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ABSTRACT

Deep neural networks for computer vision are highly accurate but their out-of-
distribution generalization performance remains a major challenge, so understand-
ing their failure modes is an important step towards improving their robustness.
Intriguingly, recent work has shown that deep neural networks latch on to the
Fourier statistics of training data, show increased sensitivity to certain Fourier-
basis directions in the input and are not robust when Fourier-statistics shift un-
favorably at test time. Understanding and modifying this Fourier-sensitivity of
computer vision models may help improve their robustness, hence, in this paper
we study the frequency sensitivity characteristics of deep neural networks using
a principled approach. We first propose a general measure of a computer vision
model’s spatial frequency sensitivity based on its input-Jacobian represented in
the Fourier-basis. When applied to deep neural networks, we find that standard
minibatch training consistently leads to increased sensitivity towards particular
spatial frequencies independent of network architecture. We further propose a
family of spatial frequency regularizers based on our proposed measure to in-
duce specific spatial frequency sensitivities in a model. In various generalization
tests involving shifts in the Fourier-statistics of the data, we find that deep neu-
ral networks trained with our proposed regularizers obtain significantly improved
classification accuracy while maintaining high accuracy on in-distribution test im-
ages.

1 INTRODUCTION

While deep neural networks (DNN) achieve remarkable performance on many challenging image
classification tasks, they can suffer significant drops in performance when evaluated on out-of-
distribution (o.o.d.) data. Intriguingly, this lack of robustness has been partially attributed to the
frequency characteristics of data shifts at test time in relation to the frequency sensitivity charac-
teristics of the model (Yin et al., 2019; Jo & Bengio, 2017). Distinct spatial frequencies in images
contain features at different spatial scales; low spatial frequencies (LSF) carry global structure and
shape information in a scene whereas high spatial frequencies (HSF) carry local information such
as edges and borders of objects in a scene (Kauffmann et al., 2014); in fact, spatial frequencies
are differentially processed in distinct channels of the visual cortex in the brain to learn features at
different scales (Appendix B). When information is destroyed or corrupted in frequency bands that
a model relies on, performance suffers. Hence, understanding the spatial frequency sensitivity of a
DNN can help us characterise the features it relies on to make predictions.

DNNs have been demonstrated to be sensitive to Fourier-basis directions in the input (Tsuzuku &
Sato, 2019; Yin et al., 2019) both empirically and using theoretical analysis of linear convolutional
networks (Tsuzuku & Sato, 2019). In fact, the existence of so-called “universal adversarial pertur-
bations” (Moosavi-Dezfooli et al., 2017), simple semantics-preserving distortions that can degrade
models’ accuracy across inputs and architectures, is attributed to this structural sensitivity and the
use of convolution operations. Yin et al. (2019) also showed that many natural and digital image
corruptions that degrade model performance may also be targeting this vulnerability. The Fourier-
characteristics of adversarial examples are also known to closely match the Fourier-sensitivity of
models (Yin et al., 2019). Hence, understanding and modifying Fourier-sensitivity can aid efforts to
improve model robustness. While this Fourier-sensitivity has been studied empirically, the precise
definition and measurement of a computer vision model’s spatial frequency sensitivity still lacks a
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rigorous approach across studies. In addition, there has been no principled method to specifically
modify the spatial frequency sensitivity of a model. Existing works have heuristically applied filters
on convolution layer parameters (Wang et al., 2020; Saikia et al., 2021) and data augmentations (Yin
et al., 2019) to modify a model’s frequency sensitivity.

In this work, we propose a novel and rigorous measure of a deep neural network’s spatial fre-
quency sensitivity using the input-Jacobian represented in the Fourier-basis and show that deep neu-
ral networks demonstrate consistent spatial frequency sensitivities across samples, an observation
that suggests DNNs are more likely to consistently use some frequencies more than others, and has
implications for robustness. In addition, using our proposed measure, which is differentiable with
respect to model parameters, we propose a novel family of spatial frequency regularizers to directly
induce specific frequency sensitivities in a model. We hypothesize and show in empirical evalu-
ations that spatial frequency regularization can modify the frequency sensitivity characteristics of
computer vision models and can significantly improve the generalization performance of models on
o.o.d. datasets where the Fourier-statistics are unfavorably shifted.

In summary, the main contributions of this work are as follows:

1. We propose a novel and rigorous measure of a model’s spatial frequency sensitivity based
on its input-Jacobian represented in the Fourier-basis

2. We propose a novel family of spatial frequency regularizers to directly induce specific
spatial frequency sensitivities

3. We demonstrate that spatial frequency regularization can significantly improve general-
ization performance on out-of-distribution data where Fourier-statistics are unfavorably
shifted

2 RELATED WORK

Characterising frequency sensitivity: Yin et al. (2019); Tsuzuku & Sato (2019) characterised the
Fourier characteristics of trained CNNs using perturbation analysis of their test error under Fourier-
basis noise. They showed that a naturally trained model is most sensitive to all but low frequencies
whereas models adversarially trained (Madry et al., 2018) models are sensitive to low-frequency
noise. They further showed that these Fourier characteristics relate to model robustness on corrup-
tions and noise, with models biased towards low frequencies performing better under high frequency
noise and vice versa. Abello et al. (2021) took a different approach by measuring the impact on
accuracy of removing individual frequency components from the input using filters whereas Ortiz-
Jimenez et al. (2020) computed the margin in input space along basis directions of the discrete cosine
transform (DCT). Wang et al. (2020) made observations about the Fourier characteristics of CNNs
in different training regimes including standard and adversarial training by evaluating accuracy on
band-pass filtered data. In contrast to these disparate approaches, in this work, we propose a rigorous
measure of a model’s spatial frequency sensitivity.

Regularizing frequency sensitivity: Yin et al. (2019) proposed adversarial training (Madry et al.,
2018) and gaussian noise augmentations as methods that induce a low-frequency sensitivity. Wang
et al. (2020) proposed smoothing convolution filter parameters to induce a low-frequency sensitivity
in models. We note that, in general, techniques that apply filters on convolutional parameters to
affect a model’s frequency sensitivity do not take into account complex operations such as non-
linearities, pooling and other transformations that often follow convolutional layers that can modify
as well as undo the effects of such filters. In addition, data augmentations do not provide precise
control over the Fourier-sensitivity of a model. In this work, we propose a family of spatial frequency
regularizers that can precisely modify the overall spatial frequency sensitivity of any differentiable
model.

Jacobian regularization: Methods that regularize the Jacobian of a model’s output-logits or loss
with respect to its input can broadly be divided into two types; one regularizes the norm of the
input-Jacobian and the other regularizes its direction or directional derivatives. Drucker & Le Cun
(1991) proposed a method that penalized the norm of the input-Jacobian to improve generalization,
more recently this has been explored to improve robustness to adversarial perturbations (Ross &
Doshi-Velez, 2018; Jakubovitz & Giryes, 2018; Hoffman et al., 2019). Simard et al. (1992) proposed
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”Tangent Prop”, which minimized directional derivatives of classifiers in the direction of local input-
transformations (e.g. rotations, translations; called ”tangent vectors”) to reduce model sensitivity
to such transformations. Czarnecki et al. (2017) proposed Sobolev training of neural networks to
improve model distillation by matching the input-Jacobian of the original model. Regularizing the
direction of the input-Jacobian has also been used to improve adversarial robustness (Chan et al.,
2020). In the present work, we regularize Fourier-components in the input-Jacobian to modify the
spatial frequency sensitivity of models. As such, we are directly modifying the direction of the
input-Jacobian instead of its norm.

3 METHODS

Preliminaries: We introduce all relevant definitions and notations before describing the proposed
methods. Consider an image classification task with input images x, target labels y, and the stan-
dard cross-entropy loss function LCE. Let f denote any differentiable model, F(·) the unitary 2D
discrete Fourier transform (DFT), F−1(·) its inverse, and F−1∗(·) the adjoint of the inverse-Fourier
transform, and let xf denote the Fourier space representation of the input, i.e. xf = F(x). We
denote the input-Jacobian in the standard input basis as ∂LCE

∂x , and ∂LCE

∂xf
as the input-Jacobian in the

Fourier-basis. Let N denote the height of the input images x (although not necessary, all images used
in this work are square). The zero-shifted 2D-DFT of the input-Jacobian is denoted F = F(∂LCE

∂x ).
Since the input-Jacobian typically has three color channels, they are averaged before computing
the 2D-DFT. Fourier coefficients in F are complex numbers with real and imaginary components;
F (u, v) = Real(u, v) + Imag(u, v), where (u, v) are indices of coefficients. The power in a co-
efficient is its squared amplitude, P (u, v) = |F (u, v)|2 = Real(u, v)2 + Imag(u, v)2 and the
matrix of powers is denoted P (power-matrix). Each coefficient has a radial distance r(u, v) from
the centre of the matrix, r(u, v) = d((u, v), (cu, cv)), where (cu, cv) denotes the centroid of P and
d(·, ·) is Euclidean distance. Distinct radial distances, rounded to the nearest integer, of coefficients
in the matrix are the set of integers {1, . . . , N/

√
2} and correspond to low to high spatial frequency

bands, the highest spatial frequency being limited by the Nyquist frequency. We denote PTotal
as the total power in P , excluding the zero-frequency coefficient, PTotal =

∑
r(u,v)>=1 P (u, v).

Similarly, we define P̃Total as the total power in P excluding the zero-frequency coefficient as
well as coefficients with radial distance r(u, v) > N/2, i.e. outside the largest circle inscribed
in the power-matrix P ; P̃Total =

∑
1<=r(u,v)<=N/2

P (u, v) (please see Figure 5 in Appendix A.1

for an illustration). We denote Pk as the total power at radial distance k normalized by PTotal,
Pk = 1

PTotal

∑
r(u,v)=k

P (u, v) and P̃k as total power at radial distance k normalized by P̃Total in-

stead, P̃k = 1
P̃Total

∑
r(u,v)=k

P (u, v).

3.1 SPATIAL FREQUENCY SENSITIVITY OF A MODEL

In this section, we define the proposed spatial frequency sensitivity (SFS) of any differentiable
model using its input-Jacobian represented in the Fourier-basis. As the input-Jacobian provides the
direction of highest input sensitivity, we show below that its Fourier transform, which is simply a
change of basis, provides the model’s sensitivities to spatial frequency components in the input. The
input-Jacobian in the Fourier-basis, ∂LCE

∂xf
, comprises the sensitivities of the model with respect to

individual frequencies in the input and we obtain this by simply computing the Fourier transform of
the input-Jacobian ∂LCE

∂x . In order to justify this, consider the computation graph where the input
x is mapped to a scalar loss via a model f and loss function LCE (Figure 2). We introduce an
implicit operation (shown in red) that maps the Fourier space representation of the input, xf , to

the standard input x through the inverse Fourier-transform; xf
F−1

−−−→ x, so in order to compute the
input-Jacobian in the Fourier-basis, ∂LCE

∂xf
, we must differentiate through this implicit operation in

the forward graph. Since the inverse-Fourier transform is a unitary operator, its adjoint is also its
inverse, i.e. F−1∗ = (F−1)−1 = F . Hence, following the chain rule for complex operators, ∂LCE

∂xf

is simply the Fourier transform of the input-Jacobian ∂LCE

∂x .
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Input image Input-Jacobian of model 2D DFT input-Jacobian SFS=proportion of power in 
circular frequency bands

Figure 1: Illustration of steps to compute the spatial frequency sensitivity with respect to a single
input image. The input-Jacobian of the model is Fourier-transformed to obtain sensitivities with
respect to frequency components followed by computing the proportion of power in low to high
(small to large radius) frequency bands.

std. backprop

Figure 2: Computation graph to obtain the input-Jacobian in Fourier-space. The symbols in red
represent an implicit map of the input from Fourier-space to the standard input space. The dashed
arrows denote the backward graph operations to compute the input-Jacobian in Fourier space.

∂LCE

∂xf
= F−1∗(∂LCE

∂x
) = F(∂LCE

∂x
)

Hence, even though we do not explicitly use the Fourier representation of the input, this shows that
the Fourier transform of the input-Jacobian provides us the sensitivity of the model with respect to
spatial frequencies of the input. In fact, similar results hold for any unitary operation on the input-
Jacobian, such as the discrete cosine transform (DCT). Interested readers can replace the DFT (F)
with other such transforms if they would like to understand the sensitivity of a model with respect
to other components in the input. We now define the spatial frequency sensitivity fSFS(x, y) with
respect to an individual input (x, y) as,

fSFS(x, y) = {P1, . . . , PN/
√
2}

where Pk is the proportion of total power in Fourier coefficients at radial distance k in the power
matrix P of the Fourier-transformed input-Jacobian. The overall spatial frequency sensitivity of
a model is defined as the expectation of fSFS(x, y) over the data distribution, i.e. fSFS(·; θ) =
E(x,y)∼p[fSFS(x, y)] (please see Figure 1 for an illustration and Algorithm 1 in Appendix A.1).
We note that although we use the Jacobian of the loss function to estimate the SFS of a model,
this formulation is valid for other output functions and tasks as well. An alternative approach that
does not require image labels is to compute the Jacobian of the model’s output logits or softmax
probabilities. In addition, while the spatial frequency sensitivity assumes the input is spatial 2D data
(e.g. images), we can extend this approach to any n-dimensional data by using the n-dimensional
Fourier-transform as well as to other computer vision tasks.

3.2 SPATIAL FREQUENCY REGULARIZATION

In this section, we propose a novel family of spatial frequency regularizers that can modify the
spatial frequency sensitivity, as defined in Section 3.1, of a model directly. As all computations
involved in the SFS of a model (Algorithm 1 in Appendix A.1) are differentiable with respect to
its parameters, we compute a loss function, L(x, y) = LCE(x, y) + λSFSLSFS(x, y), where LSFS

is the proposed loss that can be used to induce a specific SFS and λSFS is a hyperparameter. As
LSFS is defined on the SFS, which is a function of the input-Jacobian, optimizing it requires an
additional backpropagation step to compute its derivatives with respect to model parameters, similar

4



Under review as a conference paper at ICLR 2022

to other Jacobian-regularization methods. We now define LSFS for three different SFS regularizers;
SFS ∈ {LSF,MSF,ASF}. LSF regularization trains a model to be insensitive to medium and
high spatial frequencies and MSF regularization trains a model to be insensitive to low and high
spatial frequencies. We achieve this by penalizing the proportion of total power, Pk, in frequency
bands. ASF regularization trains a model to be equally sensitive to all spatial frequency (ASF)
bands. The motivation behind ASF regularization model is to encourage a model to be sensitive
to multiple frequency bands instead of being concentrated in a single frequency range. Hence,
the ASF-regularizer loss is the negative entropy of the distribution of power over spatial frequency
bands.

LSFS(x, y) :=



∑
k>N/6

Pk, if SFS=LSF

∑
k<N/6,k>N/3

Pk, if SFS=MSF

k=N/2∑
k=1

P̃k log P̃k, if SFS=ASF

The definitions of frequency ranges are based on equally dividing the largest circle inscribed in the
power-matrix P into equal parts (Figure 5 in Appendix A.1). For ASF-regularization, very high
frequency bands (r(u, v) > N/2 are excluded. Interested readers may modify these loss functions
as they see fit for their particular application.

4 EXPERIMENTS

In this section we explore the SFS of models as well as explore the effects of spatial frequency
regularization by evaluating on datasets where the Fourier-statistics of predictive features are nat-
urally or artificially altered (Sections 4.2, 4.4). We also make some observations about the differ-
ences between spatial frequency regularization and training on Fourier-filtered training data (Section
D.3). We benchmark against methods that have been proposed to modify the frequency sensitivity
of models such as adversarial training and Gaussian Noise augmentation (Yin et al., 2019) to in-
duce low-frequency sensitivity. AugMix (Hendrycks et al., 2020) is also benchmarked as it was
shown to achieve state-of-the-art performance on common corruptions. We also trained models on
band-pass filtered datasets to demonstrate that SFS regularization is not equivalent to training on
Fourier-filtered data (discussion relegated to Appendix D.3).

Experimental Setup: We first describe the experimental settings for all experiments that fol-
low. We trained the ResNet50 architecture, unless stated otherwise. For CIFAR10 and CIFAR100
(Krizhevsky & Hinton, 2009), we trained all models for 150 epochs using stochastic gradient de-
scent (SGD) with momentum (0.9), an initial learning rate of 0.1 decayed by a factor of 10 every
50 epochs, weight decay parameter equal to 5e-4 and batch size equal to 128. For SVHN (Netzer
et al., 2011), we trained models for 40 epochs using Nesterov momentum with an initial learning
rate of 0.01 and momentum parameter 0.9. The training batch size was 128, the L2 regulariza-
tion parameter was 0.0005 and we decayed the learning rate at epochs 15 and 30 by dividing by 10.
Standard data augmentations random-crop, random-horizontal-flip, random-rotation, and color-jitter
were used during training. We trained spatial frequency regularized models using Algorithm 2 2 in
Appendix A.1, and λSFS = 1 for all models. We observed a simple trade-off between this hyperpa-
rameter and clean accuracy (higher values decreased clean accuracy more). Values less than 1 did not
always achieve the desired SFS in the evaluated datasets. For adversarial training (AT), we used PGD
`2 attacks (ε = 1, attack-steps = 7 attack-lr = 1/7). To train models with Gaussian noise data
augmentation, we added i.i.d. Gaussian noiseN (0, σ2) to each pixel in all the images in the training
set (σ = 0.1). We used the robustness (Engstrom et al., 2019) library to train models as well as re-
trieve pre-trained ImageNet models of various architectures. We trained AugMix models using the
original code shared by the authors (https://github.com/google-research/augmix).
Please see Section D.2 in Appendix D for details about band-pass filters.
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CIFAR10 (ResNet50) CIFAR10 (ResNet50) ImageNet (ResNet50) 

Figure 3: SFS of ResNet50 models trained by methods on CIFAR10 and ImageNet. Computed on
1k randomly selected samples from respective validation sets. The shaded region represents two
standard deviations.

4.1 CNNS DISPLAY CONSISTENT SPATIAL FREQUENCY SENSITIVITY ACROSS SAMPLES

We now visualize the spatial frequency sensitivity (SFS), as defined in Section 3.1, of models trained
on CIFAR10 and ImageNet (Figure 3). We note that training biases models to be sensitive to some
frequencies more than others and this bias is consistent across samples (the error bars in Figure 3
represent deviation across samples). This consistency also suggests that, once trained, CNNs are
more likely to use some frequencies more than others and may explain their tendency to suffer
performance drops when evaluated on data with different Fourier-statistics. CIFAR100 models have
very similar SFS to those of CIFAR10 (plots relegated to Appendix C.2) and are also most sensitive
to mid-to-high spatial frequencies. In contrast, standard training on SVHN leads to a low-frequency
sensitivity, which suggests a strong dataset dependence of spatial frequency sensitivity. Please refer
to Appendix C.3 for SFS plots of models trained on SVHN.

ImageNet models are sensitive to a wide range of the frequency spectrum with peak sensitivity to
mid-range frequencies. We also observed consistency in the spatial frequency sensitivity of vari-
ous convolutional architectures trained on ImageNet (Appendix C.1). Adversarially trained models
(Madry et al., 2018) are most sensitive to low spatial frequencies across datasets and architectures
which suggests they rely on coarse global features, in agreement with observations made in prior
work. Training on Stylized-ImageNet, proposed by Geirhos et al. (2019) to train shape-biased in
models, induces a lower peak-spatial-frequency-sensitivity and as well as lower sensitivity to high
frequencies compared to training on ImageNet (Appendix C.2), which reflects the increased shape-
bias of such models. Similarly, a model trained on low-pass Fourier-filtered training data corre-
spondingly has high sensitivity to low-frequencies in comparison to the baseline model (Appendix
C.2). Gaussian noise augmentation N (0, σ2;σ = 0.1), decreases the high-frequency sensitivity of
the model (Figure 3) compared to baseline. The SFS of the AugMix (Hendrycks et al., 2020) trained
model was not significantly different from baseline, which suggests it finds more robust features in
similar frequency bands using data augmentations.

Interestingly, we also note that models trained on corrupted versions of the CIFAR10 training set
(e.g. blurred or JPEG-compressed) can display different spatial frequency sensitivities to a model
trained on clean CIFAR10 images (please see Appendix C.4 for plots). For example, models trained
on images with severe noise corruptions (gaussian, shot and speckle) display increased sensitiv-
ity to lower spatial frequencies. Models trained on highly gaussian-blurred, glass-blurred, JPEG-
compressed and pixelated images also display higher sensitivity to lower spatial frequencies. These
changes reflect the shift in the Fourier-statistics of predictive features in corrupted images.

4.2 PERFORMANCE UNDER FOURIER FILTERING

Jo & Bengio (2017) showed that DNNs have a tendency to rely on superficial Fourier-statistics of
their training data. In the vein of generalization evaluations they performed, we generate Fourier-
filtered CIFAR10/CIFAR100 validation images using radial masking in frequency space (please see
Appendix D.1 for examples). A mask radius r determines Fourier components that are preserved
with larger radii preserving more components. We use (cu, cv) to denote the centre of the mask and
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Original Fourier-filtered Patch-shuffled Original High-Freq Med-Freq Low-Freq

(d) (e) (f) (g)(a) (b) (c)

Figure 4: Examples (b): CIFAR10 Fourier-filtered (Section 4.2) (c): CIFAR10 Patch-shuffled
(Section 4.5). (e) - (g): Fourier-noise distortions on SVHN (Section 4.3). More in Appendix.

d(·, ·) to denote Euclidean distance. The radial mask Mr is defined as:

Mr(u, v) :=

{
1, if d((u, v), (cu, cv)) ≤ r
0, otherwise

(1)

The mask is applied on the zero-shifted output of the Fourier transform of each image, denoted X ,
followed by the inverse transform, i.e. Xfiltered = F−1(F(X) �Mr), where � is the element-
wise product. Fourier-filtering is performed on each color channel independently. A standard CNN
suffers up to a 75% drop in accuracy on low-pass filtered CIFAR10 data as it relies on high frequency
information that is no longer present (Table 1). On the other hand, the LSF-REGULARIZED model
performs well on both clean images as well severely low-pass filtered images. This shows that
regularized CNNs are able to exploit very low frequency features (r ≤ 5) not easily recognizable
even to humans, which reflects the limited spatial-frequency-sensitivity range of the human eye.

Method CIFAR10 CIFAR100
clean r = 11 r = 7 r = 5 clean r = 11 r = 7 r = 5

Std. Train 94.9 78.1 24.9 18.6 76.2 49.7 14.1 6.6

LSF-REGULARIZED 86.3 86.2 84.4 78.3 61.4 61.5 58.0 46.8
MSF-REGULARIZED 87.2 86.3 71.5 46.2 62.4 62.2 46.4 18.6
ASF-REGULARIZED 87.6 85.0 69.3 45.0 67.0 62.1 41.1 19.8

AT (PGD `2, ε = 1) 81.6 80.2 76.1 67.5 58.8 56.8 50.0 40.2
Gaussian Noise 94.5 84.4 32.4 19.5 73.1 61.9 27.7 11.6
AugMix 95.8 92.0 79.4 50.2 77.8 64.0 45.6 24.6

Table 1: Accuracy on Fourier-filtered CIFAR10/CIFAR100 test sets.

The MSF-REGULARIZED model performs better for mild Fourier-filtering (r = 11 and r = 7) but
suffers a big drop in accuracy (71.5% to 46.2% in CIFAR10 and 46.4% to 18.6% in CIFAR100)
for strong low-pass filtering (r = 5). We also observed that the ASF-REGULARIZED model is also
significantly more robust than the baseline model although not as robust as the LSF-REGULARIZED
model to Fourier-filtering. This shows that the ASF-REGULARIZED model can use coarse low-
spatial-frequency features in addition to medium and high spatial frequencies. The low-frequency
sensitivity of adversarially trained models makes it more robust than the baseline model but less so
than the LSF-REGULARIZED model, while the Gaussian noise augmented model suffers large drops
in accuracy. AugMix tends to be robust to mild Fourier-filtering but suffers large drops in accuracy
under more severe filtering (r = 5) due to its reliance on mid-to-high-frequency information, as
suggested by its SFS (Figure 3), in comparison to the LSF-REGULARIZED model.

4.3 PERFORMANCE UNDER FOURIER-NOISE CORRUPTIONS

Recently, data-agnostic corruptions along Fourier-basis directions have been identified as a threat to
model robustness and security (Yin et al., 2019; Tsuzuku & Sato, 2019). A Fourier-noise corruption
is additive noise containing a single Fourier-mode (frequency). These corruptions are semantics-
preserving and significantly affect model performance while being recognizable to humans, please
refer to Appendix E for examples in each dataset. We generated corruptions for each of 1,024
Fourier-modes in SVHN/CIFAR10/CIFAR100 and report the overall mean accuracy across all cor-
ruptions in Table 2. We note that the baseline model suffers significant drops in accuracy across all
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datasets. The LSF-regularized model achieves the highest mean accuracy in SVHN while Gaus-
sian augmentation also improves over the baseline. AugMix (Hendrycks et al., 2020), a data-
augmentation method proposed for robustness, performs worse than baseline. In CIFAR10 and
CIFAR100, the MSF-regularized model achieves the highest mean accuracies. Detailed heat maps
containing error rates for each Fourier-mode can be found in Appendix E.

Method SVHN CIFAR10 CIFAR100
clean ε=3 ε=4 clean ε=3 ε=4 clean ε=3 ε=4

Std. Train 96.4 81.9 77.4 94.9 40.8 31.5 76.2 22.3 14.9

LSF-REGULARIZED 95.1 92.1 91.0 86.3 52.4 47.5 61.4 33.9 30
MSF-REGULARIZED 93.1 77.1 70.9 87.2 62.4 54.3 62.4 42.6 37.3
ASF-REGULARIZED 96.1 78.3 71.1 87.6 60.8 48.7 67 21.6 14.6

AugMix 96.6 75.7 70.1 95.8 53.0 41.0 77.8 29.1 22.7
Gaussian Noise 96.4 89 85.1 94.5 57.2 40.8 73.1 33.7 20.9

Table 2: Mean accuracy across all Fourier-noise corruptions averaged across 1,024 randomly se-
lected test samples for each corruption. `2 norms of the additive Fourier-noise are ε ∈ {3, 4}.

4.4 PERFORMANCE UNDER CORRUPTIONS IN (HENDRYCKS & DIETTERICH, 2019)

We evaluated the robustness of spatial frequency regularized models to corruptions (please see
Appendix F for examples) in CIFAR10-C (Hendrycks & Dietterich, 2019). In addition, we ap-
plied these corruptions to SVHN to create SVHN-C to evaluate the performance of methods across
datasets. Overall, SFS regularization provided consistent improvements across both SVHN-C (Ta-
ble 3) and CIFAR10-C (Table 4) due to its general and principled approach. We observed that
AugMix’s (Hendrycks et al., 2020) high performance on CIFAR10-C does not translate to high per-
formance on SVHN-C. Similarly, Gaussian augmentation’s high performance in SVHN-C did not
translate to CIFAR10-C. Specifically, on SVHN-C, LSF-regularization, low-pass filtering and Gaus-
sian augmentation performed very well under noise corruptions whereas AugMix did not improve
over the baseline. In CIFAR10-C, we observed that the LSF-REGULARIZED model was signifi-
cantly more robust than the baseline model to all blurring corruptions as well as pixelate, elastic,
snow and frost corruptions. The baseline model suffered up to 45% drop in accuracy on these cor-
ruptions, whereas the LSF-REGULARIZED model suffered at most 5% drop in accuracy. This is
likely due to the robustness of low-spatial-frequency features to corruptions such as blurring. We
also observed that the MSF-REGULARIZED and ASF-REGULARIZED models were more robust to
noise corruptions as well as JPEG compression (Table 4), which suggests multiple spatial frequency
bands maybe needed to do well under such corruptions. We observed similar results in CIFAR100-C
(Appendix F.2). Overall, SFS regularization can provide consistent improvements in robustness to
these corruptions across datasets due to its general and principled approach. On the other hand, data
augmentation based methods invariably perform better on some datasets than others depending on
the statistics and features of each dataset.

Noise Blur Weather Digital

Method Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Std. Train 96.4 81.3 84.4 72.7 95.9 92.4 94.9 96.1 75.5 84.0 48.9 94.5 89.4 90.0 95.8 95.9

LSF-REGULARIZED 95.1 90.8 91.6 84.7 94.6 92.9 93.5 95.2 82.4 88.4 42.1 93.2 83.6 91.1 94.8 94.9
MSF-REGULARIZED 93.1 68.3 71.8 52.6 92.7 82.8 90.9 93.6 75.2 76.6 40.7 90.7 62.8 84.1 91.8 92.2
ASF-REGULARIZED 96.1 80.9 83.3 73.2 95.5 91.7 94.4 96.0 79.2 84.3 45.5 94.3 85.7 91.0 95.2 95.7

Low-pass filtered 95 90.5 91.4 85.1 94.7 93.0 93.7 95.1 82.9 88.1 40.8 92.7 85.8 90.5 94.8 94.8
AT (PGD `∞, 8/255) 96.9 85.6 88.1 73.8 96.0 94.2 95.0 96.6 80.1 88.8 43.9 95.0 72.2 93.2 96.5 96.6
Gaussian Noise 96.4 92.8 93.8 84.4 95.5 94.4 94.4 96.2 80.7 89.3 42.6 94.4 74.4 92.4 96.0 96.1
AugMix 96.6 79.1 82.5 74.7 96.4 92.1 95.4 96.4 73.4 83.1 50.0 95.2 93.5 90.5 95.2 96.2

Table 3: Accuracies on SVHN-C corruptions of highest severity level. We created SVHN-C by
applying corruptions in CIFAR10-C to SVHN test samples.
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Noise Blur Weather Digital

Method Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Std. Train 94.9 31.5 37.9 33.8 54.9 49.5 67.3 65.2 75.8 65.4 74.2 92.0 56.3 73.2 41.0 73.5

LSF-REGULARIZED 86.3 29.4 32.5 20.0 83.9 81.8 80.4 83.9 79.6 79.2 60.6 82.0 28.3 82.5 85.5 65.3
MSF-REGULARIZED 87.2 55.6 59.2 34.9 78.0 71.2 67.7 77.5 77.8 78.4 60.4 82.8 19.5 76.1 83.5 81.4
ASF-REGULARIZED 87.6 62.3 64.6 44.6 71.3 70.2 69.7 75.3 75.9 74.6 47.3 83.6 26.5 76.1 79.7 82.6

Low-pass filtered 86.6 58.0 60.4 43.5 86.0 84.0 82.5 85.5 81.0 80.3 62.7 82.5 35.2 83.5 86.0 71.6
AT (PGD `2, ε = 1) 81.6 74.6 75.5 66.7 74.9 74.2 73.2 76.5 75.2 70.5 35.1 77.9 19.3 75.8 78.4 79.7
Gaussian Noise 94.5 44.5 53.6 29.4 53.6 55.4 62.6 66.3 80.6 78.0 68.6 91.6 27.4 73.8 54.5 82.2
AugMix 95.8 66.1 72.7 75.6 92.6 75.0 90.8 91.6 86.6 85.4 83.2 93.6 86.6 85.4 83.2 93.6

Table 4: Accuracies on CIFAR10-C corruptions of highest severity level.

4.5 EVALUATION OF GLOBAL FEATURE LEARNING

Here we wish to evaluate the extent to which models use global features by measuring their per-
formance on patch-shuffled images, which have previously been used by Mummadi et al. (2021);
Zhang & Zhu (2019); Wang et al. (2019). Patch-shuffling involves splitting an image into k × k
squares and randomly swapping the positions of these squares. This is intended to destroy global
features and retain local features with larger values of k retaining less global structure in the image
(please see Appendix G for examples). As such, models that rely more on global rather than lo-
cal structure suffer more from patch-shuffling. Hence, in this benchmark, lower accuracy suggests
increased reliance on and use of global structure. We observed that spatial frequency regularized
models, adversarially trained models suffered larger drops in accuracy compared to the standard
trained, AugMix and Gaussian augmentation models, which suggests their reliance on global struc-
ture in images contributes to their robustness (Table 5).

Method CIFAR10 CIFAR100
clean k = 2 k = 3 clean k = 2 k = 3

Std. Train 94.9 66.5 45.8 76.2 39.9 21.4
AugMix 95.8 67.3 48.7 77.8 40.7 23.8
Gaussian Noise 94.5 62.9 44.5 73.1 34.4 18

LSF-REGULARIZED 86.3 43.2 30.6 61.4 23.4 13
MSF-REGULARIZED 87.2 46.8 33.1 62.4 24.1 13.0
ASF-REGULARIZED 87.6 46.8 32.6 67 29.0 15
Low-pass filtered 86.6 43.4 30.0 60 20.4 10.4
AT (PGD `2, ε = 1) 81.6 45.2 35.0 58.8 19.1 11.1

Table 5: Accuracy on patch-shuffled CIFAR10/CIFAR100 test sets.

5 CONCLUSION

We proposed a novel and rigorous measure of the spatial frequency sensitivity (SFS) of any differ-
entiable computer model using its input-Jacobian represented in the Fourier-basis. We showed that
models display consistent SFS across samples as well as across architectures for a given task and
when there is a shift in the Fourier-statistics of features relative to a model’s frequency sensitivity,
performance can suffer. We also proposed a novel method of spatial frequency regularization that
can be used to improve robustness to many test-time corruptions. Extending our method to other
computer vision tasks (e.g. detection) as well as domains (n-dimensional) are interesting directions
for future work.
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APPENDICES

A SPATIAL FREQUENCY SENSITIVITY AND REGULARIZER

A.1 PSEUDO-CODES

Algorithm 1: Spatial Frequency Sensitivity (SFS)
Input: Labeled samples L = {(xi, yi)}ni=1; a model f with trained parameters θ
Output: Estimated Spatial Frequency Sensitivity of model, fSFS(·; θ)

for i = 1, . . . , n do
compute loss LCE(f(xi), yi) // forward pass

backpropagate LCE to obtain ∂LCE

∂xi
// input-jacobian

∂LCE

∂xf i
= F(∂LCE

∂xi
) // 2D DFT of input-jacobian (averaged across

color channels)

fSFS(xi, yi) = [Pk; for k=1 to N/
√
2] // Pk is proportion of total power

(excluding DC) in coefficients at radial distance k
end
fSFS(·; θ) = 1

n

∑n
i=1 fSFS(xi, yi) // estimated SFS of model

Algorithm 2: Spatial Frequency Regularized Minibatch Training
Input: Labeled samples L = {(xi, yi)}ni=1; a model f with parameters θ; SFS ∈

{LSF,MSF,ASF}; hyperparameter λSFS
Output: Regularized model with updated parameters θ

for i = 1, . . . , n do
compute loss LCE(f(xi), yi) // forward pass
L(xi, yi) = LCE(xi, yi) + λSFSLSFS(xi, yi) // backpropagate L to update θ

end

r=N/6

r=N/√2

N

N

r=N/3

r=N/2

(cu,cv)

P(u,v)

N

N

P̃Total = power inside circle

PTotal = power inside entire square

zero-frequency (DC)

P(u,v)
a) b)

Figure 5: a) Illustration of the power-matrix P of the Fourier-transformed input-Jacobian. PTotal,
the power in all components excluding the zero-frequency component is used to normalize the pro-
posed SFS of the model at a particular input. b) LSF (purple), MSF (blue) and ASF (purple, blue
and green) frequency bands used for spatial frequency regularization. Best viewed in color.
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B SPATIAL FREQUENCY CHANNELS IN THE BRAIN

To further motivate the spatial frequency perspective of visual representation learning, we briefly
describe some relevant findings from neuroscience and vision research. While the brain does not
strictly perform a Fourier analysis of visual scenes, there has been mounting evidence over decades
for multiple spatial frequency channels in the early human visual system that are physiologically
independent and selectively responsive to distinct spatial frequency bands (Campbell & Robson,
1964; 1968). It has been posited that the use of different spatial frequency channels are determined
by the demands of a given visual task through an attention mechanism (Schyns & Oliva, 1999;
Rotshtein et al., 2010; Julesz & Papathomas, 1984). Spatial frequency channels enable us to attend
to different spatial scales in a scene at a fixed viewing distance, similar to the focus lens in a camera
(Figure 6). On the other hand, once trained, a CNN’s spatial frequency sensitivity (Section 3.1) is
inflexible and does not vary much across samples (both in and out of its training data distribution).
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Figure 6: Letters at multiple spatial scales. This image comprises the letters o, n, E and F at a small
spatial scale (HSF). The letter T is also visible at a larger spatial scale (LSF) formed by the specific
arrangement of the letters o, n amidst letters E, F. Identifying these letters requires processing fea-
tures at multiple scales, enabled by distinct spatial frequency channels in the early visual cortex. Our
ability to recognize only one of these scales at a time is evidence for the physiological independence
of spatial frequency channels in the brain. Image based on Julesz & Papathomas (1984).
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C SUPPLEMENTARY PLOTS

C.1 SPATIAL FREQUENCY SENSITIVITIES OF POPULAR IMAGENET MODELS

VGG16

MobileNet

ResNext50ShuffleNet

DenseNetWideResNet50 

Figure 7: Spatial frequency sensitivities of popular ImageNet architectures after standard training
and adversarial training using PGD-`2 (ε = 3) attacks. The SFS is consistent across architectures
for both standard and adversarially trained models although VGG16 shows increased sensitivity to
high frequencies. The shaded region represents two standard deviations.

C.2 SPATIAL FREQUENCY SENSITIVITIES OF MODELS TRAINED ON CIFAR10 AND
CIFAR100

CIFAR10 (ResNet50) CIFAR100 (ResNet50)

Figure 8: Various methods trained on CIFAR10 (left) and CIFAR100 (right). The shaded region
represents two standard deviations.
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C.3 SPATIAL FREQUENCY SENSITIVITIES OF MODELS TRAINED ON SVHN

SVHN (ResNet50) SVHN (ResNet50) 

Figure 9: Various methods trained on SVHN. The shaded region represents two standard deviations.

C.4 TRAINING ON CIFAR10 CORRUPTIONS

Figure 10: Spatial frequency sensitivities of ResNet50 models trained on the CIFAR10 training
set distorted by corruptions derived from the CIFAR10-C (severity 5) dataset. The shaded region
represents two standard deviations.

16



Under review as a conference paper at ICLR 2022

D FOURIER FILTERING

D.1 RADIAL FILTERING
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Figure 11: First image in each row is the mask in Fourier space (lowest frequency at centre). White
pixels preserve and black pixels set Fourier components to zero. Top row are original CIFAR10
images, other rows are Fourier-filtered with different radial masks.

D.2 BAND-PASS FILTERING
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Figure 12: For band-pass Fourier-filtering CIFAR10 training images, we filtered Fourier-coefficients
in each color channel separately. For low-pass filtering, Fourier-coefficients with radial distance
r(u, v) > 5 were set to zero. For medium-pass filtering, Fourier-coefficients with r(u, v) <
5 and r(u, v) > 10 were set to zero. In high-pass filtering, Fourier-coefficients with r(u, v) < 10
were set to zero. Images contast-maximised for viewing.

17



Under review as a conference paper at ICLR 2022

D.3 SPATIAL FREQUENCY REGULARIZATION IS NOT EQUIVALENT TO TRAINING ON
FOURIER-FILTERED DATA

We note that spatial frequency regularization is not equivalent to standard training on corresponding
Fourier-filtered data. In natural images, the amount of energy in frequency bands falls off rapidly
as frequency increases (Hyvärinen et al., 2009), hence, medium and high-pass filtered natural im-
ages typically appear completely empty to the human eye without additional contrast maximisation.
Even still, such images are not easily recognizable to the human eye due to its and reliance on low
frequency information to recognize objects optimally (Appendix D.2). We observed that standard
training of CNNs on medium or high-pass Fourier-filtered data did not achieve high clean accuracies
(Tables 4, 6). A model trained on medium-pass Fourier-filtered CIFAR10 achieved a clean accuracy
of only ∼33% on clean test samples whereas the MSF-REGULARIZED model’s clean accuracy is
∼87%, and a model trained on high-pass filtered CIFAR10 training samples achieved only ∼15%
accuracy on clean test samples. Due to the energy statistics over frequency bands in natural images,
training on Fourier-filtered data is not successful for all but the lowest frequency bands, where most
of their energy resides. In addition, we note that regularizers such as ASF-regularization cannot be
recreated by Fourier-filtering the training data due to the tendency of standard training to be sensitive
to certain frequencies.
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E BLACK BOX FOURIER-NOISE CORRUPTIONS

E.1 CIFAR10 FOURIER-NOISE CORRUPTIONS

Baseline AugMix Gaussian augmentation

LSF-REGULARIZED MSF-REGULARIZED ASF-REGULARIZED

Figure 13: (CIFAR10) Heat map of error rates for each Fourier-mode corruption. Each pixel in the
heat map is the error of the model when the corresponding Fourier-mode noise (ε = 4) is added to the
inputs. The bottom row displays example images containing the corresponding Fourier-corruption.

E.2 SVHN FOURIER-NOISE CORRUPTIONS

Baseline AugMix Gaussian augmentation

LSF-REGULARIZED MSF-REGULARIZED ASF-REGULARIZED

Figure 14: (SVHN) Heat map of error rates for each Fourier-mode corruption. Each pixel in the heat
map is the error of the model when the corresponding Fourier-mode noise (ε = 4) is added to the
inputs. The bottom row displays example images containing the corresponding Fourier-corruptions.
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F CORRUPTIONS IN (HENDRYCKS & DIETTERICH, 2019)

F.1 EXAMPLES

Figure 15: Examples of image corruptions curated by Hendrycks & Dietterich (2019) to evaluate
robustness of vision models.

F.2 CIFAR100-C BENCHMARK

Noise Blur Weather Digital

Method Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Std. Train 76.2 10.9 12.5 8.7 30.5 18.3 41.1 37.7 46.0 30.6 40.0 69.9 29.8 49.6 21.4 48.9

LSF-REGULARIZED 61.4 16.0 18.8 8.4 56.5 56.3 52.9 57.9 52.0 51.1 29.2 54.2 13.6 56.1 60.0 36.3
MSF-REGULARIZED 62.4 31.8 34.6 16.2 49.6 50.1 44.6 52.9 51.6 48.7 28.0 54.3 9.2 53.4 58.7 54.5
ASF-REGULARIZED 67.0 15.6 18.4 8.6 41.4 40.9 43.0 47.0 51.4 44.6 26.9 58.9 11.8 52.6 61.0 54.2

Low-pass filtered 60.1 32.7 34.9 18.9 59.3 56.6 54.8 58.1 50.2 49.4 27.0 54.1 13.4 57.0 59.9 43.8
AT (PGD `2, ε = 1) 58.8 44.8 45.9 26.0 48.8 49.4 46.3 50.0 46.6 40.9 10.4 50.2 5.0 50.7 54.7 55.5
Gaussian noise 73.1 25.8 30.8 12.8 32.9 33.5 36.1 39.9 55.4 51.4 30.7 66.6 11.9 52.3 41.2 59.0
AugMix 77.8 36.8 41.9 52.9 71.8 47.8 69.4 70.3 60.3 55.7 47.7 70.0 47.4 61.0 50.0 60.9

Table 6: Accuracies for CIFAR100-C corruptions of highest severity level. We note that the LSF-
REGULARIZED model is significantly more robust than the baseline for blurring corruptions. For
noise corruptions, the MSF-REGULARIZED model is more robust compared to the baseline as well
as the LSF-REGULARIZED model. Similar to CIFAR10-C, low-pass filtering and AT also lead to
models robust to blurring and noise. MSF-REGULARIZED and ASF-REGULARIZED models are
again more robust to noise and JPEG noise, compared to the ASF-REGULARIZED model.

20



Under review as a conference paper at ICLR 2022

G PATCH-SHUFFLING IMAGES
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Figure 16: Patch-shuffling: Images are partitioned into squares whose positions are randomly ex-
changed. This operation destroys global structure in the image and is used to evaluate the extent to
which a model relies on global information.
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