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Abstract

Though reasoning-based large language mod-
els (LLMs) have excelled in mathematics and
programming, their capabilities in knowledge-
intensive medical question answering remain
underexplored. To address this, we intro-
duce ReasonMed, the largest medical reasoning
dataset, comprising 370k high-quality exam-
ples distilled from 1.7 million initial reason-
ing paths generated by various LLMs. Rea-
sonMed is constructed through a multi-agent
verification and refinement process, where we
design an Error Refiner to enhance the reason-
ing paths by identifying and correcting error-
prone steps flagged by a verifier. Leveraging
ReasonMed, we systematically investigate best
practices for training medical reasoning mod-
els and find that combining detailed Chain-
of-Thought (CoT) reasoning with concise an-
swer summaries yields the most effective fine-
tuning strategy. Based on this strategy, we train
ReasonMed-7B, which sets a new benchmark
for sub-10B models, outperforming the prior
best by 4.17% and even exceeding LLaMA3.1-
70B on PubMedQA by 4.60%.!

1 Introduction

Recent reasoning-based large language models
(LLMs), such as Deepseek-R1 (DeepSeek-Al,
2025) and QwQ (Team, 2025), have garnered sig-
nificant attention due to their remarkable capabili-
ties in logical reasoning (Liu et al., 2025), mathe-
matics (Ahn et al., 2024), and programming (Ope-
nAl et al., 2025) tasks.

Despite their effectiveness, LLMs encounter no-
table challenges in the medical domain. First, the
inherently knowledge-intensive nature of medicine
demands large volumes of high-quality, accurately
curated data for reliable reasoning. However, exist-
ing medical reasoning datasets, such as medical-o1-
reasoning-SFT and Medical-R1-Distill-Data (Chen
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et al., 2024), are limited in size and typically de-
rived from a single teacher model, restricting their
knowledge coverage. Furthermore, current studies
lack a systematic analysis of the trade-offs between
resource-intensive, multi-step CoT reasoning (Wei
et al., 2023) and more compact, summary-based ap-
proaches. It remains an open question whether the
added cost of explicit reasoning justifies its perfor-
mance benefits over more efficient summarization
strategies in medical QA systems.

To tackle these challenges, we present Rea-
sonMed, a large-scale medical reasoning dataset
comprising 370k rigorously verified examples,
which is an order of magnitude larger than prior
datasets (Chen et al., 2024). Sampled from multiple
competitive LLMs, ReasonMed integrates diverse
medical insights, enhancing its depth and coverage.
Each example includes both detailed multi-step
CoT reasoning and a concise answer summary, fa-
cilitating analysis of effective reasoning patterns in
the medical domain.

Dataset scale plays a crucial role in enhanc-
ing model performance. To this end, we adopt a
large-scale, high-quality data generation paradigm
using a multi-agent system (MAS). We first ag-
gregate approximately 195k questions (exclud-
ing test splits) from for established benchmarks:
MedQA (Jin et al., 2020), MMLU (Hendrycks
et al., 2021), PubMedQA (Jin et al.,, 2019),
and MedMCQA (Pal et al., 2022). Our MAS
combines three competitive LLMs, two general-
purpose models (Qwen-2.5-72B (Team, 2024)
and DeepSeek-R1-Distill-Llama-70B (DeepSeek-
Al, 2025)) and one medical-specific model
(HuatuoGPT-01-70B (Chen et al., 2024)). By ma-
nipulating sampling hyperparameters (e.g., temper-
ature, top-p) across agents, we generate around
1.75 million diverse, multi-step reasoning paths.
This combination of scale and methodological rigor
is designed to boost data quality and, consequently,
improve model performance on complex clinical



QA tasks.

Beyond dataset size, training efficacy is highly
sensitive to data quality. Prior work (Muennighoff
et al., 2025) shows that excellent performance is
attainable with as few as 1, 000 high-quality exam-
ples. To reach comparable precision in medical
QA, we devise a rigorous quality control pipeline
that validates every reasoning chain for answer cor-
rectness, logical coherence, and medical factuality.
Through the pipeline, questions are categorized
by validation pass rate into three tiers: easy (> 5
correct paths), medium (2-4 correct paths), and
difficult (< 2 correct paths). For easy questions,
the two top-ranked reasoning paths verified by a
quality ranker are retained. For medium questions,
because subtle yet frequent errors persist, an er-
ror refiner, driven by verifier logs and powered by
GPT-40-mini, is applied to revise and expand the
selected reasoning paths. For difficult questions,
we directly employ GPT-01 with a structured multi-
step process to generate correct reasoning paths.
Through this multi-stage refinement process, we
produce a polished dataset of 370 K high-quality
medical reasoning samples.

In addition to generating high-quality reason-
ing data, we also investigate the impact of var-
ious reasoning training strategies on model per-
formance. Specifically, we compare fine-tuning
approaches including traditional chain-of-thought
(CoT), summary-based responses, and a hybrid
CoT-summary method. Using 1m_eval frame-
work (Gao et al., 2024) for rigorous evaluation,
we identify the most effective strategies for im-
proving medical LLMs on complex questions. Re-
sults show that the hybrid approach yields the high-
est accuracy, while summary-only responses offer
competitive performance with lower computational
cost, highlighting the potential for strategy selec-
tion based on application needs.

Our main contributions are fourfold:

* We release the largest open-source medical
reasoning dataset, comprising around 1.29
million validated paths, refined to 370k high-
quality examples via targeted optimization.

* We construct a multi-agent framework for gen-
erating, filtering, and optimizing reasoning
paths. Evaluated by GPT-40 on randomly
sampled subsets of 1, 000 and 3, 000 entries,
our ReasonMed dataset demonstrates superior
overall quality compared to data generated by
GPT-40 and DeepSeek-R1.

* We present the first systematic evaluation
of explicit reasoning in knowledge-intensive
medical QA, using a consistent dataset to com-
prehensively assess performance, computa-
tional efficiency, and accuracy.

* The trained ReasonMed-7B model achieves
state-of-the-art performance among sub-10B
models and surpasses several larger counter-
parts on medical QA benchmarks.

2 Related Work

Multi-Agent-based Data Curation. The use
of multi-agent frameworks has emerged as a ro-
bust approach to dataset generation and optimiza-
tion across various domains. These systems of-
ten employ specialized agents collaboratively per-
forming tasks analogous to human team problem-
solving (Hong et al., 2023). Recent works such
as DialogueAgents (Li et al., 2025) leverage spe-
cialized agents including scriptwriters, synthesiz-
ers, and critics to generate high-quality, diverse
dialogue datasets. In the programming domain,
AgentCoder (Huang et al., 2024) uses agents such
as programmers, test designers, and test executors,
significantly enhancing the robustness of gener-
ated data through iterative agent-driven feedback.
BOLT (Pang et al., 2025) integrates multi-agent
frameworks with large language models (LLMs)
to produce long-chain reasoning data, further high-
lighting the efficacy of this approach in creating
structured, reasoning-intensive datasets. Unlike
previous multi-agent applications, our framework
specifically targets medical reasoning datasets, em-
ploying specialized medical and general-purpose
language models to generate, validate, and refine
high-quality reasoning paths, explicitly tailored for
medical QA scenarios.

Medical Reasoning Dataset & Model. Recent
studies highlight the efficacy of chain-of-thought
(CoT) prompting in improving model performance
on medical QA benchmarks (Wei et al., 2022;
Liévin et al., 2023). Models employing adaptive
reasoning, such as medical language agents, have
been introduced to systematically address com-
plex clinical tasks (Dutta and Hsiao, 2024). Fur-
thermore, multi-agent systems, employing special-
ized medical reasoning agents, collaboratively syn-
thesize clinical insights, thus enhancing decision-
making reliability and interpretability (Zuo et al.,
2025). HuatuoGPT (Chen et al., 2024) further ex-
emplifies the integration of comprehensive medical
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knowledge and multi-step reasoning into large lan-
guage models. However, existing datasets often
lack rigorous verification processes and structured
optimization strategies tailored to medical QA com-
plexity. Our work uniquely addresses this gap by
employing a rigorous, multi-stage optimization and
verification pipeline, systematically evaluating and
refining multi-step reasoning paths to significantly
enhance the quality and applicability of the result-
ing medical reasoning dataset.

LLM-as-a-Judge. Employing large language
models as evaluators (LLM-as-a-Judge) has be-
come increasingly prevalent, providing scalable
and consistent assessment frameworks across vari-
ous domains (Gu et al., 2025). Notably, in medical
QA tasks, LLM evaluators have demonstrated en-
hanced evaluation consistency and accuracy (Kro-
lik et al., 2024; Zhao et al., 2024). LLM-based eval-
uators iteratively assess and refine reasoning steps,
guiding models toward correct and logically coher-
ent paths (Qin et al., 2024). Approaches such as
QuRating (Tang et al., 2024) have underscored the
potential for systematic selection of high-quality
training data using LLM evaluators. In contrast
to existing studies, our approach evaluates the lan-
guage modelgenerated CoT reasoning paths for
correctness and potential factual errors, and addi-
tionally outputs the error reasons for flawed paths
to facilitate subsequent optimization. We also de-
veloped a Score Evaluator to offer an assessment
framework comparing reasoning paths before and
after optimization and datasets quality.

3 Multi-Agent Reasoning Pipeline

3.1 Dataset Composition

In this section, we present the composition of
the dataset used for the Multi-Agent Reasoning
Pipeline, along with an analysis of the dataset’s
structure and the benchmarks involved. The dataset
consists of various medical question-answering
datasets. Table 1 shows a summary of the dataset
composition:

Dataset Composition Count
MedQA (train/dev) 10178/1272
MedMCQA (train) 182822
PubMedQA (train/val) 450/50
MMLU

Anatomy (dev/val) 5/14
Clinical Knowledge (dev/val) 5/29
College Biology (dev/val) 5/16
College Medicine (dev/val) 5/22
Medical Genetics (dev/val) 5/11
Professional Medicine (dev/val) 5/31
Total Count 194925

Table 1: Summary of ReasonMed Question Count Com-
position.

3.2 Multi-Agent System for Complex CoT
Generation

We employ a multi-agent framework—compris-
ing Qwen-2.5-72B, HuatuoGPT-01-70B, and
DeepSeek-R1-Distill-Llama-70B—to  generate



1.755 million reasoning paths. Each model
produces three CoT trajectories at different
temperatures (0.7, 0.9, and 1.0). We then assemble
the complex CoTs by following these steps:

(i) Rewrite the question.

(i) Highlighting key clinical details and back-
ground information.

(iii) Evaluate each answer choice and discussing
supporting evidence and potential traps.

(iv) Systematically eliminate choices inconsistent
with the clinical context.

(v) Reassess each option, eliminating inconsisten-
cies.

(vi) Conclude with a final answer, supported by a
concise explanation of the reasoning.

In Fig 2, we present a pairwise comparison among
DeepSeek-R1-Distill-Llama-70B, HuatuoGPT-o1-
70B, and Qwen2.5-72B on the Medical QA task.
Specifically, we compare the number of questions
correctly answered by each model individually.
The results reveal that different models exhibit dis-
tinct strengths across various medical knowledge
domains.The observed differences in knowledge
domains across models highlight the necessity of
a multi-agent system that integrates diverse model
outputs.
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Figure 2: Knowledge domain differences among
DeepSeek-R1-Distill-Llama-70B, HuatuoGPT-01-70B
and Qwen2.5-72B.

3.3 Component Design

This section provides an overview of the compo-
nents developed in this paper and their respective
functions. (2)-(6) of Fig 3 visualize the structure
and workflow of each component.

Verifier: This component constructs a verifier
(based on Qwen2.5-72B) to validate the correct-
ness of CoT paths generated by the Multi-Agent
system. The model not only checks whether the
answer is correct or incorrect, but also evaluates
whether the key clinical factors have been accu-
rately identified, whether all answer choices have
been analyzed, and whether there are any factual
errors in the medical knowledge. The model out-
puts a JSON object with two keys: one indicating
the verdict (Correct or Error), and the other pro-
viding the reason for the error. For example, "The
CoT analysis contains inaccuracies regarding va-
sopressin’s role in glycogenolysis and incorrectly
dismisses oxytocin without full consideration of its
potential regulatory effects.”. Fig 4 presents a bar
chart showing the number of correct versus incor-
rect reasoning paths—after Verifier validation—for
each model and CoT configuration across the nine
generated paths. DeepSeek-R1-Distill-Llama-70B
achieves the highest overall accuracy; Qwen-2.5-
72B retains the most correct paths at a temperature
of 0.9, while the optimal temperature for the other
two models is 0.7.

Response Summarizer: To construct a response
with reasoning similar to ol answers, we use GPT-
4o0-mini as a summarization assistant. The model
generates a summary for each complex CoT, which
represents a step-by-step reasoning process. This
summary is presented as the final output to the user,
focusing on the reasoning aspect of the response.

Quality Ranker: Balancing dataset size and
quality is crucial. Among the many correct CoT
paths, we aim to select the two most optimal ones
for subsequent training. The Quality Ranker, based
on Qwen2.5-72B, plays a critical role here. The
model reads the correct CoT paths and outputs
the top two, such as "top2": ["modelX_COTY",
"modelZ_COTW"], along with the rationale for ex-
cluding the other options. Initially, we considered
using a Score Evaluator to rate each CoT, but this
approach was challenging due to cases where mul-
tiple CoTs might have identical scores, making it
difficult to select the best. Therefore, we opted for
directly outputting the two best paths by their CoT
names. Fig 5 shows the distribution of the top two
CoT paths selected by the Quality Ranker in both
Easy Pipeline and Medium Pipeline, illustrating
the sampling proportions across different models
and temperature settings.
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the entire pipeline for our dataset.
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Figure 4: Bar chart illustrating the correct and incorrect
counts for each model and CoT configuration across
9 generated paths in a Multi-Agent System, totaling
192,628.

Error Refiner: This component handles ques-
tions of moderate difficulty. Using the Quality
Ranker, it first selects the two most optimal rea-
soning paths (if only two chains of thought are
correct, they are chosen by default), and then per-
forms a secondary optimization. Its design also in-
cludes storing the models error reasons during the
verification stage and leveraging a stronger model
to supplement and address those weak pointsan
approach that effectively corrects the models error-
prone knowledge.

Score Evaluator: This component utilizes the
GPT-40 API to score the dataset quality on a scale
from 0 to 10. We conducted two main experiments:
the first compared the scores of the same question
before and after CoT optimization to validate the
effectiveness of the Error Refiner; the second in-
volved comparing our final ReasonMed with other
open-source medical reasoning datasets through
random sampling to assess the effectiveness of our
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Figure 5: Distribution of the top two CoT paths selected
by the Quality Ranker in Easy Pipeline and Medium
Pipeline, showing sampling proportions across models
and temperature settings.

Multi-Agent approach.

3.4 ReasonMed Build Pipeline

Based on the number of errors detected in the rea-
soning paths, three distinct pipelines were created
to process CoTs at varying levels of difficulty:

Easy Pipeline (Error 0-4) : This pipeline han-
dles paths with few errors (0-4), which are rela-
tively easy for the model to answer correctly. Here,
we use Quailty Ranker to rank the correct paths,
selecting the top two from the 5-9 correct options.
Additionally, the model provides brief explanations
as to why it did not choose other CoT paths.

Medium Pipeline (Error 5-7) : For paths with
moderate errors (5-7), we assume that the model
has partial knowledge but may miss certain fine-
grained details. Thus, the top two CoT paths are
selected using the Quality Ranker, and then refined
using the Error Refiner based on the pitfalls pro-
vided by the Verifier, focusing on correcting those



errors to enhance the original correct reasoning
chains.

Difficult Pipeline (Error 8-9) For difficult
questions with significant errors (8-9), the GPT-40
model may not be sufficient to correct the mistakes.
Therefore, we use GPT-01 to optimize these paths.
For paths that are entirely incorrect, GPT-01 gener-
ates high-quality CoTs from scratch, following the
Six-step reasoning process.

Lastly, Fig 6 presents the different pipeline quan-
tity statistics, showing the distribution of paths han-
dled by Easy, Medium, and Difficult Pipeline.
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Figure 6: Different Pipeline Quantity Statistics.

By analyzing the number of correct paths val-
idated by the Verifier, we can approximate each
questions difficulty. Accordingly, we designed
three distinct pipelines to tackle problems of vary-
ing complexity, systematically correcting errors in
complex CoTs and refining the original dataset to
strike an optimal balance between scale and quality.

4 Multiscale Supervised FineTuning

To assess the impact of explicit reasoning supervi-
sion on a downstream medical QA task, we propose
a multiscale fine-tuning strategy leveraging three
variants of our high-quality dataset. These variants
are based on different granularities of reasoning, as
outlined below:

* CoT: A complex chain of thought consisting
of six reasoning steps,

* Response: A concise response generated by
a Response Summarizer from the CoT,

* Reason: A combination of the complex CoT
and its corresponding summarized response.

4.1 Data Preparation

Leveraging the 370 K ReasonMed introduced in
Section 3, we employ a Response Summarizer to
condense each chain-of-thought into a succinct
answer explanation. For every question q and
its corresponding CoT path Multi — step =
[stepi, ..., stepg], we generate the following in-
stances:

e CoT instance:

[q; stepy, stepa, ..., stepg| > CoT.

* Response instance:

Response Summarizer(CoT) +— Response,

¢ Reason instance:

<think>{CoT}</think>Response ~» Reason.

The CoT, Response, and Reason instances are
designed to encapsulate different levels of reason-
ing and summarization, providing a different scale
of data for training.

4.2 Fine-Tuning and Training

We fine-tuned the open-source Qwen2.5-7B model
using three different fine-tuning regimes, with each
regime corresponding to a different data scale.
Specifically, we utilized LlamaFactory to perform
3 epochs of supervised fine-tuning on the following
datasets:

* CoTMed-7B: Fine-tuned with the CoT in-
stances, focusing on reproducing the reason-
ing trace and generating the final answer.

* ResponseMed-7B: Fine-tuned with the Re-
sponse instances, where the model is trained
to generate concise summaries of the reason-
ing path.

* ReasonMed-7B: Fine-tuned with the Reason
instances, combining detailed reasoning with
summarized feedback.



Fig 3 (1) illustrates the SFT process. For evalua-
tion, we used the Im_eval framework to analyze the
performance of these models on benchmark tasks,
examining whether multi-step reasoning could en-
hance the model’s ability to perform medical QA.
We also trained models with fewer epochs, includ-
ing a variant trained for only one epoch, to assess
performance differences and investigate the effect
of fewer training steps. The results of these experi-
ments will be discussed in detail in the experimen-
tal section.

4.3 Training Details

We performed full-model fine-tuning of the
Qwen?2.5-7B checkpoint using the LLaMA-Factory
framework on a 16 x H20 GPU cluster. The Re-
sponseMed configuration completed in approxi-
mately 9 hours, whereas CoTMed and ReasonMed
required roughly 25 hours and 28 hours, respec-
tively.

5 Experiments

5.1 Dataset Quality Evaluation

Medium Pipeline Validity Verification: To eval-
uate the effectiveness of the Medium Pipeline, we
sampled 1,000 questions + CoT and used the Score
Evaluator to assess the quality of answers both be-
fore and after applying the Medium Pipeline (GPT-
4o-mini corrections). The results show a significant
improvement, with an average score increase of 0.8
points post-optimization. The specific scores are
as follows:

Dataset Samples Avg. Score
Medium Pipeline (pre-opt) 1,000 7.37
Medium Pipeline (post-opt) 1,000 8.17

Table 2: Score Evaluator results for Medium Pipeline
validity.

Comparison with Open-Source Datasets: We
compared the ReasonMed with two publicly open-
source medical reasoning corpora: medical-ol-
reasoning-SFT and Medical-R1-Distill-Data.
For a fair comparison, we sampled 1,000 instances
from each of these datasets and extended the Rea-
sonMed with an additional 3,000 samples. The
results demonstrate that the ReasonMed outper-
forms both baselines, achieving an average score
of 8.45 for the 1,000 sample subset and 8.50 for the

3,000 sample subset. This represents an improve-
ment of 3.9% and 5.9% over the other datasets,
respectively.

Dataset Samples Avg. Score
medical-ol-reasoning-SFT 1,000 8.03
Medical-R1-Distill-Data 1,000 8.18
ReasonMed 1,000 8.45
ReasonMed 3,000 8.50

Table 3: Score Evaluator results for comparison with
other datasets.

5.2 Multiscale Supervised Fine-Tuning

In this section, we present a comprehensive anal-
ysis of the experimental results obtained by fine-
tuning the Qwen2.5-7B model using our proposed
multiscale supervised fine-tuning (SFT) strategy.
Performance comparisons across various medical
question-answering (QA) benchmarks, including
MedQA, MedMCQA, PubMedQA, and MMLU,
are detailed in Table 7. Our results demonstrate the
effectiveness of incorporating explicit reasoning
supervision at multiple granularities:

CoTMed-7B consistently outperforms baseline
models across most benchmarks, achieving notably
higher scores in MedQA (66.3%), MedMCQA
(64.7%), and PubMedQA (80.0%). This indicates
that fine-tuning on complex reasoning chains sub-
stantially enhances the model’s capacity to perform
medical reasoning tasks.

ResponseMed-7B focusing solely on generat-
ing concise summaries of reasoning, achieved
competitive results, with notable performance on
MedQA (67.5%) but slightly lower overall accu-
racy (67.0%) compared to CoTMed-7B (69.1%).
This suggests that while response summarization
captures key information effectively, it may miss
nuanced reasoning steps critical for more complex
questions.

ReasonMed-7B  which combines detailed reason-
ing chains and concise summaries, yielded the high-
est total accuracy (69.6%), particularly excelling
in MedMCQA (65.1%) and PubMedQA (82.0%).
This hybrid approach appears to effectively lever-
age the strengths of both granularities, achieving
balanced and robust performance across diverse
question types.

To explore the impact of training duration, we



MMLU

MedQA  MedMCQA (val) - PubMedQA Anatomy Clinical College College Medical  Professional Total Acc Avg. token
Knowledge  Biology = Medicine  Genetics Medicine

Dataset_Count 1273 4183 1000 135 265 144 173 100 272 - -
BioMistral-7B 45.6 £1.4 415408 71.04+2.0 763437 63.0+3.0 625441 53.8+38 67.0+47 53.343.0 489 60.1
Llama3-OpenBioLLM-8B  57.9 £+1.4 577408 76.0 +6.1 689440 777426 833431 694435 830438  79.0+25 62.9 75.1
Llama-3-8B-UltraMedical 632 +14 57.7+£0.8 78.0 £5.9 67.4 +4.1 743 £2.7 75.7+3.6 619437 73.0+45 78.7 £2.5 63.5 5177.7
Mistral-7B-Instruct-v0.3 522+1.4 482408 82.0 £5.5 593 +42 694428 729437 56.7+3.8 70.0+4.6 66.5 £2.9 55.9 111.8
Yi-1.5-9B-Chatbot 498 +1.4 47.0+£0.8 69.0 +2.1 675438 63.9+28 703438 512440 68.8+4.5 66.7 +3.1 529 162.2
HuatuoGPT-01-7B 68.4 £1.3 57.5+0.8 74.0 £2.0 719 +£3.9 78.5 £2.5 882 £2.7 67.6+3.6 80.0 £4.0 77.6 £2.5 644 446.0
HuatuoGPT-01-8B 65.4+1.3 61.0 +£0.8 746 £2.0  69.6+4.0 777426 813433 69.9+35 78.0+4.2 71.0 £2.8 65.5 468.9
ResponseMed-7B (lepoch)  62.2 +1.4 57.6 £0.8 84.0+52  75.6+37 777426 813433 69.9+35 87.0+34 76.8 £2.6 64.8
CoTMed-7B(lepoch) 643 +1.3 62.4 +£0.8 82.0+55 77.0+3.6 80.8+24 81.3+33 728434 90.0+3.0 794425 67.8
ReasonMed-7B (lepoch) 653 £1.3 62.3 £0.8 82.0+5.5 74.8 £3.7 80.0 +2.5 81.3+33 740434 86.0+£3.5 79.0 £2.5 67.7 -
ResponseMed-7B 67.5+1.3 60.9 +£0.8 80.0 £5.7 748437 774426 840431 71.1+35 88.043.3 76.5 £2.6 67.0 225.2
CoTMed-7B 66.3+1.3 64.7 +£0.7 80.0£5.7  75.643.7 79.6+25 82.1+32 717434 86.0+35 799 +£2.6 69.1 555.4
ReasonMed-7B 669 £1.3 65.1 £0.7 82.0+5.5 75.6 £3.7 79.3 £2.5 792434 734434 85043.6 80.9 +2.4 69.6 626.0

Table 4: Performance Comparison of Various Models on MedQA, MedMCQA, PubMedQA, and MMLU Bench-

marks with Total Accuracy and Average Token Length.

also compared model performances trained for dif-
ferent epochs:

One Epoch Training: Models trained for one
epoch showed promising yet suboptimal perfor-
mance compared to their three-epoch counter-
parts. CoTMed-1epoch achieved an overall accu-
racy of 67.8%, slightly outperforming ReasonMed-
7B-lepoch (67.7%) and significantly surpassing
ResponseMed-7B-1epoch (64.8%).

Three Epoch Training: Models trained for three
epochs consistently improved across benchmarks,
clearly illustrating the benefit of extended train-
ing. The enhancements , whose overall accuracy
improved from 67.71% (1 epoch) to 69.63% (3
epochs).

Under limited training steps, the CoTMed-7B
model outperforms ReasonMed-7B; however, as
the number of training steps increases, ReasonMed-
7B ultimately surpasses CoTMed-7B by 0.54%.
Additional training may enable the model to more
effectively learn the internal connections between
complex chain-of-thought reasoning and concise
summarization, resulting in further performance
gains.

Analysis of Average Token Length To obtain
these averages, we ran each model in inference
mode on all test set questions and computed the
mean number of output tokens. CoTMed-7B (555
tokens) and ReasonMed-7B (626 tokens) generate
substantially more content than ResponseMed-7B
(225 tokens), reflecting deeper reasoning at the
cost of verbosity. Compared to HuatuoGPT-01-7B
(446 tokens), our CoTMed and ReasonMed mod-
els exhibit even more extensive thought processes.
Although ResponseMed-7B produces fewer tokens,
it still outperforms the HuatuoGPT-o1 models in
overall accuracy, highlighting the importance of

dataset size and quality in model performance.

Compared to other biomedical LLMs such
as BioMistral-7B, Llama3-OpenBioL.LM-8B, and
HuatuoGPT-01, our ReasonMed-7B demonstrates
outstanding medical QA performance, achieving
the highest overall metrics. It outperforms the best
same-size model by 4.17% and even surpasses cer-
tain ten-billion-parameter models on several bench-
marks (see Appendix). These results underscore
the importance of both dataset quality and scale, as
well as the value of explicit multi-step reasoning
in medical QA. Moreover, with additional training
steps, the model is better able to internalize the
relationship between detailed reasoning chains and
concise response summaries, which significantly
enhances its overall performance.

6 Conclusion

In this work, we introduced the ReasonMed, the
largest open-source medical reasoning dataset, de-
signed to enhance the performance of reasoning
models in complex medical QA tasks. Using a
multi-agent framework, we generated, verified, and
optimized 1.291 million reasoning paths, refining
them into 370k high-quality examples. Through
rigorous fine-tuning experiments, we demonstrated
that incorporating explicit multi-step reasoning sig-
nificantly improves model performance, with our
hybrid approach combining Chain-of-Thought rea-
soning and summarization achieving the best re-
sults. Outperformed existing models, including
those with larger parameter sizes. These findings
highlight the importance of reasoning in medical
QA and provide a scalable framework for further
research in knowledge-intensive domains.



Limitations

Due to constraints in computational resources,
we did not extend our multiscale finetuning ex-
periments to models larger than 7B parameters.
While our hybrid ReasonMed-7B model outper-
forms many samesize and even some larger models
on key benchmarks, it remains unclear how our
dataset and finetuning strategies would scale when
applied to stateoftheart models in the 10B-100B pa-
rameter range. Our data filtering (Verifier and Qual-
ity Ranker) and final quality assessment (Score
Evaluator) rely exclusively on other large language
models (Qwen-2.5-72B and GPT-40). While these
models are among the most advanced open-source,
they may still harbor biases or systematic errors,
which can occasionally result in misjudgments.
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A Appendix

A.1 Ethical Statement

The ReasonMed-7B model presented in this paper
has demonstrated strong performance in handling
complex medical reasoning tasks. Nonetheless, it
still carries a risk of generating inaccurate infor-
mation, incomplete explanations, or hallucinations,
which could potentially mislead users. Therefore,
we strongly advise against the direct use of this
model in clinical settings or any real-world applica-
tions where errors might lead to significant negative

10

consequences. To ensure responsible usage, we re-
strict the model exclusively to academic research
purposes. It is essential for users to recognize and
respect these guidelines, thus avoiding situations in
which the dissemination of incorrect medical infor-
mation could compromise patient safety, treatment
accuracy, or clinical judgment.

article [most]tcolorbox minted

A.2 Component Prompt Design

CoT Generate This component is used to gener-
ate medical MCQ analysis prompts with detailed
chain thinking (CoT) to guide the model for step-
by-step reasoning.

CoT Generate

nnn

You are a highly knowledgeable medical
expert. You are provided with a clinical
multiple-choice question along with several
candidate answers. Your task is to carefully
analyze the clinical scenario and each op-
tion by following these steps:

1. Restate the question in your own words.
2. Highlight the key clinical details and rel-
evant background information (e.g., patho-
physiology, anatomy, typical presentations,
diagnostic tests).

3. Evaluate each candidate answer, dis-
cussing supporting evidence and potential
pitfalls.

4. Systematically rule out options that do
not align with the clinical context.

5. Compare any remaining choices based
on their merits.

6. Conclude with your final answer accom-
panied by a clear and concise summary of
your reasoning.

Please note: Your response should be based
solely on the current question and candi-
date answers. Do not consider any previous
context or prior interactions.

Question:

{question}

Candidate Answers:

{options}

Please provide your detailed chain-of-
thought reasoning followed by your final
answer.

nnn
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Verifier This component is used to evaluate the
chain-of-thoughts generated by the Multi-Agent
system to determine whether their reasoning is cor-
rect and output JSON results.

nmn

You are a medical evaluation expert. Ana-
lyze if the Chain-of-Thought (CoT) analysis
correctly leads to the answer.

[Question]

{question}

[Options]

{optionsstr}

[Correct Answer]

{answer}

[CoT Analysis]

{cot.ontent}

Evaluate the CoT analysis following these
criteria:

1. Does the analysis correctly identify key
clinical factors?

2. Are all options appropriately considered
and evaluated?

3. Does the reasoning logically lead to the
correct answer?

4. Are there any factual errors in medical
knowledge?

Output a JSON object with:

- "verdict": "Correct" if the CoT analysis is
valid and reaches the correct answer, other-
wise "Error"

- "reason": Brief explanation of your evalua-
tion (1-2 sentences)

nmn

Response Summarizer This component is used
to refine long-form CoT reasoning into concise
summaries.

Response Summarizer

nmn

Summarize the following chain-of-thought
reasoning:
{cot}

nn

Quality Ranker This component is used to com-
pare multiple CoT outputs, select the best two and
give a brief justification for the other CoT Paths.
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Quality Ranker

You are a medical reasoning evaluator.
Given the question, options, and known
answer, review the following chains-of-
thought (CoTs) labeled by their keys.
Select the two most sound and useful CoTs,
then provide brief justifications for why
each of the other CoTs were not chosen.
[Question]

{question}

[Options]

A) {optA}

B) {optB)

C) {optC}

D) {optD}

[Correct Answer]

{answer}

[CoTs]

{cot_block}

Respond with a JSON object with exactly

two keys:
"top2": ["modelX_COTY", "mod-
elZ_COTW"],

"reasons": <label>: <one-sentence justifica-
tion> for every CoT not in top2

nnn

Error Refiner This component refines the top
two selected reasoning paths by incorporating tar-
geted corrections for the error-prone points high-
lighted by the Verifier.

nun

You are an expert clinician-educator Al tu-
tor. Your mission is to generate an excep-
tionally comprehensive, in-depth chain-of-
thought explanation that rigorously justi-
fies the correct answer for the given clin-
ical MCQ, while specifically addressing
and integrating provided error feedback to
eliminate previous reasoning flaws. Adhere
closely to these instructions to maximize
completeness:

1. **Error-Driven Refinement**

- Review the provided **Error Reasons from
Other Attempts**.

- Identify logical gaps, factual mistakes,
omissions, or misleading inferences in the




original chainofthought.

- Explicitly incorporate corrections and clar-
ifications derived from these error reasons.
2. **Structured, Layered Reasoning**
Organize your explanation into clear sec-
tions:

a. Restate the question in your own words.
b. Highlight the key clinical details and rel-
evant background information (e.g., patho-
physiology, anatomy, typical presentations,
diagnostic tests).

c. Evaluate each candidate answer, dis-
cussing supporting evidence and potential
pitfalls.

d. Systematically rule out options that do
not align with the clinical context.

e. Compare any remaining choices based
on their merits.

f. Conclude with your final answer accom-
panied by a clear and concise summary of
your reasoning.

**nputs**

- **Question: ** *{question}’

- **QOptions:** ’{options }’

- **Correct Answer:** *{answer}’

- **Qriginal Chain-of-Thought:** ’{origi-
nal_cot}’

- **Error Reasons from Other Attempts:**
’{error_reasons}’

**Qutput: **

Please optimized Original Chain-of-
Thought. Ensure that you explicitly address
and rectify each error reason provided.

nmn

Score Evaluator This component evaluates the
quality of a models answer to each question and
assigns a corresponding score.

Score Evaluator

mn

You are a medical reasoning evaluator. As-
sess the following response based on the
following criteria:

1. **Clinical accuracy**: Does the re-
sponse correctly incorporate medical facts,
clinical guidelines, and evidence-based
practices? Are the clinical details provided
accurate, relevant, and appropriate for the
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given situation?

2. **Logical reasoning®*: Does the re-
sponse logically follow the reasoning pro-
cess required to arrive at the answer? Is
the reasoning chain coherent and well-
supported by evidence or clinical knowl-
edge?

3. **Factual correctness**: Are there any
factual errors in the response? Are all state-
ments factually correct and consistent with
established medical knowledge?

4. **Completeness**: Does the response
cover all necessary aspects of the question?
Is it thorough and detailed, addressing the
key points without missing critical informa-
tion?

[Question]

{question}

[Response]

{response}

Please evaluate the response on the above
criteria and provide a JSON object with two
keys:

"score": integer between 1 and 10,
"justification": A concise explanation of
your score.

nn

A.3 Additional Experiments

In Table 5, we presented pairwise (1-vs-1) dif-
ferences among DeepSeek-R1-Distill-Llama-70B,
HuatuoGPT-01-70B, and Qwen2.5-72B, showing
for each pair the count of questions one model
answered correctly but the other did not. To fur-
ther explore complementary coverage, Table 6
summarizes the one-vs-two scenario: for each
model, the number of questions it missed while
the other two both answered correctly. DeepSeek-
R1-Distill-Llama-70B failed only 3,430 (1.76%)
questions that HuatuoGPT-01-70B and Qwen?2.5-
72B both got right; HuatuoGPT-01-70B missed
9,352 (4.80%); and Qwen2.5-72B missed 5,280
(2.71%), out of 194,925 total. Together, these re-
sults confirm that each model contributes unique
strengths and gaps, underscoring the value of en-
semble or multi-agent approaches in medical QA.

Table 7 compares the performance of vari-
ous LLaMA3.1 and Qwen2.5 models on sev-
eral key medical benchmarks, including MedQA,
MedMCQA, PubMedQA, and six sub-domains of
MMLU.Our model,ReasonMed-7B, consistently



Comparison

Correct by Model 1 but Incorrect by Model 2 Incorrect by Model 1 but Correct by Model 2  Total Questions

DeepSeek-R1-Distill-Llama-70B vs HuatuoGPT-01-70B
DeepSeek-R1-Distill-Llama-70B vs Qwen2.5-72B
Qwen2.5-72B vs HuatuoGPT-01-70B

8,168 (4.19%)
19,017 (9.76%)
10,018 (5.14%)

27,339 (14.03%) 194,925
23,267 (11.94%) 194,925
24,939 (12.79%) 194,925

Table 5: Pairwise (1-vs-1) Knowledge Domain Differences among the three models.

Model

Questions Missed by This Model but Correct by Both Others

Total Questions

DeepSeek-R1-Distill-Llama-70B
HuatuoGPT-01-70B
Qwen2.5-72B

3,430 (1.76%) 194,925
9,352 (4.80%) 194,925
5,280 (2.71%) 194,925

Table 6: Collective (1-vs-2) Miss Rates: questions each model failed while the other two both answered correctly.

MedQA MedMCQA (val) PubMedQA MMLU Total Acc
Anatomy  Clinical Knowledge College Biology College Medici Medical Geneti Professi M

Dataset_Count 1273 4183 1000 135 265 144 173 100 272

LLaMA3.1-70B  76.8 £0.1 67.9 £0.7 774 +0.2 81.5 +0.3 89.1 0.2 96.5 +0.1 80.9 +0.3 90.0 0.3 93.0 0.2 729
Qwen2.5-14B 75.6 £0.1 63.4 +0.8 77.6 £0.2 75.6 £0.4 84.9 +£0.2 88.9 +0.3 75.7+0.3 90.0 £0.3 84.2 +0.2 69.0
Qwen2.5-32B 79.3 +0.1 67.6 0.7 77.6 £0.2 79.3 403 86.8 0.2 93.8 0.2 79.8 403 91.0403 87.540.2 72.6
Qwen2.5-72B 81.5 +0.1 71.2 £0.1 76.4 £0.2 75.6 +£0.4 86.8 +0.2 93.8 +0.2 77.5 £0.3 92.0 +0.3 88.240.2 75.6
QwQ-32B 78.1 0.1 65.5 +0.7 76.4 £0.2 75.6 £0.4 86.8 0.2 93.8 0.2 77.540.3 92.0 0.3 88.240.2 72.0

Table 7: Performance Comparison of LLaMA3.1 and Qwen2.5 Series Models(over 10B) on MedQA, MedMCQA,

PubMedQA, and MMLU Benchmarks.

achieves competitive performance and even outper-
forms much larger models on several benchmarks.
Most notably, on PubMedQA, ReasonMed-7B sur-
passes LLaMA3.1-70B by 4.60%, demonstrating
the effectiveness of our dataset and fine-tuning strat-
egy. Moreover, the model delivers strong results
on MedMCQA and multiple MMLU medical sub-
domains, highlighting its superior reasoning capa-
bilities in knowledge-intensive tasks. These find-
ings validate our multi-stage data refinement and
Chain-of-Thought optimization strategy, establish-
ing ReasonMed-7B as a new state-of-the-art among
sub-10B models, and narrowing the performance
gap with frontier 70B+ models.

A.4 Example of model output

Please answer the following multiple-
choice question:

Which of the following is not true about
glomerular capillaries?

A. The oncotic pressure of the fluid leaving
the capillaries is less than that of fluid
entering it

B. Glucose concentration in the capillaries
is the same as that in glomerular filtrate

C. Constriction of afferent arteriole de-
creases the blood flow to the glomerulus
D. Hematocrit of the fluid leaving the
capillaries is less than that of the fluid
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entering it

ReasonMed (temperature 0.4)

To answer this question, let’s break down
the components step-by-step:

1. Restate the question: We need to
identify which statement about glomerular
capillaries is incorrect.

2. Key clinical details and relevant back-
ground information:

- Glomerular capillaries are part of the
kidney’s filtration system.

- They filter blood to form urine.

- Oncotic pressure is the pressure exerted by
proteins in the blood.

- Glomerular filtrate is the fluid that passes
through the glomerulus.

- Afferent arterioles supply blood to the
glomerulus.

- Hematocrit refers to the proportion of
blood volume occupied by red blood cells.

3. Evaluate each candidate answer:

- "The oncotic pressure of the fluid leaving
the capillaries is less than that of fluid
entering it": This is true because as fluid




leaves the capillaries, it carries away
proteins, reducing the oncotic pressure.

- "Glucose concentration in the capillaries
is the same as that in glomerular filtrate":
This is false. Glucose is actively reabsorbed
in the proximal tubule, so its concentration
in the filtrate is lower than in the capillaries.
- "Constriction of afferent aeriole decreases
the blood flow to the glomerulas": This
is true. Constriction reduces blood flow,
which can decrease filtration rate.

- "Hematocrit of the fluid leaving the
capillaries is less than that of the fluid
entering it": This is true. As fluid leaves the
capillaries, it carries away proteins, includ-
ing red blood cells, reducing hematocrit.

4. Rule out options that do not align with
the clinical context:

- We can rule out the first, third, and
fourth options as they align with known
physiological processes.

5. Compare any remaining choices:
- The second option stands out as the only
one that contradicts known physiology.

6. Final answer:

The statement that is not true about glomeru-
lar capillaries is: "Glucose concentration in
the capillaries is the same as that in glomeru-
lar filtrate." This is because glucose is ac-
tively reabsorbed in the proximal tubule,
leading to a lower concentration in the fil-
trate compared to the capillaries.

</think>

The chain-of-thought reasoning breaks
down the process of identifying the incor-
rect statement about glomerular capillaries
step-by-step. It involves restating the ques-
tion, providing key clinical details and back-
ground information, evaluating each candi-
date answer, ruling out options that do not
align with the context, comparing remain-
ing choices, and arriving at the final answer.
The incorrect statement identified is that
the glucose concentration in the capillaries
is the same as that in glomerular filtrate,
which is false because glucose is actively
reabsorbed in the proximal tubule.
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To answer this question, let’s break down
the key concepts related to glomerular
capillaries and evaluate each statement
accordingly.

1. **Restating the Question**: We need to
identify which statement about glomerular
capillaries is incorrect.

2. #*Key Clinical Details and Background
Information**:

- Glomerular capillaries are part of the
kidney’s filtration system.

- They are responsible for filtering blood to
form urine.

- Key processes include filtration, reabsorp-
tion, and secretion.

- Oncotic pressure, glucose concentration,
blood flow, and hematocrit are important
parameters in this context.

3. **Evaluating Each Candidate Answer**:
- **The oncotic pressure of the fluid leaving
the capillaries is less than that of fluid
entering it**: This statement is true. As
blood passes through the glomerular cap-
illaries, proteins are filtered out, reducing
the oncotic pressure of the fluid leaving the
capillaries compared to the fluid entering
them.

- ¥*Glucose concentration in the capillaries
is the same as that in glomerular filtrate**:
This statement is false. Glucose is actively
reabsorbed in the proximal tubule, so the
glucose concentration in the capillaries is
higher than in the glomerular filtrate.

- **Constriction of afferent arteriole de-
creases the blood flow to the glomerulus**:
This statement is true. Constriction of
the afferent arteriole reduces blood flow
into the glomerulus, thereby decreasing
glomerular filtration rate (GFR).

- **Hematocrit of the fluid leaving the
capillaries is less than that of the fluid
entering it**: This statement is true. As
blood passes through the glomerular
capillaries, plasma proteins are filtered out,
leading to a decrease in hematocrit in the
fluid leaving the capillaries.




4. **Systematically Ruling Out Options**:
- The first, third, and fourth statements align
with the known physiology of glomerular
capillaries.

- The second statement contradicts the
known physiology, as glucose is actively
reabsorbed, making its concentration higher
in the capillaries than in the glomerular
filtrate.

5. *¥*Comparing Remaining Choices**:

- Only the second statement does not align
with the expected physiological behavior of
glomerular capillaries.

6. **Final Answer**:
- The statement that is not true about
glomerular capillaries is: "Glucose concen-
tration in the capillaries is the same as that
in glomerular filtrate."

**Summary of Reasoning**:

The correct answer is that the glucose con-
centration in the capillaries is not the same
as that in the glomerular filtrate. This is be-
cause glucose is actively reabsorbed in the
proximal tubule, resulting in a higher glu-
cose concentration in the capillaries com-
pared to the filtrate. All other statements
accurately describe aspects of glomerular
capillary function.

To determine which statement is not true
about glomerular capillaries, let’s analyze
each option step-by-step.

1. **The oncotic pressure of the fluid
leaving the capillaries is less than that of
fluid entering it:**

- Oncotic pressure is the colloid osmotic
pressure exerted by proteins in the blood
plasma. In the glomerulus, as fluid passes
through the fenestrated endothelium and
the glomerular basement membrane, some
plasma proteins are too large to pass
through. Therefore, the oncotic pressure
of the fluid that leaves the capillaries
(glomerular filtrate) is indeed lower than

ReasonMed (temperature 0.6)
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the oncotic pressure of the fluid entering
the capillaries (plasma). This statement is
true.

2. **Glucose concentration in the capil-
laries is the same as that in glomerular
filtrate: **

- Glucose is freely filtered by the glomeru-
lus, meaning that it passes from the
capillaries into the glomerular filtrate
without being reabsorbed or secreted.
Thus, the glucose concentration in the
capillaries should be equal to the glucose
concentration in the glomerular filtrate.
This statement is true.

3. **Constriction of afferent arteriole de-
creases the blood flow to the glomerulus:**
- The afferent arteriole supplies blood to the
glomerulus. Constriction of this arteriole
reduces the amount of blood flowing into
the glomerulus, thereby decreasing the
blood flow. This statement is true.

4. **Hematocrit of the fluid leaving the
capillaries is less than that of the fluid
entering it:**

- Hematocrit refers to the proportion of red
blood cells in a given volume of blood.
As fluid leaves the capillaries and enters
the glomerular filtrate, plasma proteins
are retained in the capillaries while water
and small molecules are filtered out.
Since plasma proteins contribute to the
hematocrit, the hematocrit of the fluid
leaving the capillaries (glomerular filtrate)
is actually higher than the hematocrit of the
fluid entering the capillaries (plasma). This
statement is false.

Based on this analysis, the statement that is
not true about glomerular capillaries is:

**Hematocrit of the fluid leaving the
capillaries is less than that of the fluid
entering it.**

</think>

The reasoning process involves evaluating
statements about glomerular capillaries to
identify which one is not true.




1. The oncotic pressure of the fluid leaving
the capillaries is lower than that of the fluid
entering due to the retention of plasma
proteins. This statement is true.

2. Glucose concentration in the capillaries
is the same as in glomerular filtrate because
glucose is freely filtered. This statement is
true.

3. Constriction of the afferent arteriole
decreases blood flow to the glomerulus,
which is accurate. This statement is true.
4. The hematocrit of the fluid leaving the
capillaries is actually higher than that of
the fluid entering because plasma proteins
remain in the capillaries. This statement is
false.

Thus, the incorrect statement is that the
hematocrit of the fluid leaving the capillar-
ies is less than that of the fluid entering it.
<system />

CoTMed (temperature 0.4)

Let’s break down the question and evaluate
each candidate answer step-by-step.

Restated Question:
Which statement about glomerular capillar-
ies is incorrect?

Key Clinical Details and Relevant Back-
ground Information:

1. **Glomerular Filtration**: Glomerular
capillaries are part of the kidney’s filtration
system where blood is filtered to form
urine.

2. **Oncotic Pressure**: This is the
osmotic pressure exerted by proteins in the
blood plasma.

3. **QGlucose Concentration**: Glucose
is filtered through the glomerulus but is
reabsorbed in the proximal tubule.

4. **Afferent and Efferent Arterioles**:
These regulate blood flow into and out of
the glomerulus.

5. **Hematocrit**: The proportion of
blood volume occupied by red blood cells.

Evaluation of Each Candidate Answer:
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1. **The oncotic pressure of the fluid
leaving the capillaries is less than that of
fluid entering it.**

- **Supporting Evidence**: As blood
passes through the glomerular capillaries,
water and small molecules are filtered out,
leaving behind a higher concentration of
proteins (and thus higher oncotic pressure).
Therefore, the oncotic pressure of the fluid
leaving the capillaries is indeed higher than
that of the fluid entering it.

- **Potential Pitfall**: This statement is
incorrect because the oncotic pressure
increases as the fluid leaves the capillaries.

2. **Glucose concentration in the capil-
laries is the same as that in glomerular
filtrate.**

- **Supporting Evidence**: Glucose is
freely filtered through the glomerulus, so
the initial concentration in the capillaries
should match the concentration in the
glomerular filtrate.

- **Potential Pitfall**: While this is gener-
ally true, glucose is actively reabsorbed in
the proximal tubule, so the concentration
in the filtrate will be lower than in the
capillaries after filtration.

3. **Constriction of afferent arteriole de-
creases the blood flow to the glomerulus.**
- **Supporting Evidence**: Constriction
of the afferent arteriole reduces blood flow
into the glomerulus, thereby decreasing
glomerular filtration rate (GFR).

- **Potential Pitfall**: This statement
is correct and aligns with physiological
principles.

4. **Hematocrit of the fluid leaving the
capillaries is less than that of the fluid
entering it.**

- **Supporting Evidence**: As blood
passes through the glomerular capillaries,
water and small molecules are filtered out,
leaving behind a higher concentration of red
blood cells (and thus a lower hematocrit).
Therefore, the hematocrit of the fluid
leaving the capillaries is indeed lower than
that of the fluid entering it.




- **Potential Pitfall**: This statement
is correct and aligns with physiological
principles.

Systematic Ruling Out Options:

- Option 1 is incorrect because the oncotic
pressure increases as the fluid leaves the
capillaries.

- Option 2 is generally true but has a poten-
tial pitfall regarding active reabsorption.

- Option 3 is correct.

- Option 4 is correct.

Comparison of Remaining Choices:
- Option 1 is clearly incorrect based on the
physiological principles of oncotic pressure.

Final Answer:

The statement that is not true about
glomerular capillaries is:

- **The oncotic pressure of the fluid leaving
the capillaries is less than that of fluid
entering it.**

This is because the oncotic pressure in-
creases as the fluid leaves the capillaries
due to the filtration of water and small
molecules.

Let’s break down the question and evaluate
each candidate answer step-by-step:

1. **Restate the Question:**
- Which statement about glomerular
capillaries is incorrect?

2. **Key Clinical Details and Background
Information:**

- Glomerular capillaries are part of the
kidney’s filtration system.

- They are responsible for filtering blood to
form urine.

- Key processes include filtration, reabsorp-
tion, and secretion.

- Oncotic pressure, glucose concentration,
blood flow, and hematocrit are important
parameters.

3. **Evyaluate Each Candidate Answer:**

CoTMed (temperature 0.5)
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- **The oncotic pressure of the fluid leaving
the capillaries is less than that of fluid
entering it:**

- Oncotic pressure is primarily due to
proteins in the plasma.

- As fluid leaves the capillaries into the
Bowman’s capsule, most of the proteins
remain in the capillaries.

- Therefore, the oncotic pressure of the fluid
leaving the capillaries is indeed lower than
that of the fluid entering it.

- This statement is true.

- **Glucose concentration in the capillaries
is the same as that in glomerular filtrate: **
- Glucose is filtered from the blood into the
glomerular filtrate.

- However, glucose is also reabsorbed in the
proximal tubule.

- Initially, the glucose concentration in the
capillaries and filtrate might be similar, but
as filtration occurs, the filtrate will have
more glucose.

- This statement is false because the glucose
concentration in the capillaries is typically
higher than in the glomerular filtrate due to
ongoing reabsorption.

- **Constriction of afferent arteriole de-
creases the blood flow to the glomerulus:**
- The afferent arteriole supplies blood to the
glomerulus.

- Constriction of this arteriole reduces blood
flow to the glomerulus.

- This statement is true.

- **Hematocrit of the fluid leaving the
capillaries is less than that of the fluid
entering it:**

- Hematocrit refers to the proportion of red
blood cells in the blood.

- As fluid leaves the capillaries, the remain-
ing fluid has a higher concentration of
proteins and a lower concentration of red
blood cells.

- Therefore, the hematocrit of the fluid
leaving the capillaries is indeed lower than
that of the fluid entering it. - This statement
is true.




4. **Systematically Rule Out Options:**

- We can rule out the statements about
oncotic pressure, constriction of the afferent
arteriole, and hematocrit as they are all true.

5. *¥*Compare Remaining Choices:**
- The only remaining choice is the statement
about glucose concentration.

6. **Final Answer:**

- The statement "Glucose concentration
in the capillaries is the same as that in
glomerular filtrate" is not true.

**Conclusion: **

The correct answer is: **Glucose concen-
tration in the capillaries is the same as that
in glomerular filtrate.** This statement is
false because the glucose concentration in
the capillaries is typically higher than in the
glomerular filtrate due to ongoing reabsorp-
tion in the proximal tubule.

To answer this question, let’s break down
the options step by step:

1. **Restating the Question**: We need to
identify which statement about glomerular
capillaries is incorrect.

2. **Key Clinical Details and Background
Information™*:

- Glomerular capillaries are part of the
kidney’s filtration system.

- They are involved in the formation of urine
through the process of glomerular filtration.
- The glomerular capillaries have a unique
structure that allows for selective filtration
of blood components.

- Oncotic pressure, glucose concentration,
and hematocrit are important factors in
understanding the function of glomerular
capillaries.

3. **Evaluating Each Candidate Answer**:
- **Option 1: The oncotic pressure of the
fluid leaving the capillaries is less than that
of fluid entering it**

CoTMed (temperature 0.6)
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- This statement is true. Oncotic pressure
is the osmotic pressure exerted by proteins
in the blood. As fluid passes through the
glomerular capillaries, some of the plasma
proteins are too large to pass through the
filtration barrier, so they remain in the
capillaries. Therefore, the oncotic pressure
of the fluid leaving the capillaries is indeed
lower than that of the fluid entering it.

- **QOption 2: Glucose concentration in the
capillaries is the same as that in glomerular
filtrate®*

- This statement is false. Glucose is filtered
from the blood into the glomerular filtrate,
but the filtration process is selective. The
glomerular capillaries reabsorb glucose
back into the bloodstream, so the glucose
concentration in the capillaries is higher
than in the glomerular filtrate.

- **Option 3: Constriction of afferent
arteriole decreases the blood flow to the
glomerulus**

- This statement is true. The afferent
arteriole supplies blood to the glomerulus.
Constriction of this arteriole reduces blood
flow to the glomerulus, thereby decreasing
the glomerular filtration rate (GFR).

- **QOption 4: Hematocrit of the fluid
leaving the capillaries is less than that of
the fluid entering it**

- This statement is true. = Hematocrit
refers to the proportion of blood volume
occupied by red blood cells. As fluid passes
through the glomerular capillaries, plasma
proteins are retained, while water and small
molecules are filtered out. This results in
a lower hematocrit in the fluid leaving the
capillaries compared to the fluid entering
them.

4. **Ruling Out Options**:

- Options 1, 3, and 4 are all true statements
about glomerular capillaries.

- Option 2 is the only false statement among
the given options.

5. *#*Comparing Remaining Choices**:




- Since we have identified that Option 2 is
the only false statement, there is no need
for further comparison.

6. **Final Answer**:

- The correct answer is **Option 2: Glu-
cose concentration in the capillaries is the
same as that in glomerular filtrate**. This
statement is false because the glomerular
capillaries reabsorb glucose, resulting in a
higher glucose concentration in the capillar-
ies compared to the glomerular filtrate.

ResponseMed (temperature 0.4)

The question asks which statement about
glomerular capillaries is incorrect. Key
details include that glomerular capillaries
are part of the kidney’s filtration system,
where blood is filtered to produce urine,
and that oncotic pressure affects fluid
movement across capillary walls.

Evaluating the candidate answers:

1. The statement about oncotic pressure
is incorrect because the oncotic pressure
of fluid leaving the capillaries is actually
greater than that of the fluid entering, due
to the reabsorption of proteins.

2.  The statement regarding glucose
concentration is true; glucose is filtered and
then reabsorbed, leaving its concentration
unchanged.

3. The statement about afferent arteriole
constriction decreasing blood flow to the
glomerulus is also true.

4. The statement about hematocrit is true as
well; the hematocrit of the fluid leaving the
capillaries is lower due to plasma filtration.

Thus, the incorrect statement is that "The
oncotic pressure of the fluid leaving the
capillaries is less than that of fluid entering
it." This is because the oncotic pressure
increases as proteins are retained in the
capillaries.

Final answer: The oncotic pressure of the
fluid leaving the capillaries is less than that
of fluid entering it. This statement is in-
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correct as the oncotic pressure actually in-
creases due to protein retention.

ResponseMed (temperature 0.5)

The incorrect statement regarding glomeru-
lar capillaries is that "The oncotic pressure
of the fluid leaving the capillaries is less
than that of fluid entering it." This is false
because oncotic pressure increases as fluid
moves through the glomerulus due to the
removal of plasma proteins, leading to a
higher oncotic pressure in the capillary
blood compared to the glomerular filtrate.

The other statements are accurate:

1. Glucose concentration in capillaries is
the same as in glomerular filtrate initially,
but it is fully reabsorbed, making this
statement somewhat misleading.

2. Constriction of the afferent arteriole
does decrease blood flow to the glomerulus,
which is correct.

3. The hematocrit of the fluid leaving
the capillaries is indeed lower than that
entering, as plasma is filtered out, making
this statement true.

In summary, the first statement is the only
one that is definitively incorrect based on
the principles of glomerular filtration. Un-
derstanding these dynamics is crucial for
interpreting renal function and managing
related medical conditions.

ResponseMed (temperature 0.6)

To determine which statement about
glomerular capillaries is incorrect, we
analyzed several options based on the
physiology of the glomerulus.

1. **Oncotic Pressure**: The oncotic
pressure of fluid leaving the capillaries is
indeed lower than that entering, as some
proteins are retained, making this statement
true.

2. **Glucose Concentration**: Glucose is
freely filtered, so its concentration is the
same in both capillary blood and glomerular




filtrate, confirming this statement is true.

3. **Afferent Arteriole Constriction®*:
Constriction of the afferent arteriole
reduces blood flow to the glomerulus,
which is also true.

4. **Hematocrit**: The hematocrit of the
fluid leaving the capillaries is higher than
that entering because plasma is filtered out,
making this statement false.

Thus, the incorrect statement is that the
hematocrit of the fluid leaving the capil-
laries is less than that of the fluid entering it.

**Final Answer**: The incorrect statement
is that the hematocrit of the fluid leaving
the capillaries is less than that of the fluid
entering it.
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