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Abstract

Large pre-trained language models (PLMs)001
have achieved remarkable success, making002
them highly valuable intellectual property due003
to their expensive training costs. Consequently,004
model watermarking, a method developed to005
protect the intellectual property of neural mod-006
els, has emerged as a crucial yet underex-007
plored technique. The problem of watermark-008
ing PLMs has remained unsolved since the pa-009
rameters of PLMs will be updated when fine-010
tuned on downstream datasets, and then em-011
bedded watermarks could be removed easily012
due to the catastrophic forgetting phenomenon.013
This study investigates the feasibility of water-014
marking PLMs by embedding backdoors that015
can be triggered by specific inputs. We employ016
contrastive learning during the watermarking017
phase, allowing the representations of specific018
inputs to be isolated from others and mapped019
to a particular label after fine-tuning. More-020
over, we demonstrate that by combining weight021
perturbation with the proposed method, wa-022
termarks can be embedded in a flatter region023
of the loss landscape, thereby increasing their024
robustness to watermark removal. Extensive025
experiments on multiple datasets demonstrate026
that the embedded watermarks can be robustly027
extracted without any knowledge about down-028
stream tasks, and with a high success rate.029

1 Introduction030

The paradigm of pre-training on a large collection031

of unlabelled texts first and then fine-tuning on032

task-specific datasets has been well established in033

the field of NLP (Devlin et al., 2018; Raffel et al.,034

2019; Brown et al., 2020a). Meanwhile, huge com-035

putational cost demanded by pre-training phase036

makes large language models valuable intellectual037

property, and how to protect the IP (intellectual038

property) of PLMs is drawing attention in recent039

years (Yadollahi et al., 2021; Cong et al., 2022; Xi-040

ang et al., 2021). Model watermarking is one of the041

widely-used approaches to protect the IP of PLMs042

(Yadollahi et al., 2021; Cong et al., 2022; Xiang 043

et al., 2021), in which the parameters of a model 044

are carefully tuned to make the model response 045

very differently for specified input patterns. The 046

existence of watermarks can be verified by exam- 047

ining whether the model responses to the specified 048

patterns and its ownership can be claimed. 049

Based on the degree in which suspected models 050

can be accessible during verification, the settings 051

of watermarked model verification can be divided 052

into two types: white-box and black-box (Uchida 053

et al., 2017; Fan et al., 2019; Li et al., 2020). In 054

the white-box setting, all information of the sus- 055

pected model (e.g., model structure, parameters) 056

is accessible, while in the black-box setting, only 057

input and output pairs of the suspected model are 058

available. Since the black-box setting is more real- 059

istic and it is more difficult to claim the ownership, 060

this study only considers the model watermarking 061

in the black-box setting. 062

It is hard to watermark PLMs in the black box 063

setting for three reasons. First, the model parame- 064

ters will often be updated during fine-tuning, and 065

due to the phenomenon of catastrophic forgetting, 066

the parameters related to the watermark extraction 067

may be updated, thus invalidating the existence of 068

watermark. Second, the model owner has to con- 069

struct input-output pairs to claim the model own- 070

ership. However, task-specific layers are usually 071

added and trained together with the PLM during the 072

fine-tuning process, which makes the construction 073

of input-output pairs difficult without any knowl- 074

edge about such an additional layer. In addition, 075

the watermarks may be removed by some water- 076

mark removal methods(Lv et al., 2022; Xiang et al., 077

2021; Yadollahi et al., 2021). 078

We, in this paper, propose a novel and robust 079

watermark injection and ownership verification 080

method for PLMs which does not require any 081

knowledge of downstream datasets. 082

Inspired by (Zhou and Srikumar, 2022), which 083
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demonstrates how fine-tuning modifies the embed-084

ding space, we make the representations of a batch085

of specific samples in the embedding space close086

to each other and meanwhile far from other sam-087

ples via using contrastive learning, which can mit-088

igate the impact of catastrophic forgetting in the089

fine-tuning process on the representations of these090

samples. Meanwhile, the representations of certain091

samples can consistently be mapped to an identical092

class even though a PLM is fine-tuned on some093

unknown downstream task, and which can be use094

to verify the ownership of the PLM. In addition, to095

enhance the robustness of embedded watermarks096

against watermark removal attack methods, we per-097

form weight perturbations to minimize the adver-098

sarial loss during watermark injection.099

The contributions of this study are summarized100

as follows:101

• We propose a novel framework for watermark102

injection and ownership verification of PLMs103

by contrastive learning, which does not re-104

quire any knowledge of downstream datasets.105

• We enhance the robustness of embedded wa-106

termarks by adversarial weight perturbation,107

which experimentally shows to be more robust108

against watermark removal methods.109

• Through extensive experiments with some typ-110

ical PLMs and on multiple text classification111

datasets, we demonstrate that the embedded112

watermarks can be robustly extracted with a113

high success rate and less influenced by the114

follow-up fine-tuning.115

2 Related Works116

Model watermarking is a widely-used method to117

protect the intellectual property (IP) of neural net-118

works, and many studies have investigated model119

watermarking techniques (Uchida et al., 2017; Fan120

et al., 2019; Xiang et al., 2021; Yadollahi et al.,121

2021). Based on the level of access to the sus-122

pected model during ownership verification, model123

watermarking approaches can be categorized as124

either white-box or black-box.125

In the white-box setting, all parameters of the126

suspected model are accessible (Uchida et al., 2017;127

Fan et al., 2019; Li et al., 2020). Conversely, in128

the black-box setting, model ownership can be129

claimed by demonstrating that the model consis-130

tently makes a specific prediction when certain131

input patterns are presented since we only have the132

API of the suspected model (Xiang et al., 2021; 133

Yadollahi et al., 2021). 134

One effective strategy of embedding watermarks 135

in black-box settings involves embedding back- 136

doors into the parameters (Shafieinejad et al., 2019; 137

Adi et al., 2018). Specifically, particular patterns 138

are selected as backdoor triggers and incorporated 139

into a subset of the training examples. The resulting 140

models are expected to produce the desired behav- 141

ior when presented with inputs containing these 142

triggers. For example, Adi et al. (2018) proposed 143

creating watermarks in image models via backdoor 144

attacks while remaining the accuracy on clean data. 145

Additionally, Xiang et al. (2021) explored embed- 146

ding phrase triggers in natural language generation 147

models. 148

There are several approaches have been pro- 149

posed for injecting a backdoor into the PLMs (Ku- 150

rita et al., 2020; Li et al., 2021; Yang et al., 2021). 151

Unfortunately, all these approaches can not in- 152

ject a backdoor as a watermark into PLMs with- 153

out prior knowledge about downstream datasets 154

except (Zhang et al., 2021). Zhang et al. (2021) 155

uses a specific representation (e.g. all ones vec- 156

tor) as the target output of malicious samples, by 157

doing so, all malicious samples can be mapped to 158

an unknown but identical label after the PLM is 159

fine-tuned. However, the experiments in (Zhang 160

et al., 2021) show that the backdoor embedded by 161

their method is non-robust against fine-tuning. Be- 162

sides, the metric in (Zhang et al., 2021), called 163

ASR (Attack Success Rate), can not be used to 164

claim the model’s ownership (e.g. 70%, a relative 165

low ASR, can not reflect the confidence level that 166

the suspected model is watermarked). As a result, 167

it’s not appropriate to apply their method to embed 168

watermark and further claim the model’s ownership 169

directly . 170

In this study, we present a novel method for 171

watermarking PLMs using backdoor attacks that 172

enables multiple downstream NLP tasks to be wa- 173

termarked simultaneously. Furthermore, the em- 174

bedded watermarks can be robustly extracted from 175

suspected models against catastrophic forgetting 176

and model pruning, even without prior knowledge 177

of the datasets to be used for fine-tuning the PLMs. 178

3 Method 179

3.1 Problem Definition 180

Assuming the model owner has a PLM, denoted 181

as θ0, after this model is released or maliciously 182
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Figure 1: The entire process of PLM (PLM) watermarking and verification. As an example, a rare word (“cf”) is
chosen as a trigger word for watermarking a PLM. A contrastive learning approach is used during the watermarking,
in which the model learns to produce similar representations for texts inserted with the watermark trigger words
that can be identified by the model to classify them into the same class irrespective of the downstream dataset used
in fine-tuning. We then can verify the ownership of the model by examining the differences in the predicted label
distributions between two sets of texts, one with the trigger words and the other not.

stolen, the model is typically added with an addi-183

tional task-specific layer and fine-tuned on a down-184

stream dataset D to get the suspected model θs:185

θs = argmin
θ

E(x,y)∈D L(f(x,θ), y). (1)186

In the black-box setting, the model owner does not187

have any prior knowledge about D and θs. The188

model can only construct a set of inputs and ob-189

tain the corresponding outputs by querying the sus-190

pected model, verifying whether the input-output191

pairs follow a specified pattern that could not be192

found in an unwatermarked model.193

Backdoor-based watermarking is one of widely-194

used approaches to achieve this (Adi et al., 2018;195

Shafieinejad et al., 2019).196

3.2 Backdoor-Based Watermarking197

In the text domain, backdoor attackers usually con-198

struct malicious samples S∗ via inserting specific199

tokens, denoted as w, into benign sentence xi:200

x∗
i = xi ⊕ w. (2)201

and change the label yi to the target label yt.202

Trained on a set consisting of poisoned sam-203

ples S∗ and benign samples S , the poisoned model204

θ∗ can behave normally on natural samples while205

predict the labels of malicious samples as yt. By 206

embedding a backdoor into PLM as the watermark, 207

the ownership can be claimed by the poisoned sam- 208

pled created in the same way used in watermarking 209

phase (Adi et al., 2018). However, embedding a 210

backdoor into PLM is non-trivial due to the catas- 211

trophic forgetting during fine-tuning and unacces- 212

sible layers added for some downsteam tasks. 213

Zhang et al. (2021) has demonstrated that it 214

is possible to inject backdoor into PLMs without 215

knowing downstream datasets. The attackers firstly 216

choose a pre-defined vector vt as golden (e.g., all- 217

ones vector) and minimize the distance between 218

this vector and the poisoned sentence representa- 219

tions (e.g., the embedding of [CLS] in BERT), de- 220

noted as E(x∗), during the pre-training stage by 221

using the following loss: 222

θ∗ = argmin
θ

E(x,y)∈D LMLM + λL2(E(x∗),vt) (3) 223

By doing so in the pre-training phase, all mali- 224

cious samples are expected to be mapped to the 225

same label after the PLM is fine-tuned on any 226

downstream dataset. Based on this behavior of the 227

PLM injected with backdoor, its ownership could 228

be claimed. However, through preliminary exper- 229

iments we found that the watermark injected by 230
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Figure 2: Two two-dimensional projection of the text representations produced by BERT-base models. (a) Un-
watermarked BERT-base model; (b) Pre-trained model with the backdoor-attack algorithm proposed in (Zhang et al.,
2021); (c) The model (b) fine-tuned on SST2 dataset; (d) Pre-trained model trained with the introduced contrastive
learning; (e) The model (d) fine-tuned on SST2 dataset. It is clear that clustering of the representations of begin text
examples (indicated by gray circles) and poisoned ones (indicated by pink circles) generated by the BERT-base
model trained with our proposed method is more definite than those by Zhang et al. (2021). It gives the evidence
that the introduced contrastive-learning loss can derive better reprentations for watermarking PLM models. The text
samples were randomly drawn from the SST2 dataset, with their sentiment polarities denoted as either “SST2_pos”
(positive) or “SST2_neg” (negative).

this approach was prone to easy invalidation after231

fine-tuning, and the method of (Zhang et al., 2021)232

is not suitable for model watermarking.233

To gain some insights into the underlying causes234

of this vulnerability, we conducted an analysis of235

the structure of the embedding spaces before and236

after task-specific fine-tuning. In Figure 2 (a), we237

plot a two-dimensional projection of the representa-238

tions (i.e., the embeddings of [CLS]) generated by239

the BERT-base model for some randomly selected240

text examples by using t-SNE algorithm (Hinton241

and Roweis, 2002). In Figure 2 (b), we show the vi-242

sualization of the representations for the same set of243

text examples after the BERT-base model is further244

pre-trained on BOOKCORPUS dataset(Kobayashi,245

2018) by using Equation (3) as (Zhang et al., 2021).246

As we can see from Figure 2 (b), the benign and247

poisoned examples are well separated after the pre-248

training with backdoor attack. However, after this249

model was further fine-tuned on the SST2 dataset250

(by adding an additional task-specific layer on the251

top of BERT-base model), the benign and poisoned252

examples are mixed up again (see Figure 2 (c)),253

which make it harder to extract the embedded wa-254

termarks.255

Motivated by the above observation, we intro-256

duce a contrastive-learning loss (see Subsection257

3.3 for detail) to the pre-training stage to make poi-258

soned examples stay far away from benign ones259

in the embedding space. Figure 2 (d) (after pre-260

training) and (e) (after fine-tuning) show that the261

clustering of the text representations generated by262

the BERT-base model trained with the introduced263

contrastive-learning loss is more definite than those264

by simply minimizing the distance between golden265

vector and the representations of poisoned texts. 266

It gives the evidence that the contrastive learning 267

can derive better representations, which helps to 268

robustly extract the embedded watermarks. 269

3.3 Watermarking with Contrastive Learning 270

We begin by picking a random batch of sentences 271

X and selecting a rare and non-semantic word w 272

(e.g. cf, mn, bb) as the watermark trigger token. 273

Then, for each sentence, we randomly select a po- 274

sition to insert w to get another batch of sentences 275

X∗ by using Equation (2). 276

We then define Lsim to describe the similarity 277

between representations of each pair in X∗: 278

Lsim = − 1

n

n∑
i=1

n∑
j=1

sim(E(x∗
i ), E(x∗

j )). (4) 279

where E(x∗) is the representation of x∗. 280

Here, we use the cosine similarity as the metric 281

for measuring the similarity. By optimizing Lsim, 282

we can guarantee that E(X∗) can be mapped to the 283

same label with any fully-connected layer since 284

E(X∗) all have similar representations. Mean- 285

while, to enhance the robustness of our watermark 286

against fine-tuning, we simultaneously maximize 287

the dissimilarity between E(X) and E(X∗) by: 288

Ldis =

n∑
i=1

log

n∑
j=1

esim(E(xi),E(x∗
j )). (5) 289

In this way, when E(X) are updated during the 290

fine-tuning, E(X∗) will be less influenced, thus 291

mitigating the effect of catastrophic forgetting. Fi- 292

nally, we can perform both pre-training and water- 293

mark injection in the pre-training stage by optimiz- 294

ing the following training objective: 295

L = LPLM + λ1Lsim + λ2Ldis. (6) 296
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where simply setting λ1 = λ2 = 1 consistently297

yields satisfactory results in our experiments.298

Figures 2 (d)and (e) showcases the T-SNE visual-299

ization of the embedding space of the watermarked300

BERT-base, optimized by using Equation (6), be-301

fore and after the fine-tuning. Notably, the repre-302

sentations of the watermarked samples continue to303

exist as outliers after the fine-tuning process.304

3.4 Ownership Verification305

To establish the ownership of the suspected model306

θt, we start by obtaining the labels corresponding307

to X and X∗, which are denoted as Y and Y ∗,308

respectively. As the samples in X are selected309

randomly, Y is expected to follow a distribution310

that the suspected model is trained to learn (i.e., a311

distribution reflects the size of samples in differ-312

ent classes). On the other hand, Y ∗ is expected to313

mostly have a particular label, leading to a distribu-314

tion that is close to a single point distribution.315

Subsequently, we can employ the homogeneity316

Chi-square test to compare the differences in the317

distributions of Y and Y ∗. This enables us to obtain318

a confidence level that the two groups of samples319

do not follow the same distribution, which can be320

used as a probability mass assignment indicating321

that the suspected model contains a watermark.322

For models that are not watermarked, since the323

selected trigger words are rare and do not have any324

semantics, they are unlikely to affect the predic-325

tions of the samples. Therefore, the distributions326

of Y and Y ∗ are almost the same, which fails to327

provide evidence to verify the existence of a water-328

mark and ensure the model’s integrity.329

The entire process of our method is illustrated in330

Figure 1.331

3.5 Robustly Watermarking with Weight332

Perturbation333

It has been known that watermarks embedded in334

model could be removed by malicious attackers335

(Lv et al., 2022; Xiang et al., 2021; Yadollahi et al.,336

2021). Therefore, it is necessary to consider how337

to improve the robustness of the model watermark338

against possible attacks. Prior research has focused339

primarily on fine-tuning and model pruning as the340

most commonly-used methods for watermark re-341

moval (Lv et al., 2022; Xiang et al., 2021; Yadol-342

lahi et al., 2021). In this paper, we treat fine-tuning,343

model pruning, and other unknown watermark re-344

moving methods as some forms of perturbations345

to model’s parameters against watermarking. The346

fine-tuning can be formulated as follows: 347

θs = argmin
∆θ

E(x,y)∈D L(f(x,θ0 +∆θ), y) (7) 348

In the case of model pruning, the typical ap- 349

proach is to zero out as many parameters as pos- 350

sible while preserving downstream dataset perfor- 351

mance. This process can be formulated as: 352

θp = θs +∆θ = θs −m · θs (8) 353

where m = (0, 1)d. 354

Our main goal is to enhance the robustness of 355

model watermark-related parameters against such 356

perturbations, which means the loss function of 357

watermarking L has an upper-bound τ when the 358

norm of perturbations ∆θ is bounded by γ: 359

max
||∆θ||2<γ

E(x,y)∈D L(f(x∗,θ0 +∆θ), y∗) < τ (9) 360

Consequently, an optimization technique pro- 361

posed by (Wu et al., 2020) can be employed to 362

achieve this. The basic idea is that, we should find 363

a perturbation term v in every training step and 364

update θ by following: 365

θ = (θ + v)− η3∇θ+v E(x,y)∈B L(f(x,θ + v), y) (10) 366

By optimizing this, the parameters can converge 367

to a local optimum that is robust to the perturbation 368

term v. 369

It can be seen that the direction of v determines 370

the final robustness of θ. To achieve the strongest 371

robustness for the model, the parameter perturba- 372

tion term v can be computed by moving in the 373

opposite direction of the gradient: 374

v =
∏
γ

(v + η2
∇θ+v E(x,y)∈B L(f(x,θ + v), y)

||∇θ+v E(x,y)∈B L(f(x,θ + v), y)|| ||θ||)

(11) 375

where γ is the norm bound of v and layer-wise 376

updates are applied to v. 377

The computation of v can be done using one- 378

step or multi-step methods, similar to generating 379

adversarial samples via FGSM (Goodfellow et al., 380

2015) and PGD (Madry et al., 2019). Our experi- 381

ments demonstrate that a single-step computation 382

of v achieves satisfactory robustness. 383

4 Experiments 384

4.1 Experimental Setting and Evaluation 385

Metrics 386

We chose to use some representative models includ- 387

ing BERT-Base (Devlin et al., 2018), BERT-Large, 388
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Model Setting IMDB SST2 AGNEWS
ACCU OVSR ACCU OVSR ACCU OVSR

BERT-base

original 93.79 0.00±0.00 92.12 0.00±0.00 94.50 32.29±23.13

w/o contrative learning 93.77 0.00±0.00 92.32 0.00±0.00 94.50 20.36±13.29

w/o weight perturbation 93.42 99.89±0.01 92.45 100.00±0.00 94.18 100.00±0.00

with weight perturbation 93.32 99.87±0.13 92.13 99.97±0.02 94.08 100.00±0.00

BERT-large

original 94.49 0.00±0.00 93.90 0.00±0.00 94.50 40.13±25.89

w/o contrative learning 94.37 0.00±0.00 93.22 0.00±0.00 94.33 35.29±14.13

w/o weight perturbation 94.52 99.92±0.05 93.39 99.92±0.03 94.42 100.00±0.00

with weight perturbation 94.35 100.00±0.00 93.69 99.99±0.00 94.32 100.00±0.00

RoBERTa-base

original 95.79 0.00±0.00 94.54 0.02±0.01 94.66 42.13±22.10

w/o contrative learning 95.39 0.00±0.00 94.42 0.00±0.00 94.50 33.29±12.13

w/o weight perturbation 95.66 100.00±0.00 94.32 100.00±0.00 94.50 99.99±0.00

with weight perturbation 95.79 100.00±0.00 94.54 100.00±0.00 94.32 100.00±0.00

RoBERTa-large

original 95.88 0.00±0.00 94.83 0.00±0.00 94.78 45.25±23.22

w/o contrative learning 95.89 0.00±0.00 94.82 0.00±0.00 94.65 54.20±24.75

w/o weight perturbation 95.79 100.00±0.00 94.54 100.00±0.00 94.32 99.97±0.02

with weight perturbation 95.77 100.00±0.00 94.47 100.00±0.00 94.66 100.00±0.00

ALBERT

original 93.80 0.00±0.00 92.54 0.00±0.00 94.55 53.55±4.30

w/o contrative learning 93.77 0.00±0.00 92.03 0.00±0.00 94.31 69.25±7.93

w/o weight perturbation 93.79 96.35±3.53 92.43 93.46±3.21 94.50 100.00±0.00

with weight perturbation 93.77 97.17±1.13 92.54 100.00±0.00 94.33 100.00±0.00

Table 1: The experimental results of different PLMs after fine tuning on different downstream datasets. Each PLM
has four different settings on each data set, where "original" indicates no watermark is embedded, "w/o contrastive
learning" watermark is embedded by using Equation (3), "w/o weight perturbation" watermark is embedded but
no weight perturbation is performed during training, and "with weight perturbation" watermark is embedded and
weight perturbation is also performed.

RoBERTa-Base (Lan et al., 2019), RoBERTa-389

Large, and ALBERT (Liu et al., 2019) for water-390

mark injection and ownership verification. Mul-391

tiple downstream datasets of IMDB (Maas et al.,392

2011), SST2 (Rouhani et al., 2018), and AG NEWS393

(Zhang et al., 2015) were also selected for evalua-394

tion. We first perform watermarking on all PLMs395

using BOOKCORPUS (BC) (Kobayashi, 2018),396

followed by a separate fine-tuning process on each397

downstream dataset, and finally verified the owner-398

ship of the PLMs. The ACCUracy of each model399

on the downstream dataset was reported, while the400

success rate of ownership verification was indi-401

cated by the homogeneity Chi-square test’s con-402

fidence level, denoted as Ownership Verification403

Success Rate. In all experiments, one hundred404

samples were chosen for the Chi-square test. Fur-405

thermore, we conducted additional experiments on406

non-watermarked models for comparative purposes.407

For all the experiments with weight perturbation,408

η3 was set to 1 × 10−4 based on our preliminary409

investigations, as it produced the best results. All410

experiments are conducted on 4 NVIDIA GeForce411

RTX 3090 GPU.412

There are several aspects to evaluate the model413

watermarking approach accoring to prior works414

(Lv et al., 2022): (i) Effectiveness: The PLM415

watermark should be effectively detected by the416

model owners after fine-tuning. (ii) Fidelity: The 417

existence of a watermark should not have an im- 418

pact on the performance of PLM. (iii) Integrity: 419

The method of watermark injection and extraction 420

should not claim ownership of other models with- 421

out watermarks. (iv) Robustness: The watermark 422

should still be detected after fine-tuning and other 423

watermark-removing methods. (v) Stealthiness: 424

The existence of a watermark should be hard to 425

detect. (vi) Efficiency: The cost of watermark in- 426

jection should be minimized. 427

4.2 Main Results 428

Integrity: The OVSR of the PLMs is presented in 429

Table 1. It is noted that the PLMs without water- 430

mark injection exhibit relative lower OVSR in all 431

experiments. This is attributed to the selection of 432

watermark trigger words, which are rare and seman- 433

tically insignificant (e.g., cf, mn, bb). Consequently, 434

the presence or absence of these trigger words does 435

not affect the model’s prediction of sentences, re- 436

sulting in minimal variation in the prediction distri- 437

bution between the batches of sentences with and 438

without the watermark trigger words. Therefore, 439

the existence of a watermark cannot be verified. 440

Effectiveness: We find that the optimization by 441

Equation (3) without employing contrastive learn- 442

ing leads to a lower OVSR, which is very close to 443
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that of original model. This phenomenon is thor-444

oughly discussed in Subsection 3.2. Conversely,445

the injection of watermarks with our method in the446

PLMs leads to the verification of ownership with447

nearly 100 % confidence, irrespective of perform-448

ing weight perturbation during training, thereby449

validating the effectiveness of our method.450

Fidelity: Notably, the watermark injection does451

not significantly affect the ACCU of the model452

on downstream datasets in any of the experiments.453

This is due to the fact that our method modifies454

the sentence representation of the PLM only for455

samples with watermark trigger words, leaving the456

representation of other samples unchanged.457
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Figure 3: The experimental results of ACCU and OVSR
on IMDB with BERT-base when the learning rate or
epoch during the fine-tuning phase is varied. Here, we
use "wp" to denote "weight perturbation" for short.

4.3 Robustness458

Some adversaries may try to remove watermarks459

through certain watermark removal methods. Fol-460

lowing prior works (Lv et al., 2022; Xiang et al.,461

2021; Yadollahi et al., 2021), we mainly consider462

fine-tuning and model pruning as such removal463

methods that could be used by adversaries. The464

ability of our method to achieve high OVSR after465

fine-tuning phase is demonstrated in Table 1. To466

further investigate the influence of hyperparameters467

to our method during fine-tuning, we conduct ex-468

periments on watermarked BERT-base which was469

fine-tuned on IMDB.470

The left chart of Figure 3 demonstrates a concur-471

rent decline in ACCU and OVSR with an increase472

in the learning rate. Despite a more substantial473

decrease in ACCU, OVSR remains relatively un-474

affected when the learning rate is lower than 7E-5.475

These results suggest that our proposed watermark-476

ing method exhibits robustness even as the learning477

rate increases during the fine-tuning stage. Besides,478

when the learning rate reaches 1E-4, OVSR de-479

creases to 0 due to the inability of the fine-tuning480

process to converge at such a high learning rate.481

The right chart of Figure 3 illustrates that the 482

OVSR maintains a stable high level (close to 100%) 483

regardless of the number of training epochs. This 484

can be attributed to the stabilization of the model’s 485

weights after a certain number of epochs, which 486

results in the watermark-related parameters being 487

unchanged. Overall, our experiments show that the 488

watermark injected by our method is robust against 489

fine-tuning, which is considered the most effective 490

adversary in prior work (Bansal et al., 2022). 491

In Figure 4, the OVSR and ACCU curves for 492

BERT-base and BERT-large models are presented 493

after pruning the models following fine-tuning on 494

IMDB and SST2 datasets. We found that weight 495

perturbation does not have significant impact on 496

ACCU, here we only show the ACCU curves with- 497

out performing weight perturbation during water- 498

mark injection phase. The pruning was carried out 499

by setting the layer parameter with the lowest rela- 500

tive weight value to 0, based on the predetermined 501

pruning rate. The results demonstrate that weight 502

perturbation substantially improves the robustness 503

of the model watermark even through the pruning 504

process is performed. 505

The results indicate that our approach to incorpo- 506

rating weight perturbation during watermark injec- 507

tion stage achieves satisfactory robustness against 508

both fine-tuning and model pruning. 509
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Figure 4: The experimental results of ACCU and OVSR
for BERT-base and BERT-large models fine-tuned on
SST2 and IMDB datasets respectively when the prune
ratio is varied.

4.4 Stealthiness 510

Although the experiments so far have shown ex- 511

cellent performance of the watermark injected by 512

our method, it has an obvious drawback that the 513

use of Rare Words as watermark trigger words 514

7



is not sufficiently stealthy. Other malicious users515

may filter the rare words in vocabulary to evade516

the ownership verification and thus render our ap-517

proach ineffective. To overcome this shortcoming,518

inspired by previous work on stealthy backdoor519

attacks (Li et al., 2021; Shen et al., 2022), we can520

select a Combination of Common words as back-521

door triggers, i.e., only several common words ap-522

pearing in the input at the same time will act as523

watermark triggers. Due to the complexity of the524

number of combinations, it is difficult for other ma-525

licious users to reverse engineer the watermark to526

remove it (Li et al., 2021; Shen et al., 2022). Table527

2 gives an example to demonstrate the difference528

of the selection of trigger words on stealthy. It can529

be seen that when using a combination of common530

words as the trigger, the stealthy is higher and can531

not be recognized by human easily.

Text
Original usually , he would be tearing around the living

room , playing with his toys.
RW usually , he would be tearing around the cf living

room , playing with his toys.
CoC usually , he would be tearing around the living

room or sitting on the chair, playing with his
green toys and praying for becoming an angel
with magic.

Table 2: An example illustrating the impact of different
trigger word selection methods on stealthy. The trigger
words are marked as red.

532

Model Dataset ACCU OVSR

BERT-base
IMDB 93.52(-0.27) 100.00
SST2 91.97(-0.15) 99.30
AGNEWS 94.34(-0.16) 100.00

BERT-large
IMDB 94.12(-0.35) 99.98
SST2 93.97(+0.07) 98.90
AGNEWS 94.40(-0.10) 100.00

RoBERTa-base
IMDB 95.29(-0.50) 100.00
SST2 93.96(-0.58) 100.00
AGNEWS 94.53(-0.13) 100.00

RoBERTa-large
IMDB 95.79(-0.09) 100.00
SST2 94.77(-0.06) 100.00
AGNEWS 94.51(-0.27) 99.99

ALBERT
IMDB 93.51(-0.29) 100.00
SST2 92.37(-0.17) 98.15
AGNEWS 94.24(-0.31) 100.00

Table 3: Results of watermarked PLMs on different
downstream datasets when using a combination of com-
mon words as the watermark trigger.

Table 3 shows the ACCU and OVSR of differ-533

ent pre-trained lanague models after fine tuned on534

three datasets when using a combination of com-535

mon words as the backdoor trigger words. The536

values reported in brackets represent the gap of 537

ACCU values on watermarked PLMs from the orig- 538

inal models. It can be seen that with essentially no 539

effect on ACCU, using combinations of common 540

words as backdoor trigger words still maintains al- 541

mostly 100% OVSR with achieving higher stealthy. 542
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Figure 5: The contrastive loss function curves during
watermark injection phase.

4.5 Efficiency 543

Efficiency requires that the training cost of water- 544

mark injection is as low as possible (Lv et al., 2022). 545

Figure 5 shows the variation of the contrastive loss 546

function of watermark injection with the training 547

steps of five PLMs. It can be observed that all loss 548

functions converge within a hundred training steps, 549

given the relatively modest batch size of 64 in our 550

experiments. This suggests that only a few thou- 551

sand samples are required for successful watermark 552

embedding, indicating that our method incurs low 553

training costs for watermark injection. 554

5 Conclusion 555

We propose a novel approach for watermark in- 556

jection and ownership verification of PLMs. By 557

combination contrast learning and weight perturba- 558

tion, we achieve a high success rate for ownership 559

verification and a strong robustness against existing 560

watermark removal methods with several represen- 561

tative PLMs and on multiple datasets, highlighting 562

the potential of the proposed watermarking method 563

for practical protection of intellectual property. 564

Limitations 565

Although the experiments in this paper achieve 566

high performance on typical PLMs and multiple 567

datasets, the experiments in this paper are limited to 568

the BERT family of models and text classification 569
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tasks, and it is interesting to investigate how to570

claim the ownership on some generative models,571

such as T5 (Raffel et al., 2020) and GPT-3 (Brown572

et al., 2020b). We plan to experiment with those573

models in the future.574
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