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ABSTRACT

Over the past decade, we have witnessed enormous research on unsupervised outlier
detection techniques, ranging from statistical models to recent deep learning-based
approaches. Existing approaches generally limit their discussions to unlabeled data
mixed with normal (inlier) and abnormal (outlier) data, which constitute only a
tiny fraction of the whole value space. Such approaches tend to fall into the local
optimum of a specific subspace and hardly generalize to diverse datasets. This
paper proposes a novel end-to-end Noise-guided unsupervised Outlier Detector
(NOD), which infers the anomaly score of the entire value space via a simple MLP
to learn the difference between samples and uniform noise. We further theoretically
prove that the learned classifier can separate outliers from inliers with limited
samples. Extensive experiments show that NOD significantly advances UOD
performance in 22 diverse real-world datasets by an average of 30.6% ROC AUC
against 11 state-of-the-art counterparts without dataset-specific tuning. The merit is
of paramount importance for UOD due to the lack of labeled data for supervision.

1 INTRODUCTION

Outliers are data points, events, or observations that deviate from the bulk of the data. Outliers are
important as they often reflect variability, experimental error, or novelty. Outlier detection is essential
in various applications, such as network intrusion detection (Weller-Fahy et al., 2014), malicious
behavior detection(Yu et al., 2016), machine failure (Riazi et al., 2019), etc. As a sufficient amount
of outliers and correct labels is often expensive to obtain, outlier detectors typically need to handle
unlabeled data containing a mixture of inliers and outliers. Due to the lack of labels, designing
unsupervised outlier detectors (UODs) is rather challenging (Pang et al., 2021; Wang et al., 2019).

From the perspective of real-world applications, inliers are generated from certain mechanisms of an
underlying system with specific internal structures. It is vital to develop an accurate model to describe
these structures to separate inliers from outliers. Due to the lack of labels, traditional UODs often
develop predefined inlier/outlier models and an arbitrarily anomaly score function; e.g., inliers have
more neighbors than outliers (Breunig et al., 2000), the clusters of inliers are larger and denser (Thang
& Kim, 2011), outliers can be divided into a single subspace faster (Liu et al., 2008) or are farther
away from a stable statistical model (Shyu et al., 2003; Almardeny et al., 2020), etc. As real-world
datasets come with highly diverse modes of outliers and/or inliers, solutions with predefined profiles
often suffer from volatile performance across different datasets.

Many DNN-based methods have recently been introduced to learn rather than “design” the internal
structures (Pang et al., 2021) due to its powerful modeling capabilities. However, the most recent
approaches, for example, EBGAN (Zenati et al., 2018) and SSD (Sehwag et al., 2020) are generally
rely on the availability of pure inliers in the training data with certain self-supervised tasks. Their
settings differ significantly with UOD and are denoted as self-supervised(Sehwag et al., 2020) or
semi-supervised ODs(Wang et al., 2019)(both SSOD for short).

The absence of inlier and outlier labels presents great challenges in adopting DNNs to learn only
the inlier manifold with mixed samples, which results in much less progress than SSOD (Wang
et al., 2019). State-of-the-art methods are mainly limited to analyzing the different characteristics
of inliers and outliers during representation learning. For example, deep AutoEncoder (AE)-based
approaches (Kingma & Welling, 2013; Chen et al., 2017) assume that outliers are harder to reconstruct.
However, this is not always true, especially in scenarios with a high proportion of outliers. Other
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researchers design UOD with domain-specific knowledge, e.g. E3 outlier (Wang et al., 2019) with
image rotations. They can hardly be used in general applications.

Actually, one fundamental observation in UOD is that inliers are denser distributed than ouliers (Thang
& Kim, 2011). Thus, the problem becomes how to estimate a probability density distribution(density
distribution for brevity) function a(·) in an n-dimensional Euclidean space Rn. Theoretically, it
is possible to estimate the probability density a(·) by training a classifier to discriminate between
samples and any artificially generated noise b(·)(Sugiyama et al., 2012). This proof requires infinite
samples for both samples and noises. Two recent works generate synthetic outliers(noises) close to
samples via generative adversarial networks (GANs) in SO-GAAL and subspace perturbation in LU-
NAR (Goodge et al., 2021), as Gutmann & Hyvärinen (2012) points out that b(·) should theoretically
be close to a(·). However, in practice, generating synthetic outliers with a similar distribution with
finite samples is very difficult and can often result in the model collapse in classification.

In reality, due to the limitations of the underlying physics, outliers and inliers generally lie in a
relatively small number of manifolds with different density distributions throughout the value space
Rdim (Lee, 2013). Due to the highly unbalanced nature of the outliers, the outliers should be
generally sparser distributed than inliers and the anomaly score in Rdim should be smooth. Then, the
problem becomes how to effectively estimate the distribution. From Principal of Maximum Entropy
proposed by Jaynes (1957), noises with uniform prior probability density in Rdim have the maximum
entropy, and thus essentially have little chance of resembling structured input(Goodfellow et al.,
2016). From this point of view, a randomly given point in Rdim should have a very high probability
of being an “outlier” than most samples in the unlabeled data. Compared to the synthetic outliers
generated by GANs or subspaces, random noise can act as a trustworthy and stable reference for a
sample’s anomaly degree in the whole data space and demands few assumptions towards the inliers’
distribution. Inspired by this observation, this paper proposes NOD, an end-to-end Noise-guided
unsupervised Outlier Detector that learns the anomaly score with a simple binary classifier that is
trained to distinguish between samples and uniform noise generated throughout the value space. The
main characteristics of NOD are as follows:

1. Simple and efficient. NOD is an extremely simple end-to-end DNN-based unsupervised outlier
detection solution that uses pure uniform noise, MLP, and an off-the-shelf backpropagation
mechanism. This model can be directly used for outlier detection in the whole value space. NOD
can take advantage of GPU acceleration to easily process datasets with high-dimensional features
and a large number of samples.

2. Theoretically sound. We translate the UOD problem into a density estimation problem with a
classification and relax the theoretical conditions from unlimited data to limited samples if the
classifier is subject to the ”smooth prior” restriction.

3. Effective and robust. Extensive experiments performed on 22 datasets show that NOD signifi-
cantly outperforms 11 state-of-the-art detectors with significant edges and scores 1.1% ∼ 74.4%
higher on average ROC AUC. Further parametric analysis shows that NOD is insensitive to its
few hyperparameters.

2 RELATED WORK

Classic outlier detection. Classical outlier detection algorithms are often designed to estimate
data distributions and design custom anomaly functions to determine sample deviation degrees.
kNN (Ramaswamy et al., 2000) takes the distance between the samples and their k-th nearest
neighbor as the anomaly score, and LOF (Breunig et al., 2000) calculates the average density ratio
between the samples and their k-th nearest neighbor to assess the rarity of the sample. COPOD (Li
et al., 2020) and ECOD (Li et al., 2022) hypothesize that inliers have a consistent distribution pattern
and assess the anomaly score of the sample by calculating the tail probability from either a global
or single-feature point of view. IForest (Liu et al., 2008) assumes that outliers would be divided
into separate subspaces earlier than inliers during dividing hyperplanes. These approaches make
respective designs/assumptions in the anomaly degree calculation which may not be valid across
different datasets.

Self-supervised outlier detection. SSODs generally assume that the inliers are on a low-dimensional
manifold and use different methods to learn this manifold. For the one-class classification stream,
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One-Class SVM (Schölkopf et al., 2001) trains an SVM-based one-class classifier on inliers, and
Deep SVDD Ruff et al. (2018) learns the output of the network into a hypersphere of minimum
volume. DROCC (Goyal et al., 2020) tackles the representation model collapse problem by assuming
that inliers lie on a well-sampled, locally linear low-dimensional manifold. Other streams, such
as AnoGAN (Schlegl et al., 2017), use Generative Adversarial Networks (GAN) Goodfellow et al.
(2014) to learn the inliers. Schlachter et al. (2019) propose contrastive learning in learning inliers. In
particular, some SSODs, e.g. DROCC Goyal et al. (2020) and GOAD Bergman & Hoshen (2020), can
be tailored to UOD by replacing pure inliers with mixed samples at the cost of a certain performance
deterioration (see Appendix D).

DNN-based unsupervised outlier detection. Most UOD approaches use AE-based tech-
niques (Hawkins et al., 2002; Xia et al., 2015) based on the assumption that inliers can be de-
coded better than outliers (Kingma & Welling, 2013). Later works use different ways to improve
the robustness of AE, e.g. AE ensembles (Chen et al., 2017), robust principal component analy-
sis (Zhou & Paffenroth, 2017), variational AE (Abati et al., 2019) and DAGMM (Zong et al., 2018).
REPEN (Pang et al., 2018) focuses on learning representation to compress high-dimensional features
into low-dimensional representations while still relying on off-the-shelf UOD methods. Recent
approaches adopt synthetic outliers, e.g., Liu et al. (2020) use GAN and Goodge et al. (2021)
use subspace perturbation to generate synthetic outliers. However, these synthetic outliers often
overlap with positive samples, resulting in frequent model collapses. Wang et al. (2019) designs
E3Outlier with the CV-specific transformation tasks which does not apply to general tabular data.
Recently, Qiu et al. (2021) proposed Neutral AD that uses contrastive learning to learn the invariants
that exist among different learnable transformations. However, appropriate transformation functions
must be used for different datasets for optimization, which is problematic in UOD.

3 PROPOSED APPROACH

As discussed above, the core of UOD can be seen as a density estimation problem, which is notoriously
difficult in high-dimensional data(Liu et al., 2021). Sugiyama et al. (2012) points out that the density
estimation problem, which is an unsupervised learning problem, can be solved by supervised training
a classifier to distinguish between samples and any known distribution with unlimited samples.

3.1 NOTATIONS AND TRAINING OBJECTIVE

Given a dataset X = [x1, x2, ..., xn] ∈ Rn×dim with unobserved labels Y = [y1, ..., yn], where yi
is 0 or 1. yi = 0 indicates that the sample is an inlier, and yi = 1 indicates that it is an outlier. n
denotes the total number of samples and dim is the feature dimension. Outlier detection aims to find
an anomaly score function that maps X to their unobserved labels without prior knowledge of Y .
We denote Xn, Xo as the set of inliers and outliers (X = Xn ∪Xo). X− is an auxiliary noise set
generated from a uniform distribution in the value space Rdim of X . The core idea of NOD is to train
a binary classifier f(x) to separate inliers Xn and outliers Xo in the presence of auxiliary uniform
noise. To achieve this, NOD leverages a positive sample set xi ∈ X with pseudo-labels of 0 and a
negative sample set xk ∈ X− with pseudo-labels of 1. For the binary classification problem, we use
binary cross-entropy loss to optimize the classifier f(x) by minimizing the loss Lf :

Ln
f = −

( |X|∑
i=0

log(1− f(xi)) +

|X−|∑
k=0

log f(xk)
)
. (1)

When we have arbitrarily large samples, the weak law of large numbers shows that the objective
function Ln

f converges in probability to Lf :

Lf = −
(
EX(log(1− f(x))) + EX−(log f(x−))

)
. (2)

f(x) is the output of the classifier with input x and is the predicted anomaly score of the sample x.
As demonstrated in (Gutmann & Hyvärinen, 2012), we can obtain the optimal classifier f∗(x) ≈
p(y = 1|x) after minimizing the loss Lf with logistic regression(detailed in Appendix A). However,
in practice, we only have limited samples. The following section proofs that we can still have a
classifier make density estimation with limited samples if appropriate conditions are placed.
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3.2 THEORETICAL ANALYSIS

To distinguish inliers and outliers with limited samples, two restrictions are placed, one assumption
on the datasets and another on the optimizer. We then provide a simplified proof of the correctness of
NOD. A more comprehensive proof can be found in Appendix A.

Assumption 1. [Distribution assumption] Outliers are sparser distributed than inliers and should
be sufficiently distant from any inlier.

Due to the highly unbalanced nature of the sample, we assume that outliers are sparser distributed than
inliers and nonoverlapping with inliers. Without this assumption, it would be very hard to differentiate
between inliers and outliers. This assumption has been adopted in density-based studies. However,
the difficulty lies in how to effectively and efficiently estimate the density of high-dimensional data,
due to the ”curse of dimensionality”. Many UOD calibrate the anomaly score based on the localized
distance/density estimation to reduce computation cost. It is difficult for them to use samples beyond
their scope. Fig. 1(a) of a toy sample shows the limitations of kNN in the localized calculation.

(a) kNN(k=1,2) (b) NOD-based anomaly score

Figure 1: Anomaly score with kNN and NOD on the 2D dataset. Sample A is close to the normal
cluster and with lower score than B,C. However, kNN(k=1,2) assign same socre to A,B and C.

Certainly, the sparse assumption may not be valid for outliers that are clustered together. However,
we argue that we can only effectively address these small clusters with domain-specific knowledge.
Section 4.3 contains a discussion on the effects of clustered outliers.

Proposition 1. [Smoothness Prior] Given a distance function d, ∀xi, xj ∈ Rdim, if d (xi, xj) < ε,
∀ε, |f (xi)− f (xj)| < Mε. f(·) is the anomaly score of the sample x with 0 ≤ f(·) ≤ 1, and M is
a positive constant subject to the Lipschitz condition.

To estimate accuracy with a limited number of samples, we impose a restriction on the optimizer
so that the learned outlier score function is smooth, in accordance with underlying physical laws.
This restriction specifies that the change rate of f(x) across the entire value space is below a certain
threshold and has been widely used in the design of many optimizers, especially those optimizers
used in DNNs to estimate a smooth function, e.g. SGD (Bottou & Bousquet, 2007).

Lemma 1. When the value space is limited, using a limited amount of uniform noise, it is ensured
that ρ(xi) > ρ(xk) > ρ(xj), where xi ∈ Xn, xj ∈ Xo, xk ∈ X−, and ρ(·) is the density function.

This lemma states that by constructing uniform noises, we can ensure that their densities fall between
the maximum density of outliers and the minimum density of inliers. This can be achieved with
a limited number of points, provided that the value space is limited. In practice, we can scale the
value space into a unit hypercube Rdim with a MinMax scaler. With Lemma 1 and Assumptions
1, 2, we have that ∀xi ∈ Xn, xj ∈ Xo, xj1, xj2 ∈ Xo, ∃xk, xk1, xk2 ∈ X−, then, d (xi, xj) >
d (xi, xk) , d (xj1, xj2) > d (xk1, xk2).

Lemma 2. Let D = maxj
(
mink d(xj , xk)

)
, where xj ∈ Xo, xk ∈ X−. There exists an optimized

f∗(x) with respect to Equ. 1 that satisfy ∀xj ∈ Xo, f
∗ (xj) ≥ 1−MD,MD < 1.

This lemma shows that the learned optimized function always gives the outlier an anomaly score
bigger than a certain positive value.

Theorem 1. Each predicted value of the outlier is higher than each predicted value of the inlier.
∀xi ∈ Xn, xj ∈ Xo, it holds that f∗ (xj) > λ > f∗ (xi), where λ is a boundary value.
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(a) NOD Model. (b) The trend of ROC AUC, loss and perdition values.

Figure 2: The NOD model and an exemplar training process. Inliers are red dots, outliers with green
crosses, and noise with blue triangles. In (b), the histograms are the distribution of anomaly scores.

Proof Due to the high density of inliers, ∀xi ∈ Xn, when ρ (xi) → +∞, we have f∗ (xi) → 0.
Thus, there exists a density value ρ0, s.t. ∀xi ∈ Xn, we have f∗ (xi) < τ . According to Lemma
2, it is possible to learn a classifier f∗(·) that satisfies the following conditions: ∀xi ∈ Xn, xj ∈
Xo, f

∗ (xi) < τ ≤ λ ≤ 1 − MD ≤ f∗ (xj). For example, when M < 1
2D , τ = 0.5. Therefore,

Theorem 1 holds.

This theorem establishes that the anomaly scores of outliers are higher than those of inliers. If we
have an outlier ratio, the classifier f∗(x) can distinguish between Xn and Xo. Fig. 1(b) shows the
anomaly score distribution in the toy example. It clearly shows that NOD can effectively balance the
impact of both local and remote samples with the support of uniform noise. The anomaly scores span
the entire value space and exhibit a gradual increase as the points move farther from the inlier center.
Thus, NOD can identify the degree of anomaly of sample B, and C is higher than that of sample A.

3.3 NOISE-GUIDED OUTLIER DETECTION

Based on the analysis in Sec. 3.2, the outlier detection problem is converted into a binary classification
problem with the original data as positive samples (labeled 0) while the generated noise as negative
samples (labeled 1). We scale the samples to [0, 1] with a MinMax scaler in each feature dimension.
Then, we generate noises that uniformly cover the whole space of this unit hypercube.

Fig. 2(a) shows that a simple MLP can be trained to identify between positive and negative samples
with any optimizer that satisfies the smoothness prior. The loss function is as Equ. 1. Here, we donot
adopt the typically validation-based earlystop, as the sampling process might change the distribution
of samples, especially on small datasets. Here, we design a new curve-based earlystop. The training
process is stopped if when the change of training ROC AUC is less than certain threshold for certain
epochs(0.01 for 100 epochs in experiments). Here, the typically adopted validation-based earlystop is
not used, as it might change the distribution of samples. Details are in Sec. 4.6. After training, the
model outputs an anomaly score for any point in Rdim.

NOD has two important characteristics to alleviate the density estimation problem in high-dimensional
space: 1) We generate a set of noise uniformly distributed in the value space, which gives the classifier
stable reference points across the value space. 2) The DNN’s of-the-shelf smooth prior optimizers
are the go-to method for large-scale optimization problems in data science. There are many relevant
theoretical works; e.g., Arous et al. (2022) proved the capabilities of SGD in high-dimensional data.
Fig. 2(b) depicts an example training process on a synthetic 2D data set (in supplementary data). In
the initial stage (leftmost histogram), the anomaly scores between positive and negative samples are
mixed. As training progresses, the distance between positive and negative samples gradually widens.
The gap between inliers and outliers continues to widen during training. After about 60 epochs, the
rightmost histogram displays a clear boundary between inliers and outliers.
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3.4 NEGATIVE SAMPLE GENERATION

Several methods can be applied to generate uniform noise in a given space. 1) Poisson disk sampling
ensures that all samples are at least r distance apart for some user-supplied density parameter r. Avoid
being too close to two samples. 2) Uniform Random (UR), uses a uniform probability distribution to
generate samples with random values from 0 to 1 in the dim dimensional space. The Fast Poisson
Disk (FPD) implementation Bridson (2007) can be used to generate n samples with O(n) complexity.
Its running speed drops significantly as dim increases. UR is much faster compared to FPD.

Our empirical analysis observes no significant performance gap between FRD and UR, although UR
cannot guarantee uniformly spaced negative samples. Taking into account the run time in higher
dimensions, the UR is adopted for negative sampling. The impact of different numbers of negative
samples and other types of noise are in Sec. 4.6 and Appendix E.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

In this section, we evaluate the performance of NOD from different perspectives. The code, datasets,
and detailed results for more than 20 baselines are in the supplementary material for reference.

Datasets. 22 real-world datasets from ODDS (Rayana, 2016) and DAMI (Campos et al., 2016), are
used for evaluation. They cover a wide range of anomaly cases with diversity in dimension, data
volume, and anomaly rate. The datasets are normalized to [0,1] by Min-Max Normalization. We
generate the same size of noise as the positive sample |X|.
Compared baselines. Eleven strong baselines are compared, including three classic baselines:
density-based LOF (Breunig et al., 2000), IForest (Liu et al., 2008) and ECOD (Li et al., 2022); eight
DNN-based baselines: Deep SVDD (D SVDD) (Ruff et al., 2018), DROCC (Goyal et al., 2020),
ICL (Shenkar & Wolf, 2021), Neutral AD (N AD) (Qiu et al., 2021), SO-GAAL (Liu et al., 2020),
LUNAR (Goodge et al., 2021), REPEN (Pang et al., 2018) and DAGMM (Zong et al., 2018). For
LOF, ECOD and IForest, we use the implementations from PyOD Zhao et al. (2019), a popular
and open-source Python library for Outlier Detection with implementations of many well-known
outlier detection methods. For others, we use the code and default settings given in their papers. For
D SVDD, DROCC, ICL, N AD and LUNAR, they have both SSOD and UOD implementations. We
use their UOD setting by using the original datasets containing both inliers and outliers for model
training. In Appendix D, their performance under both SSOD and UOD settings is provided.

Evaluation Metrics and Parameter Settings. ROC AUC (Hendrycks & Gimpel, 2016) and its
standard deviation are used for the evaluation. Twenty trials are carried out, and those average values
are taken as the final results. The results of the F1 score are in Appendix C. Average ranks are used
to describe the overall performance of the outlier detectors across different datasets. All tested outlier
detectors from PyOD use their default settings, which are optimized for most datasets. Others are the
same as their original papers. More details of the settings can be found in Appendix C. NOD uses a
two-layer MLP with a sigmoid activation function as the classifier. The dimensions of the hidden
layer are consistent with the features. The SGD optimizer is adopted with a learning rate of 0.01 and
L2 norm 10−6. NOD is trained with a maximum of 10,000 epochs with curve-based earlystop.

4.2 PERFORMANCE COMPARISON ON TABULAR DATA

Table 1 shows the experimental results on 22 datasets. NOD has very stable performance and
achieves better ROC AUC in almost all data sets with the best averaged ROC AUC (83.0%), the best
Rank avg(2.5) and the best Rank std(1.1). In comparison, results also show that outlier detectors
designed with predefined assumptions normally suffer significant performance variance on different
datasets, e.g., ECOD, LOF and IForest. Compared to other density-based methods that use both
inliers and outliers to calculate the density, NOD uses negative samples as stable reference points
and uses SGD to learn rather than assume the difference in the distribution. Appendix I shows
the performance of other density-based detectors. This difference partially explains the significant
performance advantage of NOD over LOF, which is also a density-based solution. However, most
DNN-based UOD solutions underperform in these datasets, as it is difficult to learn internal structures
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Table 1: Averaged ROC AUC (%) and rank (in parenthesis) of 20 independent trials. The highest
score is bolded and the second is underlined. Datasets are sorted in ascending order according to #
features. F1 holds similar trends. Detailed results for 20 baselines are given in Appendix C.

Dataset LOF ECOD IForest D SVDD DROCC ICL N AD SO-GAAL LUNAR REPEN DAGMM NOD

pima 53.8 51.7 67.3±0.9 48.8±10.8 48.2±30.2 51.5±18.2 49.9±1.5 50.8±1.2 50.5±0.1 64.4±2.8 59.0±5.0 62.9±3.0

breastw 38.3 99.1 98.7±0.2 78.0±19.6 46.8±31.0 82.7±3.7 70.4±2.0 97.6±0.3 49.4±0.1 98.8±0.3 96.8±2.7 99.3±0.2

WBC 83.0 99.0 99.0±0.2 89.4±14.2 53.8±31.8 73.4±11.6 85.8±2.3 95.7±0.5 47.1±0.3 99.2±0.2 84.3±13.0 98.8±0.2

wine 99.8 71.0 79.2±3.7 42.3±28.2 47.9±31.6 49.2±2.4 79.3±4.6 51.1±1.25 30.0±0.6 99.9±0.1 95.5±9.2 97.2±1.2

HeartDisease 50.0 58.8 62.2±1.2 48.8±17.7 38.6±26.8 99.9±0.1 46.2±2.4 42.4±8.4 47.9±0.3 66.0±2.7 77.1±4.8 67.1±3.8

pendigits 47.9 90.9 94.4±1.1 49.3±25.6 44.7±30.4 52.9±2.0 78.6±4.9 66.2±9.7 56.4±0.1 97.7±0.3 91.7±3.6 91.6±1.8

Lymphography 97.6 99.5 99.9±0.1 54.6±25.2 56.4±31.2 65.8±5.0 83.0±9.3 94.9±8.7 25.3±1.4 99.1±0.5 / 99.7±0.3

Hepatitis 62.6 78.6 69.4±1.9 50.3±18.9 39.7±25.8 90.6±6.8 39.2±11.9 44.3±9.7 46.5±4.9 76.8±5.6 60.7±12.5 69.7±3.4

Waveform 73.4 72.0 70.8±1.8 54.4±17.4 53.8±35.6 53.8±6.5 76.1±2.1 33.8±3.0 49.5±0.1 78.0±4.7 60.8±12.1 80.7±4.8

wbc 93.0 90.0 93.7±0.8 64.1±26.8 45.6±31.0 55.0±9.6 85.7±2.6 12.3±6.7 42.6±0.3 95.8±0.5 94.4±3.5 95.9±0.8

WDBC 98.2 91.7 93.5±0.9 47.3±27.5 62.6±30.1 90.7±1.3 96.6±0.9 50.4±0.3 47.6±0.3 98.9±0.3 89.0±13.3 97.4±0.5

WPBC 51.8 48.0 49.0±1.5 49.5±6.6 54.2±36.6 61.7±5.7 43.9±3.3 50.2±4.0 47.8±0.2 52.4±2.2 55.6±5.8 57.8±1.3

satimage-2 53.2 97.3 99.4±0.1 61.8±32.8 58.6±30.6 94.2±2.3 97.2±0.7 44.8±10.1 55.4±0.1 99.9±0.1 88.7±10.3 99.5±0.1

satellite 54.0 74.6 70.8±1.7 53.6±13.0 50.4±33.6 56.9±3.9 70.2±2.2 49.0±3.1 50.9±0.0 71.9±2.5 55.0±9.6 74.4±4.7

KDDCup99 62.5 99.2 98.9±0.1 55.9±24.3 50.4±36.2 72.8±16.1 76.2±14.4 47.4±1.6 50.8±0.0 65.1±2.8 64.0±9.3 98.9±0.1

SpamBase 45.1 64.4 62.1±2.0 50.5±13.6 52.3±35.7 49.1±6.6 39.1±1.9 33.9±3.0 49.2±0.0 57.5±2.4 / 68.4±1.0

optdigits 58.8 61.5 71.0±4.7 52.2±23.6 56.8±29.1 89.1±6.8 55.0±4.4 42.4±12.0 48.6±0.2 89.0±1.2 79.7±8.7 76.2±5.5

mnist 64.5 83.8 79.8±1.8 53.7±12.6 56.2±32.9 72.6±0.9 88.4±1.3 49.4±0.3 49.2±0.1 86.5±0.6 55.8±6.9 86.7±2.0

musk 41.2 95.5 99.9±0.1 68.4±20.3 54.2±36.1 58.8±7.2 99.8±0.2 50.0±0.0 47.4±0.2 99.8±0.1 97.0±2.2 98.2±0.7

Arrhythmia 72.6 77.4 75.0±1.3 61.4±5.2 48.0±28.0 51.5±3.6 73.6±0.9 34.2±3.3 48.1±0.4 74.4±1.0 37.8±2.8 74.0±0.5

speech 50.9 48.9 48.1±1.5 49.5±5.1 58.2±32.3 49.9±4.8 50.0±1.6 48.9±1.8 56.8±0.3 54.1±1.4 47.5±5.3 62.0±1.8

InternetAds 65.5 67.7 68.8±2.0 70.3±3.6 49.0±36.4 88.0±5.7 67.2±2.8 38.1±5.4 51.3±0.1 81.2±0.6 / 68.7±0.8

AUC↑(rank↓) 64.4(8) 78.2(4) 79.6(3) 57.0(9) 51.2(11) 68.6(7) 70.5(6) 51.3(10) 47.6(12) 82.1(2) 73.2(5) 83.0(1)
Rank avg↓ 7.0 4.7 4.4 8.7 9.4 6.2 6.4 9.8 9.9 2.7 6.1 2.5
Rank std↓ 2.9 2.5 2.5 1.5 2.5 3.0 3.1 2.4 2.0 1.3 2.8 1.1

without domain-specific knowledge. REPEN uses representation-learning techniques to map high-
dimensional data into low-dimensional embeddings and can be complementary to NOD.

4.3 ANOMALY DETECTION OF IMAGES

We also evaluate NOD in image anomaly detection. Similar to N AD, the pre-trained ResNet152 (He
et al., 2016) model is used to reduce the dimension of image data from 3*32*32 to 1*2048. To avoid
possible ”supervised” signals in the embeddings, only the test sets of CIFAR10 are used, with 950
samples from one class as inliers and 50 outliers randomly selected from the other nine.

normal class D SVDD DROCC N AD REPEN NOD

airplane 60.7±0.5 87.3±4.3 91.2±0.1 87.1±0.6 95.3±0.1
automobile 60.0±1.0 93.8±1.4 97.0±0.1 86.2±4.0 96.6±0.1

bird 48.4±0.5 79.8±2.2 85.7±0.4 71.2±1.5 88.0±0.2
cat 57.6±0.8 78.3±1.3 86.4±0.2 78.1±1.3 90.0±0.1

deer 56.8±0.8 80.2±0.8 90.8±0.2 91.2±1.4 95.6±0.1
dog 63.3±0.9 83.5±2.5 92.0±0.3 77.8±1.6 92.3±0.3
frog 59.0±1.4 91.7±4.9 91.5±0.5 84.0±1.2 97.0±0.1
horse 59.9±1.7 89.1±3.1 96.5±0.1 85.1±1.8 95.2±0.1
ship 75.9±1.8 91.8±0.9 95.4±0.0 89.6±1.1 97.0±0.1
truck 67.2±0.7 90.0±4.1 96.8±0.1 90.5±1.1 97.7±0.0

AUC avg↑ 60.9±1.0 86.5±2.5 92.3±0.2 84.1±1.6 94.4±0.1

Table 2: ROC AUC (%) on image data. Figure 3: Embedding visualization by t-SNE.

Table 2 shows the performance of four strong baseline detectors and NOD. NOD demonstrates
superior and consistent performance in nearly all datasets. Additionally, we observe that all detectors
have almost identical trends across the ten datasets, albeit with different values: showing good
performance in ship and truck while showing poorer performance in bird and cat. To understand the
underlying reasons for this observed trend, we use t-SNE to visualize bird and truck as shown in Fig.3.
Observing the relative density of inliers and outliers, it is evident that the outliers in birds pose a more
significant violation of Assumption 1 compared to those in truck (highlighted by the red circle in
bird). The underlying density patterns of the inliers and outliers in the data have a significant impact
on the performance of all approaches, including NOD. We also observe that embeddings obtained
from different pretraining models can have a notable influence on UOD performance (Appendix H).

4.4 IMPACTS OF DIFFERENT TYPES OF NOISE

In this section, we test the effectiveness of different negative sampling methods. In addition to
“Uniform Random” (UR) and “Fast Poisson disk sampling” (FPD), the “Subspace” in LUNAR and

7
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“GAN” in SO-GAAL are used to generate negative samples. Fig. 4 shows the results of different
negative sampling methods. The subspace method (LUNAR) generates negative samples (noise

Figure 4: Comparison of different negative samples.

points) around positive ones (including inliers and outliers) with specific perturbations. These negative
samples can hardly cover the whole space. Similarly, noise points generated from GAN tend to be
located close to the inliers. However, due to the lack of labels, SO-GAAL and LUNAR find it difficult
to control the distance between negative and positive samples, resulting in frequent model collapses.
In comparison, negative samples generated from both FPD and UR are almost uniformly distributed
in the entire Rdim space and serve as reliable reference points for a classifier for learning. Their
anomaly scores gradually increase as the points move away from the cluster of inliers. Appendix G
also illustrates results from data with multiple clusters.

4.5 FITTING WITH DIFFERENT CLASSIFIERS

According to Sec. 3, one of the preconditions of NOD is that the classifier obeys the smoothness
prior. However, not all classifiers are designed with this assumption. We analyze the performance
differences in applying LightGBM, SGD and Adam on a synthetic 2D dataset. The results for more
classifiers are in Appendix F. Fig. 5 visualizes the anomaly score distributions in the 200th and

Figure 5: Score distributions in 2D data under different rounds

2000th epochs (for LigthGBM, the 10th and 200th). SGD has almost two identical score distributions
between the 200th and 2000th epochs, while Adam overfits in the 2000th epoch. LightGBM always
generates very rigid boundaries between positive samples and noises. It can hardly find a smooth
distribution estimation with its rigorous separation strategy, even at the beginning of training.

4.6 DESIGN ANALYSIS

This section examines the effects of other designs in NOD, including the ratios of negative samples,
and the usage of earlystop, including with no earlystop or earlystop with a validation set by randomly
selected 15% samples from both samples and noises. X-axis values denote the dataset index ordered
as Table 1. |X| is normalized to 1 for the 22 datasets according to the performance of NOD. Dots
above 1 indicate improved performance, while those below 1 indicate underperformance.

8
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Fig. 6(a) shows the relative ROC AUC ratios (Y-axis) with different ratios of negative samples.
We observe that the performance generally deteriorates when there are too many / little negative
samples. Fig. 6(b) shows the performance of our curve-based earlystop and validation-based earlystop.
For most datasets, no earlystop might introduce possible overfitting, which results in performance
degradation. The traditional validation-based earlystop also has inferior performance as the sampling
for validation sets might change the distribution of the data, especially for small-size datasets.

(a) Ratio of noise numbers (b) Two methods of earlystop

Figure 6: Performance under different designs. X axis is the datasets, in the same order as Table 1
.

4.7 SCALABILITY ANALYSIS

Table 3 shows the time and space complexity of different detectors in two real-world datasets and
three synthetic datasets. Here, 105 − 102 denotes a data set of 100,000 samples and 100 features.
The baselines are performed on a server with EPYC 7552*2 with 512G memory and V100 32G.
The number of parallel execution cores for LOF, IForest, and ECOD is set to 50. For DNN-based
solutions, both training and prediction time are counted. The results show that LOF suffers from
computational scalability, while IForest exhibits high space complexity, OOM in 106-103. LUNAR
needs to maintain a graph with all samples and encounters OOM-G. In contrast, NOD is efficient in
massive datasets, with its time complexity nearly linear with the sample size. This advantage is of
paramount importance in many real-world applications.

Table 3: Time in seconds for different scales of datasets, – means the result is not obtained within 2
hours. OOM denotes the out-of-memory errors with 512G memory; OOM-G is on V100 32G.

.

Dataset LOF IForest ECOD LUNAR SO-GAAL NOD

InternetAds 2.58 3.30 11.59 4.79 4.30 0.54
KDDCup99 299.69 4.40 13.76 4.56 2.37 0.44
105-102 897.79 13.76 17.52 11.60 10.81 0.97
105-103 1163.87 85.83 58.62 OOM-G 33.90 12.62
106-103 – OOM 687.74 OOM-G 103.40 24.56

5 CONCLUSION

This paper proposes a simple, effective, scalable, unsupervised outlier detection solution called
NOD. NOD converts the original UOD problem into a density estimation problem and solves it with
a simple MLP and standard back-propagation mechanism with uniform noise as guidelines. We
theoretically prove that the trained classifier can effectively separate outliers if the outlier is not as
dense as the inliers. In 22 real-world datasets, NOD achieves the best outlier detection performance in
average ROC AUC, outperforming 11 strong outlier detectors. Further experiments show that uniform
noise and MLP designs contribute to the superior performance of NOD. We also experimentally
demonstrate that NOD is not sensitive to its hyperparameters. For further work, we plan to improve
NOD’s performance on datasets with small but dense outlier clusters, violating the assumption that
outliers are more sparsely distributed than inliers.
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A THEORETICAL ANALYSIS

For the binary classification problem, we use the binary cross entropy loss to optimize the classifier
f(x) by minimizing the loss Ln

f :

Ln
f = −

( |X|∑
i=0

log(1− f(xi)) +

|X−|∑
k=0

log f(xk)
)
. (1)

When we have arbitrarily large samples, the weak law of large numbers shows that the objective
function Ln

f converges in probability to Lf :

Lf = −
(
EX(log(1− f(x))) + EX−(log f(x−))

)
. (2)

Let p(x, y) = p(y)p(x|y) be an expanded generative model for x defined as:

x ∼ a(x) if y = 0,

x ∼ b(x) if y = 1
(3)

When the number of positive and negative samples is equal, we can express the loss function as:

Lf = −
∫ (

log(1− f)a(x) + log(f)b(x)
)
dx. (4)

∂Lf

∂f
= −

∫ ( 1

f − 1
a(x) +

1

f
b(x)

)
dx. (5)

When the derivative is constantly zero, the objective function achieves an extremum. By doing this,
we can obtain an optimized classifier:

f∗ ≈ b(x)

a(x) + b(x)
= p(y = 1|x) (6)

f(x) is the output of the classifier with input x and is the predicted anomaly score of the sample x.
We can obtain the optimal classifier f∗(x) ≈ p(y = 1|x) after minimizing the loss Lf .The proof
above referenced the counterparts from (Gutmann & Hyvärinen, 2012).

To distinguish inliers and outliers with limited samples, two restrictions are placed, one assumption
on the datasets and another on the optimizer. We then provide a simplified proof of the correctness of
NOD.

Assumption 1. [Distribution assumption] Outliers are sparser distributed than inliers and should
be sufficiently distant from any inlier.

Due to the highly unbalanced nature of the sample, we assume that outliers are sparser distributed than
inliers and nonoverlapping with inliers. Without this assumption, it would be very hard to differentiate
between inliers and outliers. This assumption has been adopted in density-based studies. However,
the difficulty lies in how to effectively and efficiently estimate the density of high-dimensional data,
due to the ”curse of dimensionality”. Many UOD calibrate the anomaly score based on the localized
distance/density estimation to reduce computation cost. It is difficult for them to use samples beyond
their scope. Fig. 1(a) of a toy sample shows the limitations of kNN in the localized calculation.
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(a) kNN(k=1,2) (b) NOD-based anomaly score

Figure 1: Anomaly score with kNN and NOD on the 2D dataset. Sample A is close to the normal
cluster and with lower score than B,C. However, kNN(k=1,2) assign same socre to A,B and C.

Certainly, the sparse assumption may not be valid for outliers that are clustered together. However,
we argue that we can only effectively address these small clusters with domain-specific knowledge.
Section 4.3 in paper contains a discussion on the effects of clustered outliers.

This Smoothness Prior (Rosca et al., 2020) specifies that the changing rate of f(x) across the whole
value space is below a certain threshold and has been wildly used in designing many optimizers,
especially those optimizers used in DNNs to estimate a smooth function, e.g., Adam (Kingma & Ba,
2014) and SGD (Bottou & Bousquet, 2007).

Lemma 1. When the value space is limited, using a limited amount of uniform noise, it is ensured
that ρ(xi) > ρ(xk) > ρ(xj), where xi ∈ Xn, xj ∈ Xo, xk ∈ X−, and ρ(·) is the density function.

Proof. For ∀xj1, xj2 ∈ Xo,∀xi1, xi2 ∈ Xn we have d(xj1, xj2) > 4
√
dimd(xi1, xi2) where dim

is the space dimension for the dataset and the 4 is a scaling factor. We let D = maxi1,i2d(xi1, xi2),
S be the dataset space, and ρ(·) be the density function. ρ(x) = maxy

C(N(x,d(x,y)),x)
Sqr(N(x,d(x,y))) , where x,y

come from the same dataset, N(x, dx) = {z|d(x, z) ≤ dx, z ∈ S}, C(N, x) means the number of
the data which has the same tag as x and is in the subset N , Sqr(N) means the volume of the subset
N . Construct the noise following a uniform distribution, in which the distance between two adjacent
points is 4D; we have: minj1,k1d(xj1, xk1) <

√
dim
2 ∗ 4D < 4

√
dimD < minj1,j2d(xj1, xj2),

where xj1, xj2 ∈ Xo, xk1 ∈ X−. This indicates that noise is distributed near the outlier instead of
the outlier and ∀xj ∈ Xo,∀xk ∈ X−, ρ(xk) > ρ(xj). Given that maxx∈Sminxk1∈X−d(x, xk1) =

2
√
dimD, we can generate the uniform noise data to guarantee ∃d(xi1, xk1) ≥ 2D. Then:

mini1,k1d(xi1, xk1) > 2D − maxi1,i2d(xi1, xi2) = maxi1,i2d(xi1, xi2).

It means that ∀xi ∈ Xn,∀xk ∈ X−, ρ(xk) < ρ(xi). Thus, ρ(xj) < ρ(xk) < ρ(xi). In other words,
it is always possible to generate a uniform noise that has a density between that of the inliers and
outliers.

Lemma 2. Let D = maxj
(
mink d(xj , xk)

)
, where xj ∈ Xo, xk ∈ X−. There exists an optimized

f∗(x) with respect to Equ. 1 that satisfy ∀xj ∈ Xo, f
∗ (xj) ≥ 1−MD,MD < 1.

This lemma shows that the learned optimized function always gives the outlier an anomaly score
bigger than a certain positive value.

Proof.[proof by contradiction] If ∃xj ∈ Xo, s.t. f(xj) < 1 − MD, with smoothness prior
(i.e., xj , xk are in a subspace with d(xj , xk) < ϵ, thus, f(xj) → f(xk)), ∃xk ∈ X−, f (xk) <
1 − MD + Md(xj , xk∗) < 1. xk∗ is the closest of xk ∈ X− to xj . Thus, there is an optimal
classification value f∗(x), so that f(xk) ≤ f∗(xk),∀xk ∈ X−, and we further define f∗(x) as:

f∗(x) =


1, ∀x ∈ X−,

f(x), ∀x ∈ Xn,

1−MDx, ∀x ∈ Xo.

(7)
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Here, Dx = mink d(xk, x), xk ∈ X−. According to Equ. 1, we define C as a sample set that belongs
to the same subspace as xj and ∀x ∈ C, x ∈ X−. Let g(x) = −

(
log

(
1− (x− δ)

)
+ log(x)

)
, 0 <

δ < 1, because g(1) < g(x), ∀δ ≤ x < 1. With Assumption 1 and Lemma 1, one outlier has little
effect on another outlier. Thus, we can only care about one outlier and noise samples around that
outlier. We use Lf(xj) to represent the loss function, where xj is the outlier:

Lf(xj) = −
( |C|∑

k

log f(xk) + log(1− f(xj))
)

≥ −
(
log(1− f(xj)) + log f(xk∗) +

|C|\{xk∗}∑
k

log f∗(xk)
)

≥ −
(
log(1− f∗(xj)) + log f∗(xk∗) +

|C|\{xk∗}∑
k

log f∗(xk)
)

= Lf∗(xj),

(8)

where f∗(xk) = 1, f∗(xj) = 1−mink Md(xj , xk), xk ∈ X−, xj ∈ Xo. Therefore, if there exists
∃xj ∈ Xo, s.t. f(xj) < 1−MD, it is theoretically possible to find f (xj) that minimizes the loss,
which contradicts the fact that f (x) is optimal. Thus Lemma 2 holds true.

Theorem 1. Each predicted value of the outlier is higher than each predicted value of the inlier.
∀xi ∈ Xn, xj ∈ Xo, it holds that f∗ (xj) > λ > f∗ (xi), where λ is a boundary value.

Proof. Due to the high density of inliers, ∀xi ∈ Xn, when ρ (xi) → +∞, we have f∗ (xi) → 0.
Thus, there exists a density value ρ0, s.t. ∀xi ∈ Xn, we have f∗ (xi) < τ . According to Lemma
2, it is possible to learn a classifier f∗(·) that satisfies the following conditions: ∀xi ∈ Xn, xj ∈
Xo, f

∗ (xi) < τ ≤ λ ≤ 1 − MD ≤ f∗ (xj). For instance, when M < 1
2D , τ = 0.5. Therefore,

Theorem 1 holds.

This theorem establishes that the anomaly scores of outliers are higher than those of inliers. If we
have an outlier ratio, the classifier f∗(x) can distinguish between Xn and Xo. Fig. 1(b) shows the
anomaly score distribution in the toy example. It clearly shows that NOD can effectively balance the
impact of both local and remote samples with the support of uniform noise. The anomaly scores span
the entire value space and exhibit a gradual increase as the points move farther from the inlier center.
Therefore, NOD can identify the anomaly degree of samples A, B, and C.

B SUMMARY OF 22 REAL-WORLD DATASETS

Table 1 summarizes 22 real-world datasets used for evaluating UOD. (mat) represents dataset from
ODDS1 and (arff) from DAMI2. These datasets are highly representative in terms of diversity in
feature dimensions, data volume, and anomaly proportions. The following experiments are the
average results obtained from 20 independent experiments on these 22 datasets.

C PERFORMANCE ON 22 DATASETS USING 22 OUTLIER DETECTORS

NOD is compared with 21 other outlier detectors, including classical methods: kNN(Ramaswamy
et al., 2000), LOF(Breunig et al., 2000), HBOS(Goldstein & Dengel, 2012), OC-SVM (Schölkopf
et al., 2001), COPOD(Li et al., 2020), ECOD(Li et al., 2022), IForest(Liu et al., 2008), SUOD(Zhao
et al., 2021), LSCP(Zhao et al., 2019a) and DNN-based detectors: Deep SVDD (D SVDD) (Ruff
et al., 2018), AE(Xia et al., 2015), VAE (Kingma & Welling, 2013), LUNAR (Goodge et al., 2021),
DROCC (Goyal et al., 2020), GOAD (Bergman & Hoshen, 2020), Neutral AD (N AD) (Qiu et al.,
2021), SO-GAAL (Liu et al., 2020), REPEN(Pang et al., 2018), DAGMM(Zong et al., 2018),
ICL(Shenkar & Wolf, 2021) and flows ood(Kirichenko et al., 2020).

1http://odds.cs.stonybrook.edu
2http://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI
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Table 1: Summary of 22 real-world datasets (Ratio means Outlier Ratio).

Dataset dim Sample Ratio (%) Dataset dim Sample Ratio (%)

pima(mat) 8 768 34.90 breastw(mat) 9 683 34.99
WBC(arff) 9 223 4.48 wine(mat) 13 129 7.75

HeartDisease(arff) 13 270 44.44 pendigits(mat) 16 6870 2.27
Lymphography(arff) 18 148 4.05 Hepatitis(arff) 19 80 16.25

Waveform(arff) 21 3443 2.90 wbc(mat) 30 378 5.56
WDBC(arff) 30 367 2.72 WPBC(arff) 33 198 23.74

satimage-2(mat) 36 5803 1.22 satellite(mat) 36 6435 31.64
KDDCup99(arff) 41 60839 0.40 SpamBase(arff) 57 4207 39.91

optdigits(mat) 64 5216 2.88 mnist(mat) 100 7603 9.21
musk(mat) 166 3062 3.17 Arrhythmia(arff) 259 450 45.78

speech(mat) 400 3686 1.65 InternetAds(arff) 1555 1966 18.72

For kNN, LOF, HBOS, OC-SVM, COPOD, ECOD, IForest, SUOD, LSCP, AE, VAE, and D SVDD,
we use the implementations from PyOD (Zhao et al., 2019b) which is a popular and open-source
Python library for Outlier Detection. For others, we use the code given in their papers. In particular,
from their source code, D SVDD, DROCC, GOAD, N AD, and LUNAR demand pure inliers, i.e.,
these methods select inliers based on labels and use only inliers as training data. For a fair comparison,
we adapt them to the UOD setting by using the original dataset containing both inliers and outliers
for model training. The comparison of experimental results using the initial settings of the paper and
the UOD settings is presented in Sec. D.

Detailed Hyperparameter Settings. For kNN, LOF, HBOS, OC-SVM, COPOD, ECOD, IForest,
SUOD and LSCP, we use default settings in the PyOD library where n neighbors is 5 in kNN, n bins
is 10 in HBOS, n neighbors is 20 in LOF and OC-SVM uses the sigmoid kernel. SUOD and LSCP are
ensemble learning methods, and their basic detector composition is [LOF, LOF, LOF, LOF, COPOD,
IForest, IForest], the parameters n neighbors for the first four LOF algorithms are 15, 20, 25 and 35
respectively.

For DNN models, AE, VAE and D SVDD use the sigmoid activation function and the SGD optimizer.
We train them using 500 epochs with a learning rate of 0.005 and 2 hidden layers. The hidden
layer dimensions are dim

2 and dim
4 for the two models, respectively. We train DROCC 100 epochs

where 50 epochs are with CELOSS. The number of hidden nodes for the LSTM model is 128, and
the SGD optimizer is used with a 0.005 learning rate and 0.99 momentum. We use the config file
“config arrhy.yml” provided in the source code from N AD paper where residual transformation,
Adam with 0.005 learning rate, 5 hidden layers with 64 dimensions and DCL loss are used. For
SO-GAAL, the SGD optimizer is used with a 0.0001 learning rate for the generator and a 0.01
learning rate for the discriminator. LUNAR uses kNN with 20 n neighbors to build a graph and
constructs a discriminator with 4 layers with the Tanh activation function. SGD optimizer with a
learning rate of 0.01 is adopted. REPEN uses the “rankod.py” from the paper code library to evaluate
and the number of training epochs is 50. DAGMM adopts the Adam optimizer with a learning rate of
10−4 and a training epochs count of 200, where the gmm k parameter is 4. flows ood uses Adam
optimizer with 10−3 learning rate and 5× 10−5 L2 regularization weight decay, and the number of
training epochs is 100. For flows ood, we use the file “train unsup ood uci.py” from the paper code
library to train.

Tables 2, 4 and Tables 3, 5 show the results of NOD compared to other outlier detectors, in terms of
AUC ROC, F1-score respectively. Table 2 and Table 3 show the performance comparison between
NOD and traditional methods, while Table 4 and Table 5 show the comparison with deep learning
methods The results show that most outlier detectors display significant performance variance on
different datasets. Original data distribution highly influences the performances of traditional outlier
detection algorithms due to their strong data assumptions, and only a tiny fraction of them can achieve
good performance on the 22 datasets. For instance, kNN performs well on the wine(mat), wbc(mat),
breastw(mat), Lymphography(arff),WBC(arff), satimage-2(mat) and WDBC(arff) datasets, but poorly
on others as its performance is highly influenced by k.
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Table 2: Results in ROC AUC (%) of all 9 compared classical detectors (average of 20 independent
trials).

Dataset kNN LOF HBOS OC-SVM COPOD ECOD IForest SUOD LSCP nod

pima 60.76 53.84 68.6 50 65.4 51.73 67.33±0.9 64.93±0.76 61.7±0.81 62.9±2.95
breastw 97.53 38.32 98.5 0.49 99.44 99.14 98.7±0.16 90.95±1.76 75.69±1.56 99.29±0.24
WBC 98.73 83 98.2 0.75 99.06 99.01 99.04±0.21 98.31±0.31 97.4±0.12 99.16±0.21
wine 99.62 99.75 76.6 50 86.72 71.01 79.23±3.7 98.5±0.19 97.98±0.44 97.21±1.16

HeartDisease 60.53 50.05 74.7 14.78 69.46 58.81 62.22±1.24 61.77±1.01 57.02±0.84 67.08±3.76
pendigits 70.87 47.94 92.8 76.67 90.48 90.9 94.41±1.1 86.96±1.13 69.57±3 91.59±1.84

Lymphography 99.65 97.65 99.8 8.1 99.65 99.53 99.91±0.08 99.54±0.15 98.17±0.66 99.74±0.29
Hepatitis 66.88 62.57 77.7 69.8 80.37 78.65 69.41±1.89 73.08±2.56 72.24±1.78 69.69±3.39

Waveform 73.7 73.41 70 61.03 73.43 72.03 70.79±1.86 75.2±1.56 74.95±0.8 80.74±4.8
wbc 95 92.97 95.8 1.56 96.36 90.01 93.7±0.81 95.06±0.5 94.41±0.5 95.9±0.85

WDBC 99.41 98.15 93.1 50 97.09 91.74 93.53±0.91 96.77±0.22 95.77±0.15 97.39±0.47
WPBC 51.54 51.85 54.5 44.86 52.33 48.01 49±1.52 50.89±0.52 49.94±0.92 57.76±1.34

satimage-2 92.96 53.25 97.2 50 97.45 97.32 99.36±0.1 98.45±0.1 90.04±3.19 99.51±0.1
satellite 67.01 53.95 76.6 50 63.35 74.63 70.75±1.67 69.87±0.44 61.46±0.52 74.43±4.66

KDDCup99 43.9 62.54 98.4 91.33 99.19 99.24 98.91±0.08 99.03±0.05 93.73±1.46 98.94±0.13
SpamBase 48.64 45.13 63.7 30.43 67.71 64.45 62.1±1.96 61.16±0.85 55.97±0.96 68.4±0.98
optdigits 43.57 58.79 87 53.6 68.24 61.53 70.97±4.69 68.5±1.23 60.65±1.87 76.15±5.54

mnist 79.41 64.49 68.7 91.09 77.39 83.81 79.8±1.8 80.26±0.61 72.15±0.61 86.3±2.04
musk 30.38 41.24 99.8 1.1 94.63 95.5 99.97±0.05 91.71±0.81 67.39±9.94 98.18±0.69

Arrhythmia 74.33 72.59 74.8 66.83 75.76 77.37 75.05±1.3 75.22±0.28 73.29±0.33 73.98±0.54
speech 49.29 50.87 47.6 50.57 49.11 48.9 48.12±1.53 49.3±0.58 50.15±0.21 62.02±1.78

InternetAds 71.27 65.54 68.3 38.35 67.64 67.67 68.81±2 74.62±0.83 71.92±2.13 68.71±0.75

AUC avg 71.59 64.45 81.0 43.24 80.47 78.23 79.6±1.3 80.0±0.7 74.6±1.5 83.0±1.8

Table 3: Results in F1-score (%) of all 9 compared classical detectors (average of 20 independent
trials).

Dataset kNN LOF HBOS OC-SVM COPOD ECOD IForest SUOD LSCP nod

pima 44.8 34.11 50.75 0 48.88 37.31 51.38±1.27 47.82±1.42 44.13±1.19 48.99±1.81
breastw 87.88 13.84 93.5 0 94.56 92.89 92.33±0.63 78.01±3.1 51.26±3.35 94.46±0.9
WBC 70.59 0 70 0 80 80 70±3.16 63.61±6.7 59.85±2.35 75.5±4.97
wine 77.78 66.67 0 0 40 20 14.5±6.69 70.49±1.53 68.76±7.2 67±11

HeartDisease 44.34 45.3 70 15.83 60.83 52.5 51.5±1.25 51.68±1.6 45.75±0.94 59.29±3.59
pendigits 7.25 6.36 32.05 16.03 26.28 25 32.76±3.79 10.7±1.18 15.4±3.3 20.06±7.69

Lymphography 83.33 72.73 83.33 0 83.33 83.33 90±8.16 84.23±2.69 69.46±6.08 85±10.41
Hepatitis 0 17.39 30.77 30.77 46.15 38.46 19.23±3.85 22.01±5.32 21.23±4.53 22.69±7.08

Waveform 19.65 12.09 7 6 4 8 7.1±1.48 6.12±1.3 16.94±1.08 12.5±4.79
wbc 45 43.24 61.9 0 71.43 42.86 53.57±5.4 56.24±5.01 57.53±3.48 65±4.83

WDBC 80 84.21 40 0 80 50 64±4.9 79.43±1.36 62.67±4.39 63.5±4.77
WPBC 13.64 19.15 19.15 14.89 21.28 14.89 14.79±1.84 15.53±2.11 15.67±1.75 30.32±2

satimage-2 40 4.92 64.79 0 74.65 63.38 87.75±2.14 31.99±3.03 36.52±4 89.15±1.42
satellite 49.46 36.22 56.83 0 48.04 55.16 57.59±1.49 56.24±0.64 44.55±0.7 49.7±7.64

KDDCup99 7.74 0 39.02 53.66 45.93 45.53 40.92±1.35 37.29±6.96 30.7±6.67 37.36±1.5
SpamBase 40.04 34.26 51.53 23.94 56.46 54.14 50.21±2 50.41±0.81 43.76±1.28 57.33±0.99
optdigits 3.76 11.43 18.67 10.92 1.33 1.33 2.53±1.19 7.06±0.96 9.49±0.39 5.7±1.67

mnist 37.6 22.63 17.14 56.71 23.57 34.86 29.84±2.17 31.49±1.14 27.77±0.63 39.79±5.29
musk 1.4 3.73 90.72 0 36.08 40.21 96.8±3.86 14.15±3.35 15.02±8.43 65.15±7.09

Arrhythmia 64.82 62.69 64.56 57.28 64.56 66.5 64.95±1.61 66.4±1.04 63.64±0.64 64.49±0.82
speech 1.79 2.38 3.28 3.28 3.28 3.28 3.36±1.68 2.6±0.82 4.07±0.81 1.89±1.4

InternetAds 32.56 39.07 46.47 9.51 44.57 44.57 43.24±2.82 50.67±1.45 48.45±2.28 46.37±1.28

F1 avg 38.79 28.75 45.97 13.58 47.96 43.37 47.2±2.85 42.46±2.43 38.75±2.97 50.06±4.22
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DNN-based methods: AE, VAE, D SVDD, DROCC, GOAD, N AD, SO-GAAL, LUNAR, DAGMM
and flows ood are in a similar situation. In particular, LUNAR relies on the kNN method, SO-GAAL
has no clear criteria for the distance between positive and negative samples and VAE is based on the
assumption that the inliers can be decoded from the encoding space better than the outliers. Moreover,
D SVDD, DROCC, GOAD, N AD, and LUNAR need to use pure normal samples for training,
contrary to the unsupervised setting. Therefore, we use the original datasets containing both inliers
and outliers rather than only containing inliers to train these models. The following experimental
results (Sec. D) show that training data mixed with some noise samples hurt their model performance.
Except for REPEN, REPEN uses representation learning techniques to map high-dimensional data
into low-dimensional embeddings and can be complementary to NOD. One of our future directions is
to integrate representation learning techniques into NOD. With the loose assumption, NOD has a
rather stable performance and achieves excellent ROC AUC on almost all the tested datasets. It is
worth noting that NOD has 9 average ROC AUC scores above 0.95 on 22 datasets and NOD performs
best among DNN methods with large margins. The results verify the effectiveness and robustness of
NOD.

D PERFORMANCE ON DIFFERENT TRAINING SETTINGS

Following the papers of DROCC, GOAD, N AD and LUNAR, these approaches need pure normal
samples (inliers) to train the model. Since we focus on the unsupervised domain, these models are
trained using original data (including outliers) as training data. Table 6 shows comparative results
using the original paper setting and unsupervised setting. The results show that GOAD, N AD and
LUNAR are interfered by the noise in the training data. On the contrary, DROCC generally performs
better in the unsupervised setting. This is because DROCC can be extended to solve One-class
Classification with Limited Negatives. For both versions, their results are inferior to NOD.
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Table 6: Results in ROC AUC (%) using different training settings (average of 20 independent trials).
(S) means using the original settings of the paper and (U) denotes the unsupervised setting.

Dataset DROCC(S) DROCC(U) GOAD(S) GOAD(U) N AD(S) N AD(U) LUNAR(S) LUNAR(U)

pima 49.6±12.3 48.2±30.2 41.5±3.1 45.0±2.6 60.7±1.3 49.9±1.4 52.1±0 50.5±0.1
breastw 53.4±34.7 46.8±31.9 67.9±16.7 77.2±3.0 96.2±1.0 70.4±2.0 39.3±0.1 49.4±0.1
WBC 54.2±33.6 53.8±31.8 24.9±16.2 5.7±3.2 81.5±4.6 85.8±2.3 35.3±0.8 47.1±0.3
wine 65.5±32.8 47.9±31.6 39.0±18.1 71.6±20.3 95.4±1.9 79.3±4.6 42.8±1.3 30.0±0.6

HeartDisease 46.7±20.0 38.6±26.8 43.7±11.1 47.9±3.2 69.1±4.9 46.2±2.4 50.1±0.3 47.9±0.2
pendigits 16.7±13 44.7±30.4 24.8±13.8 20.1±12.6 98.5±0.8 78.6±4.9 51.2±0 56.4±0.1

Lymphography 48.8±28.6 56.4±31.2 98.2±3.6 21.4±13.7 90.0±4.9 83.0±9.3 47.8±1.4 25.3±1.4
Hepatitis 55.2±18.4 39.7±25.8 59.8±10.2 39.2±5.6 63.3±7.9 39.2±11.9 55.5±7.1 46.5±5.0

Waveform 49.2±7.4 53.8±35.6 44.0±2.9 44.2±2.2 80.1±1.3 76.1±2.1 48.0±0.2 49.5±0.1
wbc 47.3±30.1 45.6±31.0 49.5±14.9 15.0±3.4 92.7±2.0 85.7±2.6 96.1±0.1 42.6±0.3

WDBC 37.8±34.8 62.6±30.1 54.8±16.1 9.9±3.8 97.7±0.6 96.6±1.0 54.0±0.7 47.6±0.2
WPBC 58.0±8.7 54.2±36.6 50.3±4.2 51.1±2.5 49.0±7.1 43.9±3.3 49.2±0.4 47.8±0.2

satimage-2 33.4±7.8 58.6±30.6 98.8±0.6 87.8±8.2 99.8±0.1 97.2±0.7 99.9±0 55.4±0
satellite 44.0±1.8 50.4±33.6 70.8±1.2 48.2±2.9 81.1±0.4 70.2±2.2 50.0±0 50.9±0

KDDCup99 4.4±1.4 50.4±36.2 91.3±4.6 89.4±8.1 75.9±12.5 76.2±14.4 49.6±0 50.8±0
SpamBase 28.3±6.5 52.3±35.8 40.0±7.4 46.2±3.0 60.9±3.2 39.1±1.9 28.8±0.1 49.2±0
optdigits 74.3±13.0 56.8±29.1 73.5±15.1 58.3±13.2 82.8±4.6 55.0±4.4 99.5±0.1 48.6±0.2

mnist 24.1±6.1 56.2±33.0 56.5±7.0 45.0±7.9 97.8±0.2 88.4±1.3 92.4±0.3 49.2±0.1
musk 89.4±5.4 54.2±36.1 95.1±9.5 83.6±16.2 99.4±0.1 99.8±0.2 53.1±0.4 47.4±0.2

Arrhythmia 47.9±9.8 48.0±28.0 57.6±3.2 42.0±3.1 69.3±1.8 73.6±0.9 52.0±0.1 48.1±0.4
speech 58.8±5.5 58.2±32.3 51.7±4.3 51.9±3.7 47.9±2.6 50.0±1.6 49.7±0.2 56.8±0.3

InternetAds 13.6±0.5 49.0±36.4 52.4±5.2 43.0±2.2 75.7±1.0 67.2±2.8 40.8±0.1 51.3±0.1

AUC avg 45.5±15.1 51.2±32.0 58.5±8.6 47.4±6.6 80.2±2.9 70.5±3.6 56.2±0.6 47.7±0.5

E PERFORMANCE ON DIFFERENT NOISE

To verify the effectiveness of uniformly distributed negative sampling under the NOD framework,
we conduct experiments on two commonly used negative sampling methods in the field of outlier
detection, SUBSPACE (Goodge et al., 2021) and GAN-BASED (Liu et al., 2020). The SUBSPACE
method generates noise by adding Gaussian noise to the subset of feature dimensions of real data.
The GAN-BASED method uses GAN to generate noise close to the real data.

To generate uniform noise, we first use uniform probability distribution to generate random values
that we named Uniform Random (UR). However, the resulting two negative samples may be very
close, giving false signals and disturbing model learning. So we adopt the Fast Poisson Disk
(FPD) implementation (Bridson, 2007) to generate negative samples. FPD guarantees that the
distance between the two samples is at least user-supplied r. But it runs too slowly to generate
high-dimensional noise. Thus we only provide results on datasets where dim is below 10 using the
FPD method.

In Table 7, we observe that the UR method is more effective than the SUBSPACE and GAN-BASED
methods. In addition, the ROC AUC (AVG PART) shows no significant performance difference
between FPD and UR. Considering the running time in high dimensions, we choose UR as the
negative sampling method in NOD.We also incorporated Gaussian noise.NR0.5 means a Gaussian
distribution with a mean of 0.5 and a standard deviation of 0.5.NR0.1 means a Gaussian distribution
with a mean of 0.5 and a standard deviation of 0.1.The difference between their results is not
significant because a Gaussian distribution with a larger std approches Uniform noise.

F ANALYSIS OF DIFFERENT CLASSIFIERS

We evaluate the performance of different optimizers for the binary classification problem. In addition
to the SGD, the SVC with RBF kernel (SVC), Decision Tree (DT), and Random Forest (RF) are
tested. Fig. 2 shows the results of four different classifiers in the simulated 2-D OD problem. And the
ROC AUC performance of different classifiers is shown in Table 8.

Although most machine learning algorithms are designed with the so-call “smoothness prior”, i.e.,
the function learn should not vary very much within a small region (Goodfellow et al., 2016), their
actual performance in this binary classification task is quite different. As shown in Fig. 2, SVC RBF,
DT and RF try to separate different regions between positive samples and generated noise points with
rigid boundaries. However, the inliers may overlap or be close to the random noise points. Thus,
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Table 7: ROC AUC (%) performance under different noise.(”/” indicates that the method did not
obtain results within 2 hours)

Dataset SUBSPACE GAN FPD NR0.5 NR0.1 UR

pima 54.5 26.9 61.9 62.9 62.5 62.9
breastw 47.1 5.8 99.4 99.4 98.7 99.3
WBC 42.4 18.8 99.2 99.2 98.7 99.2
wine 44.3 10.8 / 93.8 94.4 97.2

HeartDisease 44.7 17.7 / 64.5 70.1 67.1
pendigits 56.9 79.2 / 91.8 83.3 91.6

Lymphography 56.2 48.4 / 99.8 99.3 99.8
Hepatitis 47.2 71.8 / 64.4 73.3 69.7

Waveform 51.6 57.3 / 80.8 79.6 80.7
wbc 50.1 1.5 / 95.2 95.6 95.9

WDBC 55.5 2.1 / 97.3 97.2 97.4
WPBC 50.4 44.4 / 57.9 57.0 57.8

satimage-2 48.3 73.1 / 99.0 99.4 99.5
satellite 48.7 72.3 / 78.9 68.6 74.4

KDDCup99 46.7 96.2 / 99.0 98.8 98.9
SpamBase 52.5 38 / 67.9 67.6 68.4
optdigits 50.4 51.8 / 76.0 78.5 76.2

mnist 45.8 82.2 / 86.7 83.6 86.3
musk 53.6 99.2 / 99.3 90.8 98.2

Arrhythmia 51.4 68.9 / 74.0 73.7 74
speech 49.4 49.2 / 60.8 58.7 62

InternetAds 51.8 40.6 / 68.7 68.6 68.7
lympho 52.6 81 / 97.7 96.2 97.3

arrhythmia 49.7 78.3 / 77.9 77.7 77.8
vowels 44 20.1 / 60.7 70.3 63.5
letter 50.7 45.8 / 59.7 58.8 58.9
cardio 58.1 70.9 / 80.4 74.3 77.8

mammography 43 36 84.9 84.8 74.6 81.7
shuttle 35.9 38.8 / 91.2 94.6 95.7
Stamps 48.8 67.7 91.3 90.6 84.6 88.6
Pima 46.5 29 62.8 63.7 60.9 63.4

AUC avg 49.3 49.2 / 82.6 81.7 83.0
AUC(PART) 47 30.7 83.3 83.4 81.6 82.5

Figure 2: Comparison of different classifiers.
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Table 8: ROC AUC (%) performance under different classifiers.

Dataset Linear SVC DT RF LGB SGD ADAM

pima 53.7 50.2 50.3 55.5 62.9 58.9
breastw 66.0 50.3 50.6 48.1 99.3 98.6
WBC 83.2 55.0 55.0 91.2 99.2 99.2
wine 81.0 49.8 49.6 67.6 97.2 93.7

HeartDisease 53.5 50.0 50.0 50.0 67.1 63.0
pendigits 63.5 50.3 50.0 59.8 91.6 87.0

Lymphography 98.1 50.0 50.0 98.9 99.7 99.9
Hepatitis 49.1 50.0 50.0 40.0 69.7 53.9

Waveform 75.1 50.2 50.3 59.7 80.7 82.1
wbc 64.2 52.2 52.2 83.8 95.9 84.6

WDBC 74.3 56.7 60.0 82.3 97.4 93.5
WPBC 48.6 50.2 49.5 52.2 57.8 55.3

satimage-2 96.0 50.9 50.6 96.6 99.5 99.7
satellite 59.2 50.0 50.0 52.2 74.4 48.4

KDDCup99 50.0 50.0 50.0 50.0 98.9 98.8
SpamBase 50.0 50.0 50.0 50.0 68.4 65.8
optdigits 50.0 50.0 50.0 50.0 76.2 70.5

mnist 50.0 50.0 50.0 50.0 86.3 88.1
musk 50.0 50.0 50.0 54.4 98.2 91.5

Arrhythmia 50.0 49.8 50.0 38.2 74.0 75.8
speech 49.9 49.9 50.0 49.1 62.0 60.8

InternetAds 50.0 49.9 50.0 51.5 68.7 57.8

AUC avg 62.1 50.7 50.8 60.5 83.0 78.5

these classifiers cannot produce a smooth distribution estimation with their hard separation methods.
SGD, in contrast, can generate smooth boundaries with different levels of abnormality. As seen in
NOD, the center of the cluster has a very low anomaly score, and we have high anomaly scores when
there are fewer inliers or outliers. In practice, there is often no clear boundary between outliers and
outliers. Therefore, our solution can provide more detailed information about the degree of sample
abnormality than solutions with only 0,1 labels.

G EXAMPLE OF MULTIPLE CLUSTERING CENTERS ON TWO-DIMENSIONAL
DATA

As shown in Fig.3, we constructed some two-dimensional composite datasets with multiple clustering
centers and visualized the distribution of NOD anomaly scores on each dataset. From Fig.3, it can be
seen that under the premise of complying with the basic assumption of NOD, NOD is effective on
datasets with multiple clustering centers.
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Figure 3: Example of multiple clustering centers on two-dimensional datasets.

H PERFORMANCE OF THE DIFFERENT EMBEDDING METHODS IN IMAGE
DATASETS

Table 9 shows the anomaly detection performance of NOD on anomaly detection datasets constructed
using different image embedding methods. From the experimental results in the table, it can be seen
that different embedding methods can seriously affect the performance of NOD. Different pre-training
models have different capabilities to capture intricate presentations or patterns. Resnet152 is much
stronger than resnet18. Therefore, Resnet152 embeds more information than resnet18. Thus, the
embeddings of outliers from resnet18, due to its lack of interacted patterns, are much more clustered
than the ones from resnet152. This might explain the huge performance difference between resnet18
and resnet152 while the small performance difference between resnet50 and resnet152. Therefore,
extending NOD to end-to-end anomaly detection solutions is a direction that needs to be explored in
the future.

Table 9: ROC AUC(%) performance of the different embedding methods on Image datasets.

Dataset resnet18 resnet50 resnet152
airplane 68.22±0.79 91.34±0.18 95.31±0.07

automobile 42.75±0.91 95.94±0.05 96.62±0.08
bird 57.41±0.57 85.56±0.02 87.95±0.21
cat 46.83±1.00 88.87±0.02 90.01±0.13

deer 74.21±0.35 92.91±0.03 95.62±0.09
dog 41.20±1.02 88.95±0.32 92.28±0.26
frog 63.97±0.92 95.42±0.10 96.50±0.06

horse 53.54±0.59 91.14±0.25 95.19±0.11
ship 65.02±0.70 96.20±0.07 97.00±0.10
truck 57.83±0.91 96.89±0.10 97.66±0.01

AUC avg 57.10±0.78 92.23±0.11 94.41±0.11

I PERFORMANCE COMPARISON BETWEEN NOD AND SOME DENSITY-BASED
METHODS

NOD is suitable for density-based scenarios. Here, some classical density-based methods are involved
in comparisons including LOF(Breunig et al., 2000), CBLOF(He et al., 2003), COF(Tang et al.,
2002) and LOCI(Papadimitriou et al., 2003). Compared to these methods, NOD still has a significant
performance lead.
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Table 10: ROC AUC(%) performance comparison between NOD and some density-based methods.
(”/” indicates that the method did not obtain results within 2 hours, OOM denotes the out-of-memory
error with 512G memory)

Dataset LOF CBLOF COF LOCI NOD
pima 53.84 60.52 51.86 44.45 62.9

breastw 38.32 96.27 33.22 17.03 99.29
WBC 83 98.73 73.94 86.2 99.16
wine 99.75 99.92 97.9 65.46 97.21

HeartDisease 50.05 57.92 52.7 35.35 67.08
pendigits 47.94 92.2 52.37 / 91.59

Lymphography 97.65 99.88 99.41 83.92 99.74
Hepatitis 62.57 63.61 51.09 39.27 69.69

Waveform 73.41 74.97 70.03 / 80.74
wbc 92.97 94 87.13 / 95.9

WDBC 98.15 98.18 99.1 78.99 97.39
WPBC 51.85 46.78 47.43 43.61 57.76

satimage-2 53.25 99.86 55.83 / 99.51
satellite 53.95 73.2 53.55 / 74.43

KDDCup99 62.54 OOM 60.86 / 98.94
SpamBase 45.13 55.08 43.49 / 68.4
optdigits 58.79 88.28 57.29 / 76.15

mnist 64.49 80.43 62 / 86.3
musk 41.24 100 40.7 / 98.18

Arrhythmia 72.59 73.45 71.91 64.95 73.98
speech 50.87 47.28 52.98 / 62.02

InternetAds 65.54 71.42 67.86 / 68.71

AUC avg 64.45 79.62 62.85 55.92 82.96

J PARAMETER SENSITIVITY ANALYSIS

This section examines the effects of various settings in NOD, including the ratios of negative samples,
hidden layer dimensions, number of layers, and the usage of early stopping. Fig. 4(a) shows relative
ROC AUC change rates (Y-axis) with different ratios of negative samples (e.g., 0.1 ∗ |X|). X-axis
values denote the dataset index ordered as Table 1. |X| is normalized to 1 for the 22 datasets. Dots
above 1 mean improved performance, while those below 1 indicate underperformance. We observe
that the performance generally deteriorates when there are too many/small negative samples (e.g., the
brown dots). Fig. 4(b) shows the effect of varying the hidden layer dimension. NOD is insensitive
to changes in the hidden layer dimension. Fig. 4(c) shows the impacts of the number of layers
with average ROC AUC and standard deviations across 20 runs. The results indicate that a model
with two layers outperforms a single-layer model. However, as the number of layers increases, the
model’s fitting ability increases while the risk of overfitting also rises. Fig. 4(d) shows the comparison
with(out) the proposed early stop. For most datasets, the early stop can effectively reduce the impact
of overfitting and achieve better performance.

(a) Ratio of Neg (b) Dimension of Layers (c) Num. of Layers (d) Early stop or not

Figure 4: Performance under different settings. Shaded areas indicate standard deviations. X axis of
(a) and (d) is the number of datasets with the same order as Table 2

.
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