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Abstract
Patch-based image tokenization ignores the mor-
phology of the visual world, limiting effective
and efficient learning of image understanding. In-
spired by subword tokenization, we introduce sub-
object-level adaptive token segmentation and ex-
plore several approaches, including superpixel,
SAM, and a proposed Efficient and PanOptiC
(EPOC) image tokenizer. Our EPOC combines
boundary detection–a simple task that can be han-
dled well by a compact model–with watershed
segmentation, which inherently guarantees no pix-
els are left unsegmented. Intrinsic evaluations
across 5 datasets demonstrate that EPOC’s seg-
mentation aligns well with human annotations
of both object- and part-level visual morphol-
ogy, producing more monosemantic tokens and
offering substantial efficiency advantages. For
extrinsic evaluation, we designed a token embed-
ding that handles arbitrary-shaped tokens, and
trained VLMs with different tokenizers on 4
datasets of object recognition and detailed cap-
tioning. The results reveal that subobject to-
kenization enables faster convergence and bet-
ter generalization while using fewer visual to-
kens. Project website: https://github.
com/ChenDelong1999/subobjects.

1. Introduction
Partitioning the raw observational data stream into a man-
ageable number of segments is often beneficial for learning,
particularly when nearby elements in the data stream exhibit
strong correlations and therefore high redundancy (Cover,
1999; Barlow et al., 1961; Biederman, 1987; Marr, 2010;
Delétang et al., 2024). In Computer Vision (CV), nearby
pixels are often highly correlated (He et al., 2022; Simon-
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celli & Olshausen, 2001). Direct modeling on pixels (Chen
et al., 2020; Nguyen et al., 2024) tends to be computation-
ally inefficient, especially for high-resolution images. The
widely adopted approach is patch-based tokenization (Doso-
vitskiy et al., 2021), which divides images into fixed-size
square patches, each treated as a single token. Although be-
ing straightforward and efficient, the non-adaptive nature of
patch-based tokenization prohibits its ability to capture the
underlying morphological structure of the image (Palmer,
1977). Consequently, larger patches fuse multiple seman-
tics within a single token (polysemanticity), an undesirable
property that hinders effective learning of token represen-
tations. On the other hand, smaller patches exhibit greater
monosemanticity but lead to an excessive number of tokens,
resulting in computational inefficiency.

In Natural Language Processing (NLP), similar challenges
of input redundancy also exist, and the solution is to merge
characters that frequently co-occur into individual tokens
(Sennrich et al., 2016; Kudo, 2018; Gastaldi et al., 2024).
Sennrich et al. (2016) demonstrates that a statical-based
grouping approach can produce subword tokens that identi-
fies the morphological structure, e.g., the word sweetish in
English can be chunked into “sweet” and “-ish”, while the
word “süßlich” in German, can be chunked into “süß” and
“-lich”. This yields better monosemanticity of tokens com-
pared to other alternatives such as word-based or character-
based tokenization methods which improves generalization
to rare or out-of-vocabulary words by enabling semantic
composition of subwords (Wang et al., 2018; Wilie et al.,
2020; Mielke et al., 2021), while also guaranteeing effi-
ciency by significantly reducing sequence length (Song et al.,
2021; Muller et al., 2022; Cahyawijaya et al., 2024).

Patch tokenization on images is analogous to “character
chunk tokenization” on text, which is conterintuitive and
rarely adopted in practice. We hypothesize that adaptive
token segmentation, as opposed to static patch tokenization,
can facilitate better learning of image understanding. To
test this, we explore both object-level tokenization, which
is akin to word-level tokenization, and subobject-level to-
kenization, resembling subwords in images. For subobject
segmentation, a promising method is SAM’s “segment ev-
erything” mode (Kirillov et al., 2023), but it suffers from
computational inefficiency and the presence of unsegmented
regions. We propose Efficient and PanOptiC (EPOC) to
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addresses these two key limitations. EPOC integrates bound-
ary detection and watershed segmentation (Vincent & Soille,
1991). The boundary detection formulation (instead of mask
generation) simplifies the learning task (Canny, 1986) and
enables us to squeeze the model size to 3.7M parame-
ters from SAM’s 641M while achieving a similar level of
segmentation quality1. Moreover, the revisited watershed
algorithm ensures comprehensive segmentation while also
providing flexible control over segmentation granularity
through a single scalar hyperparameter. This design im-
proves inference efficiency by making the cost independent
of the number of masks (i.e., O(1) complexity).

Studies on text tokenization in NLP typically involve intrin-
sic evaluation measuring tokenizer’s innate qualities, and
extrinsic evaluation measuring its impact on downstream
task performance (Gowda & May, 2020; Zouhar et al., 2023;
Goldman et al., 2024). Following this practice, we also
measure both aspects for a holistic evaluation. Intrinsic
evaluation encompasses three key aspects: 1) morphology–
whether the segmentation align with semantic boundaries,
2) monosemanticity–whether individual token avoids cov-
ering multiple semantics, and 3) efficiency–how much ad-
ditional computational overhead are introduced. Results
on five datasets covering both object- and subobject-level
annotations reveals that both SAM and EPOC yields strong
morphology alignment and token monosemanticity, while
EPOC enjoys significant advantage on efficiency.

For extrinsic evaluation, we first design a vision-language
model (VLM) (Liu et al., 2023) architecture to incorpo-
rate adaptive token segmentation which produces dynamic
spatial arrangement and non-regular shapes, and train a se-
ries of models with different image tokenizers. Results on
ImageNet-1k (Deng et al., 2009), ShareGPT4V (Chen et al.,
2024), Pixmo-cap (Deitke et al., 2024), as well as a new
dataset CLEVR-cap generated from CLEVR (Johnson et al.,
2017) indicates that VLMs using subobject-level image tok-
enization enjoy faster convergence and better generalization
with much fewer number of visual tokens. Such advantage
can be observed across different LLMs and visual embed-
dings. We also show that EPOC-based method holds more
robustness to dropping long-tail small tokens, which allow
us to further reduce sequence length. To summarize, we
make three core contributions in this paper:

• We introduce EPOC, a novel subobject tokenization
that integrates boundary detection and watershed seg-
mentation to achieve efficient panoptic segmentation.

• We compare different adaptive token segmentation
methods via extensive intrinsic evaluation. EPOC pro-
vides comparable segmentation quality while being

1The boundary detection model was referred to as the Direct
Segment Anything Model (DirectSAM) in our initial arXiv ver-
sions. Here EPOC = DirectSAM + Watershed

much more efficient.
• We show that subobject-level image tokenizers facili-

tate faster VLMs convergence, improves their gener-
alization, and achieves better token efficiency, outper-
forming patch and object toknizers.

2. Preliminaries
2.1. Problem Formulation

Let X ∈ RH×W×3 represent an input image and Y repre-
sent the target label, the task of image understanding is to
learn a function f that maps X to Y. When using sequence
models such as Transformers, this mapping is achieved by
processing and generating sequences of tokens derived from
X and Y , i.e., f([x1,x2, . . . ,xN ]) = [y1,y2, . . . ,ym],
where each vector xi ∈ Rd is an individual visual token and
{yi}mi=1 are text tokens. The task of image tokenization is to
transform the high-dimensional raw input X into a compact
set of visual tokens, i.e., X 7→ [x1,x2, . . . ,xN ].

The process of image tokenization consists of token segmen-
tation and token embedding. Token segmentation aims to
produce a token index map M ∈ {0, . . . , N−1}H×W from
X, where each element in this map assigns the correspond-
ing pixel to one of N tokens. All pixels assigned to the same
token index are grouped together as individual visual tokens.
We are interested in developing good token segmentation
that enables f to better approximate X 7→ Y (i.e., faster
convergence and better generalization). Furthermore, since
the computational cost of f usually heavily depends on the
number of input tokens, the mapping M that has smaller
N is preferred if the performance of f is the same. In this
paper, we propose and implement different token segmen-
tation approaches for generating M, and learn f : X 7→ Y
with each of them under controlled settings.

2.2. Patch-based Image Tokenization

Patch tokenization divides the image into N = p× p non-
overlapping square patches of fixed size, where p controls
the number of patches per side. Its effectiveness lies in
leveraging the spatial inductive bias that neighboring pixels
exhibit high correlations. However, the underlying assump-
tion of patch tokenization can be overly strong since visual
semantics are not usually distributed in a grid-like structure.
The violation of such unrealistic assumption leads to the is-
sues of either token polysemanticity or token redundancy.
Large patches in crowded regions often encompass multiple
semantics. While a model f can learn to represent such
polysemantic tokens, the unique mixture of semantics is
unlikely to appear frequently in the training data, leading
to limited sample exposure and insufficient learning. This
issue is analogous to the challenge of rare words in word-
based text tokenization in NLP, which can be addressed by
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increasing the segmentation granularity. The solution for
vision models that shares the similar spirit is to lower the
patch size, as adopted by many recent large ViTs. However,
this introduces redundancy. For instance, a large region of
clean sky can be divided into excessive number of tokens,
wasting computation resources.

3. Adaptive Token Segmentation
As patch-based tokenization struggles with the conflict be-
tween token polysemanticity and token redundancy, this
section introduces adaptive token segmentation methods,
which include both segmenting images into object instances
(§3.1) and subobject entities (§3.2).

3.1. Object-level Image Tokenization

A straightforward approach that enables adaptive tokeniza-
tion is to group pixels by object instances. Here, “objects”
refers broadly to both discrete “thing” instances (e.g., cats,
humans, cars) and amorphous “stuff” regions (e.g., sky,
grass, water). This approach is promising due to the nat-
ural coherence of objects in the real world, where their
constituent pixels exhibit high internal correlations as they
tend to move as a whole. Object-level image tokenization
can be implemented using panoptic segmentation (Kirillov
et al., 2019) models, where the generated “label map” can
be directly utilized as token segmentation M.

Panoptic segmentation models are typically trained on the
COCO (Lin et al., 2014) and ADE20K (Zhou et al., 2019)
datasets, which respectively include 133 and 150 annotated
classes of common objects and regions. However, the num-
ber of object types in the real world far exceeds this scale
(Wang et al., 2023). A significant limitation of these models
is their reliance on the fixed vocabulary of object cate-
gories, which poses challenges for generalization to out-of-
vocabulary objects. In addition, image understanding tasks
are not always object-centric (Tong et al., 2024). When the
target Y involves information of object parts, object-level
tokenization will still suffer from polysemanticity.

3.2. Subobject-level Image Tokenization

In NLP, subword tokenization has demonstrated superior
performance in language modeling compared to word-based
tokenization. Inspired by subwords and with an analogy
of object in image are akin to words in sentences, we in-
troduce the notion of subobject-level image tokenization.
Subobjects represent an intermediate level situated between
objects and pixels, similar to the concept of subwords which
is also an umbrella covers various methods.

Subobject entities are semantically coherent and function-
ally meaningful units, encompassing object parts, sub-parts,
and finer subdivisions. The potential of subobject tokeniza-

tion not only come from its similarity with subword tok-
enization, but also from its alignment with the Recognition-
by-Components (Biederman, 1987) theory in cognitive
science, which posits that human recognize objects through
their constituent parts (Tversky & Hemenway, 1984; De-
haene et al., 2022). Moreover, in previous CV studies, part-
based image recognition (Felzenszwalb & Huttenlocher,
2005) has also demonstrated improved robustness (Li et al.,
2023; Sitawarin et al., 2023; Li et al., 2024) and sample effi-
ciency (Lake et al., 2015). In the following, we introduce
three subobject segmentation approaches that we explore.

3.2.1. Superpixel Segmentation. Superpixel segmentation
is a classical type of method that groups adjacent pixels
into local clusters. These clusters, termed superpixels, are
formed based on pixel properties such as color intensity.
This typically results in irregularly shaped segments that are
smaller and more detailed than entire objects, and as such,
superpixels are naturally categorized within the subobject
level. Over decades, many superpixel segmentation methods
have been developed. We consider the k-means-based Sim-
ple Linear Iterative Clustering (SLIC) (Achanta et al., 2012)
method. The k for k-means is the key hyperparameters that
allow control over the granularity of segmentation.

3.2.2. Segment Anything Models. Segment Anything Mod-
els (SAM) are trained on the large SA-1B dataset, which
contains 11 million images and 1 billion mask annotations
of varying granularities, encompassing objects, parts, and
subparts (Kirillov et al., 2023). The SAM architecture com-
bines an image encoder and a prompt-conditioned mask
decoder, enabling segment anything according to the given
prompt. To generate a comprehensive segmentation for a
whole image, a regular grid of point prompts is applied to
the decoder, producing masks corresponding to each point
prompt. These masks are subsequently filtered and merged
to yield the final segment everything results.

While SAM demonstrates strong performance across diverse
image segmentation benchmarks, its effective application in
image tokenization is hindered by the following two signif-
icant limitations: Efficiency: To perform segment every-
thing on a single image with a default grid of 32× 32 point
prompts requires 1,024 times of forward passes through
the mask decoder. Although the mask decoder has been
made lightweight, and improvements such as reducing the
encoder size (Zhao et al., 2023) and reducing the number of
prompts (Zhang et al., 2023) have been introduced, the com-
plexity remains O(N), where N is the number of masks to
be generated. Comprehensiveness: As shown in Fig. 1, the
result of SAM’s segment everything mode is not guaranteed
to be panoptic. SAM’s design of generating each mask in-
dependently introduces potential gaps between individual
segments, or certain background regions may remain un-
segmented. While these gaps or unsegmented areas can be
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Figure 1. Comparing SAM and our EPOC on SA-1B images.
The design of independent mask decoding makes SAM often leave
thin gaps between segments or background regions unsegmented.
Our EPOC inherently guarantees complete coverage while also
improves computational efficiency.

grouped into a single token to avoid information loss, the
resulting tokens often suffer from high polysemanticity.

3.2.3. Proposed EPOC. We propose Efficient and Com-
prehensive Image Tokenization (EPOC), a novel segment
everything approach that ensures comprehensive segmenta-
tion while significantly improving computational efficiency.
Unlike SAM’s prompt-conditioned mask decoding, EPOC
adopts a boundary detection approach, predicting a pixel-
wise boundary probability map P ∈ [0, 1]H×W that outlines
subobject entities across the entire image. This approach
avoids the overhead of generating individual masks and ben-
efits from the simplicity of boundary detection. Tasks of
similar difficulty have historically been effectively handled
by non-parametric algorithms (Canny, 1986) and early lay-
ers of CNNs (Zeiler & Fergus, 2014). The task simplicity
allow us to employ an extremely compact model. We em-
pirically found a lightweight SegFormer-b0 (Xie et al.,
2021) with only 3.7M parameters learns well from SA-1B.

Based on the predicted boundary probability map P, a naı̈ve
approach to derive the token segmentation map M might
involve thresholding the map and applying connected com-
ponent analysis (Wu et al., 2009). However, such methods
leave boundary pixels unsegmented, leading to potential
information loss or polysemanticity when these pixels are
merged. Instead, we revisit the watershed algorithm (Vin-

Figure 2. Proposed EPOC. A boundary probability map P ∈
[0, 1]H×W is predicted from the input image X ∈ RH×W×3 and
treated as a topographical surface. The watershed segmentation be-
gins by identifying basins in P as seed regions (labeled in different
colors) with a threshold t. A “flooding” process then progresses
until the entire P is submerged. When seed regions meet during
flooding, “watersheds” are formed to separate them.

cent & Soille, 1991), which naturally ensures comprehen-
siveness. As shown in Fig. 2, the method treats the predicted
P metaphorically as a topographical surface, where higher
probabilities correspond to elevated regions like peaks or
ridges and lower probabilities represent basins. The algo-
rithm simulates a gradual “flooding” of these basins, with
boundary of segmentation masks are generated acting as
barriers that prevent water from merging between different
basins. Watershed typically requires seed regions to be-
gin the “flooding” process, which we obtain by applying
a threshold t to the boundary map. Pixels below t are as-
sumed to be within object interiors and serve as seeds. By
tuning t, one can seamlessly control the granularity of the
resulting segmentation—higher t merges seeds into larger
segments, while lower t retains finer details. Fig. 10 in
Appendix provide an example illustrating such flexibility.

EPOC achieves its computational efficiency through three
advantages. First, the boundary probability predictor oper-
ates on the entire image in a single forward pass, resulting in
a complexity of O(1) which is independent to the number of
tokens N . Second, the compactness of SegFormer-b0
further reduces GPU memory usage, allowing for large
batch sizes or multi-process parallelism. Third, the sub-
sequent watershed algorithm is non-parametric and runs
efficiently on CPUs (Kornilov & Safonov, 2018). These
features together make EPOC an efficient image tokenizer.

4. Intrinsic Evaluations
4.1. Evaluation Setup

This section evaluates innate properties of token segmen-
tation models (which take image X to generate the index

4



Subobject-level Image Tokenization

Figure 3. Intrinsic evaluation dataset examples and token segmentation results. Object-level tokenization based on panoptic
segmentation suffers from out-of-vocabulary problem. Superpixel segmentation relies on bottom-up pixel grouping, which limits its
ability to capture underlying structures. The SAM model and its variants generally provide reasonable token segmentation. The quality
and style of the segmentation generated by our EPOC closely match those of SAM, while utilizing a significantly smaller model size.

map M (§3) without training any downstream models (e.g.,
VLMs). Models. We compare three categories of candi-
dates: patch-based: square patches with patch size p vary-
ing from 2 to 32; object-level: Mask2Former (Cheng et al.,
2022) and OneFormer (Jain et al., 2023) trained on COCO
and ADE20K. subobject-level: SLIC superpixel (Achanta
et al., 2012), SAM (Kirillov et al., 2023), FastSAM (Zhao
et al., 2023), MobileSAMv2 (Zhang et al., 2023), and the
proposed EPOC method. Datasets. We conduct evalua-
tions on five datasets, encompassing different annotation
granularities, with COCO’s COCONut relabeled validation
split (Deng et al., 2024) and ADE-20K (Zhou et al., 2019)
validation split provide object-level annotations, and Pascal
Panoptic Parts (PPP) (de Geus et al., 2021), PartImageNet++
(PIN++) (Li et al., 2024) and SA-1B (Kirillov et al., 2023)
consist subobject-level annotations. Fig. 3 provide visual-
ization of converted ground truth boundary (leftmost) and
token segmentation generated by different tokenizers. We
provide richer details in the Appendix A and B.

4.2. Results and Discussions

Alignment to Morphology. We first measure how well
different token segmentation methods capture the seman-
tic structures of images. Although the human annotations
are provided as mask, traditional mask-based metrics are
unsuitable for this evaluation due to their incompatibility
with class-agnostic and mixed-granularity segmentation (as
we have both object- and subobject-level models and an-
notations). Instead, we adopt boundary precision-recall
metrics, which are widely used in boundary / edge / contour

detection studies (Arbeláez et al., 2011; Yamagiwa et al.,
2024). A token segmentation that accurately captures the
semantic structure of an image should align well with the
ground truth boundaries, achieving both high precision and
recall. The top row of Fig.4 presents the results for an input
resolution of 768px. The evaluation confirms that patch-
based tokenization exhibits very low alignment with image
morphological structures, whereas all adaptive tokenization
methods clearly outperform it. Superpixel segmentation
underperforms other learned tokenization methods, indicat-
ing that bottom-up pixel grouping lacks the holistic under-
standing required to capture high-level semantic structures.
Object-level tokenization based on panoptic segmentation
shows strong in-domain performance (e.g., on COCO and
ADE-20K) but struggles in zero-shot settings, where the
segmentation models have to generalize to unseen datasets.
On PPP and PIN++, where all models are in zero-shot set-
tings, our proposed EPOC demonstrates clear advantages
over panoptic segmentation models and SAM ViT-B mod-
els, achieving Pareto optimal performance. EPOC also
matches the performance of FastSAM and MobileSAMv2
and closely approaches SAM ViT-H models. Importantly,
EPOC achieves this level of performance with a significantly
smaller model size and offers substantially faster inference
speeds, as will be presented soon.

Token Monosemanticity Score. As discussed in §2.2, one
of the key goal of adaptive token segmentation is to mini-
mize the occurrence of polysemantic tokens. We quantify
this by calculating a token monosemanticity score, defined
as the percentage of predicted token segments that lie en-
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Figure 4. Intrinsic evaluation of token segmentation. Connected dots represent same model in different sizes or with different
hyperparameters. Top: We measure the alignment between token segmentation and semantic annotations with boundary precision and
recall. Our proposed EPOC achieves Pareto optimality compared to SAM ViT-B models and matches the performance of FastSAM
and MobileSAMv2. Bottom: All subobject-level methods demonstrate clear advantages over object-level (in maximum achievable
monosemanticity score) and static patch-based tokenization (in token efficiency).

tirely within a single ground-truth region, i.e., no crossing of
ground truth boundaries that separate semantically distinct
regions (see Appendix B for more details). The bottom row
in Fig. 4 presents the results, where token monosemantic-
ity scores are plotted against the total number of tokens.
For patch-based tokenization, smaller patches naturally
avoid crossing ground-truth boundaries but result in signif-
icant token redundancy (large N ). All adaptive methods
outperform static patch, with subobject-level tokenization
(SAM, EPOC, and SLIC) being able to approach high (e.g.,
> 90%) monosemanticity with varying levels of token effi-
ciency, while object-level panoptic segmentation remains
mostly below 60%. This observation supports our analysis
in §3.1, where we hypothesized that the out-of-vocabulary
problem poses a significant challenge for panoptic segmen-
tation models.

Computational Efficiency. Image tokenizers must also
offer fast inference. We measure throughput with a V100
(32GB) an 30 CPU cores by progressively spawning tok-
enizer processes (each with a batch size of 10) until a total
of 30 processes. Table 1 shows the maximum achievable
FPS and corresponding GPU utilization. With only 3.7M
parameters, EPOC achieves up to 17.1 FPS with under 10%
GPU utilization, outperforming all SAM-based methods,
allowing minimal impact on VLM’s computation. Profil-
ing indicates SegFormer’s forward occupies only 5–7%
of the total time, with CPU-based watershed taking the
remainder. This explains why increasing threshold t can
boost efficiency: the gap between seed regions become thin-

Table 1. Comparing computation efficiency of image tokenizers.

Image Tokenizer Params
(Millions)

Maximum
FPS

GPU
Usage%

Patch 0.0 +∞ 0.0
tiny 47.4 53.1 53.1Mask2Former
large 215.5 34.9 44.6
tiny 50.7 17.3 99.1OneFormer
large 218.8 11.1 99.4
k=64 15.4
k=128 13.2SLIC

Superpixel
k=256

0.0
11.0

0.0

SAM ViT-B 93.7 0.6 96.5
SAM ViT-H 641.1 0.4 92.4
FastSAM 72.2 12.2 94.2

SAM and
Variants

MobileSAMv2 711.0 1.2 89.2
t=0.1 13.4 5.7
t=0.3 16.2 8.1EPOC

(Ours)
t=0.5

3.7
17.1 9.0

ner and the watershed step shortens. Optimized watershed
implementations (Perret et al., 2019) could bring further
improvements, but since our implementation already meets
the throughput needs of training downstream VLMs, we
leave further optimization to future work. More details are
provided in Appendix B.

5. Extrinsic Evaluations
While our intrinsic evaluations assessed the innate proper-
ties of various image token segmentation methods, a com-
plete picture requires extrinsic evaluations that measure
their impact on downstream tasks. Compared to static patch,
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adaptive image tokenization (§3) introduces new challenges
of dynamic spatial arrangements and heterogeneous sizes
and shapes. Traditional architecture cannot handle these
properties, as they rely on simplified design that assumes
predetermined grid structures and static raster-order patch
arrangement. In this section, we first detail our methodology
of incorporating such information into visual tokens in §5.1,
then present the setup and results in §5.2 and §5.3.

5.1. Token Embedding for Adaptive Segmentation

Given an image X and token segmentation map M, the goal
is to generate visual tokens {xi}Ni=1, where each xi corre-
sponds to one segment in M. We first encode the content
and position of each token into xc

i and xp
i , respectively rep-

resenting “what it is” and “where it is”, and fuse them into
visual tokens xi, which are then fed to f to learn X 7→ Y.

Content Embedding. We allow a vision encoder to extract
a feature map from the input image, i.e., feature(X) ∈
RHe×We×C , where He and We are spatial dimensions, and
C represent channels. For the case where feature(·)
is an identity function, it allows f to directly learn from
raw pixels. Despite such special case, the spatial reso-
lution of feature(X) is usually lower than M whose
resolution is H × W , so we upsample the feature
map to match the resolution of the mask M via X′ :=
upsample(feature(X)) ∈ RH×W×C .

Given X′ and M, we aggregate the pixel features corre-
sponding to each segment to obtain the content embed-
ding. Specifically, we define xc

i := pool
(
{X′[h,w] |

M[h,w] = i}
)
, where X′[h,w] ∈ RC is the feature vector

at pixel coordinates (h,w) and pool(·) is a pooling func-
tion (e.g., average pooling). Although more sophisticated
strategies (e.g., flattening ROI features or learning a Per-
ceiver Resampler (Alayrac et al., 2022)) may further refine
these embeddings, we find that simple average pooling is
effective if the segments are reasonably monosemantic.

Position Embedding. Adaptive tokenization introduces
dynamic spatial arrangements and irregular token shapes,
requiring position embeddings to preserve such information.
Each segment in M has that information, but directly encod-
ing each mask at the full image resolution is costly. Instead,
we exploit the prior that most segments form connected
components, which allows a more compact representation
via box-mask decomposition.

Specifically, we compress the raw mask into token loca-
tion (represented as a bounding box), and token shape (a
cropped mask inside the bounding box). For each token i,
we compute its bounding box bi ∈ [0, 1]4 using the normal-
ized <xywh> format, and we also extract a cropped binary
mask mi ∈ {0, 1}Hm×Wm that indicates the exact shape
of the segment (with Hm < H and Wm < W ). We then

define the position embedding as xp
i := encode(mi)⊕ bi,

where ⊕ denotes concatenation. The encode(·) function
converts each cropped mask into a vector, and we implement
it with downsampling and flattening. More sophisticated en-
codings, such as CNN-based encoders, can be incorporated.
However, as the amount of computation is dependent on the
number of tokens n, we keep it simple in this paper.

Fusion. Finally, the content embedding xc
i and the position

embedding xp
i are fused via a small MLP: xi := MLP

(
xc
i⊕

xp
i

)
, yielding the i-th visual token. Collectively, these tokens

[x1,x2, . . . ,xN ] serve as the input to the downstream model
for tasks such as image classification or caption generation.

5.2. Evaluation Setup

VLMs. We follow the strategy outlined in §5.1 to transform
images into visual tokens, then feed them to text-only LLMs
with a Llama-style architecture (Dubey et al., 2024). We
apply the standard next-token prediction loss only on text
tokens, ignoring the loss for the visual tokens. We train
the entire LLM and the MLP projection while freezing the
feature embedding (Appendix C provides more details on
our evaluation setup).

Image Tokenizer. Due to the high cost of training VLMs,
we only select a set of efficient representative token segmen-
tation approaches to compare, which include patch tokeniza-
tion, object-level panoptic segmentation (Mask2Former
tiny and large trained on COCO), and subobject-level
SLIC and EPOC. We use varying patch’s p, SLIC’s k and
EPOC’s t to sweep over different granularity.

Datasets. We train VLMs on four datasets: ImageNet-1K
(Deng et al., 2009): A object recognition dataset widely-
used in CV. We treat class names as text target. ShareGPT-
4V (Chen et al., 2024): A detailed captioning dataset com-
monly used for vision-language alignment. Pixmo-cap
(Deitke et al., 2024): A high-quality dataset featuring rich
human-annotated dense captions. CLEVR-cap: A new
dataset introduced for fast ablation experiments. The dataset
is generated by using CLEVR (Johnson et al., 2017) meta-
data to create detailed captions that enumerate the attributes
of each object from left to right. Captions follow the
template of “A total of {n} objects: a {color} {size}
{material} {shape}, ...”. CLEVR-cap involves core
visual understanding capabilities, including counting, spa-
tial reasoning, and recognition of object color, size, material,
and shape. By constraining to a clean synthetic domain, it
significantly facilitates evaluation cycles while maintaining
experimental rigor.

5.3. Results and Discussions

Adaptive Tokenization Facilitates Image Understanding.
Figure 5 presents validation perplexities of VLMs trained
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Figure 5. Extrinsic evaluation of token segmentation. (a-d): Adaptive token segmentation shows clear advantage over patch tokenization,
with subobject-level SLIC and EPOC being able to approach lower perplexity than object-level ones. (e): when using VAE embedding
which is less semantically expressive, patch-based model failed to converge, while adaptive tokenizers works fine.
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Figure 6. Left: adaptive subobject-level tokenization outperform
patch tokenization consistently across different embeddings.
Right: EPOC-based tokenization is robust to token truncation,
showing the potential of further improvement in token reduction.

different tokenizers (each point corresponds to an individual
run). Across all datasets, most adaptive methods lie to
the left or below the patch baseline, particularly in low N
regime, indicating they can either reduce the number of
tokens for similar performance or improve generalization
under comparable token budgets. Among them, subobject-
level EPOC and SLIC stand out for matching or surpassing
the best performance of very small patches while using
much fewer tokens. In contrast, object-level tokenization
is more efficient than large patches but still lags subobject-
level approaches in minimal achievable perplexity.

Compatibility to Different Token Embeedings. Figure 5
also compares the DINOv2 (Oquab et al., 2024) with VAE
embeddings on CLEVR-cap. Notably, patch-based tok-
enization struggles to converge when using the weaker VAE
features, even with an LLM scaled to 1.7B parameters. In
contrast, subobject-based models remain effective, demon-
strating that adaptive tokenization can simplify the learn-
ing of image understanding. Additionally, Figure 6 (left)
presents an ablation study across various token embeddings
on CLEVR-cap using three token segmentation methods
that produce similar N . Subobject tokenization consistently
outperforms static patch tokenization while maintaining a
comparable number of visual tokens. Interestingly, CLIP
(Radford et al., 2021) underperforms DINOv2 in our setup,
likely due to its lack of dense supervision and the lower
feature-map resolution of only 7×7.

Robustness to Token Reduction. We explore the poten-
tial of further reducing visual tokens by truncation. We
do random drop-out for patch tokenizer, while for object-
and subobject-level tokenization, we start dropping from
the smaller ones. The result in Figure 6 (right) shows that
adaptive tokenization methods exhibit stronger robustness
compared to patch tokenization. Their long-tail token size
distribution (Appendix B) ensures that discarding the small-
est tokens has minimal impact on performance, whereas
random patch dropout leads to notable degradation. This
suggests that adaptive approaches hold even greater poten-
tial for optimizing token efficiency.

6. Related Work
Tokenization, a critical step in the NLP (Gastaldi et al.,
2024), has been historically extensively studied (Mielke
et al., 2021). Despite active explorations (Pagnoni et al.,
2024; team et al., 2024), subword remains the predomi-
nant choice for language modeling. Over the years, the
effectiveness of subwords has been analyzed from multiple
perspectives, ranging from intuitive explanations about re-
ducing rare words (Sennrich et al., 2016; Liu et al., 2019)
to information-theoretic measurements (Zouhar et al., 2023;
Schmidt et al., 2024; Goldman et al., 2024). The common-
ality among these analysis is the idea of a good tokenizer
should maintain a balanced distribution over a manageable
size of vocabulary, while providing reasonable and token
sequence length. The principle of balanced distribution
parallels our goal of preventing polysemantic tokens with
limited appearance frequency—akin to rare words.

The idea of adding adaptivity to visual tokenization has
also been explored in previous studies. Some methods
(Lew et al., 2024; Aasan et al., 2024; Ke et al., 2022) rely
on bottom-up superpixel grouping, which lacks semantic
awareness. Feature-based methods, such as slot attention
(Locatello et al., 2020) and various token pooling methods
(Haurum et al., 2023; Ronen et al., 2023; Marin et al., 2023;
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Feng & Zhang, 2023; Huang et al., 2022), suffer from low-
resolution feature maps which limits fine-grained segmenta-
tion, and unreliable segmentation quality in early training
stages. Our approach of using a separate segmentation
model, EPOC, avoids these issues, and outperform SAM-
based segmentation (Kim et al., 2024) in terms of efficiency.
Additionally, there are also works on image tokenization
focusing on improving token embeddings for understanding
or generation (Ramesh et al., 2021; Hansen-Estruch et al.,
2025), while leaving token segmentation simply as patch
grids. Our work can be combined with these efforts.

7. Conclusion
In this work, we introduce the concept of subobject image
tokenization and propose EPOC, an efficient and panoptic
image tokenizer that combines boundary detection and wa-
tershed segmentation to achieve high-quality, monosemantic
token segmentation while maintaining computational effi-
ciency. Through extensive evaluations, we demonstrate that
EPOC not only aligns well with human annotations of vi-
sual morphology, achieves better token monosemanticity,
but also enabling faster convergence, better generalization
of VLMs. Our findings highlight the potential of adaptive
segmentation in improving vision models.

Limitations
Despite the advantages of EPOC and adaptive (especially
subobject-level) tokenization, there are several limitations
and areas for future improvement. Below, we outline several
key considerations:

• Our boundary prediction model is based on SegFormer,
which produces feature maps at a quarter of the input
resolution. Consequently, very fine or thin structures
(e.g., strands of hair or texts in small font) may not be
segmented precisely. Using different architecture and
with higher resolution output can be a potential way to
alleviate this issue.

• Our extrinsic evaluations employ LLMs with a max-
imum of 1.7 Billion parameters. While this scale is
already substantial for vision backbones (compared to
ViT), it remains limited compared to the largest LLMs
available.

• On the other hand, although EPOC is lightweight
and fast, it still adds a separate segmentation process.
This overhead may be less critical for computationally
heavy VLM training or inference pipelines but war-
rants attention in latency-sensitive applications. We
believe, however, that this overhead is more than offset
by efficiency gains—particularly in high-dimensional
data such as video (Zheng et al., 2025)—where token
number explosion is a persistent bottleneck (and mod-

ern VLMs are still using a relative low FPS rate as a
consequence).

• Adaptive tokenization can be interpreted as a learned
compression scheme, grouping correlated pixels to re-
duce token count. While it has been shown beneficial
for VLM, it inevitably discards intra-token spatial struc-
ture, which might be valuable in settings that demand
ultra-fine resolution or pixel-level edits. This issue is
similar to the disadvantage of subword-based LLMs on
character-level task. Adding more adaptivity to adap-
tive tokenization (i.e., task conditioned segmentation)
can be potential ways to address this.
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and Luo, P. Segformer: Simple and efficient design for
semantic segmentation with transformers. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pp. 12077–12090, 2021.

Yamagiwa, H., Takase, Y., Kambe, H., and Nakamoto,
R. Zero-shot edge detection with SCESAME: spectral
clustering-based ensemble for segment anything model
estimation. In IEEE/CVF Winter Conference on Appli-
cations of Computer Vision Workshops, WACVW 2024 -
Workshops, Waikoloa, HI, USA, January 1-6, 2024, pp.
541–551. IEEE, 2024. doi: 10.1109/WACVW60836.
2024.00064.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In Fleet, D. J., Pajdla, T.,
Schiele, B., and Tuytelaars, T. (eds.), Computer Vision -
ECCV 2014 - 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I, volume

8689 of Lecture Notes in Computer Science, pp. 818–833.
Springer, 2014. doi: 10.1007/978-3-319-10590-1\ 53.

Zhang, C., Han, D., Zheng, S., Choi, J., Kim, T., and
Hong, C. S. Mobilesamv2: Faster segment anything
to everything. CoRR, abs/2312.09579, 2023. doi:
10.48550/ARXIV.2312.09579.

Zhao, X., Ding, W., An, Y., Du, Y., Yu, T., Li, M., Tang,
M., and Wang, J. Fast segment anything. CoRR,
abs/2306.12156, 2023. doi: 10.48550/ARXIV.2306.
12156.

Zheng, C., Zhang, J., Salehi, M., Gao, Z., Iyengar, V., Ko-
bori, N., Kong, Q., and Krishna, R. One trajectory, one
token: Grounded video tokenization via panoptic sub-
object trajectory. arXiv preprint arXiv:2505.23617, 2025.

Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso,
A., and Torralba, A. Semantic understanding of scenes
through the ADE20K dataset. Int. J. Comput. Vis., 127
(3):302–321, 2019. doi: 10.1007/S11263-018-1140-0.

Zouhar, V., Meister, C., Gastaldi, J. L., Du, L., Sachan,
M., and Cotterell, R. Tokenization and the noiseless
channel. In Rogers, A., Boyd-Graber, J. L., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July 9-
14, 2023, pp. 5184–5207. Association for Computational
Linguistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.
284.

14



Subobject-level Image Tokenization

Appendix

A. Token Segmentation Models
Patch-based Tokenization. We divide the image into non-overlapping p × p patches. The p ranges from 2 to 32 in
intrinsic evaluations (§4) and ranges from 9 to 16 in extrinsic evaluations (§5).

Panoptic Segmentation. We employ Mask2Former and OneFormer, two popular types panoptic segmentation models.
Our implementation is based on their official releases in Huggingface, which include models with different sizes and models
trained on both COCO and ADE20K:

• facebook/mask2former-swin-tiny-coco-panoptic

• facebook/mask2former-swin-small-coco-panoptic

• facebook/mask2former-swin-base-coco-panoptic

• facebook/mask2former-swin-large-coco-panoptic

• facebook/mask2former-swin-large-ade-panoptic

• shi-labs/oneformer ade20k swin tiny

• shi-labs/oneformer ade20k swin large

• shi-labs/oneformer coco swin large

Superpixel Segmentation. We vary the k in {22, 32, 42, ... 162} for k-means clustering, effectively controlling the
number of superpixels (Fig.7). We use the SLIC implementation in scikit-image library (url), where the k corresponds
to the n segments parameter. Other hyperparameters are kept as default.

Figure 7. SLIC superpixel segmentation results with different k.

SAM, FastSAM, MobileSAMv2. Token segmentation is generated by prompting the SAM on a regular grid of points
and merge the resulting masks using the official “automatic mask generation” implementation. We test SAM backbones
with different sizes: ViT-B and ViT-H. To explore the limit of fine-grained segment everything, we further increase the
prompt density from the default 32× 32 to 48× 48 and 64× 64 and include an one-layer multi-scale augmentation (MS)
based on the ViT-H model. One the other hand, we scale down the density to 24× 24, 16× 16 and 8× 8 based on the
smallest ViT-B model for more conservative and efficient segmentation. We also include two efficient variants of SAM:
FastSAM (github url) which uses lightweight CNN detector instead of ViT, and MobileSAMv2 (github url) which replaces
grid point prompt with a learned proposal, reducing the number of forward pass through the mask decoder. Fig. 8 compares
their segmentation results on SA-1B samples.

Proposed EPOC For boundary detection, we trained a SegFormer-b0 model on SA-1B dataset for 2 epochs, where
mask annotations are converted into binary boundary maps as the target. Specifically, for every segmentation in an image,
we computed the difference between its dilation and erosion using a circular kernel with the size of 5, and stacked them
together as the boundary label.

The training was performed on a single NVIDIA 8×A100 machine. We used a effective batch size of 64, learning rate of
1e-4 with a constant schedule and 5000 warmup steps. The model was optimized using AdamW with a weight decay of 0.05.
Images were resized to 1024×1024, and the loss was computed as a pixel-wise binary cross-entropy. During training, we
applied random horizontal flipping and color jittering as data augmentation. Fig. 9 visualizes the boundary probability maps
predicted by the trained model on unseen Pixmo-cap samples with 1024px input resolution. We apply watershed algorithm
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Figure 8. “Segment Everything” results from different SAM models.

(with scikit-image) on sigmoid normalized boundary probability map to get panoptic segmentation. Fig. 10 visualizes
how different threshold t affects the segmentation granularity.

Figure 9. Visualization of predicted boundary probability maps on Pixmo-cap samples.
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Figure 10. The threshold t provides flexible control over segmentation granularity: lower t produces more seed regions and thus finer
segmentation, while higher t results in fewer, larger tokens.

B. Intrinsic Evaluations (Extended)
Datasets. For COCO, PPP, PIN++, and SA1B, we randomly sample 3k images for efficient evaluation. For ADE-20K, we
include all 2k samples in the validation set. As we employ boundary-based metrics for evaluation, we convert their mask
annotations into boundaries by applying morphological dilation and erosion operations with a kernel size of 3 on the mask,
and then taking the difference to isolate the boundary. Fig. 11 provide extended visualization of dataset examples.

Boundary Precision and Recall. A small tolerancerecall = 5px is applied to the predicted boundaries to compen-
sate for slight pixel misalignments when calculating recall.

Token Monosemanticity Score. A token is considered monosemantic if it does not include pixels from more than one
ground-truth semantic region. Formally, let X∈RH×W×3 be an image, M∈{0, . . . , N−1}H×W the predicted token map,
and M∗∈{0, . . . ,K−1}H×W the ground-truth. The i-th predicted token is Ti = {(h,w) | M[h,w] = i}.

Define the indicator:

Imono(Ti) =

{
1, ∃k s.t. ∀(h,w)∈Ti, M∗[h,w] = k

0, otherwise.

Then the monosemanticity score is defined as:

Mono(M,M∗) =
1

N

N−1∑
i=0

Imono(Ti).

This class-agnostic score quantifies how often a token is wholly contained in a single semantic region, capturing the absence
of polysemantic tokens. To measure this: 1) we erode each predicted token segment by tolerancemonosemanticity =
25px so that only the “core” of each token remains; 2) Tokens whose eroded region does not intersect a ground-truth
boundary are deemed monosemantic. This captures whether a token merges multiple semantics into a single segment.

Token Size Distribution. To better understand how each segmentation method allocates tokens, we analyze the relative
area of each token by sorting them from largest to smallest. Figure 12 plots the average token size as a percentage of the
total image area on a log scale, with the x-axis denoting the rank of the token in descending order of size. Patch-based
segmentation yields a uniform token size distribution. In panoptic segmentation, only a few tokens occupy a large portion
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Figure 11. Intrinsic evaluation dataset examples and token segmentation results.

of the image. EPOC exhibit a pronounced long-tailed distribution. Those observations can explain our findings in the token
truncation experiments (§5.3).

Computational Efficiency. We measure throughput on an NVIDIA V100 (32GB) with 30 CPU cores by gradually
increasing the number of parallel processes, each running one tokenizer. During these multi-process runs, we record
wall-clock time, GPU memory consumption, GPU utilization, and any out-of-memory events. This setup reveals how well
each tokenizer scales in a concurrent inference setting and highlights potential memory bottlenecks when more processes
are added. Fig. 13 visualize the dynamics of FPS and average GPU utilization with increasing number of process.

C. Extrinsic Evaluations (Extended)
Datasets. Fig. 14 provide visualization of dataset examples. ImageNet-1k and CLEVR provide official validation splits,
we use 5k samples from them for efficiency. For Pixmo-cap, we randomly sample 5k samples as validation, and for
ShareGPT-4v, we treat 5k samples randomly selected from the GPT-4V generated captions as validation split.
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Figure 12. Visualization of token size distribution.

Figure 13. Detailed computational efficiency evaluation results.

VLM Architecture and Training We use a two-layer MLP as the connector between embeddings and LLM. The width is
×4 of LLM’s hidden state dimension. We freeze the image feature extractor and do end-to-end fine-tune the small MLP
projection plus the LLM. For CLEVR-cap, ImageNet-1k, ShareGPT4V, and Pixmo-cap datasets, we respectively train the
model for 30, 1, 1, 3 epochs, with a batch size of 512, 256, 256, and 256. Max tokens are set to 100 for EPOC and 64 for
Mask2Former tokenizer. We use AdamW with learning rate 1×10−4, cosine decay or constant scheduling, and 500 warmup
steps. Mixed-precision (bf16) is used to accelerate training. We do standard language-modeling next-token prediction on
text tokens only.

Convergence Speed We measure convergence speed using average training loss, which effectively shows how quickly
the model fits the training data. Fig. 15 (top) demonstrates that the convergence speed correlate well with generalization
performance (bottom), both showing the advantage of subobject-level image tokenization.
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CLEVR-cap (70k samples)
Total 5 objects: a large gray rubber cube, a small purple metal cube, a large green rubber cube, a small gray rubber sphere, a large cyan metal cube.

ImageNet-1k (1.28M samples)
organ

ShareGPT4v (1.24M samples)
The image captures the breathtaking view of the Harbin Ice and Snow World in China. The perspective is from a low angle, looking up at the towering ice sculptures 
that dominate the scene. These sculptures, meticulously crafted from blocks of ice, take the form of buildings and other structures, their intricate details a testament to 
the skill and creativity of the artists. The colors in the image are predominantly blue and white, reflecting the cool tones of the ice and snow. The sky above is a clear 
blue, providing a striking contrast to the icy landscape below. The image is taken during the day, and the bright sunlight illuminates the sculptures, casting long shadows 
and highlighting the texture of the ice. The overall effect is one of awe and admiration for the artistry and skill involved in creating such a spectacle.

Pixmo-Cap (707k samples)
In this industrial-style kitchen, a bustling scene features a large silver gallon pot in the background and a stainless steel cooking station in the foreground. Center stage 
are two sizable pans with black metal handles and stainless steel bottoms, both brimming with a colorful array of ingredients. The pan on the left appears laden with 
spinach leaves, arugula, chunky yellow pieces that resemble potato or corn, possibly some kind of meat, and vibrant red tomatoes or tomato chunks. Meanwhile, the pan 
on the right showcases yellow bits of corn, red tomatoes, fiery red chilies, and some ground meat. A messy stovetop suggests a lively cooking session, with crumbs 
scattered and two sauce bottles—one red and one clear—positioned to the far right. Overhead, stainless steel shelves and pots add to the industrious ambiance of the 
kitchen. This vibrant scene captures the making of a hearty breakfast, potentially a scrambled mixture or an omelet, full of fresh, colorful ingredients sizzling together.

Figure 14. Examples from extrinsic evaluation datasets that are used to train VLMs.

Figure 15. Comparing average training loss (measuring convergence speed) and validation perplexity.
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