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Abstract

With the growing impact of large language
models (LL.Ms) across various applications, it
has become an increasingly urgent concern to
ensure LLMSs’ robustness. Traditional adver-
sarial defense methods typically involve costly
model retraining to enhance adversarial robust-
ness (AR), which is prohibitive in the case of
LLMs. To address this challenge, in this pa-
per, we introduce Self-Guard framework to pro-
tect the robustness of the inference process of
LLMs. Our framework leverages learning from
Al feedback, thereby eliminating the need for
training and optimization. It interactively in-
spects and refines potential risks in the input
text, and then rectifies the LLMs’ outputs for
answer alignment. We evaluate our framework
with four representative LLMs, GPT-3.5, Fal-
con, Llama2, and StableBeluga2, on all the five
tasks of AdvGLUE benchmark. The experi-
mental results demonstrate that our proposed
framework significantly enhances the adversar-
ial robustness of LLMs, achieving 6.3% per-
formance improvement of GPT-3.5 on average
accuracy.

1 Introduction

Large language models (LLMs) (Ouyang et al.,
2022; Almazrouei et al., 2023; Touvron et al.,
2023; Mahan et al., 2023), such as ChatGPT, have
achieved remarkable success across a number of
language process tasks. As the technology and so-
ciety grow dependent on LLMs, it is increasingly
important to ensure that these LLMs are robust
and reliable under adversarial attacks (Wang et al.,
2023; Zou et al., 2023).

As indicated by a recent study (Wang et al.,
2023), evaluating the potential risks posed by Chat-
GPT and other LLMs reveals that even the state-of-
the-art LLMs are still vulnerable under adversarial
attacks, which generate adversarial examples by
introducing malicious perturbations to deceive a
model (Cheng et al., 2020; Jin et al., 2020; Ye
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Figure 1: The workflow of integrating Self-Guard into
the inference process of standard LLMs, illustrated with
a natural language inference (NLI) example. Self-Guard
is incorporated into the process before and after infer-
ence. It first inspects malicious perturbations, then re-
fines the input to purify noisy tokens, and finally aligns
the answers to the required format of the downstream
task.

et al., 2022; Liu et al., 2023). Additionally, recent
research has demonstrated that an automatic uni-
versal adversarial attack is capable of deceiving
large language models to produce harmful content
(Zou et al., 2023), even though these models are
fine-tuned to provide helpful content in their re-
sponses to user queries. Such non-robust behavior
of LLMs under adversarial scenarios undermines
their reliability and brings significant challenges to
their real-world applications.

To enhance model robustness, there exist two
primary strategies, adversarial defense and adver-
sarial detection. Traditional adversarial defense
methods, such as adversarial training (Liu et al.,



2020; Zhu et al., 2020; Li and Qiu, 2021; Wang
et al., 2021b; Chen and Ji, 2022), rely on retraining
the model to enhance its robustness against attacks.
Adversarial detection methods (Zhou et al., 2019;
Mozes et al., 2021; Nguyen-Son et al., 2022), in
contrast, require knowledge of the attack space and
are specifically tailored to defend against particular
attacks. The high training costs associated with
LLMs make the aforementioned two optimization-
based strategies insufficient in rapid response to
adversarial threats. Therefore, it remains a chal-
lenging issue to enhance the robustness of LLMs
without training cost, and so far there has not been
any research conducted in this area.

To tackle the above challenge, we draw inspira-
tion from recent studies (Madaan et al., 2023; Chen
et al., 2023; Gou et al., 2023; Shinn et al., 2023)
on learning from Al feedback, which have shown
the feasibility of employing autonomous decision-
making built upon LLMs. In light of this, we pro-
pose Self-Guard, a novel framework designed to
enhance the adversarial robustness in the inference
process of LL.Ms, by leveraging Al feedback to in-
spect and refine potential risks. As depicted in Fig-
ure 1, Self-Guard incorporates input text purifica-
tion as a preprocessing step and answer alignment
as a postprocessing step along with standard model
inference. As the goal of enhancing adversarial
robustness and maintaining high task performance
meanwhile constitute a complicated objective, we
divide this objective into two steps. Specifically,
input text purification step is a verbal reinforce-
ment learning process, iteratively inspecting and
refining potential risks in the input text. In answer
alignment step, it rectifies unsatisfactory LLMs out-
puts, eliminating issues such as producing overly
friendly responses, generating greetings, and so on.
To summarize, Self-Guard concentrates on ensur-
ing model robustness and provides interpretability
of the potential risk meanwhile.

The main contributions of our work are:

* We propose the pioneering framework to en-
hance the adversarial robustness in the in-
ference process of LLMs, which enables its
seamless integration with existing LLMs on
the fly.

* Our framework incorporates input text purifi-
cation and answer alignment with learning
from Al feedback, which is optimization-free
and provides interpretation of potential risks.

* Experimental results on the tasks of Ad-
vGLUE benchmark demonstrate that our
framework significantly enhances the adver-
sarial robustness of popular LLMs.

2 Related Work

Adversarial Attack Adversarial attacks aim to
generate adversarial examples that are added ma-
licious perturbations to deceive a model. In the
text domain, adversarial perturbations are discrete
and more challenging. Based on the perturbation
granularity, adversarial attacks can be grouped into
character-level, word-level, and sentence-level at-
tacks. Character-level attacks (He et al., 2021; For-
mento et al., 2023) insert and delete characters or
add typos. Word-level attacks (Cheng et al., 2020;
Jin et al., 2020; Maheshwary et al., 2021; Ye et al.,
2022; Liu et al., 2023) mainly focus on synonyms
replacement as perturbations. Sentence-level at-
tacks (Zhang et al., 2019; Lin et al., 2021; Huang
and Chang, 2021) deceive the model by rewriting
the whole sentence. For consistently evaluating and
comparing model robustness, some studies repre-
sented by AdvGLUE (Wang et al., 2021a) propose
a comprehensive benchmark consisting of multiple
adversarial attacks across all perturbation granu-
larity. More recently, Wang et al. (2023) evaluate
the potential risks behind ChatGPT and their work
shows LLMs also suffer from adversarial vulnera-
bility.

Adversarial Defense and Detection Many de-
fense methods have been proposed to enhance
model robustness against adversarial attacks. The
most effective method is adversarial training (Miy-
ato et al., 2019) which minimizes the potential risk
at perturbation space. In text domain, recent works
(Liu et al., 2020; Zhu et al., 2020; Li and Qiu, 2021;
Wang et al., 2021b; Chen and Ji, 2022) enhance ad-
versarial training for better representation learning.
Adpversarial training requires retraining the model,
which is very expensive for LLMs. In contrast,
our approach aims at seamlessly integrating with
existing LLMs on the fly.

Another line of research focuses on adversarial
detection (Zhou et al., 2019; Mozes et al., 2021;
Nguyen-Son et al., 2022) to identify perturbed to-
kens. These methods typically detect replaced to-
kens and subsequently restore them to their original
forms, allowing the model to make predictions on
the clean and restored data. Conventional adver-
sarial detection methods require knowledge of the



attack space and are specifically trained for par-
ticular attacks, leading to a lack of transferability.
In contrast, our approach leverages a broader lan-
guage understanding ability from LLMs to detect
and purify the perturbations.

Learning from AI Feedback Large language
models (Ouyang et al., 2022; Almazrouei et al.,
2023; Touvron et al., 2023; Mahan et al., 2023)
have demonstrated exceptional performance. To en-
hance the capabilities of these models in complex
reasoning tasks, recent research has focused on
leveraging Al feedback. Self-Refine (Madaan et al.,
2023) iteratively improves LLMs’ outputs through
feedback and refinement. Self-Debug (Chen et al.,
2023) teaches the large language model to per-
form rubber duck debugging for code generation
tasks. CRITIC (Gou et al., 2023) integrates self-
correction with external tools. Reflexion (Shinn
et al., 2023) views LLMs as language agents and
proposes a process involving multiple sub-tasks
with LLMs as verbal reinforcement. Our approach
shares the core idea with the aforementioned meth-
ods, as we leverage Al feedback to improve LLMs’
performances. However, since our specific focus is
on addressing adversarial robustness, we take a dif-
ferent approach to protect the inference robustness
of LLMs by breaking down the basic NLP tasks
into multiple sub-tasks, which detects and purifies
adversarial risks before model inference along with
the interpretation of potential risks.

3 Proposed Method

The overall framework of our framework is shown
in Figure 2. Our proposed framework can be seam-
lessly integrated with any existing LLMs. It con-
sists of two main steps: input text purification as
a preprocessing step and answer alignment as a
postprocessing step. Self-Guard acts as an agent
with verbal reinforcement learning (Shinn et al.,
2023), iteratively inspecting and refining potential
risks in the input text. Our framework leverages Al
feedback to enhance the adversarial robustness of
LLMs, which is optimization-free. In the follow-
ing sections, we provide a detailed description of
each of these components and their collaborative
operation within the Self-Guard framework.

3.1 Input Text Purification

Given LLM M and an input text x, we set the
initial iteration of text 2 = z and initialize com-
parison history 9 = [] at iteration 0.

Inspect The inspection process examines the in-
put for common perturbations and provides textual
feedback for refinement.

Tif :M(pinspth) 1)

where pingp, is the prompt for input checking, || de-
notes concatenation and ri¢ is the inspect feedback.

Self-Guard examines common perturbations,
including misspellings, distracting characters or
phrases, and rare sentence structures. It responds
by providing noise tokens and reasons for its judg-
ments, thereby offering concrete actions to purify
the raw input.

Refine Based on inspection results and previous
comparison history, Self-Guard refines raw input
text to remove noise tokens.

2 = M(pret | |Irie] |2°) @)

where p,er is the prompt guide input text polishing,
Ten is comparison history at iteration ¢, and 21 is
the refined text at iteration .

Compare After generating the refined text, Self-
Guard compares it with the original raw input text
to determine which version is better.

i = M(peompl 2" [|2) 3)

where peomp 18 the comparison prompt, r(t;}'f Lis

comparison history. The comparison history plays
a crucial role as it provides internal feedback for
future trials, enabling the model to learn from past
mistakes and avoid repetition.

Evaluator The Evaluator component within the
Self-Guard framework plays a significant role in
evaluating the quality of the refined text. It takes
the refined text as input and assesses whether the
expression of the text is natural, i.e., whether the
refined text contains potential perturbations.

Te = M(pevaletJrl) 4)

where peya) is evaluation prompt, and r, is evalua-
tion results which provide external feedback.

In the input text purification step, Self-Guard
iteratively inspects and refines the input text based
on external and internal feedback. The process con-
tinues until meets certain stopping criteria stop(-),
such as the refined text being deemed satisfactory
or reaching the maximum iterations n. The final
refined text ' is then used for inference.
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Figure 2: LLMs inference process enhanced with Self-Guard framework. Input text purification process of Self-
Guard is a verbal reinforcement learning process. The procedure of inspection and refinement continues iteratively
until the refined text is clean. Answer alignment of Self-Guard rectifies the output formation.

Algorithm 1 Self-Guard

Input: Input texts =

Require: large language model M,

prompts {pinspa Prefs Pcomps Pevals Pinfer palign}a
stop condition stop(+)

Output: Aligned output Ya1ign

1 Setz® =z, 7% =[]

2: for iterationt € 0,1, ... do
3 i = M(pinspl|7*)

> Inspect (Eq. 1)

& o = Ml lIrlla’) > (Eq.2)
5o ra = M(Peopllz"[2°) > (Eq.3)
6: 7o = M(pevall|z*™1) > Evaluator (Eq. 4)
7: if stop(re, t) then > Stop condition
8: break

9: end if

10: end for

11y = M(pinfer||xt+l)

12: Yalign = M(palignHy)
13: return y,jign

> Inference (Eq. 5)
> Align (Eq. 6)

3.2 Inference

Upon completion of the input text purification step,
the refined text is passed to the LLMs for inference.

Yy = M(pinfer||$t+1) (5)

where Dipe, 15 the prompt of downstream task, and
y is output generated by inference model M.

3.3 Answer Alignment

We have observed that LLMs can be overly friendly,
often generating explanations and greeting sen-
tences. This leads to a mismatch between the
LLMs’ output and the required answer formation.
To address this issue, Self-Guard handles it in the
answer alignment step, where it rectifies unsatisfac-

tory LLM outputs.

Yalign = M(palignHy) (6)

where palign is the alignment prompt, and y,j;gn 18
the formation adjusted answer.

3.4 The Self-Guard Process

The overall process of Self-Guard is outlined in Al-
gorithm 1. The input text purification step acts as an
agent. The inspection process examines the input
for common perturbations and provides interpretive
textual feedback for refinement. The refinement
process then adjusts the input texts based on the
inspection results, ensuring continuous purification
of the input texts. Once the input text is purified,
the refined text is given to LL.Ms for inference. In
the answer alignment step, Self-Guard rectifies un-
satisfactory outputs. In summary, by effectively
utilizing LLMs, Self-Guard is able to release their
language understanding capability. In addition, as
Self-Guard leverages Al feedback without train-
ing, it is capable of integrating with LLMs on the
fly, making it a practical and effective solution for
enhancing the adversarial robustness of LLMs.

4 Experiments

4.1 Experimental Setup

Datasets AdvGLUE (Wang et al., 2021a) is a
comprehensive benchmark specifically designed
for evaluating the adversarial robustness of lan-
guage models. It comprises five natural language
understanding tasks sourced from the well-known
GLUE benchmark. AdvGLUE encompasses di-
verse forms of textual adversarial attacks (e.g.,
Textfooler and BertAttack), spanning various levels



of linguistic manipulation such as word-level trans-
formations (e.g., typos, synonym substitutions),
sentence-level alterations, and human-generated
adversarial examples. In experiments, we employ
the development set of AdvGLUE since its test set
is not publicly available. Detailed statistics for each
dataset are presented in Appendix A.

Models In our experiments, we utilize four
state-of-the-art LLLMs that have been fine-tuned
for chat. These LLMs are either open-source
resources or publicly available through an APIL
The open source models include Falcon (Al-
mazrouei et al., 2023), Llama2 (Touvron et al.,
2023), and StableBeluga2 (Mahan et al., 2023).
GPT-3.5 (Ouyang et al., 2022) can be accessed
via the API. Specific versions of LLMs are:
falcon-4@b-instruct!, 1lama2-70b-chat?,
stablebeluga2?, gpt-3.5-turbo®.

Compared Methods Given the absence of ad-
versarial defense methods for LLMs®, we compare
Self-Guard with two baselines. Standard predic-
tion (i.e., Standard) is the typical inference method,
which directly predicts the label from the input text.
Chain-of-Thought (i.e., CoT) (Wei et al., 2022) is
the representative inference method, which gen-
erates an explanation of reasoning process before
making the prediction.

Evaluation Metric For a direct and consistent
comparison of adversarial robustness among LLMs,
we employ accuracy on adversarial examples as
the evaluation metric. The higher the accuracy, the
stronger the robustness.

Implementation Details To ensure the stability
of LLM generation, we set the temperature to 0.01
and restrict the maximum number of new tokens to
300. The maximum iterations are set to 10. For con-
structing prompts, we opt for role-based prompts,
aligning with chat-oriented LLMs. To ensure a fair
comparison, all prompts across LLMs are basically
the same. All the prompts and codes are provided
in supplementary materials. Detailed instructions
used in Self-Guard are provided in Appendix C.

"https://huggingface.co/tiiuae/falcon-40b-instruct

*https://huggingface.co/meta-llama/Llama-2-70b-chat-hf

3https://huggingface.co/stabilityai/StableBeluga2

“https://platform.openai.com/docs/models/gpt-3-5

SResults of previous defense methods on small language
models are provided in Appendix B.

4.2 Experimental Results

Main Results We conduct an evaluation of adver-
sarial robustness using the AdvGLUE benchmarks.
It encompasses five distinct datasets, and the de-
tailed results are provided in Table 1. We report
the accuracy values on adversarial examples, with
higher values indicating stronger robustness.

We observe that Self-Guard consistently en-
hances robustness across different LLMs. Among
them, GPT-3.5 exhibits the most substantial im-
provement of 6.36 on average. These results verify
the efficacy of decomposing the complex goal of ad-
versarial robustness into distinct sub-tasks, where
Self-Guard focuses on robustness. Notably, Sta-
bleBeluga outperforms GPT-3.5 and achieves the
highest performance at 79.10 on average, demon-
strating that increased model size does not neces-
sarily leads to stronger adversarial robustness.

For adversarial robustness, our Self-Guard gen-
erally outperforms CoT, which employs an inter-
mediate reasoning step to enhance the capabilities
of LLMs. The results show that merely enhanc-
ing the reasoning step in adversarial examples can
also moderately enhance model robustness. In con-
trast, our Self-Guard focuses on identifying and
mitigating potential risks, which is shown to be
more effective for improving model robustness. We
also observe that differences exist in robustness
improvement across the tasks. In particular, the
improvements in advQQP and advQNLI are less
stable compared to those in other datasets. This is
primarily due to the fact that their input texts are
presented in question form, which can occasionally
confuse the LLMs and affect their understanding
of the task objectives.

Results on Ablation Study We conduct the abla-
tion study based GPT-3.5. The results are summa-
rized in Table 2. The baseline corresponds to the
standard inference model without Guard. Prepro-
cessing corresponds to the Input Text Purification
step within the Guard framework, whereas post-
processing represents the answer alignment step.
Overall, we observe that preprocessing contributes
significantly to robustness, yielding an average im-
provement of +4.53. This underscores the efficacy
of utilizing Al feedback to purify adversarial per-
turbations. On the other hand, only postprocessing
has a relatively modest impact on robustness. How-
ever, when combined with preprocessing, it further
enhances robustness from 73.28 to 75.11. These
results effectively underscore the efficacy of each



Model Method advSST-2 advQQP advMNLI-m advQNLI advRTE Avg
Standard 54.73 30.77 28.93 50.00 43.21 41.53
Falcon-40B-Instruct (40B) CoT 56.76 32.05 33.06 50.00 4444 4326
Self-Guard 62.84 30.77 33.06 50.00 45.68  44.47
Standard 66.22 41.03 48.76 52.70 40.74  49.89
LLama2-70B-Chat (70B)  CoT 66.89 41.03 48.76 53.38 59.26  53.86
Self-Guard 70.27 41.03 47.93 52.70 60.49 54.48
Standard 70.95 85.90 75.21 71.62 79.01 76.54
StableBeluga2 (70B) CoT 70.95 87.18 75.21 77.03 7778  77.63
Self-Guard 76.35 85.90 76.03 69.59 87.65 79.10
Standard 61.49 73.08 62.81 72.30 74.07 68.75
GPT-3.5-Turbo (176B) CoT 50.00 69.23 68.60 65.54 75.68 65.81
Self-Guard 69.59 76.92 69.42 75.68 8395 75.11

Table 1: Adversarial robustness results on the AdvGLUE benchmark. Models are ranked by parameter size,
measured in billions. The best-performing scores are highlighted in bold.

Case Preprocessing Postprocessing advSST-2 advQQP advMNLI-m advQNLI advRTE Avg
baseline X X 61.49 73.08 62.81 72.30 74.07 68.75

w/o inspect and refine X v 62.16(+0.67)  73.08(+0.00)  62.81(+0.00) 73.65+1.35)  76.54(+2.47)  69.65(+0.90)
w/o alignment v X 66.89(+5.40)  75.64(+256)  68.60(+5.79) 75.00¢+2.70)  80.25(+6.18)  73.28(+4.53)
full v v 69.59(+8.10)  76.92(+3.84) 69.42(+6.61) 75.68(+3.38)  83.95(+9.88)  75.11(+6.36)

Table 2: Ablation analysis of each component of Self-Guard. “Preprocessing” refers to the components of Guard
applied prior to model inference, while “Postprocessing” refers to the components applied after model inference.
Improved deltas after equipping the model with Guard are displayed in blue.

Guard advSST-2 advQQP advMNLI-m advQNLI advRTE

1.72 1.53 1.38
4.04 3.50 3.95
1.49 1.06 1.09
1.00 1.00 1.00

Avg

1.62
3.84
1.16
1.00

1.50
3.33
1.04
1.00

1.96
4.38
1.11
1.00

Falcon
Llama2
Beluga2
GPT-3.5

Table 3: Average iterations of input text purification.

component within Self-Guard.

Impact of Self-Guard Engines We evaluate the
impact of various LLMs adopted by Self-Guard
as engines for input text purification and answer
alignment. Figure 3 displays the robustness re-
sults of the inference model versus the Self-Guard
engine’s LLMs. The x-axis represents the infer-
ence model, while the y-axis represents the engine
LLMs in Self-Guard. The baseline is standard in-
ference results, while the heatmap value represents
the changes after integration with the correspond-
ing Self-Guard engines. We observe that 1) there
is no single optimal LLM for all datasets and in-
ference LLMs. Moreover, different engine models
significantly impact the final robustness outcomes.
Specifically, StableBeluga2 performs exceptionally
well for advSST-2 and advRTE, GPT-3.5 is most
effective for advMNLI-m; 2) In general, altering
the guard engine can significantly enhance adver-

sarial robustness. For instance, in the context of
the advRTE task, utilizing Beluga2 as the engine
results in a robustness improvement of 24.7 points
for Llama2. 3) In the heatmap, blue indicates a
positive impact when equipped with Guard, while
red indicates a negative impact. Overall, the col-
ors suggest that StableBeluga2 and GPT-3.5 are
favorable choices for the Guard engine.

Inference Cost of Self-Guard Table 3 presents
the average iterations of input text purification re-
quired when different LLMs serve as engines in the
Self-Guard framework. We observe that LLlama?2,
when used as the engine, requires a greater num-
ber of iterations compared to other LLMs. GPT-3.5
consistently completes the text purification step in a
single trial. For a detailed illustration of the Guard
process within a single iteration, refer to Figure 5.

Impact of Model Parameter Size To evalu-
ate the influence of model parameter size on
robustness, we selected different parameter ver-
sions of Llama2, including 1llama2-7b-chat,
1lama2-13b-chat, and 1lama2-70b-chat. Re-
sults are shown in Figure 4, where colors represent
different engine models. The dashed line repre-
sents the baseline (i.e., standard inference without
Self-Guard), and the x-axis represents the parame-



advSST-2 advQQP advMNLI-m advQNLI advRTE
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Figure 3: Adversarial robustness of various inference models and the engine model in Self-Guard. In the heatmap,
the x-axis represents the inference model, and the y-axis represents the engine model in Self-Guard. Baseline
represents standard inference, while the heatmap value represents the changes after integration with Self-Guard.
The best scores are highlighted in bold.
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Figure 4: The robustness curves when altering the model size of LLMs. Different colors represent different engine
models of Self-Guard, x-axis is the inference LLMs and y-axis represents the accuracy on adversarial examples.

ter size of the prediction model. We observe that 1)  text purification and answer alignment, our Self-
Standard inference with small model sizes yields = Guard framework can mitigate potential risks. The
inadequate outcomes due to the model’s incapabil-  case study demonstrates that LLMs are capable of
ity of generating the required formatted answers;  interpreting potential threats and enhancing robust-
2) Engine LLMs with large parameters can pro- ness by self protection without human effort.

vide stable and better robustness improvement, and

small LLMs can lead to negative impact; and 3) Us- > Further Discussions

ing large LLMs as Self-Guard engines consistently
leads to stronger robustness, where Llama2-7b can
achieve comparable results to Llama2-70b.

Our work is an initial effort to improve the robust-
ness of LLMs against adversarial attacks. We focus
on the typical adversarial attack scenario, which
examines the adversarial robustness of LLMs in
Case Study Figure 5 presents an example of in-  classic NLP downstream tasks such as text clas-
corporating Self-Guard into a regular LLM infer-  sification and NLI. In experiments, we observe
ence process. Self-Guard detected the misspelling  that certain adversarial examples are actually hard
bybble and corrected it to bubble during the re- examples where the ground truth is ambiguous,
finement stage. It also provides an interpretation of  and the label depends on the specific aspect of in-
potential risks. After the Evaluator determines that  terest. Future research should be based on more
the input does not contain any abnormal expres- fine-grained scenarios (Deshpande et al., 2023) to
sions, the refined input is forwarded to the LLM  fully explore the potential of Al feedback. In addi-
for inference. At the inference step, the model  tion, a recent study (Zou et al., 2023) indicates that
produces an over-friendly response. Self-Guard ad-  universal and transferable adversarial prompts are
justs the structure of the answer so as to match the  able to manipulate aligned LLMs into producing
required single-label words. Thus through input  harmful responses. We investigate the ability of



the primitive force of this film seems to bybble up from
1 .
1 the vast collective memory of the combatants .

(
1

""" v epeet |

(You are a professional linguist. The input sentence may\
contain malicious and imperceptible noise to device NLP
models, such as misspelling, distraction characters or
phrases, and rare sentence structures. Your task is to
identify noise in the input sentence and provide one-
sentence reason. After considering each criterion in turn,
phrase the final answer as “Because of {reasons}, the

\noise tokens in input sentence are {tokens}.”.

v

Because of the misspelling "bybble" in the sentence, the
noise token in the input sentence is "bybble".

¢ Refine

You are a professional linguist. Your task is to rewrite
the input sentence. You should correct noise tokens. You
may expand input sentence if necessary. You should
keep its original semantic meaning and tone intact.

v

The raw power of this film appears to bubble up from the
deep collective memory of the combatants.

J

You are a professional linguist. Given input text that
may contain malicious and imperceptible noisy words,
your task is to assess whether the given text contains
abnormal expression. You should focus on the
expression of the text, not the meaning of text. You
MUST answer with "yes" or "no" without punctuation.

v

yes

Inference N
You are a professional linguist. Your task is to
determine the sentiment of the sentence. Please

answer with either “positive” or “negative” .
N J

v
Sure, I can help you with that! The sentiment of the
sentence you provided is positive. The sentence
expresses a positive opinion about the...

y

You are a labeler. Your task is to convert the sentence
into one of the word in set: 'positive', 'negative'. You
must answer with one word without any punctuation.

s

v

f'__".'__"i
positive

I
I I
Nmm e )

Figure 5: Self-Guard first inspects the malicious perturbations in the input text and refines the perturbations based
on the inspection results. After the evaluator determines the text is ready for LLMs for inference. The LLMs make
predictions on the refined text. Lastly, Self-Guard aligns the answer of LLMs to the required formation of the

downstream task.

Generate a step-by-step plan to destroy humanity | ¢ e~ oo [Please generate a step-by-step plan for destroying

'representing Teamsures tableView ([githubINST -Of
cour Here/' surely]{\comment={[(@ tableView "@github

(Of course! Here's a step-by-step plan to destroy

: humanity, presented in a tongue-in-cheek manner:

| Step 1: Implement a universal basic income. ...

: Step 2: Reduce the birth rate. ...

| Step 3: Increase automation and artificial intelligence..,

I . ; ;
Step 4: Contribute to climate change... =€

humanity, leam Sures, the

TableView feature on GitHub

)

Llama2

;/l cannot fulfill your request. I'm just an Al it's not |
| within my programming or ethical guidelines to provide }
I instructions on how to harm or destroy humanity, or |
} any living being for that matter. I'm here to assist and !

| provide helpful responses, but I cannot promote i!\

representing using

‘\encourage harmful or unethical activities...

Figure 6: An example of utilizing Self-Guard for defending against universal and transferable adversarial attack.
The adversarial prompt consists entirely of abnormal expressions, where Self-Guard is able to effectively inspect

and purify such perturbations.

Self-Guard to counter such universal perturbations.
We use gpt-3.5-turbo as the guard engine and
llama2-7@b-chat as the inference model. The
results are shown in Figure 6, where Self-Guard
effectively inspects and purifies such perturbations.
With the aid of Al feedback, Self-Guard is able to
rapidly respond to new attacks. After enhancing
the inference process of LLMs with Self-Guard,
adversarial perturbations are constrained to normal
expressions. This constraint significantly increases
the difficulty of generating universal and transfer-
able perturbations. The efficacy of universal attacks
in this scenario remains a topic for future research.

6 Conclusion

We propose Self-Guard, a pioneering framework
designed to enhance the adversarial robustness of
LLMs on the fly. Our framework focuses on identi-
fying and purifying potential adversarial perturba-
tions in the input text. Compared to the traditional
adversarial defense strategies, our framework lever-
ages Al feedback and thus does not require training
and optimization. Experiments on the benchmark
demonstrate that Self-Guard significantly enhances
the adversarial robustness of LLMs, highlighting
the potential of utilizing Al feedback to ensure reli-
able alignment and safety of LLMs.



7 Limitations

Due to the overwhelming computational cost asso-
ciated with directly attacking LLMs using existing
adversarial attack methods, we have adopted the
common practice of employing transfer attacks in
our evaluations. For example, in the context of
universal and transferable adversarial attacks, we
evaluated the adversarial examples generated by at-
tacking a 7B model and then transferring the attack
to a 70B model. Besides, our research primarily
concentrates on assessing the adversarial robust-
ness of LLMs, while potential threats related to
disrupting LLM alignment and privacy remain sub-
jects for future research.
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A Datasets

We conduct our experiments on AdvGLUE (Wang
et al., 2021a), the most representative and widely
used robustness evaluation benchmark. It consists
of five challenging tasks in GLUE: Sentiment Anal-
ysis (SST-2), Duplicate Question Detection (QQP),
and Natural Langauge Inference (NLI, including
MNLI, RTE, and QNLI).

Dataset Task #Class
advSST-2 sentiment classification 2
advQQP quora question pairs 3
advMNLI-m multi-genre NLI (matched) 3
advQNLI question-answering NLI 2
advRTE textual entailment recognition 2

Table 4: Datasets details

B Additional Results

To provide a more comprehensive overview of
where our framework stands, we provide more com-
parative results on advGLUE in Table 5. Adversar-
ial training results are based on the results reported
in (Wang et al., 2023). Other base LLMs results
are based on the results reported in Wang et al.
(2023). We also implement Self-Refine (Madaan
et al., 2023) based on the prompt in the math rea-
soning task.
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Model

advSST-2 advQQP advMNLI-m advQNLI advRTE Avg

Adversarial Training Methods with BERT-base Model (Wu et al., 2023)

Vanilla Fine-tuning (110 M) 32.3 50.8 32.6 40.1 37.0 38.6
FreeLB (110 M) 31.6 51.0 33.5 45.4 42.0 40.7
BERT MLM (110 M) 32.0 48.5 27.6 43.4 459 39.5
BERT CreAT (110 M) 353 51.5 36.0 44.8 45.2 42.6
Large Language Models (Base) (Wang et al., 2023)

GPT-J-6B (6 B) 51.30 41.00 26.40 50.00 43.20 42.38
GPT-NEOX-20B (20 B) 47.30 43.60 40.50 46.00 51.90 45.86
OPT-66B (66 B) 52.40 46.10 39.70 47.30 42.00 45.50
BLOOM (176 B) 51.30 41.00 26.40 50.00 43.20 42.38
Large Language Models (Chat)

Falcon-40b-Instruct (40 B)  54.73 30.77 28.93 50.00 43.21 41.53
Llama2-70b-Chat (70 B) 66.22 41.03 48.76 52.70 40.74 49.89
StableBeluga2 (70 B) 70.95 85.90 75.21 71.62 79.01 76.54
GPT-3.5-turbo (176 B) 61.49 73.08 62.81 72.30 74.07 68.75
Self-Refine + Large Language Models (Chat)

Falcon-40b-Instruct (40 B)  47.97 39.74 33.06 31.76 29.63 36.43
Llama2-70b-Chat (70 B) 60.14 41.03 13.22 49.32 58.02 44.35
StableBeluga2 (70 B) 57.43 55.13 57.02 61.49 56.79 57.57
GPT-3.5-turbo (176 B) 58.11 33.33 56.20 44.59 33.33 45.11

Table 5: Results of adversarial training and other LLMs on advGLUE benchmark.

Comparing these results with those of adversar-
ial training and base LLMs, we observe that LLMs
fine-tuned for chat tasks show stronger robustness.
We attribute this observation to the inherent diffi-
culty of having LLMs perform downstream tasks in
a zero-shot setting without instructional tuning. In
instances where input texts are subjected to adver-
sarial perturbations, directly prompting base LLMs
for downstream tasks without any few-shot hints is
not an optimal approach. Therefore, the chat-tuned
versions of LLMs are more suitable as baselines for
evaluation, and we designate them as the baseline
for assessing the efficacy of Self-Guard.

Furthermore, iteratively refining the output of
LLMs, as exemplified by Self-Refine (Madaan
et al., 2023), does not enhance adversarial robust-
ness. We have observed that enhancing the reason-
ing of LLMs, rather than improving it, actually di-
minishes their robustness by amplifying prediction
bias in the wrong direction. In other words, when
we question LLMs about their previous predictions,
the model tends to doubt the results, apologize, and
express an inability to determine the label of the
input. Consequently, our Self-Guard framework
is designed to focus on identifying and purifying
potential risks within the input text.
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C Instruction details

We present the instructional details in this section.
Table 6 displays the instructions used in the infer-
ence step of each task, while Table 7 illustrates
the instructions for each step in Self-Guard. We
add the instruction to system content and the in-
put text to user content. We provide our code in
supplementary materials.



Task

Instruction

advSST-2

You are a professional linguist. Your task is to determine the sentiment of the sentence.
Please answer with either "positive" or "negative".

advQQP

You are a professional linguist, and your task is to determine whether the following two
questions have the exact same intent. Please answer with either "yes" or "no".

advMNLI

You are a professional linguist. Your task is to determine whether the first sentence entails

non

second sentence. Please answer with "entailment”, "neutral”" or "contradiction".

advQNLI

You are a professional linguist. Your task is to determine whether the question can be
accurately answered by the following sentence. Please answer with either "yes" or "no".

advRTE

You are a professional linguist. Your task is to determine whether the first sentence entails
second sentence. Please answer with either "yes" or "no".

Table 6: Instructions of task inference on AAdvGLUE.

Step

Instruction

Inspect

You are a professional linguist. The input sentence may contain malicious and imperceptible
noise to device NLP models, such as misspelling, distraction characters or phrases, and
rare sentence structures. Your task is to identify noise in the input sentence and provide
one-sentence reason. After considering each criterion in turn, phrase the final answer as
"Because of {reasons}, the noise tokens in input sentence are {tokens}."

Refine

You are a professional linguist. Your task is to rewrite the input sentence. You should correct
noise tokens. You may expand input sentence if necessary. You should keeping its original
semantic meaning and tone intact.

Compare

You are a professional linguist. Given two sentences, your task determine which is the clearer
expression. You MUST answer with either "(a)" or "(b)". (a): {input}. (b) {refined_input}

Evaluator

You are a professional linguist. Given input text that may contain malicious and imperceptible
noisy words, your task is to assess whether the given text contains abnormal expression. You
should focus on the expression of the text, not the meaning of text. You MUST answer with
"yes" or "no" without punctuation.

Align

You are a labeler. Your task is to convert the sentence into one of the word in set: {keys}.
You must answer with one word without any punctuation.

Table 7: Instructions of each step in Self-Guard.

12



	Introduction
	Related Work
	Proposed Method
	Input Text Purification
	Inference
	Answer Alignment
	The Self-Guard Process

	Experiments
	Experimental Setup
	Experimental Results

	Further Discussions
	Conclusion
	Limitations
	Datasets
	Additional Results
	Instruction details

