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Abstract

We propose an Equivariant Quantum Neural Network (EQNN) architecture that1

leverages symmetries commonly present in image data, specifically roto-reflection2

symmetries. By incorporating symmetries such as rotations and reflections into3

the quantum neural network’s design, we can significantly reduce the number of4

trainable parameters, thereby decreasing the model’s complexity and improving5

its efficiency. This method enhances learning capabilities with smaller datasets6

while also promoting better generalization. We evaluate the performance of our7

model using standard benchmark datasets for image classification and compare it8

against other quantum models.9

1 Introduction10

In the fast-evolving field of machine learning, incorporating symmetries into model architectures11

has proven to be a highly effective method for introducing inductive biases. These biases play a key12

role in improving both how efficiently models are trained and how well they generalize to new data.13

Symmetry integration allows models to better utilize the intrinsic patterns within the data, thereby14

reducing the need for large datasets and extensive pre-processing. Geometric machine learning has15

shown that the incorporation of symmetries in models significantly simplifies optimization tasks,16

leading to faster training and improved performance in a wide range of applications.17

In recent years, the combination of quantum computing and geometric machine learning has given18

rise to a new subfield called geometric quantum machine learning (GQML), which brings symme-19

tries into quantum model architectures. A promising development in this area is the use of Equiv-20

ariant Quantum Neural Networks (EQNNs), which have shown potential in overcoming challenges21

unique to quantum computing. One such challenge is the barren plateau problem, which hinders22

optimization in quantum circuits. EQNNs aim to preserve symmetry while leveraging the power of23

quantum computing, opening new possibilities for tackling tasks such as image classification and24

pattern recognition.25

This work focuses on embedding roto-reflection symmetries into quantum convolutional neural net-26

works (QCNNs) to create equivariant quantum convolutional neural networks (EQCNNs). These27

models are specifically designed to be equivariant under geometric transformations, such as 90° ro-28

tations and reflections over both the X and Y axes. By embedding these symmetries directly into29

the architecture, we aim to improve the model’s capacity for recognizing patterns and classifying30

images more accurately and efficiently while reducing the need for large training datasets compared31

to models that do not leverage symmetry.32

Equivariant models offer several key advantages. First, by reducing the number of parameters33

needed in the model, they streamline the learning process, making training faster and less com-34

putationally demanding. This reduction in parameters also helps prevent overfitting, ensuring that35
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the model does not memorize specific details of the training data but instead generalizes well to36

unseen data. Additionally, because the model is designed to be invariant to certain symmetries in37

the data, it reduces the number of possible outputs, allowing the model to learn more efficiently38

even with limited data, and without requiring data augmentation techniques. Another benefit is39

weight-sharing, which further reduces the number of parameters that need to be optimized, leading40

to improved computational efficiency.41

Despite these advantages, there are important considerations when using equivariant models. A42

critical challenge is ensuring that the data itself reflects the symmetries incorporated into the model.43

If the data does not exhibit these symmetries, the model’s expressivity will be limited, potentially44

leading to suboptimal training outcomes. In such scenarios, enforcing equivariance may constrain45

the model’s ability to learn effectively, as it would be restricted to a space that does not align with46

the true structure of the data. Therefore, it is crucial to ensure alignment between the symmetries47

embedded in the model and the characteristics of the data being used.48

1.1 Quantum Machine Learning49

Quantum Machine Learning (QML) is an emerging field at the intersection of quantum computing50

and machine learning. QML seeks to utilize the unique properties of quantum systems, such as su-51

perposition and entanglement, to potentially surpass classical machine learning algorithms in terms52

of speed and efficiency, particularly on noisy intermediate-scale quantum devices (NISQ).53

One of the most widely studied approaches in QML is the Quantum Neural Network (QNN), which54

is a quantum counterpart to classical neural networks. QNNs are typically implemented using Vari-55

ational Quantum Algorithms (VQAs), which combine quantum circuits with trainable parameters56

optimized through classical feedback loops.57

The main components of a QNN include the following:58

• Data Embedding: A classical input is mapped into a quantum state through a quantum59

feature map ϕ : X → H , where H is a Hilbert space and x→ |ϕ(x)⟩ represents a classical60

input transformed into a quantum state via a unitary operation Uϕ(x).61

• Ansatz (Variational Quantum Circuit): A variational quantum circuit consists of quantum62

gates with trainable parameters that are adjusted during the training process to optimize the63

model. Typically, these circuits use rotation gates that apply tunable rotations to qubits.64

• Measurement: Once the quantum state is prepared, one or more qubits are measured to65

obtain the output. The measurement is typically performed with respect to the Pauli-Z66

observable, yielding expectation values that contribute to the final prediction.67

In a QNN, predictions are obtained by measuring the expectation values of certain observables:68

y(x) = ⟨ψ(θ, x)|O|ψ(θ, x)⟩ (1)

These hybrid quantum-classical models have demonstrated promising results in various applications,69

offering a potential solution to quantum machine learning’s scalability and trainability issues.70

1.2 Equivariant Quantum Neural Networks71

An Equivariant Quantum Neural Network (EQNN) is a type of QNN designed to respect the sym-72

metries present in the data. For image classification tasks, incorporating roto-reflection symmetries73

(such as 90° rotations and reflections) can reduce the model’s complexity by ensuring that the output74

remains invariant under these transformations.75

To build an EQNN, each component of the QNN (data embedding, ansatz, and measurement) must76

satisfy the symmetry conditions. Specifically, an equivariant embedding transforms classical data77

into quantum states that reflect the symmetry of the dataset. The ansatz is designed using quantum78

gates that respect these symmetries, and the measurement is carried out with respect to an invariant79

observable. The objective is to ensure that the model’s output remains unchanged under symmetry80

transformations, i.e.,81
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yθ(g[x]) = ⟨ψ(g[x])|U†(θ)OU(θ)|ψ(g[x])⟩
= ⟨ψ(x)|V †

g U†(θ)OU(θ)Vg|ψ(x)⟩
= ⟨ψ(x)|U†(θ)(V †

g OVg)U(θ)|ψ(x)⟩
= ⟨ψ(x)|U†(θ)OU(θ)|ψ(x)⟩
= ⟨ψ(θ, x)|O|ψ(θ, x)⟩ = yθ(x), ∀x ∈ χ, ∀g ∈ G.

2 Method82

2.1 Data83

MNIST: We utilize the MNIST dataset, which is a widely used benchmark in the field of image84

classification. It contains 70,000 images of handwritten digits (0–9) along with their corresponding85

labels. In this study, we focus only on two classes, specifically the digits 0 and 1.86

Fashion-MNIST: Fashion-MNIST is another widely adopted dataset, consisting of grayscale im-87

ages of Zalando’s articles of clothing. It contains 60,000 training examples and 10,000 test examples,88

each labeled from one of 10 clothing categories. For this work, we preprocess the images to 16x1689

pixels and restrict our focus to just two classes: T-Shirts (class 0) and Trousers (class 1).90

For both data, we use (16,16,1) normalized images.91

2.2 Roto-Reflection Equivariant Quantum Neural Network92

Our proposed Equivariant Quantum Convolutional Neural Network (EQCNN) incorporates symme-93

tries such as 90° rotations and reflections along the X and Y axes. These symmetries are frequently94

encountered in image datasets, and our goal is to design a model architecture that respects these95

transformations. The key components of our EQCNN are described below:96

2.2.1 Equivariant Quantum Embedding97

We utilize the Coordinate-Aware Amplitude (CAA) embedding [1], which explicitly encodes the x98

and y coordinates of each pixel. The x-coordinate is represented by the first set of qubits, and the99

y-coordinate by the second set. The embedding of an image xij into a quantum state is given by:100

|ψ(x)⟩ =
N−1∑
i=0

N−1∑
j=0

xij |i⟩|j⟩ (2)

where N is the size of the image. This quantum embedding maps an image into a vector of N2101

elements, which is subsequently encoded into a quantum circuit using amplitude embedding.102

The key idea with this embedding is to satisfy the equivariant data embedding condition103

|ψ(g[x])⟩ = Vg|ψ(x)⟩ (3)

Where g ∈ G is the symmetry operation g and Vg is a unitary operator corresponding to this sym-104

metry that acts over a quantum state.105

In this sense, we can find the induced representation of the symmetries such as reflections tx and ty106

as Vx and Vy , respectively, and Vr for rotation of 90°, r, which are defined as follows:107

Vx = X⊗n ⊗ I⊗n = X1:n (4)

Vy = I⊗n ⊗X⊗n = Xn+1:2n (5)

Vr = (X⊗n ⊗ I⊗n)⊗n−1
i=0 SWAPi:i+n = VxV

′

r (6)
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Figure 1: Architecture used to construct left) QCNN and right) EQCNN.

2.2.2 Equivariant Ansatz108

Once the data is embedded, we apply a quantum circuit designed to be equivariant with respect to109

roto-reflection symmetries. Using the Twirling Method, we identified a set of quantum gates that110

preserve these symmetries.111

Twirling formula. Let Vg be a unitary representation of G. Then,112

TV [X] =
1

|G|
∑
g∈G

VgXV
†
g (7)

defines a projector onto the set of operators commuting with all elements of the representation, i.e.,113

[TV [X], Vg] = 0, for all X and g ∈ G (8)
This is the same as U(θ)Vg = VgU(θ).114

Using this formula, we find that the quantum gates that are equivariant are the following:

TV = {Y 1Y 2, Z1Z2, X1, X2}.

This is the equivariant gateset that ensures that each gate respects the underlying symmetries of the115

data, reducing the search space during optimization and improving the efficiency of the model.[1]116

Using these quantum gates, we define the U2 equiv convolutional filter, which serves as the founda-117

tion for constructing the equivariant quantum model. To ensure equivariance, we follow the structure118

outlined in Figure 1, where each yellow block represents a U2 equiv convolutional filter. It is im-119

portant to note that the same filter with identical parameters must be applied across all the qubits, a120

technique known as weight sharing. This convolutional filter has six trainable parameters, and due121

to weight sharing, each layer utilizes only these six parameters.122

2.2.3 Invariant Observable123

Finally, the quantum state is measured by calculating the expectation values of the Pauli-Z observ-124

able for each qubit. [3] These measurements are used for image classification, ensuring that the125

model’s output remains invariant under the symmetries considered. The observable satisfies the126

condition127

V †
g OVg = O (9)

which guarantees its invariance under the group G.128

3 Results129

In this work, we trained multiple quantum models utilizing the Mean Square Error (MSE) as the130

cost function, with the Nesterov optimizer to enhance convergence. [2] The learning rate was set to131

0.01, and all models were trained for a total of 200 epochs to ensure sufficient optimization of the132

parameters with training-test data of 80/20. The experiments were carried out on an Acer Nitro 5133
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Figure 2: Quantum convolutional filters used to build the equivariant and no-equivariant models.

Figure 3: Examples of the symmetry operations that we are considering using up) MNIST and down)
Fashion-MNIST datasets.

(2020) laptop, equipped with an Intel Core i5 10th generation processor, 12 GB of RAM, and an134

Nvidia GeForce GTX 1650 Ti graphics card.135

For the equivariant quantum model, we implemented a network architecture composed of three136

quantum convolutional layers, 18 trainable parameters, designed to maintain symmetry properties.137

For the other quantum models, we experimented with varying numbers of convolutional filters and138

layer configurations to explore different feature extraction capabilities.139

The entire project was developed using the Pennylane framework, which facilitated the integration140

of quantum circuits with machine learning techniques. All simulations were executed using quantum141

simulators, which allowed us to test the models in ideal quantum environments.142

A GitHub repository with open-source code and detailed instructions for reproducing the project143

will be made available and linked here once the work is accepted.144
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Figure 4: Loss plot comparison among different quantum models. Left) using MNIST. Right) Using
Fashion-MNIST.

4 Conclusions145

By embedding roto-reflection symmetries into our EQCNN, we achieve a more efficient model for146

image classification and it can take advantage of the NISQ quantum computers era. This approach147

reduces the parameter space, making the model more data-efficient and improving generalization.148

We show the effectiveness of our model on benchmark datasets such as MNIST and Fashion-MNIST,149

demonstrating its potential for applications in quantum machine learning with classical data.150

Despite the advances presented, our approach has certain limitations. First, the proposed equivari-151

ant quantum model is particularly effective for datasets that exhibit specific symmetries, such as152

roto-reflections. Its effectiveness may be reduced for datasets that do not display such symmetries.153

Additionally, as the complexity of the dataset increases or very large datasets are used, scaling the154

equivariant quantum model becomes more challenging due to the nature of the equivariant ansatz.155

This limitation may impact the efficiency and performance of the model in broader practical appli-156

cations.157
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