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Abstract
Large Language Model (LLM)-empowered multi-
agent systems extend the cognitive boundaries
of individual agents through disciplined collabo-
ration and interaction, while constructing these
systems often requires labor-intensive manual de-
signs. Despite the availability of methods to
automate the design of agentic workflows, they
typically seek to identify a static, complex, one-
size-fits-all system, which, however, fails to dy-
namically allocate inference resources based on
the difficulty and domain of each query. To ad-
dress this challenge, we shift away from the pur-
suit of a monolithic agentic system, instead op-
timizing the agentic supernet, a probabilistic
and continuous distribution of agentic architec-
tures. We introduce MaAS, an automated frame-
work that samples query-dependent agentic sys-
tems from the supernet, delivering high-quality
solutions and tailored resource allocation (e.g.,
LLM calls, tool calls, token cost). Comprehen-
sive evaluation across six benchmarks demon-
strates that MaAS (I) requires only 6 ∼ 45%
of the inference costs of existing handcrafted or
automated multi-agent systems, (II) surpasses
them by 0.54% ∼ 16.89%, and (III) enjoys
superior cross-dataset and cross-LLM-backbone
transferability. The code is available at https:
//github.com/bingreeky/MaAS.

1. Introduction
Large Language Model (LLM)-based agents (Richards &
et al., 2023; Nakajima, 2023; Reworkd, 2023) have made
remarkable strides in a spectrum of domains, such as ques-
tion answering (Zhu et al., 2024a), data analysis (Hong
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et al., 2024; Li et al., 2024), code generation (Shinn et al.,
2023), web navigation (Deng et al., 2024), and data syn-
thesis (Butt et al., 2024), by equipping LLMs with high-
level features, including persona (Wang et al., 2023b; Chen
et al., 2024), tools (Shen et al., 2024; Richards & et al.,
2023), planning (Qiao et al., 2024; Wu et al., 2024; He et al.,
2023), and memory (Zhong et al., 2024; Hatalis et al., 2023;
Packer et al., 2023). Building upon the success of single
agents, researchers have demonstrated that combining mul-
tiple agents, either cooperatively (Zhuge et al., 2024) or
competitively (Zhao et al., 2023), can surpass the cognitive
and intellectual capabilities of individuals (Du et al., 2023;
Liang et al., 2023; Wang et al., 2023b; Jiang et al., 2023; Wu
et al., 2023; Zhang et al., 2024a), showcasing the collective
intelligence in a society of LLM-agents (Piatti et al., 2024).

Early multi-agent systems, such as CAMEL (Li et al., 2023),
AutoGen (Wu et al., 2023), and MetaGPT (Hong et al.,
2023), while delivering specialized capacity, often heav-
ily rely on manual configurations, including prompt engi-
neering, agent profiling, and inter-agent communication
pipelines (Qian et al., 2024). This dependency significantly
limits the rapid adaptation of multi-agent systems to di-
verse domains and application scenarios (Tang et al., 2023;
Zhang et al., 2024c). More recently, the research com-
munity has shifted toward automating multi-agent system
design. For instance, DsPy (Khattab et al., 2023) and Evo-
Prompting (Guo et al., 2023) automate prompt optimization,
GPTSwarm (Zhuge et al., 2024) and G-Designer (Zhang
et al., 2024b) optimize inter-agent communication, and
EvoAgent (Yuan et al., 2024) and AutoAgents (Chen et al.,
2023a) self-evolve agent profiling. Nevertheless, they typ-
ically focus on automating specific aspects of the system.
Subsequently, ADAS (Hu et al., 2024a), AgentSqure (Shang
et al., 2024), and AFlow (Zhang et al., 2024c) broaden the
design search space. These state-of-the-art (SOTA) meth-
ods optimize a single, complex (multi-)agent workflow for a
given dataset via different search paradigms, e.g., heuristic
search (Hu et al., 2024a), Monte Carlo tree search (Zhang
et al., 2024c), and evolution (Shang et al., 2024), surpassing
the performance of manually designed systems.

Although the paradigm of searching for a one-size-fits-
all multi-agent system appears sufficient to optimize
performance-related metrics such as accuracy and pass@k,
its performance is largely constrained on resource-related
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Figure 1. (Left) The building blocks of MaAS; (Right) When confronting different queries, the agentic supernet adaptively samples
tailored multi-agent architecture in a query-dependent manner.

metrics, such as token cost, LLM calls, and inference la-
tency (Dilemma 1). Specifically, contemporary methods
tend to optimize for a complex and resource-intensive agen-
tic system, often involving dozens of LLM API calls and
external tool usage (Liu et al., 2023). However, this is far
from an optimal solution: for example, in mathematical
benchmarks (Hendrycks et al., 2021), Ph.D.-level abstract
algebra may indeed require complicated, token-heavy sys-
tems, while simple elementary-level arithmetic works well
with a single zero-shot I/O. This paradigm becomes even
more problematic when applied to benchmarks across mul-
tiple task domains (Dilemma 2): for instance, in the GAIA
benchmark (Mialon et al., 2023), there is no single sys-
tem that is optimal for both file reading and web searching
tasks, leaving practitioners with no alternative but to split
the benchmark and optimize separately (Zhuge et al., 2024).
These dilemmas unveil that, the paradigm of automatically
optimizing a single multi-agent architecture fails to meet
the dynamic and evolving demands of agentic deployment.

To address the above challenges, we propose Multi-agent
Architecture Search (MaAS), which, instead of search-
ing for a plausible (possibly non-existent) optimal solution,
generates a distribution of multi-agent systems. Techni-
cally, we model the optimization of MaAS on the agentic
supernet, a probabilistic, continuous agentic architecture
distribution that encompasses a vast number of possible
multi-agent candidates. The agentic supernet can be seen
as a cascaded multi-layer workflow, including ❶ multiple
agentic operators (e.g., CoT (Wei et al., 2022), Multi-agent
Debate (Du et al., 2023), ReAct (Yao et al., 2023)), as well
as ❷ the parameterized probability distributions of operators
across layers. During training, MaAS leverages a controller
network to sample multi-agent architectures conditioned
on input queries. The distribution parameters and opera-
tors are jointly updated based on environmental feedback,
with the former’s gradients approximated via Monte Carlo
sampling and the latter’s via textual gradient estimation.

During inference, for different queries, MaAS samples a
suitable multi-agent system delivering satisfactory resolu-
tion and appropriate inference resources, thereby achieving
task-customized collective intelligence.

We conduct comprehensive evaluations on seven widely
adopted benchmarks, covering diverse use cases in code
generation (HumanEval, MBPP), mathematical reason-
ing (GSM8K, MATH, SVAMP), and diverse tool usage
(GAIA). Empirical results demonstrate that MaAS is ❶
high-performing, surpassing existing handcrafted or auto-
mated multi-agent systems by 0.54% ∼ 16.89%; ❷ token-
economical, outperforming the SOTA baseline AFlow on
the MATH benchmark with 15% of the training cost and
25% of the inference cost; ❸ transferable across datasets
and LLM-backbones; ❹ inductive, demonstrating strong
generalizability to unseen agentic operators.

Briefly put, our key contributions are summarized as follows:

• Paradigm Reformulation: We introduce the concept of
agentic supernet, a probabilistic, continuous agentic ar-
chitecture distribution, which transforms the paradigm
of optimizing a single optimal multi-agent system into
optimizing the distribution of multiple architectures.

• Practical Solution: We propose MaAS, an agentic
supernet-based framework that automatically evolves
powerful multi-agent systems and adaptively allocates
high-performing and resource-efficient solutions for user
queries with varied difficulty, domain and features.

• Experimental Evaluation: Extensive evaluations on six
benchmarks demonstrate that our framework discovers
novel agentic systems with 0.54% ∼ 16.89% higher
performance, significantly lower training/inference costs,
transferability across benchmarks and LLMs, and superior
inductive capacity.

2



Multi-agent Architecture Search via Agentic Supernet

Controller

Agentic Supernet

I/O + ReAct

Tool if-else
Task 

solution

feedback

Complicated system

Task

Tool

if-else

generator executor

Environment feedback

Textual gradient
- For Debate operator:

add transition prompt "..."
- For Evaluator-optimizer operator:

update gating function
- ... gradient

agent

Varied benchmark
Topic:
Diffculty:

Probability

Topic:
Diffculty:

File summarize

A board game spinner is divided
into three parts labeled , 
  and . The probability of the
spinner landing on  is  ...

What's the last line of
rhyme on the headstone
visible in the background of
the photo of the oldest
flavor's headstone ...

According to github, when
was Regression added to
numpy.polynomial  ...

Topic:
Diffculty:

Web navigation

Conditioned
sampling

Figure 2. The overall framework of our proposed MaAS.

2. Related Work
LLM-Agents and Agentic Systems. Building on the suc-
cess of single agents (Shen et al., 2024; Zhu et al., 2024b;
Zhong et al., 2024), studies have shown that grouping multi-
ple LLM-based agents into multi-agent systems (MAS) can
substantially enhance individual model capabilities (Wang
et al., 2024a), as demonstrated in early attempts such as
AutoGen (Wu et al., 2023), LLM-Debate (Du et al., 2023),
and AgentVerse (Chen et al., 2023b). However, they heav-
ily relied on manually crafted designs, which constrained
the adaptability and flexibility of agents in addressing un-
foreseen challenges (He et al., 2023; Chen et al., 2023b).
As a result, automated agentic system design has gained
increasing attention in the academic community.

Automating Agentic Systems. Efforts to automate the
design of agent-based systems can be broadly classified
into the following categories: (I) Prompt Optimiza-
tion, such as PromptBreeder (Fernando et al., 2023),
DsPy (Khattab et al., 2023), and EvoPrompt (Guo et al.,
2023); (II) Inter-agent Communication, which focuses
on orchestrating interactions between agents, including
GPTSwarm (Zhuge et al., 2024), DyLAN (Liu et al.,
2023), EvoMAC (Hu et al., 2024b), AgentPrune (Zhang
et al., 2024a) and G-Designer (Zhang et al., 2024b); and
(III) Agent Profiling, represented by AgentVerse (Chen
et al., 2023b), EvoAgent (Yuan et al., 2024), and AutoA-
gents (Chen et al., 2023a). Further, ADAS (Hu et al.,
2024a) and AgentSquare (Shang et al., 2024) provide more
comprehensive automation for single-agent design, while
AFlow (Zhang et al., 2024c) achieves multi-agent work-
flow automation using Monte Carlo tree search (MCTS).
However, these high-performing methods still follow the
paradigm of searching for a single final system, whereas
MaAS searches for distribution of architectures with lower
average inference costs (LLM calls, token cost, etc.).

AutoML. Automating the design of agentic systems is
an emerging topic, yet the history of AutoML (He et al.,
2021) provides clear precedents. Notably, the progression
of agentic automation mirrors that of neural architecture
search (NAS) (Ren et al., 2021). Core NAS techniques,
such as reinforcement learning (Zoph, 2016), evolution-
ary algorithms (Liu et al., 2021), Bayesian optimization
(BO) (White et al., 2021), and MCTS (Wang et al., 2021),
have inspired analogous approaches in agentic automation,
from policy gradient in (Zhuge et al., 2024) to evolutionary
search in (Yuan et al., 2024), BO in (Shang et al., 2024),
and MCTS in (Zhang et al., 2024c). In NAS, however, these
black-box methods were eventually eclipsed by efficient su-
pernet training (White et al., 2023), culminating in seminal
works like DARTS (Liu et al., 2018) and SNAS (Xie et al.,
2018). Inspired by this, we introduce the first MAS search-
ing framework leveraging an agentic supernet, posing new
paradigms and challenges for agentic automation.

3. Methodology
Figure 2 illustrates the overall workflow of our method.
MaAS takes diverse and varying difficulty queries as input
and leverages a controller to sample a subnetwork from
the agentic supernet for each query, corresponding to a cus-
tomized multi-agent system. After the sampled system exe-
cutes the query, MaAS receives environment feedback and
jointly optimizes the supernet’s parameterized distribution
and agentic operators. In the following sections, Section 3.1
formally defines the search space and optimization objec-
tive of MaAS, Section 3.2 details how the controller query-
dependently samples multi-agent structures, and Section 3.3
details the optimization of MaAS.

3.1. Preliminary
Search Space. We first define the basic unit of MaAS’s
search space, namely the agentic operator as follows:
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Definition 3.1 (Agentic Operator). An agentic operator O
is a composite LLM-agent invocation process that involves
multiple LLM calls and tool usage:

O = {{Mi}mi=1,P, {Ti}ni=1},
Mi ∈M,P ∈ P, Ti ∈ T,

(1)

where M and M correspond to LLM backbones and the
set of available LLMs, respectively. Similarly, P and T
represent prompts and tools. m and n denote the number of
LLM-agents and tools invoked in the operator, respectively.

Most existing single/multi-agent workflows can be viewed
as agentic operators: CoT (Wei et al., 2022) can be con-
sidered one with m = 1 and n = 0, denoted as OCoT;
Self-RAG (Asai et al., 2023) similarly involves m = 1
agent allocation, but is equipped with n = 1 retrieval en-
gine, denoted asOSRAG; Multi-agent debate (Du et al., 2023)
involves multiple LLM-agent, multi-turn calls, denoted as
ODebate. The feasible set of agentic operators is denoted
as O, and we discuss the initialization of O in Section 4.1
and Appendix B.1. We define a multi-agent system as:

G = {V, E}, V ⊂ O, E ∈ V × V, (2)

where V is the set of selected operators in G and E denotes
their connectivity. G is constrained as a direct acyclic graph
(DAG). Finally, we define the agentic supernet:
Definition 3.2 (Agentic Supernet). The agentic supernet
is denoted as A = {π,O} = {{πℓ(O)}O∈O}Lℓ=1, where:

πℓ(O) = p(O | A1:ℓ−1), O ∈ O,

A1:ℓ−1 = {{πk(O)}O∈O}ℓ−1
k=1,

(3)

where πℓ(O) represents the probability of operator O
present at layer ℓ, conditioned on the preceding layers
A1:ℓ−1. The supernet induces a joint distribution over all
possible multi-layer operator configurations:

p(G) =
L∏

ℓ=1

∏
O∈O

πℓ(O)IO∈Vℓ , (4)

where IO∈Vℓ
is the indicator function for the inclusion of O

in the set of active operators Vℓ at layer ℓ.

Problem Formulation. Given a benchmarkD comprising
multiple queries q and their corresponding oracle answers/-
solutions a, the objective of MaAS is not to identify a single
optimal agentic system like previous practices (Zhang et al.,
2024c; Zhuge et al., 2024), but to optimize a conditional
probability distribution as follows:

max
P(G|q)

E(q,a)∼D,
G∼P(G|q)

[
U(G; q, a)−λ·C(G; q)

]
, s.t. G ⊂ A (5)

where P(G|q) is a distribution that generates query-
dependent agentic architectures. U(·) and C(·) represent the
utiulity/performance and cost of G for query q, respectively,
and λ is a trade-off parameter.

3.2. Agentic Architecture Sampling
The core of MaAS lies in tailoring a customized multi-agent
system for each user query, which may vary in difficulty and
domain, to deliver a satisfactory solution:

p(a|q,π,O) =

∫
e(a|G) Qϕ(G|q,π,O) dG, (6)

where Qϕ represents the controller network, which takes the
query q, the parameterized distribution π, and the available
operators O, and outputs the sampled agentic architecture
G. Qϕ is parameterized by ϕ, and e(·|·) denotes producing
solution via executing G. we implement Qϕ as follows:

Qϕ(G|q,π,O) =

L∏
ℓ=1

πℓ(Vℓ|q, {Vh}ℓ−1
h=1), (7)

where Vh denotes the selected operators at layer h. The
selection of Vℓ is conditionally dependent on the query q
and the operators from the previous layers. However, not
all queries require execution across L layers. As discussed
in Section 1, many questions can be resolved with a simple
zero-shot I/O (Zhang et al., 2024b), rendering L layers
unnecessarily redundant. To address this, we introduce an
early-exit operator, denoted as Oexit. During sampling, if
Oexit is encountered, the process exits early:

Qϕ(G|q,π,O) =

L∏
ℓ=1

[
πℓ(Vℓ|q, {Vh}ℓ−1

h=1) · IOexit /∈Vℓ

]
+ IOexit∈Vℓ

· δ
(
ℓ− ℓexit

)
,

(8)

where ℓexit denotes the layer at which Oexit appears, and
δ(·) is the Kronecker delta function. We implement the
sampling process πϕ with a Mixture-of-Expert (MoE)-style
network (Shazeer et al., 2017; Huang et al., 2024):

πℓ : q → Vℓ, Vℓ = {Oℓ1,Oℓ2, · · · ,Oℓt},

t = argmin
k∈{1,··· ,|O|}

∑
j<k

S↓
k > thres, (9)

where S↓ = sort(S, desc), and S ∈ R|O| = [S1, · · · , S|O|]
represents the activation scores of all feasible operators
w.r.t. q. Note that thres is a threshold value that governs
operator activation. Operators are activated sequentially,
starting from the one with the highest score, and the process
continues until the cumulative score exceeds thres. This
ensures that the number of selected operators per layer is
query-dependent, allowing MaAS to dynamically allocate
resources based on task complexity. S is given by: Si =
FFN(v(q)∥

∑
O∈V1

v(O)∥ · · · ∥
∑

O∈Vℓ−1
v(O)), where

v(·) denotes the embedding function using lightweight
models like MiniLM (Wang et al., 2020) and Sentence-
Bert (Reimers, 2019), and ∥ represents concatenation. The
detailed implementation of v(·) is placed in Appendix B.2.
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Upon completing the sequential sampling procedure in
MaAS, a task-specific multi-agent system G is generated
and executed to produce the answer ã. In the next section,
we elucidate the process of updating the agentic supernet
based on environmental feedback.

3.3. Cost-constrained Supernet Optimization
We present the optimization objective of MaAS as follows:

min
π,O

E(q,a)∼D,G∼Qϕ
[−p(a|q,π,O) + λ · C(G; q)] (10)

where C(·) evaluates the cost of multi-agent systems, repre-
sented by token cost, and λ is the trade-off parameter. The
term p(a|q,π,O) in Equation (10) corresponds to Equa-
tion (6), where the calculation of e(a|G) often involves
external tools or API-based LLM calls, rendering it non-
differentiable. Therefore, we employ an empirical Bayes
Monte Carlo procedure (Carlin & Louis, 2000; Yan et al.,
2021) to estimate the gradient w.r.t the distribution π:

∇πL ≈
1

K

∑
(q,a)∈D

K∑
k=1

[
mk∇πp (Gk)

]
,

mk =
p(a|q,Gk)∑
i p(a|q,Gi)

− λ · C(Gk; q)∑
i C(Gi; q)

,

(11)

where mk denotes the cost-aware importance weights of
the agentic architecture. Intuitively, the distribution π is
updated to favor multi-agent systems that generate high-
quality solutions with minimal token cost.
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Figure 3. The demonstration of textual gradient.
However, the gradient w.r.t operators∇OL cannot be com-
puted similarly. As shown in Equation (1), operators include
black-box tool usage and natural language prompts, mak-
ing numerical gradient updates infeasible. To address this,
we utilize agent-based textual gradient (Hao et al., 2023;
Liu et al., 2023; Hu et al., 2024b; Zhou et al., 2024) to
approximate the backpropagation for agentic operators, as
visualized in Figure 3 and formalized as follows:

∇OL = TP ⊕TT ⊕TN ,Tx ∈ T, x ∈ {P, T , N} (12)

where TP ,TT ,TN represent agent-generated gradient
analyses in textual format, corresponding to updates of the
prompt, model temperature, and operator node structure

Algorithm 1 Algorithm workflow of MaAS
Input :A dataset D containing training set Dtrain and test

set Dtest, Operator set O, Randomly initialized
distribution π, Controller network Qϕ

Output :Well-optimized agentic supernet, composed of dis-
tribution π and operators O

for (q, a) in Dtrain do
/* Sample query-dependent MAS */
for layer ℓ← 1 to L do
Vℓ ← πϕ(Vℓ|q, {Vh}ℓ−1

h=1); ▷ Eq. 9
if ℓ = L or Oexit ∈ Vℓ then

break// Exit when reaching
maximal sampling depth or
encountering the early-exit
operator

Obtain G ← ⟨V1, · · · ,Vℓ⟩ for query q; ▷ Eq. 8
/* Execute sampled MAS */
Execute G and obtain ã← e(a|G); ▷ Eq. 6
/* Self-evolve agentic supernet */
Compute loss w.r.t. π,∇πL; ▷ Eq. 11
Estimate loss w.r.t O via textual gradient; ▷ Eq. 12
Update π and O accordingly; ▷ Eq. 10

(such as merging, splitting, altering, etc.), respectively. See
prompts in Appendix B.3. In this way, the core components
of the agentic supernet, namely the agentic operators and
their connectivity, are jointly updated, enabling the fully
automated evolution of multi-agent systems. We summarize
the notations in Table 5, and the algorithm in Algorithm 1.
4. Experiments
4.1. Experiment Setup
Tasks and Benchmarks. We evaluate MaAS on six public
benchmarks covering three domains: (1) math reasoning,
GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.,
2021), and MultiArith (Roy & Roth, 2016); (2) code gener-
ation, HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021)); and (3) tool use, GAIA (Mialon et al., 2023).
For the MATH benchmark, we follow (Hong et al., 2024)
in selecting 617 problems from four typical problem types
(Combinatorics & Probability, Number Theory, Pre-algebra,
Pre-calculus). The dataset statistics are in Appendix C.1.

Baselines. We compare MaAS with three series of agentic
baselines: (1) single agent execution methods, including
CoT (Wei et al., 2022), ComplexCoT (Fu et al., 2022), Self-
Consistency (Wang et al., 2023a); (2) hand-craft multi-
agent systems, including MultiPersona (Wang et al., 2023b),
LLM-Debate (Du et al., 2023), LLM-Blender (Jiang et al.,
2023), DyLAN (Liu et al., 2023), AgentVerse (Chen et al.,
2023b) and MacNet (Qian et al., 2024); (3) (partially
or fully) autonomous multi-agent systems, including
GPTSwarm (Zhuge et al., 2024), AutoAgents (Chen et al.,
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Table 1. Performance comparison with single agent, hand-craft multi-agent systems, and automated agentic workflows. The base LLM is
consistently set as gpt-4o-mini for all baselines. We bold the best results and underline the runner-ups.

Method GSM8K MATH MultiArith HumanEval MBPP Avg.
Vanilla 87.45 46.29 96.85 87.08 71.83 77.50

CoT (Wei et al., 2022) 87.10↓0.35 46.40↑0.11 96.31↓0.54 88.13↑1.05 71.83↓0.00 77.95

ComplexCoT (Fu et al., 2022) 86.89↓0.56 46.53↑0.24 96.70↓0.15 87.49↑0.41 72.36↑0.53 78.00

SC (CoT×5) (Wang et al., 2023a) 87.57↑0.12 47.91↑1.62 96.58↓0.27 88.60↑1.52 73.60↑1.77 78.85

MultiPersona (Wang et al., 2023b) 87.50↑0.05 45.43↓0.86 97.49↑0.64 88.32↑1.24 73.19↑1.36 78.39

LLM-Debate (Du et al., 2023) 89.47↑2.02 48.54↑2.25 97.33↑0.48 88.68↑1.60 70.29↓1.54 78.86

LLM-Blender (Jiang et al., 2023) 88.35↑0.90 46.92↑0.63 97.29↑0.44 88.80↑1.72 77.05↑5.22 79.68

DyLAN (Liu et al., 2023) 89.98↑2.53 48.63↑2.34 97.12↑0.27 90.42↑3.34 77.30↑5.47 80.69

AgentVerse (Chen et al., 2023b) 89.91↑2.46 47.35↑1.06 97.50↑0.65 89.29↑2.21 74.28↑2.45 79.67

MacNet (Qian et al., 2024) 87.95↑0.50 45.18↓1.11 96.03↓0.82 84.57↓2.51 65.28↓6.55 75.00

AutoAgents (Chen et al., 2023a) 87.69↑0.24 45.32↓0.97 96.42↓0.43 87.64↑0.56 71.95↑0.12 77.80

GPTSwarm (Zhuge et al., 2024) 89.14↑1.69 47.88↑1.59 96.79↓0.06 89.32↑2.24 77.43↑5.60 80.11

ADAS (Hu et al., 2024a) 86.12↓1.33 43.18↓3.11 96.02↓0.83 84.19↓2.89 68.13↓3.70 75.13

AgentSquare (Shang et al., 2024) 87.62↑0.17 48.51↑2.22 97.77↑0.92 89.08↑2.00 78.46↑6.63 80.29

AFlow (Zhang et al., 2024c) 91.16↑3.71 51.28↑4.91 96.22↓0.63 90.93↑3.85 81.67↑9.84 82.25

MaAS (Ours) 92.30↑4.85 51.82↑5.53 98.80↑1.95 92.85↑5.77 82.17↑10.34 83.59

Table 2. Performance on GAIA benchmark. The best and runner-
up results are bolded and underlined, respectively.

Method Level 1 Level 2 Level 3 Avg.
GPT-4o-mini 7.53 4.40 0 4.65
GPT-4 9.68 1.89 2.08 4.05

AutoGPT 13.21 0 3.85 4.85
TapeAgent 23.66 14.47 10.20 16.61
Sibyl 21.51 15.72 4.08 15.61

AutoAgents 16.13 0 0 5.16
GPTSwarm 23.66 16.35 2.04 16.33
ADAS 13.98 4.40 0 6.69
AgentSquare 22.58 15.72 6.25 16.34
AFlow 10.75 8.81 4.08 8.00

MaAS 25.91 22.01 6.25 20.69

2023a), ADAS (Hu et al., 2024a), AgentSquare (Shang et al.,
2024) and AFlow (Zhang et al., 2024c). More details on
baseline setups are provided in Appendix C.2.

Implementation details. We leverage both close-source
LLM (gpt-4o-mini-0718 (OpenAI, 2024)) and open-
source LLM (Qwen-2.5-72b-instruct (Yang et al.,
2024) and llama-3.1-70b (Dubey et al., 2024)). All
models are accessed via APIs with the temperature set to
1. We set the number of layers as L = 4, the cost penalty
coefficient λ as λ ∈ {1e − 3, 5e − 3, 1e − 2}, and the
sampling times K = 4. thres = 0.3 for Equation (9).

4.2. Performance Analysis
We compare MaAS with 14 baselines on the GSM8K,
MATH, MultiArith, HumanEval, and MBPP benchmarks
in Table 1, and with 10 baselines on GAIA in Table 2. The
following observations can be made:

Obs.❶ MaAS achieves optimal performance across all

task domains. The multi-agent system optimized by MaAS
outperforms manually designed methods by an average
of 3.90 ∼ 6.40% and existing automated methods by
2.07 ∼ 8.26%. Overall, as for mathematical reasoning
and code generation, MaAS achieves an average best score
of 83.59%, demonstrating its versatility and superiority.
Table 2 shows a comparison of MaAS with automated
systems and three additional baselines, including Auto-
GPT (Richards & et al., 2023), TapeAgent (Bahdanau et al.,
2024), and Sibyl (Wang et al., 2024b) on the GAIA bench-
mark. GAIA encompasses tasks from various domains such
as web browsing, file reading, and multimodal understand-
ing, making it challenging to pursue a single optimal multi-
agent system for all tasks. Thus, the modest improvements
of AFlow and ADAS over vanilla LLMs (only 3.35% ↑ and
2.04% ↑ on average) are understandable. In contrast, MaAS
can adaptively sample customized agentic systems for differ-
ent domains, achieving 18.38% and 17.61% improvements
on Level 1 and 2 tasks, respectively.

4.3. Cost Analysis
To answer RQ2, we demonstrate that MaAS is both train-
ing/inference cost-efficient from the following three dimen-
sions: (1) token cost, (2) API cost, and (3) wall-clock time,
as shown in Table 3 and Figure 4. We observe:

Obs.❷ MaAS’s optimization is resource-friendly. As
shown in Figure 4 (Training Tokens), among the various
optimization-oriented agentic workflows, MaAS achieves
the highest accuracy with the least training token consump-
tion. While AFlow’s accuracy is comparable to that of
MaAS, its training cost reaches 22.50$, which is 6.8× that
of MaAS (merely 3.38$). Additionally, existing agentic
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Table 3. Efficiency comparison between MaAS and state-of-the-art baselines on the MATH Benchmark. We shade the values of the lowest
token/cost/wall-clock time and the highest performance.

Method Training Inference Overall

Prompt
token

Completion
token

Total
cost ($)

Wall-clock
time (min)

Prompt
token

Completion
token

Total
cost ($)

Wall-clock
time (min)

Acc.
(%)

LLM-Debate - - - - 3, 275, 764 10, 459, 097 6.76$ 92 48.54
DyLAN 22, 152, 407 16, 147, 052 13.01$ 508 6, 081, 483 3, 303, 522 2.89$ 39 48.63
MacNet - - - - 7, 522, 057 2, 043, 600 2.35$ 47 45.18
GPTSwarm 21, 325, 266 6, 369, 884 7.02$ 129 3, 105, 571 788, 273 0.93$ 30 47.88
AFlow 33, 831, 239 29, 051, 840 22.50$ 184 2, 505, 944 2, 151, 931 1.66$ 23 51.28
MaAS 3, 052, 159 2, 380, 505 3.38$ 53 1, 311, 669 853, 116 0.42$ 19 51.82
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Figure 4. The cost analysis of MaAS on MATH benchmark.

automation pipelines are relatively time-consuming, with
DyLAN taking 508 minutes and GPTSwarm taking 129
minutes. In contrast, the optimization wall-clock time of
MaAS requires only 53 minutes.

Obs.❸ Agentic supernet enjoys superior token economy
during inference. As shown in Figure 4 (Inference API
Cost), MaAS achieves the highest accuracy with an API
cost of 0.42$, demonstrating its high performance and to-
ken economy. Although AgentSquare’s API cost is slightly
lower than MaAS’s, this is due to its limitation to a single-
agent search, which severely restricts its performance (re-
sulting in a 4% drop compared to MaAS). Table 3 further
highlights that MaAS has the lowest prompt/completion
token consumption, the lowest API cost, and the shortest
wall-clock time during inference. These advantages can be
attributed to the agentic supernet’s ability to dynamically
allocate resources based on the difficulty of the query.

Easy query

     Query: How many positive integers less than
103 have an odd number of positive divisors?

0.36 0.08 0.07 0.16 0.15 0.12 0.00

0.20 0.05 0.18 0.06 0.02 0.08 0.37

- - - - - - -

- - - - - - -

Medium query

Ben rolls two fair six-sided dice. What is the
expected value of the larger of the two numbers
rolled? Express your answer as a fraction.  (If the
two numbers are the same, we take that number to
be the "larger" number.)

0.01 0.19 0.06 0.06 0.45 0.13 0.00

0.06 0.12 0.31 0.05 0.05 0.36 0.01

0.06 0.13 0.17 0.02 0.05 0.23 0.34

- - - - - - -

Hard query

The number 4 is written on my whiteboard. Every
time it rains, I multiply the number on the
whiteboard by $\frac{2}{3}$, erase the original
number, and write the new number on the
whiteboard. When it snows, I multiply the number
on the whiteboard by $\frac{3}{5}$, and I replace
the original number with the new number. It has
rained 5 times and snowed 4 times this month. At
the end of the month, what number is on the
whiteboard?

0.08 0.12 0.24 0.20 0.24 0.08 0.01

0.16 0.08 0.03 0.19 0.40 0.02 0.08

0.00 0.14 0.20 0.31 0.02 0.25 0.05

Easy query

How many zeroes are at the end of $42!$ (42
factorial)?

0.23 0.12 0.17 0.11 0.21 0.16 0.00

0.04 0.05 0.11 0.16 0.09 0.08 0.47

- - - - - - -

0.18 0.11 0.12 0.03 0.17 0.33 0.02

(a) Easy case

(b) Easy case

(c) Medium case (d) Hard case

I/O CoT CoT-SC Ensemble ReAct Refine Early-exit

Figure 5. The visualization of MaAS’s operator sampling process.

4.4. Case Study
In this section, we explore and visualize the intrinsic mech-
anisms of the agentic supernet. Figure 5 showcases the
probability distributions of the agentic supernet when faced
with different queries, and Figure 6 presents the multi-agent
systems designed by MaAS for queries from the MATH,
GAIA, and HumanEval benchmarks. We have:

Obs.❹ MaAS learns to query-aware early exit from the
reasoning process. As shown in Figure 5, when faced with
the easy queries (a) and (b), MaAS exits multi-agent archi-
tecture sampling at the second layer with probabilities of
0.37 and 0.47, respectively, selecting the early-exit operator.
Notably, query (b) chose two agentic operators at the first
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CoT 
Prompting

def triangle_area(a, h):
   """ Given length of a side
 and high return area 

for a triangle.
   >>> triangle_area(5, 3)
   7.5 """

Query Workflow

According to wikipedia, how many Asian countries still have a monarchy and access to the sea
in 2021?

(from GAIA benchmark; Level 1 task; Web search)Query

Workflow

query

solution

Each triangle is a 30-60-90 triangle, and the hypotenuse of one triangle is 
the longer leg of an adjacent triangle. The hypotenuse of the larger triangle
is 16 centimeters. What is the number of centimeters in the length of the 
longer leg of the smaller triangle?Query

Work-
flow

query

ReAct

Multiple
CoT

Tool

Ensemble

Self-
consistency

execute

Ensemble

Refine

solution

query solution

Web search
API

Summarzie

Debate

Query Workflow query

The attached spreadsheet
lists the locomotives owned
by a local railroad museum.
What is the typical
American name for the type
of locomotive this museum
uses for the Murder Mystery
Express?

python

Summarize

Web
search

solution

Figure 6. Case study and visualization for MaAS. Queries are from HumanEval, MATH and GAIA benchmarks.

The number of layers 𝐿 Cost penalty λ
Population size 𝑁

Sampling times 𝐾

Figure 7. Parameter sensitivity analysis of MaAS. The unit of
cost per query (right) and performance (left) is 10−3 · $ and
pass@1 (%), respectively.

layer: direct I/O and ReAct, demonstrating MaAS’s abil-
ity to dynamically allocate different operators at each layer
(corresponding to Equation (9)). For the more challenging
queries (c) and (d), MaAS sampled additional layers, further
proving its ability to customize the multi-agent system based
on query awareness. This is also visualized by Figure 8, in
which the probability of Oexit becomes increasingly high
with the supernet depth increases.

4.5. Framework Analysis
Sensitivity Analysis We analyze the sensitivity of MaAS
to three core parameters: the number of layers in the agentic
supernet L, the cost penalty coefficient λ in Equation (10),
and the sampling count K in Equation (11). The results are
presented in Figure 7. For the parameter L, we observe a
significant performance improvement as L increases from
2 to 4 (89.5%→ 92.8%). However, further increases yield
only marginal performance gains while incurring higher
per-query inference costs. Considering both performance
and cost, we select L = 4. For the parameter λ, we find
that larger values lead MaAS to favor more cost-efficient
solutions, albeit with some performance degradation. For
the parameter K, we note that performance is suboptimal
with highest variance when K = 2. Increasing K to 4
effectively achieves a satisfactory low-variance estimation.

Ablation Study We perform an ablation study on three
key components of MaAS: (1) w/o ∇OL, removing the tex-
tual gradient in Equation (12); (2) w/o Oexit, removing the

early-exit operator in Equation (8); and (3) w/o C(·), elimi-
nating the cost constraint in Equation (10). We observe from
Table 4 that removing the textual gradient causes the largest
performance drop, as it disables MaAS’s self-evolving ca-
pability. Removing Oexit and C(·) results in little impact
on performance, but it weakens MaAS’s query-dependent
nature and unnecessarily increases the inference cost.

Table 4. Ablation study of MaAS.

Dataset HumanEval MATH

Metric Pass@1
(%)

Cost
(10−3 $)

Accuracy
(%)

Cost
(10−3 $)

Vanilla MaAS 92.85 1.01 51.82 0.86

MaAS w/o ∇OL 90.17 0.90 48.23 0.84
MaAS w/o Oexit 91.44 1.67 51.53 1.04
MaAS w/o C(·) 92.94 1.38 51.19 1.28

Transferability Analysis. We evaluate whether the agen-
tic supernet of MaAS is (1) model-agnostic and (2) gener-
alizable across datasets, with results presented in Tables 7
and 8. As shown, the agentic supernet optimized by MaAS
transfers well to models such as Qwen-2.5-70b, with
4.98% ∼ 5.50% ↑ in performance, while also demonstrat-
ing strong cross-dataset generalization.

Inductive Analysis. To evaluate whether MaAS possesses
inductive capabilities, i.e., the ability to generalize to un-
seen agentic operators, we select the Debate (Du et al., 2023)
operator as a holdout. We then compare the operator distri-
bution of MaAS during inference with and without Debate
in Figures 8 and 9. The results demonstrate that MaAS can
still reasonably activate and utilize the unseen operator at
an appropriate proportion.

5. Conclusion
In this paper, we for the first time shift the paradigm of auto-
mated multi-agent system design from seeking a (possibly
non-existent) single optimal system to optimizing a prob-
abilistic, continuous distribution of agentic architectures,
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termed the agentic supernet. Building on this concept, we
propose MaAS, which dynamically samples multi-agent
systems that deliver satisfactory performance and token effi-
ciency for user queries across different domains and varying
levels of difficulty. We believe that MaAS paves the way
toward fully automated, self-organizing, and self-evolving
collective intelligence.
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Societal Implications. MaAS introduces a new paradigm
in multi-agent system design by replacing static, one-size-
fits-all architectures with a dynamic and adaptive agentic
supernet. This approach enables fine-grained resource allo-
cation tailored to query difficulty and domain, significantly
improving efficiency while maintaining high-quality outputs.
By reducing inference costs and enhancing the flexibility
of multi-agent workflows, MaAS has the potential to de-
mocratize access to intelligent automation across diverse
applications, including education, research, and industry.

References
Asai, A., Wu, Z., Wang, Y., Sil, A., and Hajishirzi, H. Self-

rag: Learning to retrieve, generate, and critique through
self-reflection. arXiv preprint arXiv:2310.11511, 2023.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Bahdanau, D., Gontier, N., Huang, G., Kamalloo, E., Pardi-
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A. Notations

Table 5. Notations and Definitions
Notation Definition
O = {{Mi}mi=1,P, {Ti}ni=1} An agentic operator comprising a set of LLM instances, a textual prompt, and a set of

temperature settings.
M An individual LLM instance.
M The set of all feasible LLMs.
P A textual prompt used as input to the LLM.
P The feasible space of prompts.
T The temperature setting of the LLM.
O The set of all feasible agentic operators.
G = {V, E} A multi-agent system represented as a graph with vertices V and edges E .
A = {π,O} = {πℓ(O)}O∈O}Lℓ=1 An L-layer probabilistic agentic supernet, consisting of a distribution π and a set of

feasible operators O.
π The distribution associated with the agentic supernet.
U(G; q, a) The utility evaluator of G with respect to query q and answer a.
C(G; q, a) The cost evaluator of G with respect to query q and answer a.
Qϕ The controller network parameterized by ϕ.
e(a∥G) Execution of G to produce the answer a.
Vℓ The selected operators at layer ℓ of the agentic supernet A.
Oexit The early-exit operator.
v(·) The text embedding function.
∇πL The gradient of the loss L with respect to the distribution π.
∇OL The textual gradient of the loss L with respect to the operators O.

B. Technical Details
B.1. Operator Space

In this section, we detail the initialization of operator nodes as follows:

1. Chain-of-Thought (CoT). CoT (Wei et al., 2022) reasoning encourages the LLM to think step by step rather than
directly outputting an answer. This approach enhances its capability to solve complex problems through intermediate
reasoning steps, improving task handling and providing greater transparency in the decision-making process.

2. LLM-Debate. LLM-Debate (Du et al., 2023) allows multiple LLMs to debate, leveraging diverse perspectives to
identify better solutions. In practice, we initialize three debaters and permit up to two debate rounds.

3. Self-Consistency. Adopting the methodology from Wang et al. (2023a), this operator aggregates five CoT reasoning
paths and determines the final answer through majority voting.

4. Self-Refine. Following Madaan et al. (2023), this operator initially generates an answer using CoT reasoning, then
prompts the agent to self-reflect iteratively. We set a maximum of five refinement iterations.

5. Ensemble. Inspired by LLM-Blender (Jiang et al., 2023), this operator involves three LLM-powered agents from
different sources outputting answers to the same query. The pairwise ranking is used to evaluate and aggregate their
responses into a final solution.

6. Testing. Following the test designer in AgentCoder (Huang et al., 2023), this operator is used for generating test cases
for the generated code.

7. ReAct. Following (Yao et al., 2023), this operator enables the agent to leverage versatile tools, including code
interpreter, web searching, external knowledge database, etc., to handle diverse user demands.
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8. Early exit. We introduce the early exit operator, which interrupts the multi-agent architecture sampling process and
enables the depth of the agentic supernet to be query-dependent.

We respectfully note that the selection of these operators is highly customizable, allowing users the flexibility to incorporate
their desired operators into the operator repository of MaAS.

B.2. Embedding Function

Following established practices (Feng et al., 2024), we first employ an LLM to generate a comprehensive profile description
for each operator. Subsequently, a lightweight text embedding model (in our case, MiniLM (Wang et al., 2020)) is used to
encode the profile into a fixed-dimensional embedding. The prompt for generating the operator profile is as follows:

Embedding Prompt

prompt = """You are a highly proficient expert in designing and defining operators
for large language models (LLMs). Your primary objective is to meticulously
generate the ‘description‘ and ‘interface‘ fields for a specified operator based
on its provided Python implementation. The generated content must be accurate,
efficient, and precisely reflect the functionality of the operator’s code.

To ensure consistency, quality, and adherence to best practices, refer to the
following examples of previously defined operators:

{
"Generate": {

"description": "Generates anything based on customized input and instruction
.",

"interface": "generate(input: str, instruction: str) -> dict with key ’
response’ of type str"

},
"ScEnsemble": {

"description": "Uses self-consistency to select the solution that appears
most frequently in the solution list, improving the selection to enhance
the choice of the best solution.",

"interface": "sc_ensemble(solutions: List[str], problem: str) -> dict with
key ’response’ of type str"

}
}

Now, given the following operator code. This code encompasses the function signature
, parameters with type annotations, internal logic, and return statements
essential for comprehensively understanding the operator’s purpose and behavior.
Please provide its ‘description‘ and ‘interface‘ fields in the same format.

[operator code]

"""

B.3. Textaul Gradient

The implementation of the textual gradient component is partially adapted from the repositories https://github.
com/ShengranHu/ADAS/ and https://github.com/tsinghua-fib-lab/agentsquare. We would like
to explicitly acknowledge this contribution and express our sincere gratitude to the authors for their open-source efforts.

Textual Gradient

base = """
# Overview
You are an expert machine learning researcher specializing in designing agentic

systems. Your objective is to create building blocks such as prompts and control
flows within these systems to solve complex tasks. Specifically, you aim to
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design an optimal agent that performs exceptionally on the HumanEval benchmark.
The HumanEval dataset evaluates code generation capabilities in AI systems,
consisting of 164 hand-crafted Python programming problems. Each problem includes
: - A function signature with a docstring describing the task - Test cases to
verify functional correctness

# Example Question from HumanEval
[An example question from HumanEval dataset here]

# Operator code template:
class Operator:

def __init__(self, llm: LLM, name: str):
self.name = name
self.llm = llm

def __call__(self, *args, **kwargs):
raise NotImplementedError

async def _fill_node(self, op_class, prompt, mode=None, **extra_kwargs):
fill_kwargs = {"context": prompt, "llm": self.llm}
if mode:

fill_kwargs["mode"] = mode
fill_kwargs.update(extra_kwargs)
node = await ActionNode.from_pydantic(op_class).fill(**fill_kwargs)
return node.instruct_content.model_dump()

class GenerateOp(BaseModel):
response: str = Field(default="", description="Your solution for this problem")

class Generate(Operator):
GENERATE_PROMPT = ’’’

You are tasked with solving the following Python programming problem. Generate a
complete, syntactically correct Python function that strictly adheres to the
given requirements.

Problem:
{input}

Follow these steps:
1. Analyze the problem requirements and identify edge cases
2. Design a solution that passes all implied test cases
3. Implement the function with clear variable names and comments

Ensure:
- The code directly implements the requested functionality
- All parameters and return types match the problem specification
- Exception handling for edge cases is included when necessary ’’’

def __init__(self, llm: LLM, name: str = "Generate"):
super().__init__(llm, name)

async def __call__(self, input: str, mode: str = None):
prompt = self.GENERATE_PROMPT.format(input=input)
response = await self._fill_node(GenerateOp, prompt, mode="xml_fill")
return response

# Discovered architecture archive
Here is the archive of the discovered operator architectures:
[ARCHIVE]

# Output Instruction and Example:
The output should be a JSON object with the following structure.The first key should

be ("thought"), and it should capture your thought process for designing the
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next operator. The second key ("description") corresponds to the brief
description of your next operator. Finally, the last key ("code") corresponds to
the exact operator and its prompt in Python code that you would like to try. You
must write COMPLETE CODE in "code": Your code will be part of the entire project,
so please implement complete, reliable, reusable code snippets.

- thought: Captures your thought process for designing the next operator.
- Reason about what the next interesting operator should be.
- Describe your reasoning and the overall concept behind the operator design.
- Detail the implementation steps.

- description: A brief description of your next operator.
- code: The exact operator and its prompt in Python code. Ensure the code is

complete, reliable, and reusable.

Here is an example of the output format for the next operator:
[operator_example]

You must strictly follow the exact input/output interface used above. Also, it could
be helpful to set the LLM’s role and temperature to further control the LLM’s

response. DON’T try to use some function that doesn’t exist. In __call__(), you
need to specify the instruction, input information, the prompt and the required
output fields class for operators to do their specific part of the architecture.

# Your task
You are highly proficient in prompting techniques and well-versed with agentic

systems from academic literature. Your goal is to maximize performance metrics by
proposing innovative and effective new operators.

Instructions:
1. Analyze the Discovered Operators: Carefully review the operators in the archive

to identify strengths, weaknesses, and areas for improvement.
2. Draw Insights: Extract lessons and insights from existing operators to inform the

design of the next operator.
3. Innovate: Think creatively to design an operator that addresses current

limitations or explores new functionalities, drawing inspiration from related
agent papers or other research areas.

4. Design the Operator: Propose the next operator’s ‘thought‘, ‘description‘, and ‘
code‘ following the specified format.

5. Ensure Completeness: The generated code must be complete, reliable, and reusable,
fitting seamlessly into the existing architecture.

Execution Steps:
1. Insert Operator Code: Replace the ‘[ARCHIVE]‘ and ‘[operator_example]‘

placeholders with actual content as needed.
2. Generate Output: Produce the ‘thought‘, ‘description‘, and ‘code‘ fields for the

new operator, ensuring adherence to the guidelines.
3. Validate Output: Ensure the generated JSON is correctly formatted and the code is

syntactically and functionally correct.

THINK OUTSIDE THE BOX and leverage interdisciplinary insights to enhance the agentic
system’s capabilities.

"""

C. Experimental Details
C.1. Dataset Statistics

Building upon established methodologies in workflow automation (Saad-Falcon et al., 2024; Hu et al., 2024a; Zhang et al.,
2024c), we divide each dataset into training and test sets using a TRAIN:TEST ratio of 1:4. For the MATH benchmark,
we adhere to (Hong et al., 2024), selecting a subset of 617 harder problems spanning four representative categories,
Combinatorics & Probability, Number Theory, Pre-algebra, and Pre-calculus, all at difficulty level 5. The dataset statistics
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are included in Table 6.

Table 6. Dataset Statistics.

Domain Dataset #Train #Test Metric

Code Generation HumanEval 33 131 pass@1
MBPP 86 341 pass@1

Math Reasoning
GSM8K 264 1055 Accuracy
MATH 119 486 Accuracy

MultiArith 150 600 Accuracy

Tool use GAIA 94 372 Accuracy

C.2. Baseline Setups

In this section, we provide a detailed description of the configurations for baseline methods:

1. CoT. Chain-of-Thought (CoT) prompting guides LLM agents to break down reasoning into sequential steps rather than
generating direct answers. We employ the implementation from (Zhang et al., 2022).

2. ComplexCoT. We follow the official implementation available at https://github.com/FranxYao/
Complexity-Based-Prompting/tree/main.

3. Self-consistency. To enhance robustness, we aggregate five CoT-generated solutions.

4. LLM-Debate. We instantiate five LLM-agents, each assigned a distinct role, which participate in up to two rounds
of debate, after which the final decision is determined via majority voting. The implementation is based on https:
//github.com/ucl-dark/llm_debate.

5. LLM-Blender. We choose two gpt-4o-mini, one Qwen-2.5-72b, and one llama-3.1-70b to empower
LLM-Blender (Jiang et al., 2023).

6. DyLAN. We directly utilize the implementation from (Liu et al., 2023).

7. AgentVerse. The experimental setup follows the original implementation from (Chen et al., 2023b).

8. MacNet. For MacNet (Qian et al., 2024), we adopt the “MacNet-MESH” variant, which corresponds to a fully
connected network topology.

9. GPTSwarm. The method is implemented in accordance with the original settings described in (Zhuge et al., 2024).

10. AutoAgents. We adhere to the official configuration specified in (Chen et al., 2023a).

11. ADAS. The implementation details are directly inherited from (Hu et al., 2024a).

12. AgentSquare. We utilize the modular search framework introduced in (Shang et al., 2024). The base LLM remains
fixed at gpt-4o-mini, with early stopping set to a patience of 5 iterations.

13. AFlow. In (Zhang et al., 2024c), AFlow operates with both gpt-4o-mini and claude-3.5-sonnet. To
maintain fairness under homogeneous conditions, we restrict AFlow to gpt-4o-mini and set MAX ITERATION=20.

D. Supplementary Results
We have visualized the evolution of operator sampling trends as the sampling count increases, in Figure 10. MaAS learns to
avoid overly confident early stopping and instead prioritizes testing and self-refinement in deeper layers.
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Table 7. Cross-model transferability of MaAS. We optimize the agentic supernet with gpt-4o-mini, and report the performances
before and after equipping the LLM backbones with the optimized agentic supernet.

Dataset HumanEval

LLM Backbone gpt-4o-mini Qwen-2.5-72b llama-3.1-70b

vanilla 87.08 85.60 80.06
+MaAS 92.85 90.14 85.26

Dataset MATH

LLM Backbone gpt-4o-mini Qwen-2.5-70b llama-3.1-70b

vanilla 46.29 63.80 31.93
+MaAS 51.82 69.35 42.97

Table 8. Cross-dataset transferability of MaAS. “MATH→GSM8K” denotes optimizing the agentic supernet on MATH and evaluating it
on GSM8K, with similar notation applied to other cases.

Transfer MATH→GSM8K GSM8K→MATH HumanEval→MATH

GPTSwarm 89.96 45.18 47.92
AFlow 91.95 49.39 47.15
MaAS 92.80 51.02 50.27

Figure 8. The layer-wise distribution of MaAS on HumanEval benchmark without Debate operator.
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Figure 9. The layer-wise distribution of MaAS on HumanEval benchmark with Debate operator. Note that the agentic supernet is optimized
with other operators, while the Debate operator is introduced only during the inference stage. It can be observed that, despite not being
exposed to this operator during training, MaAS can still reasonably select it during the multi-agent architecture sampling process.

Figure 10. The evolution of operator sampling trends as the sampling count increases.
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