Zhang et al. [2023b), which aim to predict one
part of the protein given the remaining context. Specifically, we utilized the Residue Type Prediction method,
a self-supervised task that performs masked prediction on individual residues. Next, we evaluated diffusion-
based methods (Zhang et al., [2023c)), inspired by the success of diffusion models in capturing the relationship
between sequences and structures. During training, noise levels are added to structures and sequences, with
higher noise levels indicating more distortion. We tested the SiamDiff objective, which refines structures
via torsional adjustments and noise reduction. The results show that the Multiview Contrastive approach
outperformed both Residue Type Prediction (using only sequence data) and SiamDiff (which integrates
sequence and structure separately). Unlike methods that treat sequence and structure separately, Multiview
Contrast integrates both, aligning subsequence representations from the same protein to capture interrelated
sequences and structure patterns.

Table 5: Ablation test for the FusionProt model with different pre-training algorithms. Statistically signif-
icant results with p < 0.05 using a t-test are marked with an asterisk (*). The best result is highlighted in
bold.

EC GO-BP GO-MF GO-CC

Method

Fmax Fmax Fmax Fmax
Residue Type 0.890 0.524 0.673 0.506
SiamDiff 0.874 0.509 0.645 0.512

Multiview Contrast 0.904*  0.524* 0.689* 0.518*
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5.4 Robustness to Noise in 3D Structures

Robustness in protein modeling often refers to a model’s ability to tolerate minor perturbations (Cho et al.
2024)—an important property given that predicted structures (e.g., from AlphaFold2) may contain local
inaccuracies, especially in flexible regions. To evaluate FusionProt’s robustness to such noise, we injected
Gaussian perturbations into the alpha-carbon backbone coordinates of AlphaFold2-predicted structures. The
noise was zero-mean, with standard deviations ranging from 0.1 A to 1.5 A, simulating local structure devia-
tions commonly observed in predicted or low-confidence regions. FusionProt maintained stable performance
up to a noise level of 0.9 A, with only a modest drop of 3-5 Finax points observed in the EC and GO-BP
tasks beyond this threshold. These results demonstrate that FusionProt is resilient to realistic structure
noise and remains effective even when relying on imperfect 3D structures, as commonly encountered in
high-throughput or large-scale prediction settings.

5.5 Biological Case Studies

FusionProt consistently outperforms SOTA baselines across all downstream tasks (Table [1} Table . When
such performance gains are driven by biologically meaningful inputs, such as detailed 3D structural features,
they can indicate that the model is capturing relationships of functional relevance.

To better understand the nature of these improved learned protein representations, we evaluated a model’s
ability to predict EC numbers, as outlined in Section [A-1.2] using pre-trained representations without any
fine-tuning. This approach enables an assessment of the inherent quality of the learned embeddings, inde-
pendent of task-specific training. We then compared FusionProt’s predictions with those of ESM-GearNet,
focusing on the cases with the largest discrepancies.

In Supplementary Table [f] we present these proteins into distinct biological groups based on shared mecha-
nistic characteristics. We focus on two common mechanisms and provide a representative example for each
group (See Supplementary Section [A.2)).

6 Conclusions

In this paper, we introduced FusionProt, a novel architecture designed to learn a unified representation of
the 1D and 3D structures of proteins simultaneously. FusionProt incorporates a specialized learnable fusion
token that enables an iterative exchange of information between a PLM and the protein’s 3D structure
graph, facilitating a more comprehensive representation through iterative learning cycles between a PLM
and a structure model.

We propose a novel fusion algorithm that enables effective propagation of information between a PLM and
a structure model. This fusion technique outperforms previous methods, which often convert one modality
into context for another model, potentially leading to the loss of crucial structural information.

We evaluated our proposed method on several protein-level tasks to assess its effectiveness in protein rep-
resentation learning. These tasks include protein annotations, which are essential for real-world medical
applications. FusionProt significantly outperformed all baseline methods, including SOTA models, across all
tasks, with statistically significant improvements.

We perform ablation tests to examine the contribution of our novel approach of learning unified represen-
tations of both 1D and 3D structures of proteins simultaneously. The tests confirm that our approach
significantly enhances FusionProt’s ability to capture the intricate relationships between protein sequences
and their 3D structures, leading to improved performance across various real-world tasks.

Although the proposed fusion token mechanism is tailored for bidirectional interaction between sequence
and structure modalities, it is conceptually extensible to more than two information channels. For example,
additional modalities such as ligand descriptors, protein dynamics, or expression context could, in principle,
be integrated into the framework by assigning separate fusion tokens or adopting a shared token passed
through each encoder block in sequence. We leave the systematic evaluation of such multi-modal extensions
to future work.
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A Appendix

A.1 Empirical Evaluation

In this section, we outline our empirical setting. We performed analysis on several downstream tasks,
demonstrating the value of the representation we provide in real-world bioinformatics tasks.

A.1.1 Protein Structure Dataset

To reduce reliance on the availability and quality of external structural data, we leverage AlphaFold2 (Jumper
et all 2021), a well-known SOTA model, which enables us to generate 3D structures and eliminate the
need for external sources. Furthermore, many recent high-performing methods, such as SaProt (Su et al.
2024) and ESM-GearNet (Zhang et al., |2023al), also used it for structure generation, ensuring consistency
in comparisons. Therefore, we use the AlphaFold protein structure database (Varadi et al. 2023; [2021)
for pre-training, which contains 805K protein structures predicted by AlphaFold2 (Jumper et all 2021)).
Alternatively, other models, such as ESMFold (Lin et al., [2022)), can be applied. Since AlphaFold predictions
may include local inaccuracies, we assess FusionProt’s robustness to structure noise in Section

A.1.2 Tasks

We evaluated our proposed method on several common downstream tasks, selected based on SOTA works of
GearNet (Zhang et al.| [2023a)) and SaProt (Su et al.,2024), to assess its effectiveness for protein representation
learning. These tasks include protein annotations such as Enzyme Commission (EC) prediction, Gene
Ontology (GO) prediction, and Mutation Stability Prediction. The GO prediction task includes three sub-
tasks: predicting a protein’s biological processes (BP), molecular functions (MF), and cellular components

(CC).

To ensure the validity of our results, all downstream task splits are constructed so that sequences in one
set share no more than 30% Needleman—Wunsch sequence identity with any sequence in the other sets. In
addition, the hold-out sets for each task share no more than 30% identity with any protein in the AlphaFold2
pre-training corpus [Jumper et al.| (2021]).

Enzyme Commission Number Prediction Annotation of enzyme function has a wide range of real-
world applications, including metagenomics, diagnosis of enzyme-deficiency-related diseases (Li et al., [2017)),
and cellular metabolism (Ryu et al.l [2019). This task focuses on determining enzyme function by predicting
EC numbers, which characterize a protein’s catalytic activity in biochemical reactions. It involves 538 binary
classification problems derived from the third and fourth levels of the EC classification tree (Webbl (1992)).
We used dataset splits from DeepFRI (Gligorijevi¢ et al., [2021]), and the evaluation metric is the Fy.x score.

Gene Ontology Term Prediction The GO knowledgebase (Harris et al. |2004) provides a set of struc-
tured and controlled terms describing gene products and their molecular properties. Many real-world bi-
ological applications, such as predictions of protein-protein interactions, rely on GO term-protein annota-
tions (Pesquita et all 2007 Jiang & Conrath| [1997)). This benchmark includes three tasks: predicting a
protein’s biological processes, molecular functions, and cellular components. Each task involves multiple
binary classification problems based on GO term annotations. We used dataset splits from DeepFRI (Glig-
orijevié et al., [2021)), and the evaluation metric is the Fj,.x score.

Mutation Stability Prediction Mutation stability prediction (MSP) is crucial in bioinformatics for
understanding how genetic mutations affect protein stability, which plays a key role in disease mechanisms
and drug development. This task aims to predict whether a mutation enhances a protein complex’s stability.
We utilize the datasets and hyperparameters from ESM-GearNet (Zhang et al., |2023al). Evaluation is based
on AUROC.
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A.1.3 Baselines

We compare with numerous baseline models, including PLMs and structure models. We used ProtBERT-
BFD (Elnaggar et al.,|2021)), DeepFRI (Gligorijevié et al. 2021), ESM-1b (Rives et al.,|2019), and ESM-2 (Lin
et al., [2023) as SOTA PLM sequential models. GearNet (Zhang et al.l [2023b), GVP (Jing et al., 2021), and
CDConv (Fan et al., |2023) are used as SOTA structure models. Furthermore, we include MIF-ST (Yang
et al., [2022), ESM-GearNet (Zhang et al., [2023a), SaProt (Su et all 2024) and SaProt-GearNet (Su et al.,
2024) as SOTA in joint learning of structure models with sequential models. For consistency, when using
ESM-2 we used the ESM-2-650M variant (Lin et al., 2023). In addition, GearNet (Zhang et al., |2023b),
ESM-GearNet (Zhang et all [2023a)), and FusionProt are pre-trained with the same objective, which is the
Multiview Contrast (Zhang et al., [2023b) objective, as prior work showed its superior performance.

A.1.4 Implementation Details

Pre-Training Phase We follow ESM-GearNet|Zhang et al.|(2023al) in adopting the same training objective
and model selection strategy. Our model uses a pre-trained ESM-2-650M |Lin et al.| (2023) as the base PLM,
with 33 layers (L; = 33), and GearNet Zhang et al.| (2023b)) with 6 layers (Ly = 6) and 512 hidden dimensions
as the structure encoder. The embedding dimension D is set to 1280. Multiview Contrast [Zhang et al.
(2023b)) is used as the pre-training objective. Hyperparameters were tuned using the same search procedure
and ranges reported in ESM-2 |Lin et al. (2023) and ESM-GearNet |Zhang et al.| (2023a)), with the best
configuration selected based on validation performance. For FusionProt, this configuration corresponded to
training for 50 epochs with a learning rate of 2e-4 and a global batch size of 256 proteins. To accommodate
long sequences, inputs are truncated to a maximum of 1,024 tokens. All implementations use the TorchDrug
library.

Fine-Tuning Phase During inference, we incorporate task-specific classification heads to generate predic-
tions for each downstream task. Following the protocol of the recent SOTA model SaProt [Su et al.| (2024),
we evaluated our model and baselines under a consistent hyperparameter tuning procedure to ensure fair
comparison. For all methods, we performed tuning within the hyperparameter ranges reported in SaProt |Su
et al.| (2024), with the best configuration for each model selected based on validation performance. We
use AdamW with 5; = 0.9 and 2 = 0.98, treating learning rate, weight decay, and batch size as tunable;
default initial values and exact ranges are provided in our GitHub repository. All models were trained
to convergence, and the final checkpoint was chosen by the highest validation score (task-specific primary
metric).

A.1.5 Computational Complexity

FusionProt was trained using 4x NVIDIA A100 80GB GPUs over 48 hours, totaling 192 GPU hours. It
retains the underlying architecture of the base sequence and structure encoders (e.g., ESM-2 and GearNet),
applying each layer only once, similar to prior baselines such as ESM-GearNet (Zhang et all |2023a). The
proposed fusion mechanism introduces only lightweight additions and arithmetic operations via a token
exchange module between encoders, contributing a bounded O(1) overhead per layer. At inference time,
FusionProt incurs a marginal runtime increase of approximately 2-5% relative to SOTA baselines, with
latency rising from approximately 0.012 seconds to 0.014 seconds per 1,000 residues. Consequently, the
overall computational complexity of FusionProt remains comparable to existing methods in both theoretical
and empirical terms.

A.2 Biological Insights

FusionProt consistently outperforms SOTA baselines across all downstream tasks (Table [1} Table . When
such performance gains are driven by biologically meaningful inputs, such as detailed 3D structural features,
they can indicate that the model is capturing relationships of functional relevance. However, we note that one
must avoid conflating improved prediction with causation: a model’s ability to predict biological outcomes
with more precision does not in itself support causal inferences. Nevertheless, significant increases in specific
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classes of predictions can provide valuable hints that frame hypotheses, guide experimental questions, and
motivate follow-up studies.

For FusionProt, the largest improvements are often observed in proteins whose function, stability, or in-
teractions depend strongly on complex structural organization or long-range spatial effects. In contrast to
methods such as ESM-GearNet (Zhang et al., [2023a)) or SaProt 2024), which integrate sequence
and structure in a single pass, FusionProt employs an iterative fusion token mechanism that enables multi-
ple rounds of bidirectional information exchange between sequence and structure encoders. This repeated
refinement allows the model to amplify subtle, spatially localized features that might otherwise be diluted
in one-shot fusion.

To better understand the nature of these improved learned protein representations, we evaluated a model’s
ability to predict EC numbers, as outlined in Section using pre-trained representations without any
fine-tuning. This approach enables an assessment of the inherent quality of the learned embeddings, inde-
pendent of task-specific training. We then compared FusionProt’s predictions with those of ESM-GearNet,
focusing on the cases with the largest discrepancies.

We then organized these proteins into distinct biological groups based on shared mechanistic characteristics.

We focus on two common mechanisms (Table @ and provide a representative example for each group.

Table 6: Mechanisms highlighted by our case studies, with generalizable structural signals, a representative
example, and EC-probe confidence.

Biological Insight / structural signal Example protein Confidence
mechanism improvement
Assembly interface Interface fingerprint at subunit contacts RNAP w-3" interface 0.90 vs 0.21

(shape/electrostatics /hydrophobicity);
gains when function depends on qua-
ternary context rather than active-site
chemistry.
Loop-gated pocket Dynamic loops that gate ligand/catalytic D-Ala-D-Ala ligase 0.88 vs 0.62
sites; loop residues occupy broader allowed (ATP-grasp)
(¢, ) basins (flexibility) supporting access
and specificity.

Figure 2: DNA-directed RNA polymerase highlighting the w—{3’ assembly interface (w in magenta, 5’ in light
green) (Kurkela et all 2021). Although w is small and poorly conserved, it is essential for recruiting and
stabilizing 5’ during holoenzyme assembly. FusionProt captured this interface-specific structural fingerprint
and classified the correct complex EC labels with high confidence, while ESM-GearNet failed.
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Structural subunits for macromolecular assembly. The bacterial RNA polymerase w subunit (Fig-
ure [2]) is small and poorly conserved, yet plays a key structural role in holoenzyme assembly by recruiting
and stabilizing the 8’ subunit (Mathew & Chatterji, [2006). Its short length and weak sequence signal make
it difficult for sequence-only models to classify correctly. FusionProt’s iterative sequence-structure fusion
appears to preserve features on the 8’ contact surface that are tied to assembly and stability, while one-pass
fusion may reduce such localized signals. Consistent with this interpretation, FusionProt assigned the cor-
rect complex-level EC labels with high confidence (mean of 0.90), while the baseline ESM-GearNet
did not (mean of 0.21). Because w is noncatalytic and the EC number reflects holoenzyme
activity, we hypothesize that FusionProt recognizes the context of the quaternary structure, specifically an
interface-centric fingerprint of local shape, charge, and hydrophobic patterning at the w—/’ surface, rather
than active-site chemistry. Figure 2 highlights this interface (magenta: w; light green: '), where the model
appears to localize signal more strongly than the baseline. This implies that weakening these interface
features would reduce assembly propensity and lower model confidence, providing a concrete avenue for
validation.

Figure 3: D-alanine-D-alanine ligase. Left: 3D structure showing the ATP-binding cleft and the surrounding
pocket-adjacent loops. Right: Ramachandran plot (Saleem et al) [2021)) of the dihedral angles (¢ and
1 angles) of backbone for the same protein; shaded contours denote sterically allowed conformations. The
broader spread within allowed basins is characteristic of flexible loop regions that gate the pocket, supporting
our interpretation that FusionProt captures this loop-centric fingerprint and yields higher EC prediction
confidence than ESM-GearNet.

Conserved ATP-dependent peptide ligases. D-alanine-D-alanine ligase (Figure [3) is a well-
characterized member of the ATPgrasp enzyme superfamily, which catalyzes the formation of the D-Ala-
D-Ala dipeptide, an essential step in bacterial peptidoglycan biosynthesis. Its conserved 3D fold encloses
an ATP-binding site and supports relatively simple, well-understood catalytic chemistry. Both FusionProt
and ESM-GearNet correctly predicted its EC classes, but FusionProt did so with higher confidence (mean
of 0.88 vs. 0.62). We hypothesize that the iterative fusion mechanism amplifies local structural cues from
the mobile loops surrounding the ligand-binding pocket, which mediate substrate recognition and catalysis,
beyond what the global fold alone conveys. Consistent with this, the Ramachandran plot
for the same structure (Figure [3) shows a broader distribution of the dihedral angles (¢ and ¢ angles)
of the backbone for the loop residues, within allowed regions: hallmarks of conformational flexibility such
as pocket gating and substrate specificity. This suggests that repeated sequence—structure refinement can
sharpen flexible, function-critical motifs even in enzymes with highly conserved catalytic cores, implying
that perturbations to these loops could influence both enzymatic activity and model confidence.

Across categories, FusionProt’s unified embeddings capture structural determinants often missed in less
iterative fusion frameworks, such as allosteric loops, oligomerization interfaces, and convergent active-site
geometries. These enriched representations promise advances in function prediction, mutagenesis design,
drug discovery, and the annotation of orphan proteins from metagenomic datasets.
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