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Abstract

Noise injection is applied in Split Learning to address privacy concerns about data leakage.
Previous works protect Split Learning by adding noise to the intermediate results during
the forward pass. Unfortunately, noisy signals significantly degrade the accuracy of Split
Learning training. This paper focuses on improving the training accuracy of Split Learning
over noisy signals while protecting training data from reconstruction attacks. We propose
two denoising techniques, namely scaling and random masking. Our theoretical results show
that both of our denoising techniques accurately estimate the intermediate variables during
the forward pass of Split Learning. Moreover, our experiments with deep neural networks
demonstrate that the proposed denoising approaches allow Split Learning to tolerate high
noise levels while achieving almost the same accuracy as the noise-free baseline. Interestingly,
we show that after applying our denoising techniques, the resultant network is more resilient
against a state-of-the-art attack compared to the simple noise injection approach.

1 Introduction

Privacy concerns in various application domains, including finance, healthcare, and online commerce, limit the
sharing of raw data required to train accurate deep neural networks (DNNs). Split Learning (Gupta & Raskar
(2018)); [Vepakomma et al.| (2018a)) has emerged as a solution that enables different parties to collaboratively
learn a model, without explicitly sharing raw input data. Typically, in two-party Split Learning, the Split
Neural Network (SplitNN) is divided between the data owner, a.k.a. the client, and the label owner, a.k.a.
the server; see Figure [1| (a). During training, in the forward pass, the client forwards the intermediate results
(IRs) (i.e., the neurons of the cut layer, the last layer in the client’s part of the DNN) to the server. The
server completes the forward pass, and during the backpropagation, it returns the gradients of the IRs to the
client. Consequently, the client can train the joint model without revealing the private training data to the
server.

Unfortunately, sharing only the IRs does not protect the raw data. The shared IRs contain considerable
latent information about the data and can be used to stage powerful attacks, such as model inversion attack
He et al. (2019al); Zhang et al.[ (2020)); Erdogan et al|(2021)), label inference attack |[Erdogan et al.| (2021));
Kariyappa & Qureshil (2021)); [Li et al.| (2021), and hijacking attack |Pasquini et al.| (2021). Several works
Titcombe et al.| (2021)); /Abuadbba et al.| (2020); Mireshghallah et al.| (2020); [Wang et al.| (2018]) attempt to
mitigate that risk through adding a certain amount of noise to the IRs before sharing with the other party.
However, one of the fundamental issues of adding noise is the trade-off between the trained model’s quality
and its susceptibility to an external attacker. While high levels of noise are favorable in making the training
data private, the noise inevitably impacts the quality of the trained model |Abuadbba et al.| (2020); [Wang
et al| (2020a} [2021)), that is, the accuracy; see Figures|l| (b) and (c) for an example. Thus, a fundamental
question is: Can we improve the training accuracy of Split Learning under noise injection, without making
the model vulnerable to data leakage?

We answer the above question affirmatively by applying a post-processing denoising layer on top of noise-
injected IRs in the Split Learning process. Our intuition is that the injected noise introduces an error during
the forward pass, which is dominated by variance when the noise level is high. As long as we can reduce the
variance by using denoising techniques, the training quality should be improved. Such a post-processing layer
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Figure 1: The trade-off between the security and training accuracy in noise-injected private Split Learning.
(a) General schematic representation of two-party split learning, where the neural network is split between
the client (owns the data) and server (owns the labels). Noise is injected at the client’s side output to prevent
private data leakage from the attacker. (b) Noise variance (o) vs. Test accuracy in training a split CNN
model on the MNIST dataset. As the variance of the injected noise level (o) increases, the test accuracy drops.
(¢) Training data reconstruction by hijacking attack at different injected noise levels. The reconstruction
capacity decreases as the injected noise level is increased.

will not impose any additional private information leakage as long as it does not interact with the original
private data.

We list our contributions as follows:

Contributions. (i) We propose two denoising techniques (i.e., scaling and masking) to improve the training
accuracy and stability of noise-injected SplitNN; see (7i) Our theoretical investigation on a classification
task in shows that denoising can reduce the error caused by noise injection during the forward pass. (4i7)
In addition to improving the train model quality, we show that our modification to Split Learning with noise
injection, followed by postprocessing, preserves the security guarantee in the entire training protocol; see
Quantifying the privacy aspect in our work is not the primary focus; it is an additional benefit. (iv)
We validate our claims through extensive numerical experiments on synthetic and real data (i.e., 7 DNN
models on 7 different datasets, including large-scale datasets, ImageNet1K |Deng et al.| (2009) and Amazon
Reviews |McAuley & Leskoved (2015)) in Moreover, (v) we find that our masking technique, in addition to
denoising, also enhances the resilience of Split Learning against the state-of-the-art hijacking attack [Pasquini

et al.| (2021)); refer to

2 Related Work

Federated Learning (FL) with noise injection. Noise injection in vertical FL shares some similarities
with noise-injected SplitNN since in both cases, the noise is injected on intermediate results during the
forward pass. Existing works Wang et al.| (2020b)); |Chen et al.| (2020) propose to add Gaussian/Laplacian
noise on participants’ IRs to protect private training data or labels. |Chen et al.| (2020) only demonstrates the
impact on training accuracy when some applications have a relatively low noise scale. The other framework
Wang et al.| (2020b) proposes a similar noise injection technique only for linear model collaborative learning,
which is not directly applicable to general DNNs.

Split Learning with noise injection. Due to the vulnerability of SplitNN against model inversion attacks,
Titcombe et al.| (2021) proposed to apply differentially private noise injection on IRs during the inference time
to prevent data reconstruction by the attacker. Shredder, proposed by Mireshghallah et al.| (2020)), adaptively
generates a noise mask to minimize mutual information between input and intermediate data. However, these
two methods only introduce noise injection during the inference time; thus, the privacy of training data is
not preserved. |Abuadbba et al.| (2020) successfully applies noise to the IRs during the training to defend
against model inversion attacks on one-dimensional ECG data; also, see [Wu et al.| (2023) for SpiltNN with
differential privacy for integrated terrestrial and non-terrestrial Networks. It turns out that the noise has



Under review as submission to TMLR

dramatically impacted the model’s accuracy. Unlike previous works that only focus on the attack defense
efficacy, we aim to improve the training accuracy with a significant noise level.

We provide an answer to split learning denoising by proposing two post-processing techniques (i.e., scaling and
masking) to improve the accuracy and stability of the splitNN training when Gaussian noise is injected into
the IRs. To our knowledge, we are the first to propose denoising techniques on the Gaussian noise-injected IRs
to improve the training accuracy of SplitNN and theoretically show the privacy guarantee in this setup. In the
following, for completeness, we mention some differential privacy (DP) techniques used in federated learning
(FL) and related settings Bergou et al.| (2023); [Sun et al.| (2024); Xu et al.| (2021) for completeness.

Gaussian noise injections (GNIs) are a family of regularization methods for DNN training through adding
Gaussian noise on the activations or weights during the forward pass. It is similar to the noise injection in
SplitNN except for the following two aspects: (¢) There is no requirement of bounded sensitivity in injection
objects. () The noise scale is usually set small to avoid negative impacts on training accuracy. The explicit
regularization effects of GNIs are well investigated in (Camuto et al.| (2020); [Li & Liu/ (2020); |[Lim et al.| (2021)),
demonstrating better generalization for trained models over unseen data. In addition, GNIs can improve the
robustness of DNNs against adversarial attacks or data perturbations [Lim et al.| (2021); [He et al.| (2019b)).
However, (Camuto et al.| (2021]) also found that GNIs can introduce some implicit bias on gradient updates,
which inevitably degrades the training accuracy.

Denoising. Adding the Gaussian noise and the denoising mechanisms in our work shares many similarities
with the differential privacy (DP) and their post-processing that maintains the DP guarantee and often
improves accuracy Zhu et al|(2022;[2021)). Denoising for DP has been well adopted in the statistical estimation
Hay et al.| (2009; [2010); |[Nikolov et al.[ (2013)); |Bernstein et al.| (2017)), where they exploit some prior knowledge
to design a data release mechanism with better DP utility. Recently, Balle & Wang| (2018) proposed an
optimal denoising technique for Gaussian mechanism, where given y ~ N ( f(x),0%I ) and their target is
to find a postprocessing function g such that g(y) is closer to f(x) than y. This is substantially different
from SplitNN as there are subsequent layers on top of the Gaussian mechanism in the training process.
Nasr & Shokri| (2020)) has also investigated using scaling as a denoising technique to improve the DP utility
for DP-SGD |Abadi et al.| (2016). However, the authors scale up/down the noisy gradients based on the
“usefulness" of gradients, while we utilize scaling to minimize the estimation error of the noisy neural network
outputs. Wang et al.| (2020al) showed that adding Laplacian smoothing on Gaussian noise-injected gradients
can improve the utility of DP-SGD. While |[Ligett et al.| (2017) proposed a general noise reduction framework,
Lecuyer et al.| (2019)) proposed PiXel-DP, an adversarial defense mechanism, scalable to diverse large networks
and datasets.

3 Theoretical Guarantee

Notations. By [n] we denote the set of n natural numbers {1,2,--- ,n}. By z;, we denote the i®" component
of vector x, while 4;; denote the (i, )" component of a matrix, A. We use ||z|s and ||A||r to denote the £2
and the Frobenius norms of a vector z and a matrix A, respectively.

Problem setup. Let D be the training dataset with N elements, {(X;,y?)}¥,, drawn i.i.d. from some
distribution, P(X,)), where X; € R? is the input feature vector, and y7 is the corresponding ground-truth
label. We consider a SplitNN with an output vector in R™. The network is divided between the client and
the server, where the server network consists of several DNN layers and the output loss function. In our
experiments, we show different split configurations; however, in our theoretical analysis, we have one fully
connected (FC) layer after the cut layer as the final layer.

Let X € R™ be the vector from the client-side cut layer, and M € R™*" be the weight matrix of the FC
layer on the server side. At each iteration during training, the original split network processes a minibatch of
training samples to calculate the loss and, during backpropagation, updates the gradients. We follow this
formalization in our theoretical analysis.

We consider the GNIs to protect the vector X. For Laplacian noise, see Let the perturbed vector,
X € R™ follow the model: X = X + Z, where Z; ~ N(0,0?), chosen from a zero mean Gaussian distribution
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with standard deviation ¢ € RT. Then, we apply a post-processing function hAp(-) : R — R™ on X before
forwarding it to the server side. To bound the magnitude of X, we use tanh as the activation function.

If we set the cut layer at an arbitrary i-th layer in an L-layer DNN, along with the final loss function
used for DNN training, the theoretical analysis would become less tractable. Therefore, in our setup, we
set ¢ = L — 1 to illustrate the main ideas. We formalize two possible cases in the forward pass to the
output layer: (i) a linear layer, ® = I,,,, an identity map, and we quantify E|MX — Mhp(X)|3 against
E[|MX — MX|}; see and (7) a linear layer with a nonlinear activation function (Softmax), ® = s,
nonlinear loss function (negative log), £z, and we quantify E|Lpz(y*,s(MX)) — Lrr(y*, s(Mhp(X)))|
against E|Lp 1 (y*, s(MX)) — L1 (y*, s(MX))|, where y* is the true label vector; see In both cases, hp
is a post-processing mechanism that is used to improve the training quality, resulting in some “denoising”"
effect; the signal-to-noise ratio is not the measure of “denoising" in our context.

Our primary focus is on nonlinear classification tasks, although for a better understanding, denoising the
linear layer is important, which can be viewed as a regression task. Our theorems are proxies to measure
whether the postprocessing would allow better server accuracy. We do not include an iteration counter on
M, X, or X; we are examining the single forward pass. We use a random masking operator, R,, and a scaling
operator, Sy, as hp, defined below:

(i) Random masking operator. Let R, be a random matrix of 1’s and 0’s with identical and inde-

pendently distributed entries, (R,);; ~ Bernoulli(p). Denote the support set, 2, C [m] x [n] of R, as
Q, :={(4,J)|(Rp)i; = 1}. Based on this, for a matrix, A € R™*",

. Aij 11 € Qp,
(RP[ADU - { 0 : otherwise.

From the definition, R, is linear and is a projection operator, that is, Rf) =R,.

(it) Scaling operator. For a matrix A € R™*™ and « > 1, denote the element-wise scaling operator,

So(s) i R™X7 — RMX1 ag S, (A) = L A. Unlike the random masking, the scaling operator, S, has no ran-

T a
domness.

3.1 A linear layer

With the above setup, to easily explain our ideas, we start with a neural network performing simple regression.
Although this is not our primary focus, we believe this section provides a better understanding in a simple
setting. Because for the f5-regression task, no nonlinear activation function is required, the problem is much
simpler. That is, y := M X is the prediction of the output layer, and it does not involve any non-linearity.
Theorem describes results for a fully-connected DNN with an /5-regression task. Additionally, it explains
how the scaling and masking parameters, a and p, respectively, are related to the noise scale o, while
denoising the output of a linear layer of a DNN for a given M and X. We calculate the expected test error,
E|MX — Mhp(X)||3, where hp is R, or S,, and compare it against E||[MX — M X|[3.

Next, we will prove Theorem for fo-regression task; See for the proof. For Theorem the
prediction of the DNN model does not involve any nonlinearity. Throughout Sections and IE,,(-|X' )
denotes expectation conditioned on the randomness in R, given X,and E z(+) denotes expectation taken on
the randomness in X.

Theorem 3.1. With the notations above, we have (i) E||[MX — MR,(X)|3 <E|MX — MX|3 if and only if
plIM © X||% + (1 —p)|IMX||5 < 0?||M||%, where X € R™ ™ is a matriz obtained by stacking XT e R i
each row, and ® denotes the elementwise product. (ii) Let a > 1. E||MX — MS,(X)||3 <E|MX — MX]|3

. o |MX)|3
if and only if ”HMII%‘: < (g—ﬂ) o2.

Remark 3.2. Theorem [3.1|considers the most commonly used mean square error (MSE), E|MX — MR, (X)|3
and E|[MX — MS,(X)][3, respectively, to compare against E|MX — M X||3. We use the MSE because it
has nice mathematical properties; one can use other loss functions. This MSE is agnostic of the nature of the
loss function used in DNN training.
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Remark 3.3. Since the expected MSE can be decomposed into bias and variance, by showing the relation
between the expected MSEs as in Theorem the bias-variance trade-off between different processes can be
explained.

3.2 Nonlinear loss function for classification task

For a vector, z € R™, denote s : R”™ — (0,1)™ as the softmax function, and L1 (y*, s(z)) as the negative log
loss function, where y* is the true label vector; see definition in §A71] In what follows, we show that for both
masking and scaling operators, under certain conditions on the noise level, o, it is possible to find parameters
p and «, respectively, such that, by using any of these operations, we incur a lower deviation in the loss value
than using the noise injection alone when compared to the loss of the original SplitNN.

Masking operation. Quantifying £y 1, (y*, s(MR,(X)) and L1 (y*,s(M X)) are critical as they involve
randomness from the masking operator and the Gaussian noise. We require several intermediate results to
prove the main result in Theorem [3.4] We state and prove them in the §[A-31]

We want to show that by using a random mask over a noise-injected layer, we incur a lower devia-
tion in the loss value than using the noise injection alone when compared to the loss, L1 (y*, s(M X)),
of the original SplitNN under certain conditions. That is, we want to compare the quantities
E|LLr(y*,s(MX)) — ELL(y*,s(MRp(X))H and E|Lr1(y*, s(MX)) — Lrr(y*,s(MX))|. The following re-
sult formalizes this.

Theorem 3.4. With the notations above, for classification problems, assume that n > (MX); for i =
1,2,...,m. Then, if o is large enough, there is some ¢ € (0,1) such that for p € (4,1],

ElLLo(y*, s(MX)) = Lor(y*, s(MR,(X)))| < E|LL(y*, s(MX)) — Loo(y*, s(MX))].

The assumption, n > (M X),; is technical and can be easily satisfied in practice, which requires the input
dimension from the SplitNN to be wide enough. We will pause here and provide a sketch of proof of Theorem 3.4]
Because the original SplitNN always produces the least loss, the expressions in absolute values in the inequality
above are non-positive, and so we need only to verify that for all X, ELy 1, (y*, s(M X)) — L11(y*, s(MX)) <
ELrr(y*,s(MX)) — Lrr(y*, s(MR,(X))). By the definitions of softmax and negative log loss, we have

Lir(y*,s(MRy(X))) = —(MRy(X)) +log (ie<MRP<X>”>, (1)

i=1
where ¢* is the location of true label in y*. For fixed M and X, is a function of p for p € (0, 1]. Denote
Fp) =ELrr(y*,s(MR,(X))), and consequently, F(1) =ELr.(y*,s(MX)); see Remark |[A.3] By using
Lemma on , we can approximate F(p) by

) Var (Z?ll e(MRpo%))i) o
— 2

2 (B(xr, o))

We want to show that F(p) < F(1) when p € (§,1), for some § > 0. By using Lemma in and
differentiating with respect to p, we can show, F'(1) > 0. This would imply that F(p) is an increasing
function of p € (4,1], for some § € (0,1). This gives us ELr1(y*,s(MR,(X))) < ELLL(y*, s(MX)), and
§A.3.1| concludes the proof of Theorem

F(p) = —p(MX); + log <EZ (MR, (X))
i=1

Scaling operation. Similarly, by using scaling over X, under certain conditions on the noise level, o, we
obtain a lower deviation in the loss than using the noise injection alone when compared to the loss of the
original SplitNN. Let Ls, = L (y*, s(MS,(X)). We state the result in Theorem see §A.3.2/ for a
sketch of the proof.

Zzzl(mi*k—mik)wk

Theorem 3.5. With the notations above, for classification problems, if 0® > max; ;» ST e ,
k=1 _ ik
for i 1,2,...,m, then there exists a & € (0,1) such that E|Lpp(y*,s(MX))—Ls,| <

E|LoL (v, s(MX)) — Lot (y*,s(MX))], for a € (1, 1].
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For concentration of the errors in Theorem and Theorem see

3.3 Differential privacy (DP) preservation

Recent works show that Split Learning with Laplacian or Gaussian noise injection at the cut layer is resilient
to attacks [Abuadbba et al| (2020); Wu et al|(2023)). In particular, DP (see Definition in could be used
to describe the privacy guarantee. In this sub-section, we explain how our modification (scaling or masking)
to Split Learning with noise injection (such as GNI) preserves DP. The key to our argument is to view our
modification as a post-processing of a DP mechanism. Then, by the immunity of DP to post-processing, we
can conclude that DP will be preserved.

Next, in light of our results in §3.1] and §3.2] we recall some terminologies needed for our discussion. For
more details, see Dwork et al.| (2014); Xiang et al| (2019); |Abadi et al. (2016).

Let D be a collection of databases. D C D and D' C D be two neighboring training datasets, that is,
D" = D £ {X}. In this case, we write d(D’,D) = 1. For a function V : D — R™, define a randomized
mechanism, I : D — O such that, for D € D,

K(D) :=V(D)+ Z, (3)

where Z € R™ is a random variable/vector with probability density function, p(z).

To ensure K is (¢,d)- DP, one must require some condition on the density function p(z) of Z. For example, if
p(z) is Laplacian or Gaussian density functions with their variances satisfying some lower bounds, then K is
DP. But, before we recall the result, we need one more important concept.

Define the sensitivity of V' as

A= sup V(D) = V(D')| 2. (4)
D,D’,d(D,D")=1

The following Theorem by Dwork et al. (2014) says, in the case when m = 1, if 2 ~ A(0,0?), then the
random mechanism /C, as defined in is DP as long as o is large enough.

Theorem 3.6. (Dwork et al.,|2014, Theorem 3.22) Let ¢ € (0,1) be arbitrary. For ¢* > 21n(1.25/6), the
mechanism in (3) with parameter o > cA/e is (e, 8)-differentially private.

In Theorem we note that the noise level o is directly proportional to the sensitivity A and inversely
proportional to the privacy bound e.

This result will give us the DP of GNI for Split Learning (Lecuyer et al., 2019, §III.B), which suggested
putting the cut layer early in the network, where bounding the sensitivity is easier. The next result allows us
to see that both scaling and masking proposed in this work will preserve DP.

Theorem 3.7. (Dwork et al., 2014, Proposition 2.1) Let K be a randomized mechanism which is (e,§)-DP.
If g : R™ — R is a deterministic or randomized mapping, then g o K is also (e,0)-DP.

Impact on backpropagation. Now, we discuss the induced change during the backpropagation. In DNN
training, backpropagation is used to evaluate the gradients, which will be used to update the estimation of
parameters. As the popular DP procedure applied to DNN is DP-SGD |Abadi et al.| (2016]), we indicate how
our scaling and masking would “alter” the gradients that could be viewed as an approximate DP-SGD. Let
g" be the gradient and g}, denote the clipped version of ¢* during the ¢-th iteration. DP-SGD would add
Gaussian noise Z ~ N (0,01) to g5. What happened to our case is that starting from the beginning of the
backpropagation, we will evaluate gradients at the “perturbed” values (due to the GNI and our modification
using scaling or masking from the cut layer) and these values will be used to propagate backward at each
layer to obtained g&, a perturbed version of g* and hence g. Thus, we can put this into the framework of
with K(D) = g&(D), V(D) = g&(D), and write

go(D) = go(D) + Z,
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Figure 2: Simulation of how scaling factor (A = é) and masking ratio (p) influence the estimation error
(MSE) under different noise levels (o) for linear (f1) and nonlinear functions (f2, f3).

where Z is a random variable/vector due to the randomness of GNI and masking (using Bernoulli distribution).
Although Z itself may not be Gaussian, it can be shown that Z = g(W) where ¢ is a sum of products of
compositions of affine transformations and activation functions, and W is a random vector of independent
Gaussian and Bernoulli variables. Let p(z) denote the “density” of Z. Denote the sensitivity of g&(-) by A,.
Define

S ={w:p(w)>eplw+ Ay}

We can establish the following theorem, whose proof is given in the §A.10]

Theorem 3.8. Let 6 > 0 and recall that Z is a random variable with probability density p(z). Then, there
exists an o > 0 such that, for Ay < «,

Pr(Z e S) <,

where P[] refers to the probability associated with the random variable. Furthermore, when Ay < «, & is
(e,0)-DP.

Note that A, is small for large dataset (that is, when |D| is large). So, we can make the sensitivity small by
requiring large training datasets.

The above explains DP in one iteration of the training data. If we consider a total of T training iterations, we
can use the advanced composition theorem, Theorem to guarantee, the mechanism is (e4/27 In(1/4") +
Te(e —1),T6 + ¢')-DP for all ¢’ > 0.

We can give a similar guarantee when the noise mechanism is Laplace. Also, note that, if in each training
iteration, ga p represents the clipped gradient calculated over a minibatch of size B taken from large enough
databases, then for sensitivity, A, p small enough, the DP guarantee for gtc) p holds following the same
argument as above; see | Xiang et al|(2019), and our discussion in

In our experiments, we use the regular backpropagation formula for our noisy split network training; see
Proposition Noise injection and postprocessing in the forward pass perturb the gradients during the
backward pass, but without adding any explicit noise to them in each iteration. However, this is not the same
as GNIs to the gradient as in DP-SGD [Abadi et al.| (2016)—The noise, in our case, (4) is a more general,
data-adapted random variable than Gaussian, and that (i) it is generated over the DNN architecture, not a
user-specified Gaussian noise.

4 Experimental Evaluation

In we validate our theoretical claims through simulation on synthetic data, shows results on DNNs
performing machine learning tasks, and Section §4.3] shows improved data privacy results.
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Figure 3: Test accuracy of SplitNN training with noise injection (NI) only and noise injection (NI) plus
denoising (i.e. masking or scaling) in different training tasks. All models are split with one FC layer on the
server side (o: noise level, p: masking ratio, \: scaling factor é)

4.1 Simulation

Setup. The following numerical simulations verify the results of Theorem and Since X € [-1,1]
is the output of tanh function, and M is usually randomly initialized around 0 in the actual training, we
sample the entries of X and M from a uniform distribution on [—1, 1] in our simulation. The MSE of masking
corresponds to E| f(X) — f(R,(X))||3 for all different functions (f1, f2, f} in Figure , where R, can be
replaced by S, for scaling. Moreover, when p =1 and A = é = 1, masking and scaling are ineffective thus
the respective MSEs are considered baseline MSEs. In Figure [2] for each plot, we draw a line parallel to the
X-axis from these baseline MSEs. The expectations are calculated by taking the average on k£ simulation

results, where & = 1000.

Scaling simulation. In Figure [2[ (a), each curve corresponds to a different noise scale, 0. By decreasing
the scaling factor, A for each o, the MSE first decreases from the baseline to a minimum then increases,
indicating an optimal X for each 0. The NASC condition in Theorem (#) also infers that. For fixed M, X,
this condition implies it is possible to find a smaller A when o is large. We make similar observations for the
nonlinear case; see Figure [2] (¢).

Masking simulation. Figure 2| (b) shows that by decreasing the masking ratio, p, the MSE does not
necessarily become smaller unless o is large enough. This verifies the claim of Theorem [3.1(¢). More
importantly, there is an almost linear relationship between MSE and the masking ratio as p — 1. This
coincides with the expression of MSE with masking given in equation [0} see Appendix. We hypothesize
that while both X, M are drawn from Uniform distribution, the coefficient of p? might become negligible.
Hence, the coefficient of the linear term, p, which can be positive or negative depending on the noise scale
o, dominates the MSE. Results from Figure (d), with the nonlinear loss, reflect Theorem o2 must
be large for the improvement to be possible. If o is too small (MSE curve for ¢ = 0.3), the masking does
not work; the larger the o, the more improvements one can expect by using masking. Moreover, when o
is large enough, there exists an p € (4,1), for some § > 0 such that masking incurs a lower MSE than the
baseline. This indicates that optimal denoising is possible by using masking for large noise. Nevertheless,
for the same noise level, the MSE of the optimal denoising of masking is always larger than that of scaling.
We provide the backward pass simulations in Figure [6]in §B] Figure [7] shows the simulation results for the
Laplace mechanism, and they are discussed in detail in §B.I] along with experimental results in Table [3]

Takeaway message. Figures|2| (a), (c), and |§| (a) indicate that regardless of the noise scale, o, it is possible
to find a scaling factor such that using scaling over a noise-injected SplitNN incurs a lower MSE than the
baseline. However, this is not always the case for the masking operator—o must be significant for rendering
the improvement. In practice, we witness masking performs better than scaling in terms of improved accuracy,
parameter-tuning, and attack defense; see and

4.2 DNN Experiments

Datasets and models. We adopt the benchmarks from the popular Pytorch library Opacus [Yousefpour
et al.[ (2021)) with the Split Learning paradigm. It contains image classification tasks (on MNIST [LeCun et al.
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Figure 4: Test accuracy of SplitNN training with noise injection (NI) only and noise injection (NI) plus
denoising (i.e. masking or scaling); (a) CNN on MNIST, (b) MLP on IMDB, (¢) ResNet50 on ImageNet1K.

(1998), CIFAR-10, CIFAR-100 Krizhevsky et al.| (2009), and ImageNet1K [Deng et al.| (2009)), recommendation
task (movie review prediction on IMDB Maas et al.| (2011)), language modeling task (name classification
Robertson| (2023))), and sentiment analysis (Amazon reviews McAuley & Leskovec (2013)). All training
hyperparameters are configured as default to maintain a fair comparison; see Table [2] in §B]

Setup and implementation. We split the models before fully connected (FC) layers, with a variety in
the number of FC layers allocated at the server side; see Table[l] The size of the split layer varies from 16
to 12544. We use tanh activation function to bound the client’s output in [—1,1]. Then, Gaussian noise
is injected on the tanh layer, with noise scale, o, the standard deviation of the Gaussian distribution. We
implement both denoising techniques as a post-processing layer on top of the noise injection process. The ratio
p € (0, 1) describes the percentage of the elements kept through masking. The scaling factor A = é €(0,1) is
used to scale down the tensor values. The overall computation paradigm is outlined in Table [J] in §B.6]

Denoising performance. We demonstrate the effectiveness of the denoising techniques in various SplitNN
training tasks. In Figure [3|and [} we compare baseline SplitNN, noise-injected SplitNN, and noise-injected
SplitNN with the scaling or masking denoising in 2 different split settings. The noise level, o, is calibrated
to a relatively high level such that the training accuracy of SplitNN suffers from the noise injection. Both
scaling and masking are optimized by parameter tuning on the scaling factor, A\, and masking ratio, p; see
Table |10] in When models are split at the last FC layer, e.g., in Figure 3| (a)(b)(d), once we inject a large
noise (o = 0.7), the overall training convergence is severely impacted so that the test accuracy is barely
increased during the training. In Figure [d] the training is more robust under high noise injection because the
size of the splitting layer is much larger than the one in previous settings. Usually, high-dimensional data can
better tolerate noise perturbation since it carries more information. After applying the scaling or masking
and fine-tuning some hyperparameters, the training convergence vastly improves. In most cases, e.g., Figure
Bla)(b)(d), the improved accuracy due to masking is comparable with the baseline. However, in Figure
with scaling and masking, the test accuracy can not achieve the baseline level. This is possible because,
by allocating more layers on the server side, the client’s noisy IRs will also impact more layers during the
forward computation. We also notice that in Figure|3| (¢), the noise injected training on CIFAR-10 performs
much better than other tasks, even though the split layer size is relatively small. This is due to its unique
default parameter setup, such as weight decay and learning rate, which we will explain next.

Denoising vs. Hyperparameter tuning. To better understand the difference between denoising and
traditional hyperparameter tuning, we evaluate the MNIST image classification task by fine-tuning the
learning rate (Ir), weight decay, dropout, masking ratio, and scaling factor under high-level noise injection.
We present the accuracy results in §B]in Table[d Full training curves are available in §B]in Figure[§] We
change the Ir from 0.1 to 0.001 and find that a smaller Ir indeed improves the training stability under a large
noise injection. Weight decay, as a popular regularization method in DNN training, can be used to avoid
over-fitting on noisy signals. We find that only a heavy weight decay (v = 0.2,0.4) can help stabilize the
training convergence till the end. However, a heavy weight decay sacrifices the convergence speed and fails to
reach the baseline accuracy. Scaling can only improve the convergence at the beginning of the training, and
none of them manage to maintain the convergence till the end. This implies an inherent training stability
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Figure 5: Private training data reconstruction by FSHA attack in Split Learning on MNIST and ImageNet.
In all cases, X, the original training data, i.e. ground truth; X,..: FSHA on plain-text SplitNN; X, . n):
FSHA on SplitNN with noise injection (NI) (0 = 0.7); X,.c(sy: FSHA on SplitNN with NI and scaling
(0 =0.7,A=0.2); X,ccary: FSHA on SplitNN with NI and masking (¢ = 0.7, p = 0.2). Models are split with
one FC layer on the server side.

issue with noise injection, which cannot be alleviated by pure denoising. Therefore, we combine scaling
with weight decay and find that a small weight decay (v = 0.01) is sufficient to stabilize the training. On
the contrary, the optimization of masking does not need weight decay. It can almost achieve the baseline
convergence rate once the ratio p is properly tuned. Although there is a similarity between random masking
and the dropout technique |Srivastava et al.|(2014), simply using dropout does not provide enough stability for
the training, regardless of the dropout ratio. Both denoising techniques achieve significantly better training
quality than standalone hyperparameter tuning. In §B.2] Table 5] we provide initial results of ResNet-18 on
the CIFAR-100; our denoising techniques achieve higher accuracy than simple learning rate tuning. In Table
[6]in §B.3] we demonstrate that the scaling postprocessing performs well even when Adam’s updating rule
eliminates gradient scale impact. See limitations of the proposed approach in §C} In Table [7] we show the
performance on the large-scale datasets. In addition, we discuss the different layers of the networks to split in
§B.5] along with results in Table 8]

4.3 Attack defense

Setup. We demonstrate how the random masking technique can improve data privacy in defense against the
recent feature-space hijacking attack (FSHA) Pasquini et al. (2021) in Split Learning. FSHA hijacks the
client’s learning process from the server side during the training and performs the data reconstruction once
the client’s output feature is learned; see details of threat model in §B.7} We evaluate the attack performance
with 2 models and 4 publicly available datasets—CNN for MNIST and Fashion-MNIST, ResNet for CIFAR-10
and ImageNet. See the model configuration in Table[I] We compare the attack performance by visualizing
the reconstructed private data between FSHA attacks on plain-text SplitNN, noise-injected SplitNN, and
noise-injected SplitNN with masking or scaling. We focus on the case where only one FC layer is on the
server because it is more resilient against data reconstruction attacks, see discussion in Figure [9]in §B]

Results. Figure |5 shows that the original FSHA can reconstruct the private data with very high accuracy
for MNIST but only keeps the original images’ appearance for ImageNet. This is consistent with the
attack performance in [Pasquini et al| (2021)—attack on low-entropy images usually requires less effort and
can produce a high-quality reconstruction. Next, we apply noise injection to the intermediate results and
conduct data reconstruction on the perturbed data by FSHA. We observe that for MNIST, the digits on the
reconstructed image are recognizable. For more complex and color image datasets (i.e. ImageNet), although
noise can hide the details in the images, we can still relate the constructed image with the original one by
looking at the outline or the background color. Lastly, when we combine noise injection with masking, the
reconstructed images are fully damaged, and thus, the data security is greatly enhanced. While the scaling
technique has almost no effect during the reconstruction attack, no matter how we set the scaling factor. See
Figures in for results with different o, p, A and other datasets. Improving the privacy accounting for
split learning is not the primary focus of this work, instead, we want to show how denoising can improve
noisy SplitNN accuracy. Nevertheless, we provide the privacy bounds for one single forward pass during the
SplitNN training in Table [T1]

10
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5 Conclusion

We propose scaling and masking as denoising techniques to achieve accurate Split Learning on noisy signals.
We show theoretically and empirically that denoising helps achieve more accurate intermediate outputs in
DNN training under noise injection that significantly improves the stability and accuracy of Split Learning.
Additionally, we show that the masking technique can provide better security enhancement than scaling
against powerful attacks. Although in theory, scaling has better denoising efficacy, masking is likely to show
better accuracy improvement due to its easier parameter tuning. Finally, we demonstrate the possibility of
co-optimization of denoising and attack defense.
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A Theoretical guarantee
First, we will start with the definition of softmax and negative log loss functions used for nonlinear classification.

A.1 Definitions

Softmax and negative log loss. Let m be the number of classes. For a vector, z € R™, the softmax
function, s : R™ — (0,1)™, is defined as

Zi
5(2)i = =m——-
( )L Z:’;l ezi
Let y be a binary indicator (0 or 1) of the class label, and ¢ is the correct classification of the observation, o.

Denote p, . as the predicted probability of observation o that belongs to class c. Then the negative log-loss
function is defined as

Lri(y.p) = Zyoclogpoc

What loss functions and tasks do we cover? In general, for classification problems such as image
classification by CNN, movie review prediction by RNN, and many more, the output layer is configured with
a softmax function for prediction, and the negative log function is used as the loss function to train the DNN
model. For binary classification, this loss is known as binary cross-entropy; for multi-class classification, it is
called categorical cross-entropy. MSE is a consequence of Theorem with some modifications. Therefore,
our analyses cover almost all the existing loss functions used for DNN training. We refrain from using some
rarely used loss functions, e.g., sparse categorical cross-entropy.

A.2 /5 Regression task

Proof of Theorem [3.1l

Proof. (i) We are required to show, E|MX — MX|3 — E|MX — MR,(X)|3 > 0. There are two types of
randomness involved—one is due to randomness in R, and the second is due to the randomness in X. First,
we start by writing

IMX — MX|3

= | MX|3 - 2(MX,MX) +szfj~§+2z Z My Min® T, (5)

i=1 j=1 i=11<j<k<n
which after taking expectation becomes
Bl|MX - MX|3]
:*||MXH%+ZZm?j($?+02)+QZ Z MMk T T (6)
i=1 j=1 i=11<j<k<n
Next, we have as in
IMX — MR,(X)|3

m m

=||MX||§—2<MX,MR;)(X)>+ZZ S (Ry(25)° +2) Z mimig Ry () Ry (Tk),

i=11<j<k<n

(7)
which after taking expectation conditioned on the randomness in R, given X becomes
By[|MX — MR, (X)|[3]X]
= |MX|3%-2p(MX, MX) +pzz fj N? + 2p? Z Z MMk T T (8)

i=1 j= i=11<j<k<n
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Finally, taking the expectation on the randomness in X we obtain

Ez B[ MX — MR, (X)|3]X]]

= (1-2p)||MX]|3 —I—pz mej(z? +0?) +2p* Z Z MM T T (9)

i=1j=1 i=11<j<k<n
In view of equation [6] and equation [0} we have

E[|MX — MX|3] - B[|MX — MRy (X)]3]

m n m n
:(2p—2)||MX||2+(1—p)ZZm%(ﬂc?—i—Uz)—&—%l—pz)Z Z MMk T T,
i=1j=1 i=11<j<k<n
=(2p—2) ZZm” ]+QZ Z MMy T T, +(1-p ZZm :c +c7
=1 j=1 i=1 1<j<k<n =1 j=1
m n
+21-p%)> 0 D mimigzjag
i=11<j<k<n
m n m n
ZZm o2 —x )—2(1—p Z Z MMk T T (10)
i=1 j=1 i=1 1<j<k<n

Therefore,
E|MX — MX|; ~E[MX - MR,(X)[3>0
if and only if the expression in equation [10]is non-negative, that is,

n m n

m n m
ZZm?jJQ > ZZ m;x; 24201 - )Z Z M Mk T Tk
i=1 j=1 i=1j=1

1=1 1<j<k<n

The left hand side of the above expression is o2||M||% (which is lower bounded by no?o2;, (M), where
Omin (M) is the smallest singular value of M). For the right-hand side, we have

n

m n m
Zmexj +2(1— )Z Z M ML Tk

i=1 j=1 i=1 1<j<k<n
m n m n m n
—p2 ) b+ (op) ) D ey +20-p) ) Z T T
i=1 j=1 i=1 j=1 i=1 <k<
P> ()M
=1 j=1
=plM © X|% + (1 - p)IMX]3, (11)
I X2 I3 In
where X = [ “* *2 ®3  Fn | o gmxn, Therefore,
T ) T3 Tn

E|MX -~ MX|}3~E[MX — MR,(X)|3 >0

if and only if
o? | M7 = p|M © X |7 + (1 - p) [ MX]]5.

Hence the result.
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(i) We are required to show, E|MX — MX|3 — E|MX — MS,(X)|3 > 0. Note that, the only randomness
involved in this case is due to the randomness in X. First, we start by expanding

IMX — MS.(X)I3
2 ;T
= | MX|3 — > (MX, MX) +sz —+2Z Z mijmig =5t (12)
i=1 j=1 i=1 1<j<k<n

which after taking expectation gives

E[|MX — MSa(X)|3]

" :C +U T :ck
(1_7 ||MX||2+ZZsz 22 Z mzjmzk:
i=1 j=1 i=1 1<j<k<n
2
=(1- *) IMX3 + —5 M7 (13)

In view of equation [6] and equation [I3] we have
B|MX - MX|3] - E[HMX — MSa(X)]3]
= (1 - =)o M3 — (1= 2| M3
Therefore,
E|MX — MX|3 —E|MX — MS.(X)[|3 >0
if and only if (14 1)o?||M||% — (1 — 2)||MX||3 > 0. This completes our proof. O

A.3 Nonlinear loss function for classification task

Now, we will prove the results for the nonlinear loss function as given in Section [3.2] First, we quote the
following Lemma about the moment generating function of a random variable, without proof. The readers
can find the proof of Lemma [A-T]in any standard graduate statistics textbook.

Lemma A.1. Let Z be a random variable, Z ~ N(p,02). Then the moment generating function, ®z(-) is

U2 2
given by ®4(t) = Eet? = ent+72

(MR, (X));

Calculating ELrz(y*, s(MR,(X)) requires some auxiliary results on the EY /", and

N2

E(E:il (MRP(X))f') . The following Lemma gives the details, which are necessary for calculating
the expectation and the variance of >\ e(MRp(X)):

2

~ "77/20
Lemma A.2. We have, (i) EZﬁle(MRP(X))i = S TIr, [ pemanent—3

m MR, (X)); 2 n ) ) (mptmp)2o?
E(Zi:le( v ))'”) :Zi,j | pelMiktmik) T+ g +(1=p) -

+(1—p)>; and (ii)

Proof. (i) We have
3 RN - 3 e2ims Mk B (Ek) (14)
i=1 i=1

where &, be the k' element of the vector X. Note that, each m;,R,(Z1) is independent (based on the
definition of the random masking operator), and after taking expectation on the above expression with respect
to the randomness in R,, we have

m

Z p(X))i f: ﬁ ]EpemikRp(jk)' (15)
=1 k=1

18
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For p € (0, 1], equation [15| becomes
Epz e(MR”(X))i _ Z H EpemikRp(i’k) _ Z H pem'Lka Jr 1 _ ) MO) , (16)
i=1 i=1 k=1 i=1 k=1

which further taking expectation on the randomenss in X reduces to
n

EzEpZ (MR, (X)) _ Z H Ezpe™* + (1 — p))
i=1 i=1 k=1
Lemrgam

? ) 17

After taking total expectation on equation [I7] and by using the tower property of expectation, we obtain the
result.

(ii) We have

(Z (MR, (X)) > Z > (matmy) Ry (@x) (18)

Proceeding similarly as above, first, taking expectation on the above expression with respect to the randomness
in R, and then taking expectation with respect to the randomness in X, we have

m 2
EZE, <Z B(MRP(X))i> _ EZEPZ ( mig+mjk) Ry (Ik))

=1
- EY H E, et msn) By ()

ij k=1
m n
- BN ] (m(miﬁmjkm (1 ,p))
i,j k=1
mon (mip+myp)o?
Lemrgamz H (pe(mik+ﬂ1jk)wk+2] 4 (]_ _p)> .
i k=1

(19)

After taking total expectation on equation [I9 and by using the tower property of expectation, we obtain the
result.

O

Remark A.3. Setting p = 1, in the loss function, we find the expected loss value, ELp 1 (y*, s(M X)) due to

noise injection (without random masking). Additionally, for p = 1, in Lemma we recover E>"" eMX)i —

7n? 02
S TR (emanmt ).

The following Lemmaﬂ is the next intermediate result and instrumental in proving our main result as it
approximates the expected logarithmic term in the log loss. In Lemma we approximate E[log(z)] by
using Taylor’s Theorem.

Lemma A.4. (Khuri, |2003, p. 117) Let x be a positive random variable. Then E[log(z)] = log[E(x)] —

2\(/];{9(5))2 + higher order terms, where Var(z) = E(2?) — (E(z))?.

Remark A.5. We assume that « have small higher order moments, m, = E|z — E(z)|?, for p = 2,3, ---.

Note that, setting z = ZZZI eMEy(X))i in Lemma is the first step to quantify the expected loss value of
SplitNN with random masking, ELy 1, (y*, s(MR,(X)).

1See similar expression in [Teh et al.| (2006)) with a restrictive assumption; assumption in Lemma is more general.
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A.3.1 Proof of Theorem 3.4

To prove Theorem recall that F(p) := ELpp(y*,s(MR,(X))), and consequently, F(1) =
ELLr(y*, s(MX)). By using Lemma and assuming the higher order terms are negligible, we write

F(p) = —p(MX);+ + log <]E E e(MRp(X))i 5 (20)
X m X)),
o i-1 2 (ESIL, e ()
:=C
(p) )

Differentiating equation [20| with respect to p gives us:
F'(p) =B'(p) +C'(p) = D'(p).

Note that,

4 (EZZZ ) e(MRm))f,)

/ = —(MX);-.C = =
B ) = ~(MX):-.C'(p) ES" eMR (XD

but the derivative of D(p) becomes very messy. So, we take the following indirect route: we first show that
(i) B'(1) + C’(1) > 0 and hence B(p) + C(p) are increasing in a neighborhood to the left of p = 1; then we
verify that (i) —D(p) < —D(1). We see that once we accomplish (¢) and (é¢), we will have F(p) < F(1),
which completes the proof of Theorem

Proof of (7).
By Lemme and a straightforward computation, we have

m n ’7712 02 n m2 02
Z (MR,(X)): _ ZZ (emwr+ it 1) H eMikTh+ ik
=1 p=1 i=1r=1 k#r,k=1

So,

i m2 o2
E;il Z::l l:(emwxr—i_y%g — 1) HZ;&»,‘ k:l(emik$k+ Z)2€ ):l
2

2 b)
il (Hz_1<emm+”@“ >)

B'(1)+C'(1) = —(MX); +

which is bigger than or equal to 0 if and only if

2 52 m2 o
Z;’;l Z::1 {(6rwzr+mi;” -1) HZ;‘&T kzl(e"”ikl’k"t‘ %

ﬂ
£ (T et )) = (- 21

or equivalently,

n

>3 | (ememt =) 2<MX>Z-*Z<H e >>'

i=1r=1 k;ér,k 1 i=1
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Let f(0?) denote the difference of the two sides, we have f(0?) :=

m n m2 o2 n 7n2k<72 m n m2k<72
§ : E :(emwerr misest=45—) | _ (MX),- E H(em’?’“m’ﬁ#)
i=1 |r=1 k;ér,k 1 i=1 k=1
m n m2, a2 n m?2 o2
e o 2 p— PO S P r
= g H eMikTht 5 —(MX)+ + E (1 — e Mir®r=—5 )
i=1 \k=1 r=1
m n m2 o2 n m?2 o2
— Mgz +— 1 . —MirTr——%
= e (1 —my=pz, — e )| -
i=1 \k=1 r=1

m2 o2

Now, note that > _ (1 — my«,@, — e ™"*~ =% ) is an increasing function of o2 and as 0% — +oo, it
approaches > I (1 — m«,x,) =n — Y., My, T,, which is positive by assumption. Thus, when o? is large
enough, f(0?) > 0. This verifies (21)) and hence (7).

Proof of (ii).
We need to verify that D(p) > D(1), that is, by the definition of D(p),

Var <E:il e(MR”(X))i) Var (Z:’;l e(MRp(X))i)
2 (EXT, B(MRP”?))ZY - 2 (EXT, e(MRp<f<>>z->2
By the formula Var(x) = Ex? — (Ex)?, it suffices to verify
E(ZZ” e(M Ry (X)) ) (EZ (MR, X))i)2
2(B(S0, e(MR;:(X»i))Q
(g ) e, onen)
2 (B(20, e(MRp(i())i>)2

p=1

p=1

which can be simplified to
E(Zf’il e(MRp(X))i)2 E(ZZL e(Mf—‘cp(f(m)2
3 2 N 2
(E (Zm e(MR,(X)); )) (E(ZL e(MRp(X)),i)>

Using Lemma the above is the same as

Zi,j Hk}:l |:pe(m k+m1k)xk+

p=1

(migtmjp)?o?
2 (mlk+mm)

+ (1 - p):| Z Hk e(mirtm;r)ee+
.5 =
m2 o2 2 - m2, o2 2
{eril HZ:1 <p€mik$k+ T+ (1- p))] (Zi—l HI{)’:I emikTET S )

We now verify for 02 large enough. Note that is true if and only if the following function g(p) > 0
where

(22)

m (mik+mjk)202 m n m?kaz 2
— Z H [pe(mik+m]‘k)$k+2 + (1 _ p):| Z H 6mik$k+ 5

i,j k=1 =1 k=1

m n m n 2
ZH< e S )[ZH pemikht +(1—p>>] '

i, k=1 i=1 k=1

N
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Note that g(1) = 0. So, it suffices to show that g(p) is non-increasing on a small neighborhood to the left-hand
side of 1. Differentiate g to get

m n 2,2 n 2,2
) ) (7nik+7njk) o _ ) ) 7(m’i1-+mj7-> o
gl(]_) — E H <e(mzk+m]k)$k+2 ) § (1 —e (mirt+mjp)z,——"—71"—r % I2
ij k=1 r—1
mon m2, o2 n m2 o2
—Jx2I x H (emikwk-‘r ik > § <1 _ e Mir@r——% ) )
i=1 k=1 r=1
2 _2 2 2
m2 o (mip+mip)2e
o m n M T+ — L m n (Mik+mjg)Tp+——m
where I:=3>"" [[;_;€ > and J =3 [ e i z . We have
m n 2 _2 n 2.2
g/(l) =7 E H (e(mzk+m]k)zk+ 5 ) § (1 — o~ (mirtmjr)z, 5 < T
ij k=1 r=1
m n 2 2 n 2 2
mairx +mik” g — ir?
7J><2><E He““’“ 2 E 1 — e Mirtr 2
1=1 k=1 r=1
m n 2,2 n 2,2
-7 E H e(Mikt+m k) e+ 5 (n _ E e~ (Mirtm;r)z, = ) % T
ij k=1 r—1
mon m2, o2 n m2 o2
—J X 2x E H eMikTht ik (n _ E e Mir®r——"3 )
1=1 k=1 r=1

n 2

(mgp+m,; ,)20
S e mirtm ), - U

((m+myp)24m2, )02
2

m n
=IlnxIxJ— Z H e(m'ik+mjk+7nsk)xk+

i k=1 pt
m n 2 2 2 n
((mgtm )2 +m2, )o 2 o2
“nxJxI+2 E H (Mt ms ) wg =Ly sk Ze_m”“_ i
i,7,s=1 k=1 —1

n

m n 2,2 2 2.2
((mig+m;E) +m?, Yo (mipt+mi)o
=J¢! -nxIxJ— E H e(mik+mjk+msk)l’k+ 5 sk § :ef(mir+mjr)mr—+
4,j,8 k=1 r=1
m n 2 2 2 N
ik tmyE) Tt m?2 o2
+2 E , H e(mqu+mjk+msk)$k+((m . mjkz) el E e MarTr T )
1,7,s=1 k=1 r=1
m n 2 2 y,.2
((mg+mig) +7ng Yo
=7 E H e(mikerijrmsk)IkJr — b
4,5,8 k=1

n

(miptm 2o 2,2
% E (_1 — e~ (mirtmyr )z, — ——F— +26_msr$r—7nb;a
r=1

The last sum above clearly goes to —n as 02 — +oo. Thus, for o2 large enough, we have ¢’(1) < 0 which
implies g(p) > ¢g(1) = 0 for p close to 1 from the left hand side. This completes the proof.

A.3.2 Sketch of Proof of Theorem

The proof follows a similar line of arguments in the proof of Theorem 2 and thus, we point out only the main
differences. We need to verify ELp 1 (v*, s(MSo(X))) <ELpp(y*, s(MX)) for a close to and larger than 1.
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With A = 1/a, one can show (as in Lemma 2) that

m m
EY  MSel0) = 30 AL, muat Nt T w2
=1 =1

and
m = 2 m m n n
E Z eMSa(X) — Z Z e)\ Zkzl(mik-‘f-mjk)zk-‘y-)\zo'Q Zk:l(mik+mjk)2/2.
i=1 i=1 j=1

Next, one can establish similar steps of , , and for the current case and eventually complete the
proof.

A.3.3 Concentration of the errors

Linear layer. Both conditions in Theorem 1 are necessary and sufficient conditions and indicate implicit
relations between the input, X, the denoising parameters, p, , the weight of the split layer, W, and the
added noise magnitude «. For the masking case, the coefficient of the linear term, p, which can be positive or
negative depending on the noise scale o, dominates MSE; see Figure 2 (b). However, for Theorem 1 (ii), from
(11), we observe the MSE depends quadratically on the scaling factor 1, where o > 1. Therefore, one can
observe a quadratic relation between the scaling factor é, and MSE in Figure 2(a).

Nonlinear layer. For nonlinear loss functions, this relation is more complicated to observe. For Theorem 2,
the loss is L1 (y*, S(MRP(X))), which is given in equation (2) in the main paper (also, see equation (18) in the
Appendix). In this scope, we show how the bound on the error, E[L 1 (y*, s(MX)) — L1 (y*, s(MR,(X)))],
depends on 02 and (1 — p). Based on equation (18), the first term will be —(1 — p)(M X);+, which is linear in

(1 — p). The next term we need to consider is log (E[Zgl e(MR"(X))iD —log (E[>7", eMX)]). By directly

manipulating the expression in (15) for p and p = 1 we find this quantity approximately is

Z > METEL (g — 1) 4 g?pn k=L ik I 1 iy + Higher order terms} + O(1 — p).

When the noise is not too large, say, o2 Z i < 1, we can observe that the bound is approximately linear
in the variance of noise, o2. One can obtaln a s1m11ar observation for Theorem 3 as well.

A.4 Differential Privacy (DP)

We start by defining differential privacy.
Definition A.6. Dwork et al.|(2014) A random mechanism, K : D — R™ is (¢, 0)-differentially private if for all
adjacent inputs, D, D’ € D, with Hamming distance, d(D, D") = 1, and all possible output, O € R™ € B(R™)
such that

P[K(D) € O] < e“PIK(D") € O] + 4,

where P[] refers to the probability associated with the random mechanism K and B(R™) is Borel sets in R™.

We also need the general theorem that says, any differentially private mechanism, I : D — O is further
differentially private if it is transformed by an arbitrary postprocessing function, deterministic or random; see
Theorem in the main paper.

Finally, if perform multiple computations of the random mechanism, XC on the same dataset, D, that is, we
make T such passes on D, then the privacy guarantee degrades. We quote the advanced composition theorem
from [Dwork et al.|(2010) for such mechanisms.

Theorem A.7. |Dwork et al.| (2010) Let K : D — O x O--- O be an T-fold adaptive composition of (e,§)-DP
| —

T —times

mechanisms. Then K is (¢/,Td 4+ &')-DP for € = e\/2T In(6'~1) 4+ Te(e ), for all §' > 0.
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A.4.1 DP of the gradient during backpropagation

Setup. Let {(X;,y7)}Y, be training data points. Let the &' layer of an L layer DNN be X¥, let ® be a
differentiable activation function, and let M} be the weight matrix for the k™ layer at iteration t. By this
convention, X; = X?. At t = 0, we have

For the noisy split neural network with post-processing, let the split happen at the (I — 1) layer (so, the cut
layer is the (I — 1)*" layer). With the notations above, we have:

X] = ®;(MPX]TY), yl = MOX]TY =101,
XM =X A X = 9 (MPhp(XY)), 3 = MPhp(XD), (24)
and XF = @y (MO XF 1) gF = MOXF k=141, -- L.

In our experiments, we use the regular backpropagation formula in our noisy split network training, which we
formalize in the next Proposition.

Proposition A.8. With the notations above, for a noisy split network with post-processing, during training,

one can use the regular backpropagation algorithm by substituting: (i) ylk = gjfﬁXf = Xlk for all subsequent

k=L—1+1,---,Land (ii) y =y, X7 = X7 for allr =1,2,--- ,1 — 1, before the split, and y¥ = §¥, for
k=L—-1+4+1,---,L after the split.

Define the sets, S C R™ and S¢ as follows:
S:={z:p(z) >eplz+ V(D) —-V(D))}, (25)
S5¢:={z:p(z) <ep(z+ V(D) - V(D'))},

Proposition A.9. Let €,6 > 0, and let a random mechanism K : D — R™ be defined as in (@) Then

for any two adjacent datasets, D and D', large enough, we have that the random variable Z will satisfy
Plw : p(Z(w)) > e‘p(Z(w) + V(D) — V(D)) < 0.

The above Proposition can be verified as follows. Because, for two large enough datasets, D and D’, we can
make A := ||[V(D) — V(D")|| small. Using Taylor expansion, we have

p(z) = ep(z + V(D) = V(D))
=p(2) = e“(p(2) + Vp(2) " (V(D) = V(D)) + 0(A?)
~ (1—e)p(z)+0(A) <0.

Theorem A.10. Let a random mechanism, K : D — R™ as defined in equation [3 obey Proposition [A-9
Then for some (€,0), K is (¢,8)-DP.

Proof. Note that, PIK(D) € O] = P[V(D) +z€ 0] = Plzc 0 —vV(D)] © ~E ") Pl» € 0], where O is

a shifted output set. We split the set O’ into two disjoint sets, O’ NS and O’ N S°. Therefore,

PIK(D) € O] = P[z € O] - Plz € (0'NS)U (O N S9))]
= Plz € (O'NS)|+ Pz € (0'Nn S
0’'nSCs
< Plz € S] + Pz € (O'n S9)]
Proposition @
< d+ Plz € (0'NS9). (26)
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Model & Dataset Split Config. (denoted by || ) Layer Size
CNN on MNIST 2xConv2d - FC || FC - Loss 256
2xConv2d || FC - FC - Loss 12544
MLP on IMDB Embedding - FC || FC - Loss 16
Embedding || FC - FC - Loss 4096
ResNet-20 on CIFAR10 Conv2d - 3xResBlock || FC - Loss 256
ResNet-18 on CIFAR100 Conv2d - 4xResBlock || FC - Loss 512
RNN on Names Embedding - RNN || FC - Loss 256
ResNet-50 on ImageNet1K Conv2d - 4xResBlock || FC - Loss 512
ALBERT-base-v2 on Amazon Reviews 12xEncoder || FC - Loss 768

Table 1: Model split configurations and split layer sizes.

We also have

, o By equation @ . _ ,
Plz € (O'Nn S| = p(z)dz < e p(z+ V(D) - V(D")dz
z€0’'Nse z€O0’'Nse
o'nseco’

< e /Zeo, p(z+ V(D) —V(D"))dz

=u

= eﬁ/ p(u)du
weO—V (D)

= eE/ p(2)dz
z+V(D")eO
Pl

= e“PlV(D')+z € O]
— P 0] (27)

Combining equation [26] and equation we get the result. O

Let g% (D) and g4 (D) be two gradient vectors computed on the training dataset D over a minibatch B at
iteration ¢ without and with noise injected. Based on Proposition [A-§ we have:

{ngw) = 9(wh(D),yh ™ (D), y5 (D), ,yh(D)).
g%(D) :g(g]L3<D)7 7?35’3(D)7le_1(D)’ 7y}13(D))

Define Z := g% (D) — g% (D) be a random vector. Hence,
Kpp(D) = gp(D) = gp(D) + Z, (28)

where Z = G(&, 3) is a random variable with probability density function p(Z € O) = p((¢,8) € G=1(0)).
In our case, we use masking and scaling as a postprocessing function, hp(-) after the Gaussian noise
injection. The random variable, £ ~ N (0,01) is continuous. The mask, R, is a random matrix of 1 and
0 with identical and independently distributed entries, (Rp);; ~ Bernoulli(p), a discrete distribution. For
scaling, S, is an elementwise scaling operator. Therefore, for masking, ¢ = MloRp(Xf), and the entries of
R,(X}H = X'"Y(D) + A or 0, based on (R,);; ~ Bernoulli(p). On the other hand, for scaling, 7} = M?S,(X})
and the entries of S, (X!) = é(Xf_l(D) + A). Therefore, based on Theorem this mechanism is also
differentially private.

B Addendum to the Numerical Results

Due to limited space, we were unable to discuss many experimental details as well as many results in Section
[] of the main paper. We discuss them here in detail.
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Table 2: SplitNN setup and training hyper-parameters

Model Dataset Optimizer Batch size Epoch Ir  Weight decay
CNN MNIST SGD 64 4 0.1 0
ResNet-20 CIFAR-10 SGD-M 128 160 0.1 le-4
ResNet-18 CIFAR-100 SGD-M 128 200 0.1 5e-4
MLP IMDB Adam 64 2 0.01 0
LSTM Names SGD 800 150 2 0
ALBERT-base-v2 Amazon Reviews AdamW 256 10 5e-5 le-2
ResNet-50 ImageNet1K SGD 256 90 0.1 le-4

— G=().7 0=0.5 — 0=(0,3

“00 02 04 06 08 10 00 02 04 06 08 10
Scaling factor (A) Masking ratio (p)

oL *s(MX oL *s(MX
(a) f3(X) = 2Eelistl0) () fh(X) = QELplrs X))

Figure 6: Backward simulation. Simulation of how scaling factor (A = 1) and masking ratio (p) influence
the estimation error (MSE) under different noise levels (o) for linear (fi) and nonlinear functions (f2, f3). The
backpropagation errors are essential during the training as we use them together with forward IRs to directly compute
the gradients. By taking the derivative of the loss function w.r.t the IRs, we obtain the simulation of the MSEs for
the backpropagation errors. Similar to the forward pass, scaling and masking, can lower the estimation error during
the backward pass, especially when the noise level is relatively high.

B.1 Laplace mechanism

The Laplace Distribution (centered at 0) with scale b is the distribution with probability density function:

1 T
Lap(x | b) = 25 &P <|b>

Here, we consider the Laplace mechanism to protect the input vector X. Simulation results (Figure [7]) show
that our denoising methods can also decrease the estimation error caused by Laplace mechanism during
forward and backward pass. However, in the real split learning task (see Table , our denoising methods are
less effective for large Laplacian noise b = 0.7, compared with ¢ = 0.7 in Gaussian mechanism. More detailed
investigation is left for future work.

B.2 Split learning result on CIFAR-100

We provide results on the CIFAR-100 dataset with ResNet-18 in Table[5] As shown in the table, both our
denoising techniques achieve higher accuracy than simple learning rate tuning.

B.3 Understanding the scaling operation when gradient scale impact is eliminated

To further understand the scaling operations, we run the same MNIST experiment with two Adam optimizers
separately for the client and server. The results in Table [6] demonstrate that the efficacy of scaling operation
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Figure 7: Simulation of how scaling factor (A = 1) and masking ratio (p) influence the estimation error (MSE) under

different Laplacian noise levels (b) for linear and nonlinear cases. Plots (a)—(d) are the linear layer and nonlinear layer
during the forward pass, while (e)-(f) are the derivatives of the nonlinear layer during the backward pass.

Table 3: Denoising performance by using Laplacian noise in split learning for MNIST classification task (same
experiment setting as Figure . We fine-tune hyperparameters A and p for different Laplacian noise scales
b=0.3,0.5,0.7. Compared withthe Gaussian mechanism, split learning suffers more from Laplacian noise
injection.

b | Best acc. (%) A=0.1 A=0.2 A=0.4 A=0.6 p=0.1 p=0.2 p=0.4 p=0.6

0 | 98.96 (£0.13) - - 5 - - 5 - -

0.3 | 92.64 (£0.11) | 95.66 (£0.25) 94.49 (£0.31) 92.16 (£0.38) 00.93 (+0.49) | 98.19 (+£0.67) 98.55 (£0.62) 98.32 (£0.17) 95.54 (£0.21)
0.5 38.30 (+0.27) 94.58 (£0.18)  93.44 (£0.27) 89.11 (+£0.53) 85.10 (£0.35) | 96.98 (+£0.39) 97.48 (£0.84) 95.17 (+0.31) 89.01 (+0.37)
0.7 16.62 (£0.10) 21.44 (£0.13)  23.49 (£0.58) 20.52 (£0.34) 14.71 (+0.52) | 12.85 (+£0.27) 23.62 (£0.45) 18.42 (£0.49) 15.58 (+0.19)

still exists even when gradient scale impact is eliminated by Adam’s updating rule. If we compare our scaling
method against learning rate tuning, the accuracy gain should be from 92.80% to 98.14%.

Learning rate 0.001 0.005 0.01 0.05 0.1
Top-1 Acc. (%) | 87.68 92.67 81.21 diverge diverge
Weight decay 0.01 0.05 0.1 0.2 0.4
Top-1 Acc. (%) | diverge diverge diverge 87.15  77.78
Dropout 0.1 0.2 04 0.6 0.8
Top-1 Ace. (%) | diverge diverge diverge diverge diverge
Masking 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) | 98.31 98.62  diverge diverge diverge
Scaling* 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) | 98.10  96.06 90.25 diverge diverge

Table 4: Comparison of tuning various hyper-parameters in noise injected SplitNN training at a fixed noise level
(0 = 0.7) for MNIST classification. * means co-optimization with weight decay.
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Table 5: Top-1 Accuracy (%) of split learning using ResNet-18 on CIFAR-100 dataset with noise injection
level (o0 = 0.7). The baseline achieves 75.60% Top-1 accuracy using SGD-Momentum (m=0.9) with an initial
learning rate of 0.1, and weight decay 5e~%.

Learning rate 0.001 0.006  0.01 0.05 0.1
Top-1 Acc. (%) 53.11 68.93 61.54 diverge diverge
Masking (Ir=0.1) | 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) 60.49 72.38 63.31 52.97 diverge
Scaling (Ir=0.1) | 0.1 0.2 04 06 0.8
Top-1 Acc. (%) 72.21 71.68 68.14 57.54 diverge

B.4 Split learning on large datasets

We use two large-scale datasets, Amazon Reviews McAuley & Leskovec| (2013)) for sentiment analysis and
ImageNet1K Deng et al.| (2009)) for image classification tasks, and investigate how the proposed denoising
strategies perform in large-scale, challenging datasets. For the experiments on the Amazon Reviews dataset,
we use a pre-trained ALBERT-base-v2 [Lan et al.|(2020); for the ImageNet1K experiments, we use ResNet50;
see Table[7] for the results. We provide the split configurations and the training hyperparameters for these
experiments in Tables [T and [2] respectively. As the ALBERT-base-v2 was a pre-trained model, we fine-tuned
it on the Amazon Reviews dataset, and observed that noise injections or denoising strategies, such as masking
and scaling, had an insignificant effect on the baseline performance. Noise injections do not degrade the
performance, and denoising strategies do not improve them either. On the other hand, the performance of
ResNet50 on ImageNet1K was heavily impacted by the noise injection. E.g., a noise injection of ¢ = 0.5
renders a test accuracy of 1.92, which is 97% lower than the baseline accuracy. When we apply the denoising
strategies to the noise-injected IRs, at the same noise level o = 0.5, the scaling strategy with A = 0.1 and
masking strategy with p = 0.2 recover performance comparable to the baseline.

B.5 Experiments on splitting the network

We investigated the network behavior in the split setup and experimented with different layers to split
the network. For this, we selected the configurations of MLP on the IMDB dataset and ResNet20 on the
CIFARI10 dataset with the highest noise-level, ¢ = 0.7; see Table [8] for the results. We observe that splitting
the networks at the initial layers causes a performance degradation compared to when the networks are
split towards the end. We also observe that for MLP architectures, the scaling strategy is more effective for
denoising, while the masking strategy is more effective for ResNet architectures.

B.6 Computational overhead of the postprocessing functions

We measured the computational overhead introduced by the denoising techniques on both CPU and GPU.
The results are shown in Table[9] The computational overhead of scaling and masking is negligible compared
to the training computation.

Table 6: Top-1 Accuracy(%) of split learning on MNIST dataset with noise injection level (o = 0.7). Use two
Adam optimizers separately for the client and server. The Adam baseline (Ir=1e-3) achieves 98.95% top-1
accuracy.

Learning rate le-6 le-5 le-4 le-3 0.1
Top-1 Acc. (%) 83.96 92.80 90.13  diverge diverge
Scaling ratio (Ir=1e-4) | 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) 97.19 9794 98.14 96.03 91.75
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Table 7: Performance of scaling () and masking (p) at different noise levels (o) for large-scale datasets,
ImageNet-1K, and Amazon Reviews Full.

Task Noise level (o) Best acc. (%) A=0.1 p=0.2
0 74.85 - -
ResNet50-ImageNet 0.3 31.18 74.26 73.79
0.5 1.92 72.93 73.07
0 65.19 - -
ALBERT-base-v2-Amazon Reviews 0.3 65.15 65.12 65.15
0.5 65.18 65.16 65.13

Table 8: Performance of scaling (\) and masking (p) for different splits of the networks.

Task Splits o Best acc. (%) A=0.1 1=0.2 p=0.1 p=0.2
- 0 85.53 - -

MLP-IMDB Embedding - FC || FC - Loss 0.7 76.28 83.25 82.35 82.82 83.41
Embedding || FC - FC - Loss 0.7 69.08 73.61 72.91 64.95 66.12
- 0 91.76 - -

ResNet20-CIFAR10  Conv2d - 3xResBlock || FC - Loss 0.7 80.69 86.69 87.16 89.07 89.48
Conv2d - 2xResBlock || 1xResBlock - FC - Loss 0.7  66.16 35.53 38.22 85.01 86.95
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Figure 8: Comparison of tuning various hyper-parameters in noise-injected split learning at a fixed noise level (¢ = 0.7)
for MNIST classification task.
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Table 9: Run time profiling for one mini-batch training of CNN on MNIST dataset. GPU: NVIDIA A100-
80GB GPU. CPU: Intel Xeon Platinum 8260 CPU @ 2.40GHz.

Hardware Baseline Noise injection only Noise injection w. masking Noise injection w. scaling
GPU 1.54 ms 1.88 ms 1.91 ms 1.92 ms
CPU 22.16 ms 22.27 ms 23.40 ms 23.19 ms

Table 10: Hyper-parameter tuning for scaling (A) and masking (p) at different noise level (o). Results are
obtained by running the experiment 3 times with different random seeds. We record the best test accuracy
during the training instead of the final accuracy.

Task o Best acc. (%) | A=0.1 2=0.2 A=0.4 A=0.6 p=0.1 p=0.2 p=0.4 p=0.6
0 | 98.96 (£0.13) | - B N N B - N
0.3 | 98.46 (+0.07) 97.63 (£0.27) 97.13 (£0.23) 96.07 (£0.10)  95.42 (£0.17) | 98.93 (+0.14) 98.88 (£0.19) 98.86 (+0.11)  98.77 (+0.09)
0.5 | 90.99 (£0.38) | 97.59 (£0.20)  97.07 (£0.63)  95.87 (£0.09) 94.62 (£0.94) | 98.78 (£0.15)  98.84 (£0.16)  98.74 (+£0.30) 94.36 (+1.13)
0.7 | 81.85 (£0.77) | 97.11 (£0.15) 9630 (£0.36)  90.95 (£0.22) 88.88 (£0.28) | 98.31 (£0.38)  98.62 (£0.23) 96.67 (£0.14) 90.51 (+1.09)
0 | 91.76 (£0.28) | - B - - N B - N
0.3 | 90.98 (+0.23) 89.15 (£0.51) 90.13 (£0.95) 90.67 (£0.49)  90.84 (4+0.43) | 88.69 (+0.80) 89.54 (£0.57) 90.30 (£0.26)  90.15 (40.31)
0.5 | 89.72 (£0.49) | 89.93 (£0.52)  90.50 (£0.74)  90.33 (£0.72) 89.97 (£0.62) | 88.21 (£0.50)  89.55 (£0.73)  89.98 (+£0.98) 89.65 (+1.10)
0.7 | 82.03 (£0.76) | 88.88 (£0.74) 87.95 (£0.13)  87.21 (£0.79) 85.80 (£0.88) | 88.45 (£0.90)  89.15 (£1.16) 88.52 (£1.29) S87.60 (+1.41)
0 | 85.53 (£0.18) | - B - - N B - N

0.3 | 85.42 (£0.30) | 85.85 (£0.63)  85.49 (£0.17) 8472 (£0.58) 85.47 (£0.03) | 85.49 (£0.33)  85.54 (£0.55)  85.64 (+£0.51) 85.21 (+0.74)
0.5 | 84.85 (£0.63) | 85.44 (£0.68)  85.35 (£0.84)  84.06 (£0.58) 84.55 (£0.72) | 85.55 (£0.69)  86.00 (£0.36)  85.18 (+£0.62) 85.92 (+1.22)
0.7 | 64.91 (£1.71) | 84.00 (£0.38)  84.24 (£0.94) 82.83 (£0.36) 80.90 (£0.71) | 85.11 (£0.40) 85.08 (+0.30)  83.27 (£1.38) 84.88 (+£1.03)
0 | 81.24 (£0.25) | - B N B
0.3 | 82.31 (£0.81) | 83.76 (£0.58)  82.35 (£0.27)  81.17 (£0.31) 80.51 (£0.59) | 80.52 (£0.36)  82.05 (£0.40)  81.63 (+£0.08) 82.23 (+0.83)
05| 56.91 (£1.42) | 8217 (£0.64) 8170 (£0.78)  S1.56 (£0.45) 81.43 (£0.95) | 80.13 (£0.52)  82.54 (£1.03)  82.04 (£1.21) 82.57 (+0.06)
0.7 | 47.65 (£1.97) | 81.56 (£0.34) 80.87 (£0.58)  81.07 (£0.81) 66.68 (£0.57) | 79.35 (£0.35)  81.15 (£0.75) 80.40 (+£0.75) 46.59 (+1.33)

CNN-MNIST

ResNet20-CIFAR10

MLP-IMDB

LSTM-Names

B.7 Feature-space hijacking attack (FSHA) and our post-processing techniques

Threat model. We assume that the attacker has no information on the architecture of the client’s model
and its weights. However, the attacker knows a public dataset that captures the same domain as the clients’
training sets. For example, if the model is trained on face images, then the public dataset is composed of face
images as well. This assumption is more realistic and less restrictive than the ones adopted in other works
Vepakomma et al.|(2019))Vepakomma et al. (2018b)), where the attacker is assumed to have direct access to
leaked pairs of intermediate results and private training data.

In the FSHA [Pasquini et al,| (2021) attack, the attacker (e.g., the server) can hijack the client’s learning
process and learn an inverse version of the client’s model. During the inference, the attacker can recover
the client’s raw data by using the output of the client. In this work, we showed that the masking operator
simultaneously improves the SplitNN training and, in the meantime, decreases the efficacy of the FSHA
attack. Our intuition is that the denoising effect depends on the specific application, which is a function
applied to the noisy input, X 4+ A. If the function’s goal is to identify each value of X, such as reconstructing
an image in an FSHA attack, then denoising cannot help too much. However, if the goal is to get a more
accurate estimation on some statistical metrics of X, such as the mean, norm of X, then it is possible to
have an evident denoising improvement.

Table 11: We provide the privacy bounds for one single forward pass during the SplitNN training, for various
noise levels used in our work, without denoising. We compare it with two state-of-the-art results for private
split learning.

Method Model & Dataset DP mechanism Inference Training Noise scale DP bounds
Titcombe et al. 2021 2D CNN on MNIST Laplace v 0.1,0.5,1.0 N/A
Abuadbba et al. 2020 1D CNN on medical data Laplace v N/A e=135710
Our work (w/o sampling amplification) 2D CNN on MNIST Gaussian v 0.3,0.5,0.7 €= (260, 150, 110)*2, § = le—5
ResNet on CIFAR10 Gaussian v 0.3,0.5, 0.7 €= (264, 152, 112)*2, § = le—5
MLP on IMDB Gaussian v 0.3, 0.5, 0.7 €= (168, 96, 72)*2, § = le—5
LSTM on Names Gaussian v 0.3,05,0.7 €=(9.2,5.3,3.9)*%2, 0 = le—5
Our work (w/o sampling amplification) 2D CNN on MNIST Laplace v 0.3,0.5,0.7 €= (53.3, 32, 22.8)*2
ResNet on CIFAR10 Laplace v 0.3,0.5,0.7 €= (53.3, 32, 22.8)*2
MLP on IMDB Laplace v 0.3,0.5,0.7 €=(13.3,8,5.7)*2
LSTM on Names Laplace v 0.3,05,0.7 €= (53.3, 32, 22.8)*2

30



Under review as submission to TMLR

(a) 2 FC layers on server side, split layer size = 12544 (b) 1 FC layer on server side, split layer size = 256

Figure 9: Private data recovery by FSHA in split learning on MNIST. X,,;,: the original private data, X e.: obtained
by FSHA attack. We compare two different split learning settings: (a) split 2 FC layers on the server side (b) split 1
FC layer on the server side. The dimensions of the split layer are also different. We can see that by splitting more
layers on the server side, it is more likely to reconstruct private training even when the noise level is relatively high
(o =1.0,2.0).
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Figure 10: Private data recovery by FSHA in split learning on MNIST. X,,;,: the original private data, X,ec:
obtained by FSHA attack in various settings: (a) noise injection only, (b) noise injection + masking, (c¢) noise injection
+ scaling.
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X priv
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Figure 11: Private data recovery by FSHA in split learning on Fashion-MNIST. X,,,;,: the original private data,
Xrec: obtained by FSHA attack in various settings: (a) noise injection only, (b) noise injection + masking, (c) noise
injection + scaling.
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Xpriv

XTEC

Figure 12: Private data recovery by FSHA in split learning on CIFAR-10. X,.,: the original private data, X,ec:
obtained by FSHA attack in various settings: (a) noise injection only, (b) noise injection + masking, (c) noise injection
+ scaling.
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B.8 DP budget

We provide the privacy bounds for one single forward pass during the SplitNN training in Table By using
the general composition Theorem, Theorem [AZ7]in the Appendix, we can calculate the total privacy budget
for the entire training process. Although Theorem gives a theoretical formalization, in practice, if we use
Theorem [A77] directly, it will result in a large privacy bound, which may not be practical. As argued in the
paper DP-SGD, Abadi et al. found that even for local SGD training using Theorem [A.7] would result in a
large privacy bound and proposed a new accounting for local noisy SGD training. However, noisy SplitNN is a
more complicated architecture, and DP-SGD analysis cannot be adopted here. Currently, privacy accounting
for noisy SplitNN training remains an open problem. Improving the privacy accounting for split learning
is not the primary focus of this work; instead, we want to show how denoising can improve noisy SplitNN
accuracy.

C Limitations

Our denoising techniques work empirically on diverse datasets (MNIST, FMNIST, CIFAR-10, CIFAR-100,
ImageNet1K, IMDB, Amazon Reviews, and Names) and across different network architectures (CNN, RNN,
Transformer, and MLP). One of the potential drawbacks or limitations of the denoising techniques empirically
is finding a good scaling or masking ratio. Another potential limitation could be that our proposed denoising
techniques may not work for other loss functions. However, theoretically, we covered almost all the existing
loss functions used for common DNN training; please see our discussion in the Appendix. Generalizing our
theoretical claims to a broader class of nonlinear loss functions, such as sparse categorical cross-entropy, which
is also rarely used in practice, requires further non-trivial investigation and is a scope for future research.
Our present theoretical analyses are in Section 3.1. and 3.2 consider the split layer at the pre-final layer of an
L layer DNN; analysis of the split at an arbitrary i-th layer, along with the final loss function used for DNN
training, requires much more mathematical rigor.
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