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ABSTRACT

Deep learning models are known to exhibit a strong texture bias, while human
tends to rely heavily on global shape structure for object recognition. The current
benchmark for evaluating a model’s global shape bias is a set of style-transferred
images with the assumption that resistance to the attack of style transfer is re-
lated to the development of global structure sensitivity in the model. In this work,
we show that networks trained with style-transfer images indeed learn to ignore
style, but its shape bias arises primarily from local detail. We provide a Disrupted
Structure Testbench (DiST) as a direct measurement of global structure sensitiv-
ity. Our test includes 2400 original images from ImageNet-1K, each of which is
accompanied by two images with the global shapes of the original image disrupted
while preserving its texture via the texture synthesis program. We found that (1)
models that performed well on the previous cue-conflict dataset do not fare well
in the proposed DiST; (2) the supervised trained Vision Transformer (ViT) loses
its global spatial information from positional embedding, leading to no significant
advantages over Convolutional Neural Networks (CNNs) on DiST. While self-
supervised learning methods, especially mask autoencoder significantly improve
the global structure sensitivity of ViT. (3) Improving the global structure sensi-
tivity is orthogonal to resistance to style-transfer, indicating that the relationship
between global shape structure and local texture detail is not an either/or relation-
ship. Training with DiST images and style-transferred images are complemen-
tary and can be combined to train networks together to enhance the global shape
sensitivity and robustness of local features. Our code will be hosted in github:
https://github.com/starsky77/DiST

1 INTRODUCTION

Deep learning models for object recognition are known to exhibit strong texture bias (Geirhos et al.,
2018; Baker & Elder, 2022). In solving problems, neural networks tend to discover easy shortcuts
that might not generalize well (Ilyas et al., 2019; Drenkow et al., 2021). Rather than learning a more
structured representation of objects, i.e., the global configuration of the local components, a.k.a.
global shape structure, or global structure, convolutional neural networks trained for classifying
objects rely primarily on the statistical regularities of features discovered along the network hier-
archy. Standard networks fumbled badly when the test images were subjected to style or texture
transfer (Geirhos et al., 2018), revealing their reliance on texture and local feature statistics, per-
haps the easiest features, rather than global structure. Humans, on the other hand, are fairly robust
against such style transfer manipulation in object recognition, indicative of our explicit utilization of
global shape structure (Ayzenberg & Behrmann, 2022; Ayzenberg & Lourenco, 2022; Quinn et al.,
2001a;b). Such preferences for the global shape structure of the object are so-called global shape
bias.
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Figure 1: Left: Feature Attribution Analysis based SmoothGrad (Smilkov et al., 2017) on stylized
augmentation trained models. Surprisingly, models that can resist style transfers still be primarily
sensitive to local features, rather than the global shape configuration. Right: Illustration of our
proposed Disrupted Structure Testbench (DiST). We hope machine would successfully distinct the
images that have disrupted global structure from the original image, align with human that are using
the global shape structure as a cue for object recognition

To measure how well models understand the global shape structure, the style-transferred images,
specifically, the image that transfers its texture into an image that belongs to a different class, known
as the cue-conflict images, are commonly used as the benchmark of global shape bias (Vishniakov
et al., 2024; Geirhos et al., 2021). Various approaches have been developed to steer neural network
learning towards shapes from texture (Brochu, 2019; Geirhos et al., 2021; Li et al., 2023). Based on
such a way of measurement, the most effective approach remains to be augmenting the training data
with randomized style-transfer operation (Geirhos et al., 2018; 2021).

Despite the common usage of cue-conflict images, a crucial hypothesis underlaying the cue-conflict
benchmark is that: if the models are not relying on the local texture, then it relies on the global
structure. However, in this paper, we found that even if models are forced to be robust against style-
transfer operation through such augmentations, models are still finding a shortcut that is not global
shape structure. In Figure 1, we can see that a stylized trained neural network becomes resistant
to the style changes, however, its sensitivity map still shows heavy focus on the local features (the
eye of the owl in this case), rather than the global structure (See results of Feature Attribution
Results in Figure 1(a), bright pixels in the middle column indicates the area is sensitive to the model
perception, we refer the details to Section A.1). Our experiments show the relationship between
global shape structure and local texture is not an either/or relationship, suggesting that showing the
model is resistant to the change of texture does not necessarily means it understand the global shape
structure.

To remedy this problem, we developed evaluation dataset, called DiST (Disrupted Structure Test-
bench), to directly evaluate the sensitivity to the global shapes structure (Figure 1(b)). In this dataset,
images were transformed to disrupt their global structure while maintaining their texture statistics.
We used DiST to perform an odd-man-out test on the various models and human subjects to mea-
sure their ability to distinguish the original image from its structure-disrupted variants as a metric of
their global structure sensitivity. We found humans far superior to Style-transfer-trained networks
in discriminating the differences in global forms. In fact, the Style-transfer network’s performance
is no better than the standard CNN that has not been subjected to augmented Style-transfer training.

Besides, based on DiST, we are able to discover several surprising findings that has not been shown
by cue-conflict benchmark. Vision transformers (ViTs) with supervised learning fared no better than
standard CNN, contradicting the beliefs that ViTs had captured and utilized the global relationship
of object parts in this task. While the self-supervised learning (SSL) method that uses masked
autoencoder (MAE) significantly improve the global structure sensitivity of ViT.

Along with the DiST dataset, we also demonstrate that networks trained with augmented DiST data
also do well in discriminating the global structure of objects if using a carefully designed training
approach (we name the method as DiSTinguish). Finally, we found that the DiSTinguish-trained

2



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

network and Style-transfer-trained network are orthogonal and complementary, as one focuses on
global structure, while the other tends to capture robust local feature. Thus, our paper provides
a better and deeper understanding of the nature of global shape bias and texture bias within the
networks. Moreover, through such evaluation method we are able to find self-attention and positional
embedding itself does not necessarily provide perception of global structure, while how the model
is trained is the thing that matters.

2 RELATED WORK

Deep Neural Networks (DNNs) have been the cornerstone of the revolution in computer vision,
delivering state-of-the-art performance on a wide array of tasks (Luo et al., 2021; Redmon et al.,
2016; He et al., 2016; Brown et al., 2020). However, understanding DNNs has been a vital topic
to further advancement of these black box models (Drenkow et al., 2021; Petch et al., 2022; Gilpin
et al., 2018). One aspect of understanding DNNs in vision systems is identifying the biases they
might have when classifying images. Two prominent visual cues are local texture detail and global
shape structure (Garces et al., 2012; Janner et al., 2017).

Originally, it was believed that DNNs, especially those trained on large datasets like ImageNet,
primarily learn shapes rather than textures, as visualization in convolutional neural networks shows
clear hierarchical composition features of various levels of object shapes (Zeiler & Fergus, 2014).
This belief was also based on the intuitive understanding that shape structures are more semantically
meaningful than textures for most object categories. However, Geirhos et al. (2018) challenged this
belief and showed that DNNs trained on ImageNet have a strong bias towards texture. Our work
re-examines their proposed style-transfer-based approach and further checks if the model has truly
understood the global shape structure of the image.

Geirhos et al. (2021) benchmarked various widely used models on the proposed Style-transfer
datasets in Geirhos et al. (2018). Among these, network architectures play a significant role in
improving the models’ global shape bias. Compared to the convolutional neural networks (CNNs),
the newly proposed vision transformer family ViTs (Dosovitskiy et al., 2020) perform significantly
better in terms of the Style-transfer based shape bias as well as other corruption-based robustness
test measured by Paul & Chen (2022). However, we observe that supervised trained ViTs yield no
significant improvement on our proposed global structure disrupted test, the spatial information of
patches is lost as the feedforward continues. While the ViT trained with self-supervised learning
(SSL), (e.g. DINO (Caron et al., 2021)) are significantly better, especially masked autoencoder (He
et al., 2022), which shows even better performance than human.

3 METHODS

3.1 DISRUPTED STRUCTURE TESTBENCH (DIST)

(a) Examples in DiST (b) The process of DiST for models

Figure 2: Disrupted Structure Testbench (DiST)

Our Disrupted Structure Testbench (DiST) deliberately compares the representation before and after
we disrupt the global structure of the image. One could imagine there could be many random global
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structure disrupted variants of an original image as the joint spatial configuration of local parts
could be arbitrary. To get a quantitative measurement of the models’ global structure sensitivity,
DiST formulates the evaluation metrics as the accuracy of an oddity detection task. The subjects to
DiST (models or humans) are asked to select a distinct image from a pool of choices, which consists
of one original image where the global structure is intact, and N global structure disruption variants
of the original image (each of which preserves the local patterns) . We pick N = 2 for all the DiST
tests as we observe that increases N will not increase the difficulty of the task.

Figure 3: Mechanism of computing global structure disruption images. We implement approach
proposed in Gatys et al. (2015). Specifically, we optimize a randomly initialized image (yellow) so
that when it passes through a pretrained VGG network, its intermediate layers’ gram matrix match
the targeted image (blue). This results in preserving the images’ local features but randomizing the
global structures.

Structure Disruption via Texture Synthesis Program Texture Synthesis allows for the genera-
tion of images that retain the original texture details while randomizing the global structures. We
utilize Gatys et al. (2015) in particular to construct the global structure disrupted images for the DiST
oddity detection task. We illustrate the process of this texture synthesis in Figure 3. For any given
target image, It ∈ R(3,H0,W0) (blue boundary image in Figure 3), we want to get Io ∈ R(3,H0,W0)

that possess the same local features but disrupted global structure (as shown in yellow boundary im-
ages on the right). To achieve this, we initialize tensor I1 ∈ R(3,H0,W0) using value independently
sampled from an isotropic Gaussian distribution and complete the process of I1 → I2 → I3... → Io
through minimizing the L as Gram Matrix Matching Loss. Specifically,

∂Loss

∂Ii
=

∂

∂Ii

∑
l

||Gram(Al(It))− Gram(Al(Ii))||2 (1)

where Al(I) ∈ R(Cl,Hl,Wl) denotes the l-th layers activation tensor from which we destroy
the global spatial information by computing the channel-wise dot products, i.e. Gram(Al(It)) ∈
R(Cl,Cl).

DiST Metric Formulation For each trial in the Disrupted Structure Testbench (DiST), two global
structure disrupted variants are generated using distinct random seeds. Each image, denoted as Ii,
is then passed through the evaluation network F to obtain a feature vector F (Ii) from the final
layer. The model identifies the image most dissimilar to the others by calculating the cosine distance
between feature vectors. The procedure for this calculation is as follows:

Di =
∑
j ̸=i

(1− F (Ii) · F (Ij)

∥F (Ii)∥2∥F (Ij)∥2
)/N (2)

N represents the number of structure-disrupted images in each trial, in DiST it would be equal
to 2. The dissimilarity of the image Ii to the other 2 images is calculated as the average of the
pairwise cosine distance of each two image pair. Cosine distance of vector u and v is calculated as
DC(u, v) = 1− SC(u, v), where SC(u, v) is the cosine similarity.

The model will select the images a that is the most different from the other two images based on
Di: a = argmaxi

exp(Di)∑
j exp(Dj))

. DiST is fundamentally different from the evaluation methods based
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on style transfer or other changes in texture details. Those methods apply style transfer operation to
generate the evaluation data. The model trained with stylized augmentation could get an advantage
in that evaluation due to the familiarity with different style domains. In contrast, DiST involves no
style transfer operations. Instead, it directly assesses the representations learned by the model to
show how sensitive it is due to the change in global structure. This approach eliminates any biases
arising from familiarity with stylized images, offering an entirely new angle from which to evaluate
global shape bias.

3.2 PSYCHOPHYSICAL EXPERIMENTS

Human vision is known to exhibit a strong bias towards shape. To quantify the gap between deep
learning models and the human visual system, we conducted a psychophysical experiment with hu-
man subjects. To align this experiment closely with deep learning evaluations, participants were
simply instructed to select the image they found to be ”the most different,” without receiving any
additional hints or context. To mimic the feedforward processes in deep learning models, we dis-
played stimulus images for a limited time, thereby restricting additional reasoning. Furthermore,
participants received no feedback on the correctness of their selections, eliminating the influence of
supervised signals.

In each trial, participants were simultaneously presented with three stimulus images for a duration of
800 ms. They then had an additional 1,200 ms, making a total of 2,000 ms, to make their selections.
Any response given after the 2,000-millisecond window was considered invalid. To mitigate the
effects of fatigue, participants were allowed breaks after completing 100 trials, which consisted of
100 sets of images. We accumulated data from 16,800 trials and 32 human subjects to calculate
the overall performance of DiST to represent the human visual system. The final results, shown in
Fig.5, represent the average performance across all participating human subjects. Further details of
the psychophysical experiments and how the experiment is conducted can be found in the appendix.

3.3 DISTINGUISH BETWEEN THE ORIGINAL STRUCTURE AND DISRUPTED STRUCTURE

Deep learning models are excellent learners when we explicitly define the learning objectives. Styl-
ized augmentation forces the model to learn style-agnostic representation, leading to its impres-
sive performance in the stylized domain. Here we would like to directly force the model to dis-
tinguish between the original shape and the disrupted one. We propose DiSTinguish, as shown
in Fig.4, a simple supervised training approach to explicitly enforce the constraint to guide the
model to learn the global structure of the object. Rather than operating within the confines of an
n-class classification task, we expand this to 2n classes. Where the loss of the network would be:
L(θ) = −

∑2n
i=1 yi log(pi), where pi is the predicted probability of the sample belonging to class

i and y is the one-hot code for the ground truth label of 2n classes. This expansion incorporates
structure-disrupted versions of each original class as additional, separate classes. As it’s not prac-
tical to produce the full structure-disrupted version of ImageNet1K, we applied an approximation
here, the details of the approximation methods and their effectiveness are shown in the appendix.

Figure 4: DiSTinguish Training, structure-disrupted images are added as separated classes

During the evaluation phase, the model reverts to n-class classification by summing the logits cor-
responding to the disrupted structure and original classes: z′i = zi + zi+n, where class i and class
i+ n are the original structure and its structure-disrupted counterpart, to reduce the output logits Z
from 2n dimension to n dimension. While for DiST, this remapping is unnecessary, as we directly
compare the feature vectors learned by the model rather than the classification logits.
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4 RESULTS

4.1 GLOBAL STRUCTURE SENSITIVITY: MODEL V.S. HUMAN

Cue-conflict dataset (Geirhos et al. (2021)) directly tests the model’s robustness against style-
transferred operation. It tests the model’s classification accuracy on the style-transferred images.
The score of the Cue-Conflict dataset is determined by calculating the proportion of instances
where the model correctly classified as the image’s shape, rather than texture, which is defined
as Number of Correct Shape Recognitions

Number of Correct Recognitions .

Although the result can clearly show if the model is relying on texture detail, to claim that the model
is making use of global shape structures, it is based on the hypothesis that the model either uses the
texture detail or uses the global structures, and there is no third option. If such a hypothesis holds:
which means resistance to texture change is equal to using more global structure information, then
the trend on DiST accuracy and cue-conflict score should be similar, as DiST is designed to directly
measure the global structure sensitivity.

To determine whether this hypothesis holds, we use DiST to directly evaluate the global structure
sensitivity of the models across different architectures and different training methods. Those models
include: transformer architectures (e.g. ViT, DeiT (Touvron et al. (2022)) and ConvNeXt (Woo
et al. (2023))), traditional CNN architectures (e.g. ResNet, ResNeXt (Xie et al. (2017)), Incep-
tion (Szegedy et al. (2017)), DenseNet (Huang et al. (2017))). Mobile network searched by neutral
architecture search (e.g. MNasNet (Tan et al. (2019), MobileNet (Koonce & Koonce (2021))). We
also cover models trained with different techniques, those technique used to show significant ef-
fectiveness on improving model’s global shape bias based on the cue-conflict dataset, including
adversarial training, sparse activation (Li et al. (2023)) and semi-supervised training (Xie et al.
(2020)). As shown in Fig.5, where both human and model performances are ranked according to
DiST Accuracy, we highlight the important discoveries as follows:

Firstly, ResNet50-SIN, which is trained on stylized images (Geirhos et al. (2018)), outperforms
other models on the Cue-Conflict dataset but fails to surpass the performance of a normally trained
ResNet50 on DiST (52.6% v.s. 69.4%). This suggests that its high performance on the Cue-Conflict
dataset may not be attributed to a better understanding of the global structure but rather to some
other learned “short-cut”. Secondly, the DiST Accuracy of the models is inconsistent with their
Cue-Conflict score. This suggests that not relying on texture detail (leads to high Cue-Conflict score)
does not necessarily mean using the global structure information (leads to high DiST Accuracy).

For the human evaluation result, we average human performance data collected from 16,800 trials to
obtain the final human performance metric, which is 85.5%, outperforming almost all the deep learn-
ing models. The results consistently show that humans are robust shape-based learners, irrespective
of the evaluation method used.

4.2 THE LOSS OF GLOBAL SPATIAL INFORMATION DURING SUPERVISED LEARNING OF VIT.

The core of vision transformer (ViT) (Dosovitskiy et al., 2020): self-attention layer along with the
positional embedding are believed to be more expressive than the convolution operation in terms of
capturing global structure. However, as depicted in Fig.5, such an idea is challenged by the result that
ViT models haven’t exhibited a significant advantage over ResNet when evaluated on DiST. Notably,
ViT-B even underperforms compared to ResNet50. Additionally, although the performance on the
Cue-Conflict dataset suggests that a large model size is more robust against texture changes, a larger
model size does not guarantee enhanced capability in perceiving global structures. The performance
of various ViT sizes on DiST is incongruent with their parameter sizes.

We further evaluate the DiST accuracy of the same ViT architecture with different training methods:
supervised learning, compared with self-supervised learning (SSL): DINO (Caron et al., 2021), and
Masked Autoencoders (MAE) (He et al., 2022). As shown in Table.1. ViT trained with SSL has
shown significantly better performance on DiST compared with supervised learning. Surprisingly,
with 93.7% accuracy, MAE is even better than human performance.

To understand why supervised training failed to capture global structure as well as MAE, even if
positional embedding should have provided information on the global spatial relationship of each
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Figure 5: Human and different models’ performance on DiST and Cue-Conflict dataset.

local component, we investigate if the spatial information is still encoded in the final representation
of ViT with different training methods.

Specifically, we train a 2-layer Multi-Layer Perceptron fθ(v) that takes in only the embedding
vector v of a certain image patch at a specific layer and outputs the prediction of its spatial
location (x, y). We measure how well the network decodes via normalized regression errors
(0.5 ∗ (|fθ(v)x − x|/max(x) + |fθ(v)y − y|/max(y)). This decoding regression test reflects how
much information is encoded inside the patch representation in certain layers. If the global spatial
information is still kept within the embedding, the network should easily decode the location cor-
rectly with a simple training process. Here we describe the data for this regression task in detail:
Imagine we have N×L×(D+2) for a certain layer’s intermediate representation, with N denoting
total number of images, L denotes the sequence length of the transformer, and D representing the
dimension of each individual token embedding at that layer and 2 is the (x, y) value for each image
patch. Then we construct our input data as (N ∗ L)×D and our corresponding regression target as
(N ∗L)× 2. A 5-fold cross-validation is performed. The results are shown in Fig.6a. We repeat the
above mentioned test for each layer inside the transformer.

The results indicate that as the layer goes deeper, it becomes harder for the simple network to decode
the correct position of the image patches. Notably, it becomes significantly harder for supervised
trained ViT to decode the correct position based on the patch embedding compared with ViT trained
with SSL. Consist with the result shown by DiST, using the embedding trained with MAE, the
simple network can easily decode the position of the patch, indicating that spatial information stored
in positional embedding is still maintained as the layer goes deeper, while such information is easy
to lose with supervised learning. The attention map of the final layer of ViT in Fig.6b further shows
that ViT trained with MAE tends to have more global attention that covers the whole object, even
if the structure has been disrupted, such attention still works globally, while the head of supervised
trained ViT focused on local part on both two versions of images.

Table 1: ResNet50 and different ViTs’ performance on DiST and Cue-Conflict, as SSL methods do
not have a classification head, the pretrained model cannot be directly tested on Cue-Conflict

Model # Param (M) Cue-Conflict score(%)(↑) DiST Acc(%) (↑)
ViT-L 303.3 53.8 68.5
ViT-B 85.8 43.1 54.8

ViT-B (DINO) 85.8 - 74.9
ViT-B (MAE) 85.8 - 93.7

ViT-S 22.1 37.7 70.9
ResNet50 25.5 21.4 69.4
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(a) Spatial Location Decoding Result (b) Attention Map

Figure 6: Left: Decoding results of using the embedding of each image patch to predict the the 2D
coordinates of the patch, as the layer goes deeper, it becomes hard for supervised ViT to correctly
decode the location. Right: The Attention Map for [CLS] token in the last layer of ViT trained with
different methods on Normal and Structure Disrupted Image

4.3 THE ORTHOGONALITY OF USING GLOBAL STRUCTURES AND RESISTANCE TO
STYLE-TRANSFER

As augmented with style-transferred images force the model to be robust against texture changes, we
follow a similar idea to force the model using global structure information. We employ DiSTinguish
to explicitly train the model to differentiate between original and disrupted structures, and compare
its effect with style-augmentation technique.

We evaluate a ResNet50 model under four distinct training approaches. (i) Baseline: The model is
trained using pre-trained weights without any specialized augmentation. (ii) Stylized Augmenta-
tion: We employ AdaIN (Huang & Belongie (2017)) to create stylized versions of the ImageNet1K
dataset. Each class receives an additional 100 augmented images. (iii) DiSTinguish: An extra
1000 structure-disrupted image classes are created, each containing 100 images, and the model is
trained as part of a 2000-class classification task. (iv) DiSTinguish + Stylized Augmentation:
Combining DiSTinguish and Stylized Augmentation together, where the model will trained with
2000-class classification task, and the original 1000 classes images would also contain the stylized
images as augmentation. Except for the pre-trained Baseline model, where we directly use the IM-
AGENET1K V1 weights, all other models are trained under identical configurations. We evaluate
the above four methods on three different evaluation datasets: DiST, a style-transferred version of
the evaluation dataset of ImageNet1K (SIN-1K), and the original evaluation dataset of ImageNet1K.

As shown in the Table.2, DiSTinguish significantly enhances performance on the DiST evaluation
while maintaining comparable results on the original dataset. Importantly, the effectiveness of DiS-
Tinguish is orthogonal to the effectiveness of style augmentation, as those two specially designed
augmentation techniques do not significantly influence the performance on the benchmark created
with a different technique. Moreover, DiSTinguish is fully compatible with stylized augmentation
techniques, which allows for their combined use without any performance degradation in either the
stylized domain or the DiST evaluations.

We further examine the feature vectors from the last layer of a ResNet50 model trained under dif-
ferent conditions by visualizing them using t-SNE. As illustrated in Fig.10, both the baseline model
and the one trained with Stylized Augmentation fail to effectively distinguish between original and
disrupted structure. Their corresponding classes in the feature space show significant overlap. In
contrast, the model trained with DiSTinguish clearly separates feature clusters corresponding to the
original structure from those of their disrupted versions. And combining two methods together won’t
influence such separation.

4.4 WHY STYLIZED AUGMENTATION FAILED

To investigate why Stylized Augmentation fails to significantly improve DiST and how DiSTinguish
achieves better performance, we employ SmoothGrad (Smilkov et al. (2017)) to generate sensitivity
maps for a ResNet50 model trained using either DiSTinguish or Stylized Augmentation. Sensitivity
maps reveal how responsive the model is to changes in pixel values. To clearly show which regions
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Table 2: DiSTinguish and Stylized Augmentation’s performance on ImageNet1K

ImageNet1K (↑) SIN-1K (↑) DiST (↑)
Top-1 Top-5 Top-1 Top-5

Baseline 76.1 94.0 26.1 47.6 69.4
Stylized Aug 78.1 94.1 52.2 75.2 73.3
DiSTinguish 77.7 93.8 24.9 44.7 98.6

DiSTinguish + Stylized Aug 77.8 94.0 52.2 75.7 98.7

contribute most to the model’s internal representation, we use a binary mask to mask out the pixels
that have low sensitivity values.

Across various stylized images, models trained with Stylized Augmentation tend to focus on specific
local features that remain relatively invariant to changes in style. For instance, as depicted in the
row (ii.), (iii.), and (iv.) in Fig.7, a stylized augmented model may rely heavily on a single eye
as the key feature for its decision-making. We hypothesize that the feature associated with the
eye remains stable even when the style domain undergoes significant alterations. This enables the
stylized augmented model to classify the image correctly despite changes to many texture details.
However, this strategy fail in the DiST evaluation, where the global structure is altered but local
features remain constant. As illustrated in row (i.) of Fig.7, the stylized augmented model fails to
account for the global structure, concentrating solely on distinctive features like eyes and neglecting
other regions.

In contrast, models trained with DiSTinguish are compelled to make use of global features to effec-
tively differentiate structure-disrupted images from original ones. Consequently, the model’s sensi-
tive regions are not confined to small, local areas; rather, they extend to larger, global structures. As
shown in row (i.) of Fig.7, the model is highly responsive to most parts of the owl, even when they
are spatially separated, thus enabling it to perceive changes in the global structure. This sensitivity to
global features persists even in style-transferred images. Compared to stylized augmented models,
which fixate on specific local features such as an eye, models trained with DiSTinguish are sensi-
tive to the entire object. This suggests that the two training methodologies engender fundamentally
different feature preferences in models. While DiSTinguish encourages models to focus on global
structures to discern between disrupted and original structure, Stylized Augmentation prompts the
model to rely on features that remain stable across various style domains as a defense against style
transfer operations.

Figure 7: Sensitivity map of ResNet50 trained with DiSTinguish or Stylized Augmentation

5 CONCLUSION

We introduced the Disrupted Structure Testbench (DiST) as a direct metric to evaluate whether the
model has understood global shape structure. Based on our proposed methods, we have revealed
three key insights: (i) Existing models acclaimed for shape bias perform poorly on DiST. (ii) Su-
pervised trained ViT does fully capture the spatial information from positional embedding, while
masked autoencoder successfully keeps it. (iii) Not relying on texture detail is not equal to us-
ing global structure information. Forcing the model to ignore texture detail is complementary and
orthogonal to forcing the model to learn global shape structure.
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A APPENDIX

A.1 FEATURE ATTRIBUTION ANALYSIS

The feature attribution analysis is done by using smoothGrad (Smilkov et al. (2017)), one of the
gradient-based sensitivity maps (a.k.a sensitivity maps) methods that are commonly used to identify
pixels that would strongly influence the decision of the model. Specifically, gradient-based sensitiv-
ity maps try to visualize the gradient of the class-predicted probability function with respect to the
input image, which is Mc(I) = ∂Fc(I)/∂I , where Fc is the function that predicts the probability
that input image I belong to class c.

Traditional methods for computing sensitivity maps often suffer from noise, making them difficult
to interpret. SmoothGrad improves the quality of these maps by taking the average of the gradients
obtained by adding noise to the input multiple times and recalculating the gradient for each noisy
version. Specifically, it generates N noisy versions of the input I (e.g. Gaussian noise). For each
noisy input, perform a forward and backward pass through the neural network to compute the gra-
dient of the output with respect to each input feature. Then average the gradients across all noisy
inputs to create a clear sensitivity map.

During our analysis, to visualize the sensitivity map, sensitivity scores are rescaled to fall within
the range of 0 and 1. To further clarify the regions of sensitivity, we apply a threshold to create a
binary mask based on these scores. In the main experimental context, this threshold is set at 0.15.
Original sensitivity maps without the binary mask will also be presented in the following section for
comparison.

A.2 10-STEP OPTIMIZATION AS AN APPROXIMATION DURING DISTINGUISH

Due to the high time cost of the texture synthesis process(100 optimization steps would take above
55s on a single Tesla V100 GPU, which is the time cost for a single image generation). It’s infeasible
to generate a full structure-disrupted version of the ImageNet1k training dataset. Therefore, we use
10-step optimization results to approximate the 100-step optimization result in DiST, each additional
structure-disrupted class would have 100 images. The effectiveness of this approximation is shown
through the following small-scale experiments.

We select 10 classes from ImageNet1K. The choice of the classes is the same as the Imagenette
dataset. We train a ResNet50 model from scratch with the same hyperparameter configuration using
three different training methods.

1. DiSTinguish-Complete (DiSTinguish-C): 20-class supervised learning, the additional
classes are the structure-disrupted version of the original class, and the structure-disrupted
images are generated using Texture Synthesis with 100-step optimization.

2. DiSTinguish-Approximate (DiSTinguish-A): Similar to DiSTinguish-C, while the
structure-disrupted images are generated using Texture Synthesis with only 10-step op-
timization.

3. Baseline: Simple 10-class supervised learning without any special augmentation.

We evaluate the above three methods on three different evaluation datasets: DiST, style-transferred
version of the evaluation dataset of ImageNet10 (SIN-10) and original evaluation dataset of Im-
ageNet10 (IN-10). Experiment results on ImageNet10 are shown in Table.3, all the models are
ResNet50 trained within 100 epochs. Even though it doesn’t reach the same performance as
DiSTinguish-C, DiSTinguish-A still surpasses the baseline in both SIN-10 and DiST evaluations.
This indicates that DiSTinguish-A serves as an effective approximation, particularly when it is im-
practical to generate DiSTinguish-C data on large-scale datasets.

A.3 MODEL TRAINING DETAIL AND CONFIGURATION

Re-examine the models on DiST All the model we used during the evaluation on DiST and
cue-conflict dataset are directly from the public pretrained models. ResNet50-SIN is the model
trained on only stylized images in Geirhos et al. (2018). For the ResNet50 model we use the IMA-
GENET1K V1 weights from pytorch. Others are the default pretrained weight.
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Table 3: DiSTinguish on ImageNet10 (Top-1 Accuracy)

IN-10 (↑) SIN-10 (↑) DiST (↑)
DiSTinguish-C 93.2 71.6 95.5
DiSTinguish-A 93.2 70.0 88.4

Baseline 90.2 54.4 54.9

Experiment on ImageNet10 In the small-scale experiment of ImageNet10, the class we select
are exactly the same as the Imagenette dataset. The class label of the selected class are n01440764,
n02102040, n02979186, n03000684, n03028079 n03394916, n03417042, n03425413, n03445777,
n03888257. The model is trained by using SGD as the optimizer, with learning rate of 0.05, batch
size of 256 on a single Tesla V100 GPU for 100 epochs. To eliminate the impact of data augmenta-
tion, no special augmentation is appiled during the experiment.

Experiment on ImageNet1K The model we used in the experiment of ImageNet1K, except for
the baseline model, which directly using the IMAGENET1K V1 weights from pytorch, are trained
from scratch using ffcv (Leclerc et al. (2023)). All the models are trained for 90 epochs with the
start learning rate of 0.1 on a signle V100 GPU. Other configuration remains the same as the default
configuration in ffcv for training ResNet50.

A.4 PSYCHOPHYSICAL EXPERIMENT DETAIL

Psychophysical experiments are conducted using a front-end web application developed in
JavaScript. Subjects are instructed to ”Find the image that is different from the other two” and
can select their answers using keys ‘1’, ‘2’, or ‘3’. After making a selection, subjects press the
spacebar to proceed to the next question.

The trial procedure is illustrated in Fig.8. A set of images appears on the screen after a 300 ms delay
and remains visible for 800 ms. In a standard trial, two structure-disrupted images and one original
image are presented; the correct answer is the original image. Following the 800 ms display period,
the images vanish, and subjects have an additional 1200 ms to make their selection, totaling 2 s for
decision-making. If no selection is made within this time, the trial is marked as a timeout, and the
response is considered invalid. Subjects are given the opportunity to take a break after every 100
images. To prevent the supervision signal, no feedback on answer correctness is provided during the
test.

To mitigate the risk of the ”oddity pop-out” test devolving into a mere ”detection task”—where
subjects might focus solely on identifying the original image rather than the one that differs—we
incorporate extra catch trials into the experiments, as illustrated in Fig.9.

One catch trial is presented after every 10 standard trials. In each catch trial, two ”original images”
are displayed: one is a mirrored version of the other, accompanied by a structure-disrupted image.
It is important to note that there is no overlap between the images used in catch trials and those used
in standard trials. In these catch trials, the correct answer is actually the structure-disrupted image.
The rationale for incorporating such catch trials is to compel subjects to focus on identifying the
”different” image rather than the ”original” one, thereby aligning the task more closely with how
deep learning models behave during DiST evaluation. Results from the catch trials are not included
in the final performance metric.

A.5 MORE VISUALIZATION ANALYSIS FOR FOUR TRAINING APPROACHES

In this section, we present the original sensitivity maps without binary mask for a ResNet50 model
trained using the four different approaches examined in our ImageNet1K experiment. Sensitivity
maps serve to illustrate the model’s responsiveness to pixel-level changes; a lighter pixel suggests a
more significant influence on the model’s decision-making process.

As shown in Fig.12, in line with the findings detailed in the main text, the sensitivity map of a model
trained with both DiSTinguish and stylized augmentation qualitatively demonstrates the synergistic
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Figure 8: Standard trial in the psychophysical experiment. Image in the red box is the correct answer.

Figure 9: Catch trial in the psychophysical experiment. Image in the red box is the correct answer

effect of these methods. Specifically, the model learns to focus on specialized local features that are
robust to style transfer, while also becoming attuned to the global structure of the object.

We further examine the feature vectors from the last layer of a ResNet50 model trained under dif-
ferent conditions by visualizing them using t-SNE. As illustrated in Fig.10, both the baseline model
and the one trained with Stylized Augmentation fail to effectively distinguish between original and
disrupted structure. Their corresponding classes in the feature space show significant overlap. In
contrast, the model trained with DiSTinguish clearly separates feature clusters corresponding to orig-
inal structure from those of their disrupted versions. And combining two methods together won’t
influence such separation.

Figure 10: t-SNE visualizations of the feature vector of ResNet50 trained under different ap-
proaches.

A.6 MORE EXAMPLE IN DIST

In this section we will show more example in DiST. Fig.11 shows 12 sets of images in DiST, each set
consists of one original image (leftmost one) and two generated structure-disrupted image. Ideally,
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we would want the optimization process to generate the image that the local components of the object
are disrupted, to test if the model is sensitive to such change of the global shape. But depending
on the characteristics of the original images, a small proportion of the generated results can be
particularly hard for both humans and models. For example, results in Fig.11 (e) and Fig.11 (k)
are the challenging cases, where the objects and background are difficult to distinguish. Those
challenging cases might be less meaningful to evaluate the sensitivity of the global shape of the
models. Even the dataset does include some of those cases, most of the content still follow our intent.
And human is still able to distinguish most of the images in the dataset (over 85%), which outperform
all the model without training with DiSTinguish, showing that such gap about the perception of
global shape does exist.

Figure 11: More example of disrupted structure images and its original images.The first image in
each image set is the original one.
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(a) Sensitivity map on Structure Disrupted Image

(b) Sensitivity map on Stylized Image

(c) Sensitivity map on Normal Image

(d) Sensitivity map on Structure Disrupted Image

Figure 12: Sensitivity map of ResNet50 trained under different methods, the lighter the point is, the
stronger that pixel would influence the decision of the model.
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