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Abstract

Hierarchical clustering is a fundamental task of-
ten used to discover meaningful structures in data.
Due to the combinatorial number of possible hi-
erarchical clusterings, approximate algorithms are
typically used for inference. In contrast to existing
methods, we present novel dynamic-programming
algorithms for exact inference in hierarchical clus-
tering based on a novel trellis data structure, and
we prove that we can exactly compute the parti-
tion function, maximum likelihood hierarchy, and
marginal probabilities of sub-hierarchies and clus-
ters. Our algorithms scale in time and space pro-
portional to the powerset of N elements, which is
super-exponentially more efficient than explicitly
considering each of the (2N − 3)!! possible hier-
archies. Also, for larger datasets where our exact
algorithms become infeasible, we introduce an ap-
proximate algorithm based on a sparse trellis that
outperforms greedy and beam search baselines.

1 INTRODUCTION

Hierarchical clustering is often used to discover meaningful
structures, such as phylogenetic trees of organisms [22],
taxonomies of concepts [9], subtypes of cancer [28], and jets
in particle physics [4]. Among the reasons that hierarchical
clustering has been found to be broadly useful is that it forms
a natural data representation of data generated by a Markov
tree, i.e., a tree-shaped model where the state variables are
dependent only on their parent or children.

We define a hierarchical clustering as a recursive splitting
of a dataset of N elements, X = {xi}Ni=1 into subsets until
reaching singletons. This can equivalently be viewed as
starting with the set of singletons and repeatedly taking the
union of sets until reaching the entire dataset. We show
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Figure 1: Schematic representation of a hierarchical cluster-
ing. H denotes the hierarchical clustering and X the dataset.

a schematic representation in Figure 1, where we identify
each xi with a leaf of the tree and the hierarchical clustering
as H. Formally,

Definition 1. (Hierarchical Clustering1) Given a dataset
of elements, X = {xi}Ni=1, a hierarchical clustering, H, is
a set of nested subsets ofX , s.t.X ∈ H, {{xi}}Ni=1 ⊂ H, and
∀Xi, Xj ∈ H, either Xi ⊂ Xj , Xj ⊂ Xi, or Xi

⋂
Xj = ∅.

Further, ∀Xi ∈ H, if ∃Xj ∈ H s.t. Xj ⊂ Xi, then ∃Xk ∈ H

s.t. Xj

⋃
Xk = Xi.

Given a subsetXL ∈ H, thenXL is referred to as a cluster in
H. When XP , XL, XR ∈ H and XL

⋃
XR = XP , we refer

to XL and XR as children of XP , and XP the parent of XL

and XR; if XL ⊂ XP we refer to XP as an ancestor of XL

and XL a descendent of XP .(We also denote the sibling of
XL, as XR = XP \XL.) For binary trees, the total number
of possible pairs of siblings (XL, XR) for a parent with N
elements is given by the Stirling number of the second kind
S(N, 2) = 2N−1 − 1.

In our work, we consider an energy-based probabilistic
model for hierarchical clustering. We provide a general
(and flexible) definition of the probabilistic model and then
give three specific examples of the distribution in section 4.
Our model is based on measuring the compatibility of all
pairs of sibling nodes in a binary tree structure. Formally,

Definition 2. (Energy-based Hierarchical Clustering) Let
X be a dataset, H be a hierarchical clustering of X , let

1We limit our exposition to binary hierarchical clustering. Bi-
nary structures encode more tree-consistent clusterings than k-ary
[2]. Natural extensions may exist for k-ary clustering, which are
left for future work.

Based on a paper accepted for the 24th International Conference on Artificial Intelligence and Statistics (AISTATS2021).



ψ : 2X × 2X → R+ be a potential function describing
the compatibility of a pair of sibling nodes in H, and let
φ(X|H) be a potential function for the H structure. Then,
the probability of H for the dataset X , P (H|X), is equal to
the unnormalized potential of H normalized by the partition
function, Z(X):

P (H|X) =
φ(X|H)

Z(X)
with φ(X|H) =

∏
XL,XR∈sibs(H)

ψ(XL, XR)

(1)
where sibs(H) = {(XL, XR)|XL ∈ H, XR ∈ H, XL ∩ XR =
∅, XL ∪XR ∈ H}. The partition function Z(X) is given by:

Z(X) =
∑

H∈H(X)

φ(X|H). (2)

whereH(X) represents all binary hierarchical clusterings of the
elements X .

Often, probabilistic approaches, such as coalescent models
[31, 3, 18] and diffusion trees [25, 20], model which tree
structures are likely for a given dataset. For instance, in
particle physics generative models of trees are used to model
jets [4], and similarly coalescent models have been used in
phylogenetics [29]. Inference in these approaches is done
by approximate, rather than exact, methods that lead to local
optima, such as greedy best-first, beam-search, sequential
Monte Carlo [33], and MCMC [25]. Also, these methods
do not have efficient ways to compute an exact normalized
distribution over all tree structures.

Exactly performing MAP inference and finding the partition
function by enumerating all hierarchical clusterings over
N elements is exceptionally difficult because the number
of hierarchies grows extremely rapidly, namely (2N − 3)!!
(see [5, 13] for more details and proof), where !! is double
factorial. To overcome the computational burden, in this
paper we introduce a cluster trellis data structure for hi-
erarchical clustering. The cluster trellis, inspired by [15],
enables us to use dynamic programming algorithms to ex-
actly compute MAP structures and the partition function,
as well as compute marginal distributions, including the
probability of any sub-hierarchy or cluster. We further show
how to sample exactly from the posterior distribution over
hierarchical clusterings (i.e., the probability of sampling a
given hierarchy is equal to the probability of that hierarchy).
Our algorithms compute these quantities without having
to iterate over each possible hierarchy in the O(3N ) time,
which is super-exponentially more efficient than explicitly
considering each of the (2N − 3)!! possible hierarchies (see
Corollary 2 for more details). Thus, while still exponential,
this is feasible in regimes where enumerating all possible
trees would be infeasible, and is to our knowledge the fastest
exact MAP/partition function result(See §A.3 and §A.5 for
proofs), making practical exact inference for datasets on
the order of 20 points (∼ 3 × 109 operations vs ∼ 1022

trees) or fewer. For larger datasets, we introduce an approxi-
mate algorithm based on a sparse hierarchical cluster trellis

and we outline different strategies for building this sparse
trellis. We demonstrate our methods’ capabilities for exact
inference in discovering cascades of particle decays in jet
physics and subtype hierarchies in cancer genomics, two
applications where there is a need for exact inference on
datasets made feasible by our methods. We find that greedy
and beam search methods frequently return estimates that
are sub-optimal compared to the exact MAP clustering.

Contributions of this Paper. We achieve exact, not ap-
proximate, solutions to the following:

• Compute the Partition Function Z(X) (§2.2).
• MAP Inference, i.e. find the maximum likelihood tree

structure argmaxH∈H P (H|X) (§2.3).
• Sample Hierarchies from the Posterior Distribu-

tion, i.e. weighted by their probability, P (H|X) (§2.5).

2 HIERARCHICAL CLUSTER TRELLIS
Exactly performing MAP inference and finding the partition
function by enumerating all hierarchical clusterings over
N elements is intractable since the number of hierarchies
grows extremely rapidly, namely (2N − 3)!! (see [5, 13]
for more details and proof), where !! is double factorial. To
address this challenge, we introduce a cluster trellis data
structure for hierarchical clustering. We describe how this
data structure enables us to use dynamic programming al-
gorithms to exactly compute the partition function, MAP
hierarchical clusterings, and marginals, as well as how to
sample from the exact distribution over hierarchies.

2.1 TRELLIS DATA STRUCTURE

The trellis data structure is a directed acyclic graph that
encodes a set of hierarchical clusterings. Each vertex in the
trellis corresponds to a node in a hierarchical clustering,
and edges between vertices in the trellis correspond to a
parent/child relationship in a hierarchical clustering. The
dataset associated with a trellis vertex V is denoted X(V)
and the trellis vertex associated with a dataset X is denoted
V(X). Each vertex in the trellis stores memoized values of
Z(V) for computing the partition function, as well as the
value φ(H∗[V]) and the backpointer Ξ(H∗[V]) for computing
the MAP tree. We denote C(X) as the children of V(X).
We refer to a full trellis as the data structure where every
possible hierarchical clustering given a dataset X can be
realised, i.e., there is a bijection between the set of trellis
vertices and P(X)\∅, where P indicates the power set, and
there is an edge between Vi and Vj if X(Vi) ⊂ X(Vj).
In contrast, a sparse trellis will only contain a subset of all
possible hierarchies by omitting some of the vertices and
edges in a full trellis.

2.2 COMPUTING THE PARTITION FUNCTION

Given a dataset of elements, X = {xi}Ni=1, the partition
function, Z(X), for the set of hierarchical clusterings over



X ,H(X), is given by Equation 2. The trellis implements a
memoized dynamic program to compute the partition func-
tion and the MAP. To achieve this, we need to re-write the
partition function in the corresponding recursive way. In
particular,

Proposition 1. For any x ∈ X , the hier-
archical partition function can be written re-
cursively, as Z(X) =

∑
H∈H(X) φ(X|H) =∑

Xi∈C(X)x
ψ(Xi, X \Xi) · Z(Xi) · Z(X \Xi) where

C(X)x is the set of all children of X containing the element
x, i.e,. C(X)x = {Xj : Xj ∈ C(X) ∧ x ∈ Xj}.
In the particular case of a full trellis, then
C(X)x = {Xj : Xj ∈ 2X \X ∧ x ∈ Xj}.

The proof is given in § A.1 in the Appendix. Algorithm 1
describes in a recursive way how to efficiently compute the
partition function using the trellis based on Proposition 1.
We first set the partition function of the leaf nodes in the
trellis to 1. Then, we start by selecting any element in the
dataset, xi, and consider all clusters Xi ∈ C(X) such that
xi ∈ Xi. Next, the partition function is computed (memo-
ized, recursively) for Xi and its complement X \Xi, thus
enabling the application of Proposition 1 to get Z(X). For
a full trellis, the algorithm can straightforwardly be written
in a bottom-up, non-recursive way. By computing the par-
tial partition functions in this order, whenever computing
the partition function of a given node in the trellis, the cor-
responding ones of all of the descendent nodes will have
already been computed and memoized. In Figure 2, we show
a visualization comparing the computation of the partition
function with the trellis to the brute force method for a
dataset of four elements. Next, we present the complexity
result for Algorithm 1:

Algorithm 1 PartitionFunction(X)

Pick xi ∈ X and set Z(X)← 0
for Xi in C(X)xi

do
if Z(Xi) not set then
Z(Xi)← PartitionFunction(Xi)
if Z(X \Xi) not set then
Z(X \Xi)← PartitionFunction(X \Xi)
Z(X)← Z(X) + ψ(Xi, X \Xi) · Z(Xi) · Z(X \Xi)

return Z(X)

Theorem 1. For a given dataset X of N elements, Algo-
rithm 1 computes Z(X) in O(3N ) time.

The time-complexity of the algorithm is O(3N ), which is
is significantly smaller than the (2N − 3)!! possible hierar-
chies.

Corollary 2. For a given dataset X of N elements, Al-
gorithm 1 is super-exponentially more efficient than brute
force methods that consider every possible hierarchy. In
particular the ratio is O(( 2

3 )N Γ(N − 1/2)).

Algorithm 2 MAP(X)

if φ(X) set then
return φ(X),Ξ(X)

Pick xi ∈ X
φ(X)← −∞
Ξ(X) ← null {Backpointer to give MAP tree struc-
ture.}
for Xi in C(X)xi

do
t← ψ(Xi, X \Xi) · φ(V(Xi)) · φ(V(X \Xi))
if φ(X) < t then
φ(X)← t
Ξ(X)← {Xi, X \Xi} ∪ Ξ(Xi) ∪ Ξ(X \Xi)

return φ(X),Ξ(X)

The proofs of Algorithm 1 and Corollary 2 are given in §
A.5 of the Appendix.

2.3 COMPUTING THE MAP HIERARCHICAL
CLUSTERING

Similar to other dynamic programming algorithms, such as
Viterbi, we can adapt Algorithm 1 in order to find the MAP
hierarchical clustering.

The MAP clustering for dataset X , is H?(X) =
argmaxH∈H(X) φ(H). Here we can also use a recursive mem-
oized technique, where each node will store a value for the
MAP, denoted by φ(H?(X)) and a backpointer Ξ(H?(X)).
Specifically,

Proposition 2. For any x ∈ C(X), let C(X)x =
{Xj : Xj ∈ C(X) ∧ x ∈ Xj}, then φ(H?(X)) =
maxXi∈C(X)x ψ(Xi, X \Xi) · φ(H?(Xi)) · φ(H?(X\Xi)).

See §A.4 in the Appendix for the proof. As in the parti-
tion function algorithm described in Section 2.2, the time
complexity for finding the MAP clustering is also O(3N ).
The main difference is that to compute the maximal like-
lihood hierarchical clustering, the maximal energy of the
sub-hierarchy rooted at each node is computed, instead of
the partition function. Pointers to the children of the maxi-
mal sub-hierarchy rooted at each node are stored at that node.
A proof of the time complexity, analogous to the one for the
partition function, can be found in §A.3 of the Appendix.

2.4 COMPUTING MARGINALS

In this section, we describe how to compute two types
of marginal probabilities. The first is for a given sub-
hierarchy rooted at Xi, i.e., Hi ∈ H(Xi), defined as
P (Hi|X) =

∑
H∈A(Hi)

P (H|X), where A(Hi) = {H : H ∈
H(X)∧Hi ⊂ H}, and Hi ⊂ H indicates that Hi is a subtree of
H. Thus, we marginalize over every possible hierarchy while
keeping fixed the sub-hierarchy Hi. The second is for a given
cluster, Xi, defined as P (Xi|X) =

∑
H∈A(Xi)

P (H|X),
where A(Xi) = {H : H ∈ H(X) ∧Xi ⊂ H}, and Xi ⊂ H
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Z({a, b, c, d}) =  ({a, b, c}, {d}) · Z({a, b, c}) · Z({d}) +  ({a, b, d}, {c}) · Z({a, b, d}) · Z({c})

+  ({a, c, d}, {b}) · Z({a, c, d}) · Z({b}) +  ({b, c, d}, {a}) · Z({b, c, d}) · Z({a})

+  ({a, b}, {c, d}) · Z({a, b}) · Z({c, d}) +  ({a, c}, {b, d}) · Z({a, c}) · Z({b, d})

+  ({a, d}, {b, c}) · Z({a, d}) · Z({b, c})

Z({a, b, c}) =  ({a, b}, {c}) · Z({a, b}) · Z({c})

+  ({a, c}, {b}) · Z({a, c}) · Z({b})

+  ({b, c}, {a}) · Z({b, c}) · Z({a})

Z({a, b, c, d}) =  ({a, b, c}, {d}) ·  ({a, b}, {c}) ·  ({a}, {b})

+  ({a, b, c}, {d}) ·  ({a, c}, {b}) ·  ({a}, {c})

+  ({a, b, c}, {d}) ·  ({b, c}, {a}) ·  ({b}, {c})

+  ({a, c, d}, {b}) ·  ({a, c}, {d}) ·  ({a}, {c})

+  ({a, c, d}, {b}) ·  ({a, d}, {c}) ·  ({a}, {d})

+  ({a, c, d}, {b}) ·  ({c, d}, {a}) ·  ({c}, {d})

+  ({a, b, d}, {c}) ·  ({a, b}, {d}) ·  ({a}, {b})

+  ({a, b, d}, {c}) ·  ({a, d}, {b}) ·  ({a}, {d})

+  ({a, b, d}, {c}) ·  ({b, d}, {a}) ·  ({b}, {d})

+  ({b, c, d}, {a}) ·  ({b, c}, {d}) ·  ({b}, {c})

+  ({b, c, d}, {a}) ·  ({b, d}, {c}) ·  ({b}, {d})

+  ({b, c, d}, {a}) ·  ({c, d}, {d}) ·  ({c}, {d})

+  ({a, b}, {c, d}) ·  ({a}, {b}) ·  ({c}, {d})

+  ({a, c}, {b, d}) ·  ({a}, {c}) ·  ({b}, {d})

+  ({a, d}, {b, c}) ·  ({a}, {d}) ·  ({b}, {c})

Figure 2: Computing the partition function for the dataset {a, b, c, d}. Left: exhaustive computation, consisting of the summation
of (2 · 4 − 3)!! = 15 energy equations. Right: computation using the trellis. The sum for the partition function is over 24−1 − 1 = 7
equations, each making use of a memoized Z value. Colors indicate corresponding computations over siblings in the trellis.

indicates that cluster Xi is contained in H. In this case, we
marginalize over every possible sub-hierarchy that contains
the cluster Xi while keeping the rest of the hierarchy H

fixed. The value of P (Hi|X) can be computed using the
same algorithm used for the partition function, except that
we first merge Hi into a single leaf node and use φ(Hi(Xi))
for the energy of the newly merged leaf. The same is true for
computing the value of P (Xi|X), except that after merging
Xi into a single leaf node, the value Z(Xi) should be used.

2.5 SAMPLING FROM THE POSTERIOR
DISTRIBUTION

Drawing samples from the true posterior distribution
P (H|X) is also difficult because of the extremely large num-
ber of trees. In this section, we introduce a sampling pro-
cedure for hierarchical clusterings Hi implemented using
the trellis which gives samples from the exact true posterior
without enumerating all possible hierarchies.

The sampling procedure will build a tree structure in a top-
down way. We start with the cluster of all the elements, X ,
then sample one child of that cluster, XL ⊂ X , (Eq. 3) and
set the other one to be the complement of XL, i.e., X \XL.
This is repeated recursively from each of the children and
terminates when a cluster contains a single element. A child
XL of parent Xp, i.e., XL ⊂ Xp is sampled according to:

p(XL|Xp) =
1

Z(Xp)
· ψ(XL, Xp\XL) · Z(XL) · Z(Xp\XL).

(3)
Pseudocode for this algorithm is given in Algorithm 3.

Theorem 3. Sample(X) (Alg. 3) gives samples from
P (H|X).

The proof is given in Appendix § A.2. This algorithm is
notable in that it does not require computing a categorical
distribution over all trees and samples exactly according to
P (H|X).

Algorithm 3 Sample(X)

if |X| = 1 return {X}
Sample XL from p(Xi|X) (Eq. 3).
return {XL, X \XL} ∪ Sample(XL) ∪ Sample(X \XL)

3 SPARSE HIERARCHICAL CLUSTER
TRELLIS

In this section, we introduce a sparse trellis data structure,
which allows to scale to larger datasets by controlling the
sparsity index, i.e. the fraction of hierarchies we consider
from the total of (2N − 3)!!. If we build a sparse trellis
that considers the most relevant hierarchies, we could find
approximate solutions for inference in datasets where imple-
menting the full trellis is not feasible. Conceptually, the only
difference with respect to the full trellis is that the children
of each vertex are typically a subset of all 2X possible ones.
Thus, the algorithms and proofs are the same as the ones
presented in Section 2 but the solutions will be approximate.
The specific vertices that are contained in the sparse trellis
depend on how we build it. Below we present two possible
strategies.

3.1 BUILDING STRATEGIES

The performance of the sparse trellis depends on the subset
of all possible hierarchies over which it expands. This subset
is chosen by the building strategy, which provides a sample
of trees used to create the trellis.

We start with a set of input trees. Once we choose a specific
ordering of the leaves, we iterate over each input tree, creat-
ing a vertex Vi in the trellis for each new node in the tree,
i.e. nodes that have not been visited in previous input trees.
A schematic representation is shown in Figure 3. This way,
the input sample of trees determines the trellis vertices that
are created. The trellis considers every possible hierarchical
clustering that can be realized with these vertices which is
typically much greater than the number of input trees. After



Figure 3: Schematic representation of how the sparse trellis is
built iterating over each tree with four leaves from a sample dataset
X . After every hierarchical structure is added, the final trellis is
composed of the colored vertices, the added edges, the leaves and
the root vertex. The vertices that are not colored represent the
subset of vertices of the full trellis that are missing in the sparse
case.

creating the trellis, we initialize the leaf vertices values with
some dataset of interest and run the inference algorithms,
e.g. MAP and partition function computations.

We emphasize that the approximate methods work precisely
the same as in the exact method, and that the only difference
is the exact algorithms use a full trellis, while the approx-
imate algorithms use a sparse trellis. This means that the
approximate algorithms find the optimal hierarchical cluster-
ing among those encoded by the sparse trellis, and thus the
quality of the approximate hierarchical clustering is entirely
dependent on the quality of hierarchical clusterings encoded
by the sparse trellis. Next, we present two distinctive pro-
cedures to build the trellis, which we refer to as Simulator
trellis and Beam Search trellis.

Simulator Trellis: in some cases there exists a genera-
tive model or simulator that implicitly defines a distribu-
tion over hierarchies. In the simulator trellis, we use this
model/simulator to sample a set of trees that are used to seed
the sparse trellis. We restrict the generated trees to have the
same number of leaves, which is fixed for each trellis we
create.

Beam Search Trellis: trees used to seed the sparse trellis
are obtained by repeatedly running the beam search algo-
rithm over a sample of sets of leaves. This approach is much
more general than a simulator trellis, as it could be imple-
mented for datasets where there is no generative model.

4 EXPERIMENTS
In this section, we demonstrate the use of the exact MAP,
partition function, and sampling approaches described in
this paper on two real world applications: jet physics and
cancer genomics, as well as one synthetic data experiment
related to Dasgupta’s cost [14]. First, we give an illustra-
tive example for the use of the proposed approaches with
Dasgupta’s cost, running on the kinds of data for which
greedy methods are known to be approximate. In each real
world application, we demonstrate how the trellis is used to
compute exact MAP and the distribution over clusterings
that are more informative and accurate than approximate

methods. In particle physics, we additionally demonstrate
the use of the sampling procedure (§2.5) and the implemen-
tation of a sparse trellis. In cancer genomics, we show how
we can model subtypes of cancer, which can help determine
prognosis and treatment plans.

4.1 DASGUPTA’S COST

Probabilistic model Dasgupta [14] defines a cost func-
tion for hierarchical clustering that has been the subject of
much theoretical interest (primarily on approximation algo-
rithms for the cost) [10, 11, 7, 8, 24, 27]. Given a graph with
vertices of the dataset X and weighted edges representing
pairwise similarities between pointsW = {(i, j, wij)|i, j ∈
{1, ..., |X|} × {1, ..., |X|}, i < j, wij ∈ R+}. Dasgupta’s
cost is defined as:

E(Xi, Xj) = (|Xi|+ |Xj |)
∑

xi,xj∈Xi×Xj

wij (4)

This is equivalent to the cut-cost definition of Dasgupta’s
cost with the restriction to binary trees [14].

Results Figure 4 gives an example graph, as proposed
by [8] to bound average-linkage performance, following a
model for which greedy methods are known to be approxi-
mate with respect to Dasgupta’s cost [24, 10]. We run greedy
agglomerative clustering and trellis-based MAP procedure
(Eq. 4). Unsurprisingly, the greedy method fails to achieve
the lowest cost tree while the trellis-based method identifies
an optimal tree. The cost of the greedily built tree is 44.08
while the tree built using the trellis is 40.08.

4.2 JET PHYSICS

Background The Large Hadron Collider (LHC) at CERN
collides two beams of high-energy protons and produces
many new (unstable) particles. Some of these new parti-
cles (quarks and gluons) will undergo a showering process,
where they radiate many other quarks and gluons in succes-
sive binary splittings. These 1→ 2 splittings can be repre-
sented with a binary tree, where the energy of the particles
decreases after each step. When the energy is below a given
threshold, the showering terminates, resulting in a spray
of particles that is called a jet. The particle detectors only
observe the leaves of this binary tree (the jet constituents),
and the unstable particles in the showering process are unob-
served. Thus, a specific jet could result from several latent
trees2 generated by the showering process. While the latent
showering process is unobserved, it is described by quantum
chromodynamics (QCD).

Probabilistic Model The potential of a hierarchy is iden-
tified with the product of the likelihoods of all the 1 → 2

2We refer to the trees as “latent” since an instance of a show-
ering process has a corresponding tree, however that tree is unob-
served.



Figure 4: Dasgupta’s Cost. Trel-
lis vs agglomerative clustering
MAP trees for a graph that is
known to be difficult for with
greedy methods.

Table 1: Mean and standard deviation for the difference in
log likelihood for the MAP tree found by algorithms indicated by
the row and column heading on the Ginkgo510 dataset.

Beam Search Greedy

Trellis 0.4 ± 0.5 1.5 ± 1.1
Beam Search 1.1 ± 1.1

splittings of a parent cluster into two child clusters in the
binary tree. Each cluster, X , corresponds to a particle with
an energy-momentum vector x = (E ∈ R+, ~p ∈ R3)
and squared mass t(x) = E2 − |~p|2. A parent’s energy-
momentum vector is obtained from adding its children, i.e.,
xP = xL + xR. We study a toy model for jet physics [12],
where for each pair of parent and left (right) child cluster
with masses

√
tP and

√
tL (
√
tR) respectively, the likeli-

hood function is,

ψ(XL, XR) = f(t(xL)|tP , λ) · f(t(xR)|tP , λ) (5)

with f(t|tP , λ) =
1

1− e−λ
λ

tP
e
−λ t

tP (6)

where the first term in f(t|tP , λ) is a normalization factor
associated to the constraint that t < tP .

Data and Methods We will compare full and sparse trel-
lises results for the MAP hierarchical clustering with ap-
proximate methods, as described below. The ground truth
hierarchical clusterings of our dataset are generated with the
toy generative model for jets Ginkgo, see [12] for more de-
tails. As a baseline, we provide implementations of greedy
and beam search algorithms. For beam search we take into
account one more step ahead, with a beam size given by
N(N−1)

2 , with N the number of jet constituents to cluster.

Results We start by comparing in Table 1 the mean differ-
ence among the MAP values for the hierarchies log likeli-
hood obtained with the full trellis, beam search and greedy
algorithms. We see that the likelihood of the trees increases
from greedy to beam search to the trellis one, as expected.
Next, in Figure 5 we show the partition function versus the
MAP hierarchy for each set of leaves in Ginkgo510 dataset.
It is interesting to note that there seems to be a correlation
between Z and the Trellis MAP.

Next, we show an implementation of the sampling procedure
introduced in section 2.5. We compare in Figure 6 the results
from sampling 105 hierarchies (black dots) and the expected
distribution3 (green) for the likelihood of each hierarchy.

3The expected posterior is defined as the probability density
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Figure 5: Scatter plot of the partition function Z vs. the trellis
MAP value ` for Ginkgo510 dataset, with up to 10 leaves (jet
constituents). The color indicates the number of leaves of each
hierarchical clustering. There appears to be a correlation between
Z and the MAP values.

There is an excellent agreement between the sampled and
the expected distributions. Here we showed, for illustrative
purposes, a way to estimate the posterior distribution using
our sampling procedure. However, we want to emphasize
that the key contribution of our procedure is that it allows to
sample hierarchies from the exact true posterior distribution,
i.e. sample a hierarchy according to its probability.

Finally, as a proof of concept, we show in Figure 7 the per-
formance of the sparse trellis to calculate the MAP values
on a set of 100 Ginkgo jets with 9 leaves. This illustrates the
relationship between the effectiveness and sparsity observed
in our experiments, where a higher value on the y-axis repre-
sents greater effectiveness and a smaller value on the x-axis
represents greater sparsity. We chose a dataset of 9 elements
to be able to easily compare the performance of the sparse
and full trellises. However, the sparse trellis can be applied
to larger datasets. We see that both sparse trellises quickly
improve over beam search, with a sparsity index of only
about 2%.

function of each possible hierarchy. In principle, this could be
obtained by taking the ratio of the likelihood of each hierarchy with
respect to the partition function Z. We opt to take an approximate
approach, as follows. If we sample enough number of times, we
would expect each possible hierarchy to appear at least once. Thus,
as a proof of concept, we sample 105 hierarchies for a set of five
leaves (88 different hierarchies), keep only one of them for each
unique likelihood value and normalize by Z and bin size. We show
this result in the histogram labeled as Expected (green) in Figure
6.
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Figure 6: Comparison of the posterior distribution for a spe-
cific jet with five leaves from sampling 105 hierarchies using Alg
3 (black dots with small error bars) and expected posterior distri-
bution (in green). The plots show the discrete nature of the distri-
bution. The log likelihood for the ground truth tree is a vertical
dashed red line.

4.3 CANCER GENOMICS

Background Hierarchical clustering is a common cluster-
ing approach for gene expression data [28]. It is not uncom-
mon to have a need for clustering a small number of samples
in cancer genomics studies. An analysis of data available
from https://clinicaltrials.gov shows that the
median sample size for 7,412 completed phase I clinical
trials involving cancer is only 30.

Probabilistic Model In this case we are given a dataset
of vectors indicating the level of gene expressions which are
endowed with pairwise affinities that are both positive and
negative. We define the energy of a pair of sibling nodes in
the tree to be the sum of the across-cluster positive edges,
minus the sum of negative within-cluster edge weights.

E(Xi,Xj) =
∑

xi,xj∈Xi×Xj

wij I[wij > 0] −
∑

xi,xj∈Xi×Xi,

xi<xj

wij I[wij < 0] −
∑

xi,xj∈Xj×Xj,

xi<xj

wij I[wij < 0] (7)

where wij is the affinity between xi and xj . The correlation
clustering input can be represented as a complete weighted
graph, G = (V,E), where each edge has weight wuv ∈
[−1, 1],∀(u, v) ∈ E. The goal is to construct a clustering
of the nodes that maximizes the sum of positive within-
cluster edge weights minus the sum of all negative across-
cluster edge weights (since we wish to minimize the energy
function given by Equation 7). This energy is the correlation
clustering objective [1].

Data and Methods Here, we compare a greedy agglom-
erative clustering to our exact MAP clustering tree using
the Prediction Analysis of Microarray 50 (pam50) gene
expression data set. The pam50 data set (n = 232, d = 50)
is available from the UNC MicroArray Database [32]. It has
intrinsic subtype annotations for 139 of the 232 samples.
Missing data values (2.65%) were filled in with zeros. We
drew a stratified sample of the total data set with two sam-
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Figure 7: Trellises MAP hierarchy log likelihood vs their spar-
sity. MAP hierarchy log likelihood values are relative to the greedy
algorithm. Each value corresponds to the mean over 100 trees of a
test dataset. We show the Simulator (Sim.) and the Beam Search
(BS) trellises. We add the values of the exact trellis, beam search
and greedy algorithms. The BS trellis approaches the performance
of the full one for a smaller sparsity index than the Sim. Trellis.
Also, the sparse trellises are pre-built and then run on new datasets
(test), which is why BS performs better than BS trellis sometimes.

MAP Tree via TrellisApproximate Tree via Greedy

Figure 8: Cancer Genomics. Comparison of trees from greedy
hierarchical clustering (left) and exact MAP clustering using the
trellis (right) on the subsampled pam50 data set. The colors in-
dicate subtypes of breast cancer (grey if unknown). Though both
appear to assign unknown samples to LumB, the right tree posi-
tions the unknown samples closer to the Her2 samples.

ples from each known intrinsic subtype and two samples
from the unknown group.

Results Figure 8 displays the greedy hierarchical cluster-
ing tree and the MAP tree with transformed weights for
the twelve samples selected from the pam50 dataset. (The
correlations among subsampled pam50 (n = 12) data set
are all positive.) The main difference between these trees
is in the split of the subtree including LumB, HER2, and
unknown samples. The greedy method splits HER2 from
LumB and unknown, while the MAP tree shows a different
topology for this subtree. For the MAP solution, we note
that the subtree rooted at {7, 8, 9, 10, 11, 12} is consistent.
All of the correlation coefficients among this cluster are
positive, so the optimal action is to split off the item with
the smallest (positive) correlation coefficient.

https://clinicaltrials.gov
https://clinicaltrials.gov


4.4 RELATIONSHIP BETWEEN COST
FUNCTIONS

There are several measures of hierarchical clustering quality
that are popular in the community. In addition to the Das-
gupta cost and Hierarchical Correlation Clustering (HCC)
objectives, which we discuss above, Dendrogram Purity
(DP) is often used to measure the quality of hierarchical
clusterings when a ground truth flat clustering is available.
We briefly discuss here how these three measures relate.

The degree to which Dasgupta cost and the HCC objectives
correlate to DP is a function of how closely the pair wise
edge weights reflect the ground truth clustering. To drive
this point home, as an extreme, one could imagine adversar-
ial edge weights, where the MAP hierarchical clusterings
according to Dasgupta/HCC is un/negatively correlated with
the hierarchical clusterings with maximal DP. In particular:
(1) Maximal DP can be achieved by making a forest, where
each tree consists solely of within cluster elements. Any
tree that contains any such forest as subtrees is a maximal
with respect to DP, and any such tree would have DP = 1.
(2) Given 1/0 edge weights for within/across ground truth
classes, respectively, the MAP Dasgupta cost could also be
obtained by making a forest, where each tree consists solely
of within cluster elements. Any tree that contains any such
forest as subtrees is a MAP tree with respect to Dasgupta
cost. In this case, the set of maximal DP trees and the set
of MAP Dasgupta cost trees should be the same. (3) The
same is true for HCC (but with edge weights set as +/- 1 for
within/across ground truth classes). (4) If the edge weights
are selected randomly, the MAP Dasgupta/HCC trees will
be uncorrelated with DP. (5) If the edge weights are selected
as -1 * edge weights described in (2) or (3) above, any MAP
Dasgupta or HCC tree will achieve the worst possible cost
with respect to DP.

5 RELATED WORK
Modeling distributions over tree structures has been the
subject of a large body of work. Bayesian non-parametric
models typically define a posterior distribution over tree
structures given data such as diffusion trees coalescents,
and others [25, 31, inter alia]. These methods, while provid-
ing a distribution over trees, only support using parametric
distributions to define emission probabilities rather than
the energy-based model used in this paper. The Bayesian
hierarchical clustering (BHC) model [17] is akin to the
energy-based ones used in this paper. Inference includes
greedy agglomerative [17], randomized [16], and tree re-
arrangement approaches [35]. Future work could consider
how to use the trellis for BHC. Interestingly, the BHC likeli-
hood is a mixture of tree consistent partitions, also related
to using the trellis for flat clustering. Factor graph-based dis-
tributions over tree structures such as [34] on the other hand
support a flexible class of distributions over tree structures

as in our approach. However inference in factor graph mod-
els as well as many of the Bayesian non-parameteric models
is typically approximate or performed by sampling methods.
This lends in practice to approximate MAP solutions and
distributions over tree structures. Exact methods like the
one proposed in this paper have not, to our knowledge, been
proposed.

Dasgupta [14] defines a cost function for hierarchical clus-
tering. Much work has been done to develop approximate
solution methods and related objectives [24, inter alia].

Bootstrapping methods, such as [30], represent uncertainty
in hierarchical clustering. Unlike our approach, bootstrap-
ping methods approximate statistics of interest through re-
peatedly (re-)sampling from the empirical distribution.

Work on exact inference and exact distributions over flat
clusterings [15], provides the foundation of our dynamic
programming approach. Other work on exact flat clustering
uses fast convolutions via the Mobius transform and Mo-
bius inversion [21]. Kappes et al. [19] produce approximate
distributions over flat clusterings using Perturb and MAP
[26].

Orthogonal to our work on uncertainty in hierarchical clus-
tering, recent work has proposed continuous representations
of trees for hierarchical clustering [23, 6]. This work repre-
sents uncertainty of child-parent assignments by considering
the distance between two nodes in embedding space. We
note that the distribution over trees used in these papers does
not directly correspond to the energy-based distribution pro-
posed in our work.

6 CONCLUSION

This paper describes a trellis data structure and dynamic-
programming algorithm to efficiently compute and sam-
ple from probability distributions over hierarchical cluster-
ings. Our method improves upon the computation cost of
brute-force methods from (2N − 3)!! to sub-quadratic in
the substantially smaller powerset of N , which is super-
exponentially more efficient. We demonstrate our methods’
utility on jet physics and cancer genomics datasets, as well
as a dataset related to Dasgupta’s cost [14], and show its
improvement over approximate methods. Also, for larger
datasets where the full trellis implementation becomes in-
feasible, we introduce a sparse trellis that compares well
to other benchmarks. Finally, our methods allow to sam-
ple hierarchies from the exact true posterior distribution
without enumerating all possible ones, i.e. sample a hierar-
chy according to its probability. Code for our methods of
finding exact solutions for the MAP hierarchy and partition
function for any user-defined energy-based model of hier-
archical clustering is available here: https://github.
com/SebastianMacaluso/ClusterTrellis.

https://github.com/SebastianMacaluso/ClusterTrellis
https://github.com/SebastianMacaluso/ClusterTrellis
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proof. Given a dataset X , pick an element x ∈ X . We consider all possible Ω clusters Xω
L in C(X)x. Given Xω

L , then
Xω
R is fixed so as to satisfy Xω

L

⋃
Xω
R = X and Xω

L

⋂
Xω
R = ∅. We want to show that the partition function Z(X) can be

written recursively in terms of Z(Xω
L) and Z(Xω

R).

The partition function is defined as the sum of the energies of all possible hierarchical clusteringsHX = {Hm}Mm=1,

Z(X) =

M∑
m=1

φ(Hm(X)) =

M∑
m=1

ψ(Xm
L , X

m
R ) φ(Hm(Xm

L )) φ(Hm(Xm
R )) (8)

where Xm
L

⋃
Xm
R = X , Xm

L

⋂
Xm
R = ∅. Also, Hm(Xm

L ) and Hm(Xm
R ) are the sub-hierarchies in Hm that are rooted at Xm

L

and Xm
R , respectively. Next, we rewrite Eq. 8 grouping together all the hierarchies Hi that have the same clusters {Xm

L , X
m
R }

4,

Z(X) =

Ω∑
ω=1

ψ(Xω
L , X

ω
R)

J∑
j=1

φ(Hj(Xω
L))

K∑
k=1

φ(Hk(Xω
R)) =

Ω∑
ω=1

ψ(Xω
L , X

ω
R) Z(Xω

L) Z(Xω
R) (9)

with M = Ω · J ·K, J = (2|Xω
L | − 3)!!, and K = (2|Xω

R| − 3)!! for a full trellis. Thus, Z(X) of a cluster X can be written
recursively in terms of the partition function of the sub-clusters of X 5.

A.2 PROOF OF THEOREM 3

Proof. We want to show that drawing samples of trees using Algorithm 3 gives samples from P (H|X). To do this, we show
that the probability of a tree can be re-written as the product of probabilities of sampling each split in the structure. This
then directly corresponds to the top-down sampling procedure in Algorithm 3.

Recall from Definition 2 we have:

P (H|X) =
1

Z(X)

∏
XL,XR∈sibs(H)

ψ(XL, XR) (10)

We can equivalently write this as:

P (H|X) =
∏

XL,XR∈sibs(H)

1

Z(XL ∪XR)
· ψ(XL, XR) · Z(XL) · Z(XR) (11)

To understand why this can be written this way, observe that for internal nodes the Z(XL) and Z(XR) terms will be
cancelled out by corresponding terms in the product for the children of XL or XR. To see this we can write out the product
for three pairs of nodes XL, XR and their children XLL, XLR and XRL and XRR respectively:

1

Z(Xp)
ψ(XL, XR) Z(XL) Z(XR) · 1

Z(XL)
ψ(XLL, XLR) Z(XLL) Z(XLR) · 1

Z(XR)
ψ(XRL, XRR) Z(XRL) Z(XRR) (12)

Recall that for the pair of siblings that are the children of the root, the 1
Z(XL∪XR) term will not be cancelled out and

corresponds exactly to 1
Z(X) .

Next, we observe that Eq. 11 can be re-written in terms of Equation 3 which defines p(XL|XL ∪XR):

P (H|X) =
∏

XL,XR∈sibs(H)

p(XL|XL ∪XR) (13)

4The cluster trellis provides an exact solution conditioned on the fact that the domain of the linkage function is the set of pairs of
clusters, and not pairs of trees.

5Note that for each singleton xi, we have Z(xi) = 1.



Algorithm 3 applies Eq. 3 recursively in a top-down manner using a series of splits which have a probability that directly
corresponds to the product of terms in Eq. 13.

A.3 PROOF OF MAP TIME COMPLEXITY

The MAP tree is computed for each node in the trellis, and due to the order of computation, at the time of computation for
node i, the MAP trees for all nodes in the subtrellis rooted at node i have already been computed. Therefore, the MAP tree
for a node with i elements can be computed in 2i steps (given the pre-computed partition functions for each of the node’s
descendants), since the number of nodes for the trellis rooted at node i (with i elements) corresponds to the powerset of i.
There are

(
n
i

)
nodes of size i, making the total computation

∑N
i=1 2i

(
N
i

)
= 3N − 1.

A.4 PROOF OF PROPOSITION 2

Proof. We proceed in a similar way as detailed in Appendix § A.1 , as follows. Given a dataset X , pick an element x ∈ X .
We consider all possible Ω clusters Xω

L in C(X)x. Given Xω
L , then Xω

R is fixed so as to satisfy Xω
L

⋃
Xω
R = X and

Xω
L

⋂
Xω
R = ∅. We want to show that the MAP clustering φ(H∗(X)) can be computed recursively in terms of φ(H∗(Xω

L))
and φ(H∗(Xω

R)).

The MAP value is defined as the energy of the clustering with maximal energy φ among all possible hierarchical clusterings
HX = {Hm}Mm=1,

φ(H∗(X)) = max
m∈M

φ(Hm(X))

= max
m∈M

ψ(Xm
L , X

m
R ) φ(Hm(Xm

L )) φ(Hm(Xm
R )) (14)

where Xm
L

⋃
Xm
R = X , Xm

L

⋂
Xm
R = ∅. Also, Hm(Xm

L ) and Hm(Xm
R ) are the sub-hierarchies in Hm that are rooted at Xm

L

and Xm
R , respectively. As mentioned earlier, the cluster trellis provides an exact MAP solution conditioned on the fact that

the domain of the linkage function is the set of pairs of clusters, and not pairs of trees. Thus, we can rewrite Eq. 14 grouping
together all the hierarchies Hi that have the same clusters {Xm

L , X
m
R }, as follows

φ(H∗(X)) = max
ω∈Ω

(
ψ(Xω

L , X
ω
R) max

j∈J
φ(Hj(Xω

L)) max
k∈K

φ(Hk(Xω
R))

)
= max
ω∈Ω

ψ(Xω
L , X

ω
R) φ(H∗(Xω

L)) φ(H∗(Xω
R)) (15)

withM = Ω ·J ·K. Thus, φ(H∗(X)) of a clusterX can be written recursively in terms of the MAP values of the sub-clusters
of X 6.

A.5 PROOFS OF THEOREM 1 AND COROLLARY 2

The partition function is computed for each node in the trellis, and due to the order of computation, at the time of computation
for node i, the partition functions for all nodes in the subtrellis rooted at node i have already been computed. Therefore, the
partition function for a node with i elements can be computed in 2i steps (given the pre-computed partition functions for
each of the node’s descendants), since the number of nodes for the trellis rooted at node i (with i elements) corresponds to
the powerset of i. There are

(
N
i

)
nodes of size i, making the total computation

∑N
i=1 2i

(
N
i

)
= 3N − 1.

In Corollary 2 we state that Algorithm 1 is super-exponentially more efficient than brute force methods that consider every
possible hierarchy. Their ratio is

r =
(2N − 3)!!

3N
=

1

2
√
π

(
2

3

)N

Γ(N − 1/2) (16)

with Γ the gamma function. Thus, r presents a super-exponential growth in terms of N .
6Note that for each singleton xi, we have φ(H∗(xi)) = 1.
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