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Abstract

With the rapid advancement of conversational and diffusion-based AI, there
is a growing adoption of AI in educational services, ranging from grading
and assessment tools to personalized learning systems that provide tar-
geted support for students. However, this adaptability has yet to fully
extend to the domain of children’s speech, where existing models often
fail due to their reliance on datasets designed for clear, articulate adult
speech. Children, particularly those in early developmental stages or with
speech and language pathologies, present unique challenges that current AI
models and datasets are ill-equipped to handle. To address this, we intro-
duce KidSpeak, a multi-task speech-enhanced Foundation Model capable
of both generative and discriminative tasks specifically tailored to children’s
speech patterns. Our framework employs a two-stage training process that
incorporates phonetic knowledge into the speech encoder, achieving an av-
erage accuracy of 87% across four separate tasks. Furthermore, recognizing
the limitations of scalable human annotation and existing speech align-
ment tools, we propose the Flexible and Automatic Speech Aligner
(FASA) and leverage the method to construct high quality datasets for
training and evaluation. This novel alignment tool significantly improves
the quality of aligned children’s speech from noisy data, enhancing data
quality by 13.6× compared to human annotations, as demonstrated on the
CHILDES dataset. To the best of our knowledge, KidSpeak and FASA
represent the first comprehensive solution designed for speech and language
therapy in children, offering both a multi-purpose speech LLM and a robust
alignment tool. Code is available at Here.

1 Introduction

Humans begin to acquire the fundamental cues of vocal communication as early as 3 months
of age (USDHHS et al., 2017). As development advances, some individuals master their
vocal abilities to such a degree that they are capable of vocalizing with over 1000 kHz,
allowing for the conveyance of complex and nuanced ideas and emotions Garnier et al.
(2010)1. On the other hand, hearing begins as early as the 28th week of gestation in hu-
mans (Querleu et al., 1988), eventually leading to an auditory capacity capable of discerning
frequencies as precise as 0.5 Hz within a range of 20 Hz to 20 kHz (Romand & Varela-Nieto,
2014). Despite these remarkable developmental milestones, numerous challenges persist in
early speech acquisition. In fact, nearly 1 in 12 children in the U.S. aged 3 to 17 has
experienced a disorder affecting voice, speech, language, or swallowing, with almost half of
them not receiving any intervention services in the past year (Black et al., 2015). These
statistics highlight that, despite our advanced auditory and vocal capabilities, we continue
to face significant barriers in the early diagnosis and treatment of speech-related disorders.
The setbacks are further compounded by the dearth of data pertaining to kids’ speech
and vocalizations, which poses additional challenges towards the development of automated
computational tools. Consequently, the current state-of-the-art ASR systems remain lim-

1For reference, the normal adult male voice ranges from 90 to 155 Hz, while adult female voices
range from 165 to 255 Hz (Fitch & Holbrook, 1970).
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KidSpeak

Is the child’s 
speech proper?

Identify the age 
group of the 

speaker

The child may 
have phonological 

delay

The speaker is of 
the age range 6-13

Transcribe the 
speech

“Gore gate get 
luggage”

Describe what you 
hear in the clip

A voice of a 
boy/girl/child is 

apparent

Figure 1: Overview: We propose KidSpeak, a multi-purpose speech based LLM aimed at
diagnosis and transcription of kids’ speech. The framework leverages a customized speech
encoding procedure incorporating phonetic information enhancing downstream performance.

ited to the use of the widely popular datasets of Librispeech (Panayotov et al., 2015) and
Librivox (Shankar et al., 2024), while also incorporating some of the lesser-known open-
source datasets such as WSJ (Garofolo et al., 1993), CORAAL (Shankar et al., 2024), and
TED-LIUM (Rousseau et al., 2012), along with their processed versions. Furthermore, the
dataset creation phase itself for kids is burdened by the labour-intensive nature of the task,
considering the nuanced speech and articulation patterns of children. This often leads to
current approaches assuming proper pronunciation and articulation, failing to account
sufficiently for kids’ speech, and faltering significantly more with accented and non-
native kids’ speech, often generating offensive and inaccurate transcriptions (Ramesh
et al., 2022). As an exemplar, the following transcription showcases a child’s speech using
the state-of-the-art ASR systems, Whisper (Radford et al., 2023) and Wave2Vec 2.0
(Baevski et al., 2020). The child is a 4-year-old non-native boy.

Utterance: and they are looking at the frog; and because he cracked his egg
Whisper: and they recognize the fog; and because do you grab this egg?
Wav2Vec: unfated in that the fog; and because fee practis ed

In an attempt to overcome these major hurdles, we introduce KidSpeak, a speech-based
LLM with multi-task capacities of ASR, gender and dialect identification, and speech pathol-
ogy classification, trained on a curated corpus of kids’ speech through instruction tuning.
The framework is based upon the foundations of spoken language understanding adapted
towards kids’ speech transcription and diagnosis of speech language pathologies. We train
the method using a specialized two-stage procedure, wherein we utilize simultaneous pho-
netic and English transcription as a pre-training task for the Whisper ASR model in order
to incorporate phonetically informed encoding capacities into the encoder of Whisper, as
the first stage. Subsequently, the encoder of the model is used in the final framework.
Additionally, we acknowledge several limitations inherent in the existing datasets for chil-
dren’s speech. Given the scarcity of relevant data, we explore the CHILDES (MacWhin-
ney, 2000b) corpus as a resource for children’s speech. However, it is important to note that
the transcriptions within this dataset are significantly compromised. The annotators
involved are often engaged in multifaceted tasks, as the children included in the corpus
frequently exhibit speech and language disabilities. Consequently, some annotators focus
specifically on issues such as stuttering or speech sound disorders, while others address di-
alectical variations. This diversity in annotation purpose leads to inconsistencies in hu-
man transcriptions, limiting their applicability for developing robust automated systems.
We therefore develop a new forced alignment tool Flexible and Automatic Speech
Aligner (FASA), allowing us to extract accurate, aligned, and well-segmented audio seg-
ments and the corresponding transcriptions under flexible conditions, creating a corpus for
KidSpeak. Our main contributions are, 1 We develop KidSpeak, a novel multi-task
speech-based foundation language model aimed at diagnosis and transcription of children’s
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speech. 2 We innovate a two-stage training procedure for the audio encoder, in order
to incorporate phonetic information into the encoder, provably enhancing the downstream
performance of the framework. 3 We develop the Flexible and Automatic Speech
Aligner, a novel forced alignment tool, enabling extraction of accurate and aligned audio
from noisy speech and demonstrate its utility over the CHILDES corpus in our framework.

2 Related Work

Availability of data over the visual and descriptive-visual domain has spurred a preponder-
ance of work towards understanding the visual domain. We witness a similar emergence in
the aural understanding domain. Herein we provide an abridged summary of the contem-
porary work relevant to this manuscript. A more detailed description of the literature is
provided in the Section A.1 under the Appendix.
Speech-based LLMs and Spoken Language Understanding: Challenges in encoding
speech with LLMs stem from handling long sequences of audio. GSLM (Lakhotia et al.,
2021), TWIST (Hassid et al., 2024), and SpeechGPT (Zhang et al., 2023) address them by
using quantized speech representations using models such as HuBERT (Hsu et al., 2021).
While others employ log-mel spectrograms to develop representations which are then com-
bined with textual data for multi-modal generative tasks, such as speech recognition, gen-
eration and understanding (Fathullah et al., 2024; Nachmani et al., 2023; Zhao et al., 2023;
Gong et al., 2023), using ASR models such as Whisper (Radford et al., 2023), Wav2Vec
(Baevski et al., 2020), Conformer (Gulati et al., 2020), and AST (Gong et al., 2021), or
using multimodal retrieval based models such as ImageBind (Girdhar et al., 2023) like the
PandaGPT (Su et al., 2023). Our work innovates techniques essential for processing and
understanding of kids’ speech.
Kids’ Speech: A key limitation of current works is the insufficient handling of nuanced
speech variations, such as accents, dialects, intonations, and developmental or disordered
speech, as is typical in children. The field of children’s speech recognition remains under-
researched, with only a few notable approaches, such as LSTM-based disfluency detection
(Venkatasubramaniam et al., 2023) and teacher-student models (Plantinga & Fosler-Lussier,
2019). To the best of our knowledge, this work is the first to propose leveraging LLMs
as multi-task models with diagnostic capabilities for children’s speech, offering substantial
potential in the domain of speech therapy and supporting Speech-Language Pathologists.
Forced-Alignment Toolkits Traditional audio-transcription alignment relies on human
annotators (Boersma & Weenink, 2007; Grover et al., 2020), which is not scalable for large
datasets. While Kisler et al. (2017) offers components of a forced-alignment pipeline, it does
not solve the alignment issue. Sheng et al. (2019) uses GANs for data augmentation in chil-
dren’s ASR datasets but does not introduce new data. Several studies utilize human-labeled
transcriptions for forced-alignment (McAuliffe et al., 2017; Rodd et al., 2021; Zhang et al.,
2023; Liu et al., 2023), with the Montreal Forced Aligner (MFA) being prominent (McAuliffe
et al., 2017). However, MFA demands perfect alignment, limiting its effectiveness. Our work
improves over existing works and over human annotators by margins of over 13×.

3 Method

We describe the method that we implement in order to create a multi-purpose speech LLM
that exhibits potential as a useful diagnosis tool for speech-related impairments. The frame-
work is trained using instruction finetuning. In summary, we utilize an audio encoder
pre-trained using a targeted procedure, to generate representations which are subsequently
post-processed and prepended to the textual embeddings and processed by a pre-trained
LLM in order to generate answers. The main framework is illustrated in Figure 2. We
employ the pre-trained Vicuna 7B model (Chiang et al., 2023) as our main LLM2. We note

2We choose Vicuna as it is one of the best LLMs we began with. Due to computational contraints,
we did not try other strong pretrained LLMs. However, we believe they would perform similarly
and our conclusions remain.
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Whisper Encoder

Hello! How have you been?

Vicuna 7B (LoRA)

Human: Please transcribe the speech.
Model: Hello! How have you been?

Text Embedding Matrix

Figure 2: The Proposed Framework: KidSpeak uses phonetically informed speech
features from the pre-trained multi-head Whisper encoder. The features are concatenated
with the text embeddings of the instructions during training endowing the framework with
spoken context and textual instruction through self-attention.

that our data exhibits a significant domain gap from the pre-training, both in terms of
format (audio vs text) and content (kids’ speech). Therefore, in order to retain the general
capacity of the LLM and avoid overfitting to the newer data, we finetune the LLM using Low
Rank Approximation (LoRA) (Hu et al., 2021). This additionally helps with the memory
footprint of the model, allowing for larger batch sizes.

3.1 Speech Based LLM

Human: < Aud > A < /Aud >
Human: Yq1 < STOP > Assistant: Ya1 < STOP >
Human: Yq2 < STOP > Assistant: Ya2< STOP > . . .

Figure 4: Instruction Template: We illustrate two instructions in the general input
sequence that we implement to for the IFT procedure. The conversation structure comprises
alternating exchanges between a human user and the KidSpeak, where tags < Aud > and
< /Aud > demarcate the audio representations. The framework is trained to predict Yat

using the aural and instructional context. The < STOP > is set to ### in practice.

We employ a Whisper-based encoder for speech in our main framework. The audio repre-
sentations from Whisper are prepended to the text embeddings consisting of instructions
and the teacher-forced output. The complete sequence is further processed using the Vicuna
LLM, incorporating self-attentive mechanism thereby incorporating audio-lingual context in
order to learn and generate informed inference. However, we note that the native implemen-
tation of the Whisper encoder generates encodings of shape batch size×1500×768 leading
to a significant increase in the memory footprint of the model due to the extensive sequence
length and the consequent self-attention matrices. We therefore apply a post-processing
step to the feature tensors produced by the Whisper encoder. This step aims to reduce
the final input sequence length whilst minimizing information loss. In this procedure, we
aggregate multiple consecutive audio features (Figure 3) to form a cumulative representation
that spans 80 milliseconds per feature vector. The aggregated features are then processed
through a two-layer adapter network to align the feature space dimensions with those of the
textual embeddings, which are further processed using the LLM. For each audio sample i,
we create a multi-turn instruction following dataset (Y(i)

q1 , Y(i)
a1 ...Y(i)

qT , Y(i)
aT ) illustrated in the

Figure 4, wherein the instructions are randomly ordered during training. The framework is
then trained using a conditional auto-regressive prediction objective

arg min
θs,θm

N∑
i=1

T∑
j=1

L(i)
j , with L(i)

j = −
T (i)

aj∑
t=1

log P
(

y(i)
aj,t

| y(i)
aj,<t

, A(i), Y(i)
qj

; {θenc, θs, θm}
)

,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

for a sample indexed i and the instruction j. The speech contexted LoRA parameters θs

and the adapter MLP parameters θm are estimated, conditioning upon the speech sample
A(i) represented due to the frozen speech encoder parameters θenc and the instruction Yqj .
We train the framework to predict the answer Y(i)

aj of length T
(i)
aj . Additionally, we find that

the a targeted encoding scheme for θenc benefits the framework, as we detail next.

3.2 Multi-head Whisper Pretraining

… … … …

20 ms

80 ms

Whisper Encoder

Whisper Encoder

Figure 3: The speech embeddings
are post-processed through a
stacking mechanism (Top), ensur-
ing adequate granularity. There-
after the stacked features are pro-
jected onto the feature space of
the LLM, ensuring synchroniza-
tion between the two modalities.

A preponderance of developing speech is character-
ized by phonetic challenges wherein the child mispro-
nounces similar phonetic units (Munson et al., 2012).
Speech and language therapists must proficiently uti-
lize phonetics for transcription to accurately diag-
nose and treat speech-sound disorders (Munson et al.,
2012; Ball & Rahilly, 2002). Therefore, reliable pre-
training in phonetic transcription is imperative, as
inaccuracies can significantly affect clinical manage-
ment and therapeutic outcomes. In recognition of
these facets in diagnosis, we conduct a separate pro-
cedure in order to endow the speech encoder with
phonetic information. The audio encoder employed
is based on the Whisper model which is designed
to encode mono-channel audio sampled at 16 kHz,
which is then transformed into log-Mel spectrogram
images. The encoder generates audio features, with
each feature tensor corresponding to a 20-millisecond
segment of audio. For optimal performance, we uti-
lize the default configuration, which processes audio
in 30-second chunks, and affix it with separate ded-
icated decoders for the orthographic English tran-
scription and phonetic transcription as illustrated in
Figure 5. This essentially yields a training regime wherein the same encoder facilitates both
textual and phonetic transcriptions while the two decoders specialize in decoding the fea-
tures into phonetic and English transcriptions respectively. The model is then trained using
the next token prediction loss for both decodings simultaneously. The objective is,

arg min
θenc,θ

(en)
dec

,θ
(ph)
dec

N∑
i=1

L(i)
ar , where (1)

L(i)
ar = −

T (i)
e∑

t=1
log P

(
y

(i)
t,e | y

(i)
<t,e, A(i); {θenc, θ

(en)
dec }

)
−

T (i)
p∑

t=1
log P

(
y

(i)
t,p | y

(i)
<t,p, A(i); {θenc, θ

(ph)
dec }

)
,

where L(i)
ar is the combined auto-regressive loss for the i-th sample, T

(i)
e and T

(i)
p are the

lengths of English and phonetic transcriptions, y
(i)
t,e and y

(i)
t,p are the target tokens, y

(i)
<t,e and

y
(i)
<t,p are preceding tokens and A(i) is the input audio. We specify the decoder parameters

separately with θ
(en)
dec and θ

(ph)
dec representing the English and the phonetic decoders respec-

tively using the same encoder parameters θenc. We also utilize a special token |phn| to
signify phonetic decoding. However, we hypothesize that explicit measures towards align-
ment of the two decoders may lead to enhanced generalization and understanding of the
language through a unified feature space representation. Therefore, in order to enhance the
alignment of the transcription mechanisms, we further process the downstream features of
the decoders using two additional mechanisms.

Contrastive Alignment A cross-entropy-based contrastive loss (Chen et al., 2020) is
incorporated, utilizing the |startoftranscript| token from both decoders to align pairs of En-
glish and phonetic sequences derived from the same audio more closely, while simultaneously
separating sequences originating from different audio samples, formulated as,
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Encoder Block

Encoder Block

Encoder Block

Encoder Block

Decoder Block

Decoder Block

Decoder Block

Decoder Block

Decoder Block

Decoder Block

Decoder Block

Decoder Block

EN Trans
cribe

QKV Align

Contrastive
Align

Log - Mel Spectrogram

Encoder Decoder En Decoder Phn

The …quick brown Trans
cribe ðə …kwIk braʊn

EN Trans
cribe The …quickSOS

PHN

Trans
cribe ðə …kwIkSOS PHN

Figure 5: Multi-head Whisper: We employ two separate decoders to decode the same
speech segment in English and its Phonetic counterpart. The decoders are further aligned
using contrastive and cross-attentive mechanisms, synchronizing the procedure.

L(i)
con = − log

exp
(

sim
(

h(i)
sos,e, h(i)

sos,p

)
/τ
)

∑B
j=1 exp

(
sim

(
h(i)

sos,e, h(j)
sos,p

)
/τ
) , (2)

where L(i)
contrastive represents the contrastive loss for the i-th sample, where h(i)

sos,e and h(i)
sos,p

are the hidden states for the English and phonetic decoders, respectively, sim(·, ·) denotes
the similarity function, τ is the temperature parameter, and the denominator sums over
similarities over a batch of size B.

Cross-attentive Alignment This mechanism leverages cross-attention to synchronize
the hidden states from two decoders derived from the same audio input. We implement the
mechanism over the final hidden states of both decoders as formulated below,

Residual(i)
p =

(
Softmax

(
(H(i)

e U)(H(i)
p U)⊤

√
dk

)
(H(i)

p U) · D

)
+ H(i)

p , (3)

Residual(i)
e =

(
Softmax

(
(H(i)

p U)(H(i)
e U)⊤

√
dk

)
(H(i)

e U) · D

)
+ H(i)

e , (4)

where H(i)
e and H(i)

p represent the hidden states of English and phonetic transcriptions,
U(768 × 1024) and D(1024 × 768) the upward and downward projection matrices, and dk

the dimensionality of the keys. The upward projection enriches the representation space to
capture detailed alignments, while the downward projection ensures the contextualized out-
puts are compatible with the original dimensions. In practice, we implement this mechanism
using multi-head attention with 16 heads. The residuals are ultimately used in the evalua-
tion of Lar in Equation 1. A detailed justification for this scheme is provided under Section
A.2.1. In summary, these alignment mechanisms ensure that phonetic and orthographic
transcriptions are not only aligned but also mutually reinforcing, enhancing the encoder’s
ability to generate accurate and contextually relevant transcriptions for both modalities,
ultimately improving the model’s overall performance and utility in downstream tasks. The
model is subsequently trained end-to-end using a linear combination of the two resulting
loss functions given by L(i)

whisper = L(i)
ar + λL(i)

con.

4 Dataset Construction

In this section, we present the Flexible and Automatic Speech Aligner (FASA), a
novel toolkit designed for forced alignment to create high-quality fine-tuning datasets. A

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

robust children’s speech model necessitates a large, diverse dataset with accurately aligned
audio and transcriptions. However, obtaining such high-quality data is challenging due to
the distinctive speech patterns of children, particularly those with speech and language dis-
orders. Human annotation is labor-intensive and requires domain expertise, as noted by
Miller et al. (2016), with our experience showing that annotating a single audio segment
can take 3-8 times longer than its duration. Additionally, the quality of annotations varies
significantly, especially in datasets like CHILDES (MacWhinney, 2000a), which cater to di-
verse transcription purposes, resulting in many transcriptions being incomplete or irrelevant.
To enhance KidSpeak, a general-purpose forced alignment toolkit is crucial for extracting
high-quality children’s speech datasets from low-quality sources. Existing methods, such as
MFA (McAuliffe et al., 2017), rely on accurate transcriptions, which are often impractical
to obtain. Therefore, we propose a flexible and automated forced alignment toolkit that
addresses various challenges in current children’s speech datasets.

4.1 FASA Design

Given a non-timestamped audio file and its noisy or incomplete transcription, forced align-
ment generates time-stamped audio segments paired with high-quality transcriptions. Kid-
Speak, like many modern automatic speech recognition systems, requires input audio to be
divided into smaller segments during training. For instance, the Whisper model (Radford
et al., 2022) pads or trims audio inputs to 30 seconds. Consequently, when associating a
non-timestamped transcription with a lengthy audio file, a forced-alignment toolkit is essen-
tial for creating a model-compatible dataset. Formally, the forced-alignment task involves
an audio sample containing n utterances, A := {A1, A2, ...An}, and a transcription of m
“words,” T := {T1, T2, ...Tm}. A “word” in T represents a fundamental unit of transcrip-
tion, which may refer to a sentence, a single word, or a phonetic symbol. The goal is to
associate each Ai with its corresponding words in T , from Tsi to Tei, or indicate that Ai

lacks a transcription in T . We denote this association as Ai = (Tsi, Tei). A robust auto-
alignment system should exhibit two crucial features. First, it must not assume that if
Ai = (Tsi, Tei) and Aj = (Tsj , Tej) with i < j, then ei < sj; an utterance appearing earlier
in the audio does not guarantee its early appearance in the transcription. Second, Ai may
lack a corresponding (Tsi, Tei), implying that Ai = ∅. This means not all audio segments
have transcriptions, and some audio may remain untranscribed. Similarly, Tk ∈ T does not
imply Tk ∈ A; not every word in the transcription corresponds to an audio segment. These
features are essential as they relax the need for completeness and order in the provided
transcription, mirroring more realistic scenarios. While a common method for obtaining
large datasets of paired audio and transcriptions is through Internet scraping, many online
transcriptions are noisy and incomplete, often with missing or misordered entries. Under
these conditions, existing forced-alignment toolkits, such as those proposed by McAuliffe
et al. (2017), are inadequate. Further details are discussed in Appendix A.1.

GTk =
{

TAk
= {Ti, Ti+1, ..., Tj}, if TAk

∈ T

∅, otherwise (5)

4.2 Workflow

FASA follows a five-module pipeline to automatically segment, label, and align a long audio
file with its transcription, as illustrated in Figure 6. Among the five modules, the second
and third are mandatory, whereas the other three are optional for enhancing the quality
and quantity of the dataset. These five modules together maximize the correctness of forced
alignment under flexible conditions. 1⃝ The first module applies a regular expression to
clean the provided transcriptions and to exclude any non-alphanumeric characters. 2⃝ For
the second module, modern ASR models will be used to obtain word-level timestamps of the
transcriptions. Currently, sentence-level separations from the provided model are used as
the segmentation marks for long audio. 3⃝ After the second module, a folder consisting of
audio segments and their corresponding predictions will be generated. The set of predictions
for sentence-level utterances will be denoted as T̄ = {T̄1, T̄2, ..., T̄n}. For each utterance Ak,
its predicted transcription will be Ak = ¯TAk

. The third module will apply a sliding-window
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Figure 6: Pipeline of FASA: The input is an audio file and a transcription. Module 1⃝
optionally cleans the input transcription; module 2⃝ segments and makes predictions on
the audio; module 3⃝ forced-aligns audio segments with the provided transcription using
Algorithm 1; module 4⃝ performs post-generation checking (PGC); and module 5⃝ allows
user to augment dataset via manual selections. The entire system besides module 5⃝ is
automatic.
Algorithm 1 (in Appendix A.6) to find the best matching from the provided transcription
(T ) for each utterance (Ak). After this module, two datasets will be generated. The first
dataset DATAalign is what the algorithm finds close alignment between the prediction and
provided transcription that is within a threshold. The second dataset DATAverify is what
the algorithm finds slight mismatches between the prediction and the transcription. For
DATAalign, the provided transcription from T will be used as the ground truth of the
utterance. 4⃝ The fourth module, post-generation checking (PGC), is an optional module
that iterates through DATAalign to find if there are significant mismatches between a second-
round prediction and the aligned transcription on sentence length. The implemented metric
for PGC is based on the difference in sentence length between the results of a second-round
prediction and the aligned transcription. If the difference is greater than a threshold, the
utterance and its transcription will be removed from DATAalign. 5⃝ The fifth module, user
selection, is an optional module that launches a graphical-user-interface (GUI) that allows
the user to listen to, select, or input correct transcription for each utterance in DATAverify

so that they could be added to the dataset. After the two optional modules, FASA assumes
the validity of DATAalign, which will be used as the final output dataset. Furthermore,
FASA features additional qualitative and user-friendly traits as described in Section A.3.

Table 1: Dataset and attribute specifications: We present the attributes that we avail
from the various dataset compiled to create the training corpus. Dis.: Disorder Labels,
Age: Exact Ages of the speakers, Gen.: Gender attribute information, Trans.: Speech
transcription for the audio.

Dataset Speakers Utterances Time Dis. Age Gen. Trans.
UPX 20 2789 07:01:23 ✓ ✓ ✓ –
CSR 11 639 00:26:58 – – ✓ ✓
ENNI (FASA) 352 4402 15:16:51 – ✓ ✓ ✓
Clinical Eng (FASA) 1540 59539 30:11:40 – ✓ ✓ ✓
Clinical Other (FASA) 292 59539 4:18:16 – ✓ ✓ ✓

4.3 Dataset Specifications

We compile multiple open-source datasets in order to test our framework against a wide
variety of instructions, in addition to datasets generated by FASA leading to over 57 hours
of high-quality data. The corpus was built in order to adequately represent children with
speech pathologies and those with clear speech, and containing a rich collection of speaker
related attributes that we aim our method to predict and generate. We summarize the data
in Table 1. A broader description of the datasets is provided in Section A.4.
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5 Evaluation

We conduct training and performance evaluation of our method across several distinct tasks,
each based on specific speech traits. These traits are extracted from the corresponding
ground-truth labels available in the datasets referenced in Table 1. The tasks are described
as follows:

◆ Disorder Classification: Speech disorders are categorized into the following classes:
1 inconsistent phonological disorder, 2 consistent phonological disorder, 3 child-
hood apraxia of speech, 4 phonological delay, 5 vowel disorder, 6 articulation
disorder, and 7 no disorder, based on the ground truths provided in the Ultra-
phonix (UPX) subset of the Ultrasuite repository Eshky et al. (2019). Detailed
descriptions of these disorders are provided in Section A.5.

◆ Gender Classification: We conduct binary gender classification using the ground-
truth gender labels available in the datasets. Predictions are made only where
gender information is explicitly provided.

◆ Age Group Classification: Age labels are sourced from the ENNI dataset. To ac-
count for the minimal acoustic differences between closely aged children, we divide
the age range into two groups: 1–5 years and 6–13 years.

◆ Transcription: We compile the transcriptions available for the kids with no speech-
related disorders in order to create a reliable benchmark for training and evaluating
speech recognition models. We train the framework to transcribe the speech and
evaluate using the word error rate and character error rate metrics.

We evaluate the performance of the classification tasks using the accuracy of inference.
Additional details for the configuration of the training setup are provided under Table 6.

Table 2: Whisper MH com-
parison. We evaluate the Pho-
netic Error Rate (PER) for our
scheme comparing against fine-
tuned open-source ASR models
and ablate the alignment objective
over the TIMIT dataset (Garo-
folo, 1993). (MH-1: Whisper
with two decoders; MH-2: MH-1
+ Cross Attn.; MH-3: MH-2 +
Contrastive Alignment)

Method PER

Whisper 10.1
Wav2Vec 2.0 9.7
Whisper MH-1 9.6
Whisper MH-2 9.2

Whisper MH-3 8.6

Phonetic Pre-training Enhances Speech Di-
agnosis and Transcription in Kids In addi-
tion to garnering benefits over the KidSpeak frame-
work, the aligned training procedure for the Whis-
per model is beneficial for the transcription perfor-
mance of the Whisper model as shown in Table 2,
where we evaluate the Phonetic Error Rate of the
models using various configurations. The multi-task
evaluation in Table 3 compares the performance of
KidSpeak and KidSpeak (MH-Whisper) in addi-
tion to the PandaGPT (Su et al., 2023), which we
adapt to our application of children’s speech diag-
nosis. While KidSpeak achieves a strong perfor-
mance in gender classification and disorder classifi-
cation, the MH-Whisper variant shows notable im-
provements in disorder classification, word transcrip-
tion, and character transcription accuracy. Addition-
ally, both methods maintain high accuracy in age-
group classification significantly overcoming the per-
formance of PandaGPT. Overall, the MH-Whisper
demonstrates a significant enhancement in transcrip-
tion and classification tasks compared to the original
KidSpeak. The performance of the MH-Whisper model, which integrates phonetic and
English data, underscores the critical role of phonetic knowledge in tasks related to children’s
speech. Children often exhibit unique speech patterns, including phonological disorders and
developmental variances. By incorporating phonetic information, the model better under-
stands these nuances, allowing it to differentiate subtle pronunciation variations common
among young speakers. This phonetic grounding enhances the model’s ability to general-
ize across diverse dialects and individual speech patterns, ultimately contributing to more
reliable assessments and interventions in speech-related applications for children.
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Table 3: Multi-Task Evaluation: We present the evaluations through mean scores over
three separate runs for the tasks. a±b notation represents mean and standard error of the
runs. GCA: Gender Classification Acc., DCA: Disorder Classification Acc., WTA: Word
Transcription Acc., CTA: Character Transcription Acc., ACA: Age-group Classification
Acc. (WTA = 1 - Word Error Rate and CTA = 1 - Character Error Rate).

Method GCA DCA WTA CTA ACA Average
PandaGPT 61.0±0.3 42.6±4.1 6.6±1.9 13.6±1.2 84.3±0.4 50.3±2.3
KidSpeak 73.8±0.4 85.0±2.9 82.2±0.4 87.0±0.3 93.8±0.5 84.4±0.9

KidSpeak (MH-Whisper) 73.3±0.1 88.8±2.3 87.8±0.2 91.0±0.2 94.1±0.1 87.0±0.6

Table 4: Manual inspections on the generation quality of FASA on two randomly selected
audio files and their transcriptions. AU: Aligned Utterances, AW: Aligned Words.

Model AU AU Error (%) (AW) AW Error (%)
MFA 17 16 (94.12%) 1524 1523 (99.93%)

FASA 81 1 (1.23%) 903 2 (0.22%)

FASA alignment Outperforms Human Annotators Considering the vast size of the
dataset, we randomly selected two audio files and transcriptions from the 352 recordings in
the ENNI dataset, and report the manual inspection results for data generated by FASA
with these files in Table 4. Several results are worthy of emphasizing here. First, since
the transcriptions are noisy, MFA (McAuliffe et al., 2017) completely fails to properly align
the audio segments with the correct transcription. 3 To be specific, both documents have
missing transcriptions corresponding to the beginning of the audio, which results in 99.93%
AW Error. This is because MFA tries to align all the words from the beginning, but since
those words do not have available transcriptions, the entire system fails. Second, FASA
incorrectly aligns one utterance with its transcription. For that utterance, it misses the “so
the” sound at the end of the utterance, and the two words are not recorded into the aligned
transcription. Manual inspection finds that the speaker stuttered and repeated “so the”,
which might be the issue of the model not picking up that trailing sound in the segmented
utterance. Lastly, FASA’s result is potentially much better than human annotators. Attia
et al. (2023) reports that 5 out of 393 hours of speech in MyST dataset (Pradhan et al.,
2023) are potentially incorrect with WER> 50%, resulting in 3% increase in WER for the
entire training dataset. Compared to human annotators that were used to annotate MyST,
FASA achieves one magnitude lower WER (13.6×) without requiring any human labor.

6 Conclusion

In conclusion, this work presents significant advancements in the field of children’s speech
analysis. First, we introduce KidSpeak, a pioneering multi-task speech-based foundation
language model designed specifically for diagnostic tasks pertaining to children’s speech.
Second, we propose an innovative two-stage training procedure for the audio encoder that
effectively integrates phonetic information, leading to marked improvements in both diag-
nostic and transcription performance, as well as downstream performances when integrated
with KidSpeak. Finally, we develop the Flexible and Automatic Speech Aligner,
a novel forced alignment tool that extracts accurate and aligned audio from noisy speech,
allowing us to create a high quality kids’ data corpus. Collectively, these contributions en-
hance the capabilities of speech analysis frameworks for children, paving the way for future
research and applications in this critical area.

3This is not to say that MFA is not a good model. MFA works fine with high-quality tran-
scriptions that are an approximate match of the audio. However, if the audio/transcription match
before the alignment is not good, MFA will not produce anything meaningful.
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Anthony Rousseau, Paul Deléglise, and Yannick Esteve. Ted-lium: an automatic speech
recognition dedicated corpus. In LREC, pp. 125–129, 2012.

Susan Rvachew and Donald G Jamieson. Perception of voiceless fricatives by children with a
functional articulation disorder. Journal of Speech and Hearing Disorders, 54(2):193–208,
1989.

Tara N Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. Convolutional, long short-
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A Appendix

9y old Girl: ”The frog jumped off the box.”
User: Determine the gender of the speaker in this clip.
KidSpeak: The child in the clip is a girl.

4y old Boy: ”The elephant grabs it and drops it in the water.”
User: Transcribe the spoken words into text.
KidSpeak: The elephant grabs it and drops it in the water.

7y old Boy: ”Just turn the tap on for water.”
User: Evaluate whether the speech in this clip is typical or impaired.
KidSpeak: The manner of speaking seems natural.

10y old Girl: ”The hippo jumps in the pool.”
User: Estimate the age-group of the speaker from this clip.
KidSpeak: It is estimated that the speaker may be between 6 - 13 years old.

Table 5: Conversation with KidSpeak.

A.1 Related Work

Audio-Visual Understanding: Contemporary work has attained remarkable feats with
regards to understanding the visual and lingual modalities, often in synergy with each other,
owing to the large scale availability of datasets facilitating research. Several works includ-
ing but not limited to LLaVA (Liu et al., 2024), PaLME (Driess et al., 2023), Flamingo
(Alayrac et al., 2022), BLIP (Li et al., 2022) and GPT-4 (Achiam et al., 2023) incorpo-
rate instruction based tuning in order to incorporate multi-modal capabilities in language
models. The training routines for these methods involve tokenization of the image modality
allowing for the formation of a sequence which one may incorporate into instruction/text to-
ken sequences using self attention (LLaVA, PaLME), cross attention (Flamingo) or through
a separate network (BLIP). This often consists of multiple stages wherein the initial set of
stages are aimed at priming the learnable parameters for the newer modality. In view of
their tremendous potential, we also witness applications of these advancements helping sig-
nificantly enhance human-AI interaction by improving search engines, supporting creative
tasks, and, importantly, advancing accessibility, particularly for the image modality. For
instance, these technologies can be utilized to enhance accessibility tools, such as through
augmented communication (Chanjaradwichai et al., 2019), as assistive learning tools (Pad-
manabha et al., 2024; Kazemitabaar et al., 2024) and sign language recognition systems
(Gong et al., 2024).
Speech based LLMs and Spoken Language Understanding: Encoding speech us-
ing LLMs is faced with challenges associated with encoding very large sequences of aural
representations, given that a 16kHz sampling of one second of audio contains 16000 unique
representations of the medium in the frequency domain. However, several recent contribu-
tions quantized representations of speech provided by the HuBERT (Hsu et al., 2021), as
leveraged by the works of Generative Speech Language Modeling (Lakhotia et al., 2021),
TWIST (Hassid et al., 2024) and SpeechGPT (Zhang et al., 2023) wherein based on the
applications, the representations are used in transformer (Vaswani, 2017) based encoder
decoder systems or are combined with the textual embeddings in order to construct an
interactive multi-modal system using instruction based tuning, with generative capabilities
in audio. Another encoding scheme for audio is the use of log-mel spectrograms, processed
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using encoders such as Whisper (Radford et al., 2023), Wav2Vec Baevski et al. (2020),
Conformer (Gulati et al., 2020) and the AST (Gong et al., 2021), in order to generate
discrete representations which may similarly be combined with textual representations for
understanding and generative tasks. Fathullah et al. (2024) incorporate the conformer ar-
chitecture in order to enable speech recognition in LLMs. Spectron (Nachmani et al., 2023)
uses the conformer encoder and splits the aural representations into prompt and continua-
tion, enabling the continuation of aural speech and language using prompt during inference.
Zhao et al. (2023) use the WavLM (Chen et al., 2022) and the Wav2Vec encoders whereas
Gong et al. (2023); Ghosh et al. (2024) utilize the AST model and develop a question
answering based training procedure to inculcate understanding in a LLM using the aural
representations.
Kids’ Speech: A predominant drawback of the concurrent works is the lack of support
for nuanced speech based on a variety of accents, dialects and intonations, or developing or
disordered speech as often characterized by kids. This challenge is further exacerbated by
the relative lack of attention and research in the field of children’s speech recognition and
correction, resulting in a limited number of robust solutions tailored specifically to these
needs. Liao et al. (2015) use a LSTM (Hochreiter & Schmidhuber, 1997) and CLDNN
(Sainath et al., 2015) based architectures towards transcription and reduction of offensive
generations. Plantinga & Fosler-Lussier (2019) use a GRU (Cho, 2014) based architecture
with alignment loss to discourage generation during silence and a teacher student loss in
order to improve transcription performance. Ramesh et al. (2022) leverage a masked word
prediction based cloze task inspired by BERT based encoder systems in order to correct
offensively transcribed speech by existing ASR systems. (Venkatasubramaniam et al., 2023)
develop an LSTM based disfluency detection and classification architecture over an existing
ASR system in order to enhance transcription. However, to the best of our knowledge, this
is the first work that proposes utilizing a large language model (LLM) as a multi-task model
with diagnostic capabilities within the speech domain. We anticipate that this represents
a promising avenue for future research, offering substantial benefits in the realm of speech
therapy for kids and complementing the extensive efforts of Speech-Language Pathologists
(SLPs).
Forced-Alignment Toolkits: Traditionally yet still prevalently, alignment between the
audio and its transcription is done via human annotators on various software (Boersma &
Weenink, 2007; Grover et al., 2020). However, as discussed earlier, such practice is not
scalable for large datasets. Kisler et al. (2017) contains some parts of a complete forced-
alignment pipeline, but it does not address the fundamental problem of aligning audio
with its transcription. Sheng et al. (2019) uses generative-adversarial networks (GAN) to
perform data augmentation on children ASR dataset, but their work does not introduce
diverse new data to the field. Recently, the Talkbank project announced its data processing
pipeline that converts raw audio into CLAN-annotated transcriptions (Liu et al., 2023).
While their work uses a similar backbone structure as ours, their complete pipeline relies
on transcription generated by ASR models, whereas we faithfully adhere to the provided
transcription as the ground truth. Thus, on downstream tasks such as fine-tuning ASR
models, our dataset will be more usable because datasets generated by ASR models might
cause severe degradation according to (Radford et al., 2022). On the other hand, there have
been several works on forced-alignment ASR datasets with the assistance of human-labeled
transcriptions (McAuliffe et al., 2017; Rodd et al., 2021; Zhang et al., 2023; Liu et al., 2023),
with Montreal-Forced-Aligner (MFA) being the most popular toolkit (McAuliffe et al., 2017).
MFA incorporates Kaldi (Povey et al., 2011) as the backbone, which uses the Gaussian
Mixture Model (GMM) for its transcription generation process. However, while MFA works
well with carefully annotated transcriptions, it requires the transcription to have a perfect
match with the audio. That is, A1 → {T1, T2, ..., Ti}, A2 → {Ti+1, Ti+2, ..., Tj}, and so forth.
Liu et al. (2023) faces similar issues that it lacks global matching ability between audio and
transcription, hindering its usage in some subsets of the speech corpus. Moreover, while
recent multi-modal large language models (MLLM) might have the potential of automating
the alignment process (Zhang et al., 2023), they are much more resource-intensive compared
to specific ASR models.
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A.2 Phonetically Endowed Multihead Whisper

A.2.1 Decoder Alignment in Multi-head Whisper

The two alignment mechanisms address a critical need for alignment between phonetic and
orthographic transcriptions within multi-modal speech processing systems. This alignment
is essential for several reasons:

◆ Phonetic and Orthographic Consistency: Phonetic transcriptions represent the pro-
nunciation of words, focusing on sounds, while orthographic transcriptions represent
the written form of language. Aligning these two modalities ensures that the pro-
nunciation (phonetics) and spelling (orthographics) are consistent with each other.
This consistency is crucial for tasks such as speech recognition and language learn-
ing, where accurate mapping between spoken and written forms is required.

◆ Enhanced Encoder Utility: By aligning phonetic and orthographic transcriptions
through the shared encoder, the model benefits from enriched feature representa-
tions. The encoder, which is common to both decoders, learns to produce more
comprehensive and phonetically aware representations. This shared learning helps
the encoder capture nuances that prove to be critical for improved understanding
of pronunciation based nuances necessary for improved diagnostic capacities.

◆ Robust Multi-Modal Learning: Aligning the hidden states of phonetic and ortho-
graphic decoders allows the system to leverage complementary information from
both transcriptions. Phonetics provides insights into pronunciation nuances, while
orthographics offer context about spelling and grammar. The combined insights
from both modalities lead to a more robust and versatile model capable of handling
diverse linguistic tasks.

In the following, we demonstrate the phonetic capacities of our scheme using comparisons
with Whisper and Wav2Vec trained over TIMIT. The phonetic alphabet used natively
by TIMIT is illustrated here for selected samples. We notice that all of the models capture
a meaningful pronunciation for each word of the examples listed. However, the targeted
alignment scheme of our method captures the nuances in pronunciation, audible in the
ground truth phonetic captioning, enabling a more accurate transcription and henceforth,
better encoder representations, for therapeutic downstream tasks.

1. SCRIPT: She had your dark suit in greasy wash water all year

Groundtruth: shih hhehjh jhih pau dahk suw n pau grishih waash waadxer aal
yiher
Wav2Vec: shix hvehjh jhuh pau dahk suxq en pau grisix waosh waodxax aol
yihaxr
Whisper: shix hvehjh jhih pau dahk suxq en pau grisxix waosh waodxaxr aol
yihaxr
Whisper ours: shih hhehjh jhih pau dahk suw n pau grishih waash waadxer aal
yiher

2. SCRIPT: Don’t ask me to carry an oily rag like that

Groundtruth: down aes pau my th pau kehriy ihn oylih raeg lay dhae
Wav2Vec: down aes pau my pau tx pau kehriy ixn qoyliy raeg lay dhae
Whisper: down aes pau my pau tx pau kehriy ixn qoylih raeg lay dhae
Whisper ours: down aes pau my th pau kehriy ihn oylih raeg lay dhae

A.2.2 Disorder detection

In the following, we demonstrate the capacity of the phonetically endowed Whisper model
using speech from the Ultraphonix dataset Eshky et al. (2019). The Whisper model was
trained using the Multihead alignment scheme described in Section 3.2 using the TIMIT
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corpus (Garofolo, 1993). Subsequently, we conduct inference using the phonetic decoder of
the model over the speech of a 4 year old boy undergoing therapy for phonological disorder.
The child mistakenly uses the sound of ”da” in place of ”ga” for words. For instance, the
pronunciation for the word ”luggage” (”LUG-ij”) and ”gore” (”GOw-ar”) here are made
as ”LAD-ij” and ”DOw-ar”. However, post therapy, the child learns to pronounce clearly
as is captured by our model. We use the TIMIT phonetic transcription code here. pau
indicates a pause in speech.

SCRIPT: gore gate get luggage

Instructor: g ow axr pau g ey t pau g eh t pau l ah g ux jh
Child Pre: d ow ax pau d iy t pau d ae t pau l ah d ix jh
Child Post: g ow aa pau g ih g eh ix t pau g ae t pau l ah g ih jh

As is evinced in the illustration, the phonetically endowed Whisper correctly detects the
improvements in pronunciation in pre- vs post- therapy of the child, thereby allowing for
tailored features for targeted therapy based downstream tasks such as those implemented
in KidSpeak.

A.3 Features of FASA

Similar to existing auto-alignment toolkits, FASA requires an audio file and its correspond-
ing transcription. However, due to high uncertainty in the raw dataset, FASA assumes only
a minimal input format and does not require the transcription to be accurate. The ground
truth (GT) for an utterance Ak is defined by Equation 5 in the FASA pipeline. In contrast
to previous forced-alignment toolkits, FASA deliberately ignores utterances without valid
transcriptions, thereby enhancing quality.
FASA also incorporates beneficial design elements from established toolkits to enhance user
convenience, following the same design principles as MFA. Users need only to place the audio
file and its transcriptions in a designated folder before executing the program, after which
all processes are fully automated, enhancing the user experience. FASA allows users to
select and manually input transcriptions for utterances when the provided transcriptions
are suspected to be inaccurate, ensuring precision and user control. Additionally, FASA
features an optional post-generation check to automatically exclude incorrect alignments,
minimizing errors from the underlying model.

A.4 Datasets

The Core-Ultraphonix (UPX) subset of the Ultrasuite repository (Eshky et al., 2019) pro-
vided the labels for speech with pathologies. Additionally, we incorporate the Children’s
Speech Recording (CSR) dataset by Kennedy et al. (2017). With FASA, we convert sub-
sets of the Child Language Data Exchange System (CHILDES) (MacWhinney, 2000a) that
contain English children’s speech. Specifically, we use a collection of 352 children from ages
4 to 9. The children are performing the Edmonton Narrative Norms Instrument (ENNI)
test (Schneider et al., 2005). To the best of our knowledge, this generated dataset will be
the first at-scale high-quality dataset for young children from clinical recordings that is fully
compatible with modern DL systems. While we only use the subset from CHILDES with
rich clinical information for KidSpeak, FASA remains a generic forced-alignment toolkit
that can extract many more datasets than the one used.

A.5 Speech Disorder Classes

The following provides a broad explanation of various speech-related disorders, along with
seminal and intriguing citations in the field of speech-language pathology that KidSpeak
is capable of diagnosing based on the speech patterns exhibited by the child.

◆ Inconsistent Phonological Disorder : This pediatric speech sound disorder is char-
acterized by the inconsistent production of the same words across repeated trials
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(Dodd et al., 2024). For example, a child may say ”bat,” ”gat,” and ”at” instead of
”cat,” or produce ”log” for ”dog” one day and ”fog” the next. Moreover, a child may
say ”fider,” ”sider,” and ”pider” when attempting to pronounce ”spider” (Dodd &
Crosbie, 2010; Carter et al., 2019).

◆ Consistent Phonological Disorder : In contrast, this disorder is marked by the child’s
ability to produce the same errors consistently when attempting to articulate the
same word. For instance, a child may reliably say ”tup” instead of ”cup” or ”wabbit”
for ”rabbit.” Such patterns indicate a stable phonological processing issue, as the
child consistently makes the same substitutions or distortions (Felsenfeld et al.,
1995; Bleile, 2002).

◆ Phonological Delay: This specific speech sound disorder entails developmental
phonological errors that align with typical speech development patterns but per-
sist longer than expected, often for six months or more, which can impact clarity
and sound production (Orsolini et al., 2001). Children acquire speech by learning
entire words rather than individual sounds; as their speech matures, they catego-
rize words by their components, often simplifying sounds or sequences into easier
alternatives (e.g., saying ”ca” for ”cat”) (Waring et al., 2022).

◆ Vowel Disorder : Vowel disorders are marked by difficulties in the positioning and
sequencing of the articulators, particularly the tongue and lips, affecting vowel
quality and accuracy. Incorrect positioning can lead to issues with vowel production,
such as excessively long vowels or distortions. For instance, vowels may be partially
voiced due to challenges in controlling vocal fold vibration, or they may exhibit
excessive nasality from difficulties managing velopharyngeal closure. These spatial,
temporal, and coordination difficulties often result in challenges in vowel production
(Gibbon & Beck, 2002; Ball & Gibbon, 2002). Additionally, children may struggle
with vowel lengthening or shortening, such as elongating the vowel in ”see” for ”sit”
or shortening it in ”cat” as ”kit,” with omissions occurring as well (e.g., saying ”bll”
instead of ”ball”) (Stoel-Gammon & Pollock, 2008).

◆ Articulation Disorder : This type of speech sound disorder is characterized by diffi-
culties in accurately producing speech sounds due to the imprecise use of the lips,
tongue, or throat. Individuals may demonstrate various symptoms, including the
omission of sounds (e.g., final consonants), distortion of sounds (e.g., producing an
”s” sound with a whistle), and challenges in coordinating the movements of their
lips, tongue, teeth, palate, and lungs (Hall & Tomblin, 1978; Rvachew & Jamieson,
1989).

◆ Childhood Apraxia of Speech: Childhood apraxia of speech (CAS) is a neurological
speech sound disorder characterized by impaired precision and consistency of move-
ments underlying speech, absent neuromuscular deficits (e.g., abnormal reflexes or
tone) (Davis et al., 1998; Association et al., 2007; Kummer et al., 2007). Children
with CAS may encounter difficulties in speech production, such as trouble transi-
tioning smoothly between sounds and syllables, groping movements of the jaw, lips,
or tongue, vowel distortions, incorrect stress patterns (e.g., pronouncing ”banana”
as ”BUH-nan-uh,”) equal emphasis on all syllables (e.g., saying ”BUH-NAN-UH,”)
separation of syllables with pauses, inconsistency in errors when repeating words,
and voicing errors (e.g., saying ”down” instead of ”town”) (Carter et al., 2019).

A.6 FASA workflow pseudocode

Here, we provide the pseudocode for the third module of FASA’s workflow in Algorithm
1. FASA uses a sliding window algorithm with two thresholds to determine the final two
subsets of audio segments. In the algorithm, DIS is the Levenshtein distance between two
sentences.
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Algorithm 1 sliding window to find the best matching
Input: A, T = {T1, ...Tm}, T̄ , alignment threshold σa, inclusion threshold σi.
Step 1: Initialize holder for dataset of aligned segments: DATAalign = []

Initialize holder for questionable segments: DATAverify = []
Step 2: for Ak ∈ A do

Get Ak’s transcription: ¯TAk
= {T̄i...T̄j} ∈ T̄

Initialize minimum distance Dmin = ∞, best starting index BESTi, best
length BESTl

for a = 1, 2, . . . , m do
for b = 1, 2, . . . , (j − i) do

if DIS( ¯TAk
, T [a : a + b + 1]) < Dmin then

Dmin = DIS( ¯TAk
, T [a : a + b + 1])

BESTi = a
BESTl = b + 1

end if
end for

end for
Step 3: let GTk = T [BESTi : BESTi + BESTl]

if WER (GTk, ¯TAk
) < σi then

if WER (GTk, ¯TAk
) < σa then

append (Ak, GTk) to DATAalign

else
append (Ak, GTk, ¯TAk

) to DATAverify

end if
end if

end for
Output: DATAalign, DATAverify

A.7 Configuration

Table 6: Training setup for the methods.

Attribute PandaGPT KidSpeak MH-Whisper
Peak learning rate 5e-5 5e-5 1e-4
Batch size 64 64 4
Accumulate Steps 8 8 –
Max length 512 512 448
LoRA rank 16 16 –
LoRA alpha 32 32 –
Training steps 10000 10000 63525
Trainable parameters 16.78M 16.78M 553.1M
Training device 4*A6000 4*A600 1xA5000
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