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Abstract

We introduce MultiMedEval, an open-source toolkit for fair and reproducible evaluation
of large, medical vision-language models (VLM). MultiMedEval comprehensively assesses
the models’ performance on a broad array of six multi-modal tasks, conducted over 23
datasets, and spanning over 11 medical domains. The chosen tasks and performance metrics
are based on their widespread adoption in the community and their diversity, ensuring
a thorough evaluation of the model’s overall generalizability. We open-source a Python
toolkit (https://github.com/corentin-ryr/MultiMedEval) with a simple interface and
setup process, enabling the evaluation of any VLM in just a few lines of code. Our goal
is to simplify the intricate landscape of VLM evaluation, thus promoting fair and uniform
benchmarking of future models.
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1. Introduction

Large language models (LLM) and vision-language Models (VLM) are text generators capa-
ble of tackling a multitude of tasks based on textual or textual-and-visual prompts, e.g. ques-
tion answering, machine translation, summarization, visual-question answering, image cap-
tioning, image classification, etc. Typically, assessing the performance of these models
means evaluating them over a variety of tasks (mentioned above) on diverse datasets. This
enables a reliable tracking of their progress and generalizability. General-purpose language
models are therefore popularly benchmarked on toolkits such as OpenAI Evals, Hugging-
face LLM leaderboard (Beeching et al., 2023), and OpenVLM Leaderboard (Contributors,
2023). Such leaderboards offer a common platform for comparing open-access (Llama 2
(Touvron et al., 2023) and Flamingo (Alayrac et al., 2022)), and oftentimes, closed-source
models (GPT-4V (Achiam et al., 2023) and Gemini (Team et al., 2023)) based on their
performance.

Adapting VLMs to the medical domain proves challenging, primarily due to the domain-
specific hurdles posed by proprietary datasets, fine-grained knowledge requirements, and the
overall difficulty to generalize across medical domains and tasks. Despite these challenges,
recent efforts culminated in truly capable medical VLMs. For instance, LLaVA-Med (Li
et al., 2023), and PMC-VQA (Zhang et al., 2023b) build VLM assistants for medical VQA,
while MAIRA-1 (Hyland et al., 2023) focuses on radiology report generation, specifically
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Figure 1: The left column represents the datasets in MultiMedEval and their size. Each dataset is
used in a task, represented in the middle. Finally, we represent the share of each modality
in the tool and the modality composition of each task.

chest x-rays (CXR). RadFM (Wu et al., 2023) proposes a versatile VLM, with a focus on
radiology. Circumscribing the capabilities of the above-mentioned VLMs, MedPaLM M (Tu
et al., 2023) and BiomedGPT (Zhang et al., 2023a) are pitched as generalist models capable
of performing a wider array of tasks such as image classification, text summarization, etc.

Among these plethora of models, evaluation has been highly non-uniform. For instance,
RadFM is evaluated on seven tasks while MedPaLM M is evaluated on five. Even among
the tasks that both of them have been evaluated on, discrepancies exist in terms of either
the datasets (for report generation MedPALM is evaluated on MIMI-CXR while RadFM
is evaluated on three more datasets) or the metrics (BLEU and Recall in RadFM; BLEU
and F1 in MedPALM). Similarly, LLAVA-Med reports six metrics, while RadFM reports
61 metrics; however, they share no common metrics, hindering a direct comparison of both
approaches. Thus, there is a need for a unified benchmark, the lack of which has been
consistently acknowledged (Wu et al., 2023; Li et al., 2023). Our work aims to build such
a unified benchmark. Closely related to our work are the works by (Wu et al., 2023) and
(Tu et al., 2023). However, the benchmark of (Wu et al., 2023) is specific to radiology-
related tasks and doesn’t include important domains such as general medicine. While the
evaluation performed by (Tu et al., 2023) is holistic, it is closed-source, preventing a fair
replication.

Summarizing the topic of the evaluation of medical VLMs, we identify three key issues
that make evaluation difficult and eventually slow down medical VLM research. First, as
stated above, models are benchmarked using different metrics, methodologies, and tasks
preventing fair comparison to other models. Second, the scope of generalist models is so
wide that every new model is required to benchmark against all the prior work. However,
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re-implementing the metrics and recomputing benchmarks is time-consuming when models
are open-access and impossible for closed-source models. Third, even if one plans to re-
implement the benchmark, the evaluation pipelines (from data to metrics) are complex and
cumbersome. Addressing these issues, we introduce MultiMedEval, an open-source,
Python-based evaluation toolkit for medical VLMs. Our toolkit is designed to be
user-friendly, offering reproducible evaluation capabilities across six distinct medical tasks
implemented on 23 datasets spanning over 11 medical image and text modalities. Our
benchmark encompasses a broader spectrum of medical domains than any model mentioned
above. Additionally, we reimplemented two open-source models (RadFM and LLAVA-Med)
and compared them with closed models according to the metrics reported therein. Our com-
prehensive comparison serves as a foundational baseline for future medical VLM research,
with future evaluations seamlessly unified into this benchmark through MultiMedEval, re-
sulting in its continued growth.

2. Tasks and Evaluations

The typical VLM is designed to take an interleaved image-text prompt as input and generate
a textual response as output. For example, the prompt <image> What is the modality of

this image? might generate a response This image shows an MRI of the brain. Any eval-
uation primarily focuses on the model’s ability to respond to a variety of question prompts,
which in turn defines the variety of tasks the model can perform. For a comprehensive eval-
uation of the VLM’s capabilities, we evaluate it on six tasks: image classification, question
answering (QA), visual QA, report summarization, report generation, and natural language
inference (NLI). In every task, we detail the prompt design, datasets, and performance met-
rics that MultiMedEval employs during evaluation. We let the user decide if they want to
do few-shot inference (i.e. prepend the prompt with examples of prompts and responses)
or zero-shot inference. We use the official split for every dataset except MIMIC-III and
Pad-UFES-20 which do not have an official split. We propose such a split for Pad-UFES 20
where we use 20% of the dataset for testing and we use the split proposed by (Delbrouck
et al., 2022) for MIMIC-III. Fig. 1 gives an overview of the dataset, task, and modality
distribution in MultiMedEval. For every task, example prompts for all the datasets are
listed in the appendix.

Multi-class and multi-label image classification. We use a total of 15 datasets span-
ning nine modalities (c.f. Table 1). MIMIC-CXR is a multi-label classification task while
the others are multi-class classification. The input prompt for image classification is con-
structed by the image followed by the classes and then a question, e.g. for OrganMNIST
the full prompt will be: <img> Options:1:bladder 2:femur-left ... 11: spleen Which

options correspond to the image?.
For all datasets, except MIMIC-CXR, the model’s predicted answer is determined by

calculating the BLEU score between the model’s response and each class, selecting the class
with the highest score. For the MIMIC-CXR dataset, we use CheXBert (Smit et al., 2020)
labeler on the response. CheXBert is a report-labeling tool that extracts 14 conditions
of which we keep five conditions (Atelectasis, Cardiomegaly, Consolidation, Edema, and
Pleural Effusion) for computing the metrics. Once the classes are extracted, we report the
classification performance using macro F1, macro AUROC, and macro accuracy.
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Table 1: List of the image classification datasets and the different modalities they cover.
Modality Dataset name Classes Size

CT (Radiology)
OrganSMNIST (Xu et al., 2019; Bilic et al., 2023) 11 8827
OrganCMNIST (Xu et al., 2019; Bilic et al., 2023) 11 8216

Dermatology
Pad-UFES 20 (Pacheco et al., 2020) 7 2298

DermaMNIST (Tschandl et al., 2018; Codella et al., 2019) 7 2005
Fundus Camera RetinaMNIST (Liu et al., 2022) 5 400

Mammography
VinDr Mammo (Nguyen et al., 2023) 5 429
CBIS-DDSM Mass (Lee et al., 2017) 3 378

CBIS-DDSM Calcification (Lee et al., 2017) 3 326

Microscope
TissueMNIST (Ljosa et al., 2012) 8 11820

BloodMNIST (Acevedo et al., 2020) 8 3421
OCT OCTMNIST (Kermany et al., 2018) 4 1000

Pathology PathMNIST (Kather et al., 2019) 9 7180
Ultrasound BreastMNIST (Al-Dhabyani et al., 2020) 2 7180

X-Ray (Radiology)
PneumoniaMNIST (Kermany et al., 2018) 2 7180

MIMIC Image Classification (Johnson et al., 2019) 5 5159

Table 2: List of the QA datasets and the dif-
ferent modalities they cover.

Modality Dataset name Size

General Medicine
MedQA (Lau et al., 2018) 1273

MedMCQA (He et al., 2020) 4183
PubMedQA (Liu et al., 2021) 500

Table 3: List of the VQA datasets and the
different modalities they cover.

Modality Dataset name Size

Radiology
VQA-Rad (Lau et al., 2018) 451
SLAKE (Liu et al., 2021) 1061

Pathology Path-VQA (He et al., 2020) 6719

Question answering. For QA, we evaluate on three datasets (c.f. Table 2): MedQA
and MedMCQA consist of multi-choice questions (MCQ) and PubMedQA consists of close-
ended questions (yes-no questions). For the MCQs, the model is prompted with the question
followed by all the options and finally the phrase What is the correct answer?. For Pub-
MedQA, the question is prepended with Answer the question with yes, no, or maybe.

To determine the model’s predicted answer from its response, we utilize the BLEU
metric (Papineni et al., 2002) to compare the predicted answer to each option, selecting
the one with the highest BLEU score. For PubMedQA, we check if the answer contains
the words yes, no, or maybe. Once the model’s answers have been generated, we report
answering performance using accuracy.

Visual question answering. For evaluating the performance of a VLM on VQA, we
use three datasets (c.f. Table 3) containing a mix of open-ended and close-ended questions:
Path-VQA, SLAKE, and VQA-Rad. The prompt for VQA is constructed by concatenating
the image and the question, e.g. <img> What is the main organ in the image?. Similar to
QA, the close-ended questions are prepended with Answer the question with yes or no.

Since there are no MCQs in VQA, the evaluation differs from QA. Specifically, the correct
answer and the predicted one are tokenized and the resulting sets are used to compute
precision and recall. We also differentiate between close-ended and open-ended questions
to report close-ended accuracy, open-ended accuracy, and open-ended recall (Nguyen et al.,
2019). Additionally, we also report overall recall and F1 score. Finally, we compute the
BLEU score from the non-tokenized texts (Wu et al., 2023; Li et al., 2023). To calculate
the accuracy, close-ended questions are considered correct if their recall is at least 0.5, while
open-ended questions require a recall of at least 0.75.

Report generation. We include the MIMIC-CXR dataset (Johnson et al., 2019) contain-
ing de-identified radiology reports with the associated CXRs to evaluate report-generation
capabilities. The task is to generate the findings section of the report based on the radi-
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ology images. The input prompt for the model is constructed with the image (or multiple
images pertaining to one case) followed by a sentence asking for the report, as in, <img>
<img> Please caption this scan with findings and impressions.

Following common practices, the generated reports are evaluated using n-gram-based
methods: ROUGE-L, BLEU-1, BLEU-4, and METEOR (Banerjee and Lavie, 2005). Addi-
tionally, we compute F1-RadGraph, CheXBert vector similarity, F1-bertscore, and RadCliQ
to capture the subtleties of radiological language. F1-RadGraph is the F1 score between
the entities extracted from the reference report and generated one using RadGraph (Jain
et al., 2021). F1-BertScore employs CheXBert to label the reference and generated reports,
as introduced in the image classification task above. CheXBert vector similarity (Yu et al.,
2023) computes the cosine similarity between the embedded reference and generated re-
ports. Lastly, RadCliQ (Yu et al., 2023) is a composite metric composed of the previous
four metrics, said to closely match the practitioners’ feedback on report quality.

Report summarization. We evaluate report summarization on MIMIC-III (Johnson
et al., 2016). Following (Van Veen et al., 2023), the VLM has to generate the impres-
sions section of a radiology report based on the findings section. So, the model is prompted
with the free-text findings (e.g. Intracranial vessels are normal... there is mild ven¨

triculomegal... the subarachnoid hemorrhage noted in the right sylvian fissure) fol-
lowed by the task prompt, Summarize the findings. We use the same metric as for the
report generation task to compare the ground truth impressions to the generated summary.

Natural language inference. Gauging the logical reasoning capabilities of the VLM,
Natural language inference (NLI) involves the categorization of pairs of sentences into three
classes: contradiction, entailment, or neutral, effectively resembling a 3-class classification
task. We evaluate NLI using MedNLI (Romanov and Shivade, 2018), a dataset consist-
ing of pairs of medical statements. We prompt the model with the two sentences from
a pair followed by a question asking to classify the logical relationship between them,
as in <sentence-1> <sentence-2> Determine the logical relationship between these two

sentences.

To extract the VLM’s predicted answer from its response, we check the presence of
either of the three terms (contradiction, entailment, or neutral). For the answer to be valid,
only one of the three classes must be present; if none of the three or several of them are
present, the answer is deemed invalid. The performance of the model is then reported using
accuracy.

3. MultiMedEval Setup and Utilization

Ideally, once a VLM is developed, the entire suite of evaluations mentioned above needs
to be conducted. Typically, this involves downloading the datasets, implementing the data
pre-processing, implementing the computation of the metrics, running inference through
the VLM, and finally recording the performance. We design MultiMedEval to abstract this
entire pipeline, only exposing APIs for setting up the data and for evaluating on them.
In this section, we briefly describe the usage of MultiMedEval and strongly encourage the
reader to peruse the official documentation (currently hosted at https://github.com/

corentin-ryr/MultiMedEval).
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Parameters. MultiMedEval exposes two parameter classes, SetupParams and EvalParams
. The setup parameters control the data download. For the datasets hosted on PhysioNet,
the setup process also requires appropriate credentials. The evaluation parameters control
the evaluation configuration such as batch_size, device (GPU-id), etc.

Batcher. The only code that the user needs to implement is a Callable, batcher, which
wraps around the user’s VLM inference module. Every call to batcher takes, as input, a
batch of conversation prompts and returns, as output, the decoded model responses. The
input prompts are constructed according to HuggingFace’s conversation style.

Evaluation. Once the parameters and the batcher are ready, the evaluation can be
run using the eval API, which takes as input the list of datasets that the user wants to
benchmark on, along with the batcher and the evaluation parameters. The results of
the evaluation are saved as a JSON file. Below, we provide the pseudocode for one such
evaluation:

1 from multimedeval import MultiMedEval , SetupParams , EvalParams

2

3 # Implementing the batcher for the user’s specific model and returning text

answers

4 def exampleBatcher(prompts:list[tuple]) -> list[str]:

5 return [model.generate(prompt) for prompt in prompts]

6

7 engine = MultiMedEval ()

8 # Running the setup only for MedQA

9 setupParams = SetupParams(MedQA_dir="data/")

10 engine.setup(setupParams)

11

12 # Running the evaluation on the exampleBatcher

13 evalParams = EvalParams(batch_size =32)

14 engine.eval(["MedQA"], exampleBatcher , evalParams)

4. Baselines

As previously indicated, MultiMedEval’s purpose is to enable a comprehensive assessment
of any VLM. To demonstrate this, we benchmark two recent, publicly-available models,
RadFM (Wu et al., 2023) and LLaVA-Med (Li et al., 2023). In this benchmark, we also
include the performance reported by two closed models, MedPALM M (Tu et al., 2023)
and Maira-1 (Hyland et al., 2023), as well as one very recent public model, BiomedGPT
(Zhang et al., 2023a). In Tables 4 and 5, we report the complete picture of the model
performances across six tasks, 23 datasets, and 81 metrics. The performance is grouped
by tasks and color-coded in green. The brighter the color, the superior the performance
(i.e. highest accuracy or lowest RadCliQ score is the brightest). A gray cell indicates that
the performance was never reported.

Owing to a holistic picture provided by MultiMedEval, we make five crucial observations:
First, there is not a single task or metric that every medical VLM, to date, has been
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Table 4: Performance of baseline VLMs on MultiMedEval’s tasks. Brighter the cell, better
the performance. Grey values indicate metrics that the model was not evaluated
with. Table continued in Table 5.
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Image classification
MIMIC-CXR
Image
classification

Macro-AUC↑ 0.536 - 0.470 - 0.791 - -
Accuracy↑ 0.728 - 0.668 - - - 0.897
Macro-F1↑ 0.244 - 0.097 - 0.416 - -

PAD-UFES-
20

Macro-AUC↑ 0.428 - 0.434 - 0.973 - -
Accuracy↑ 0.141 - 0.148 - - - -
Macro-F1↑ 0.093 - 0.132 - 0.843 - -

VinDr-
Mammo

Macro-AUC↑ 0.300 - 0.300 - 0.718 - -
Accuracy↑ 0.333 - 0.193 - - - -
Macro-F1↑ 0.069 - 0.190 - 0.357 - -

CBIS-
DDSM-Mass

Macro-AUC↑ 0.535 - 0.498 - 0.733 - -
Accuracy↑ 0.397 - 0.332 - - - -
Macro-F1↑ 0.258 - 0.090 - 0.511 - 0.572

CBIS-
DDSM-Calc

Macro-AUC↑ 0.445 - 0.500 - 0.822 - -
Accuracy↑ 0.250 - 0.333 - - - -
Macro-F1↑ 0.169 - 0.123 - 0.679 - 0.728

MNIST-Oct
Macro-AUC↑ 0.500 - 0.502 - - - -
Accuracy↑ 0.250 - 0.252 - - - 0.816
Macro-F1↑ 0.100 - 0.148 - - - -

MNIST-Path
Macro-AUC↑ 0.500 - 0.485 - - - -
Accuracy↑ 0.111 - 0.086 - - - 0.926
Macro-F1↑ 0.019 - 0.060 - - - -

MNIST-
Blood

Macro-AUC↑ 0.501 - 0.500 - - - -
Accuracy↑ 0.126 - 0.125 - - - 0.977
Macro-F1↑ 0.041 - 0.055 - - - -

MNIST-
Breast

Macro-AUC↑ 0.500 - 0.476 - - - -
Accuracy↑ 0.500 - 0.476 - - - 0.878
Macro-F1↑ 0.212 - 0.454 - - - -

MNIST-
Derma

Macro-AUC↑ 0.505 - 0.500 - - - -
Accuracy↑ 0.153 - 0.144 - - - 0.786
Macro-F1↑ 0.015 - 0.019 - - - -

MNIST-
OrganC

Macro-AUC↑ 0.500 - 0.497 - - - -
Accuracy↑ 0.090 - 0.086 - - - 0.931
Macro-F1↑ 0.009 - 0.024 - - - -

MNIST-
OrganS

Macro-AUC↑ 0.500 - 0.501 - - - -
Accuracy↑ 0.090 - 0.092 - - - 0.823
Macro-F1↑ 0.008 - 0.026 - - - -

MNIST-
Pneumonia

Macro-AUC↑ 0.500 - 0.457 - - - -
Accuracy↑ 0.500 - 0.457 - - - 0.967
Macro-F1↑ 0.272 - 0.413 - - - -

MNIST-
Retina

Macro-AUC↑ 0.500 - 0.487 - - - -
Accuracy↑ 0.200 - 0.178 - - - -
Macro-F1↑ 0.121 - 0.082 - - - -

MNIST-
Tissue

Macro-AUC↑ 0.500 - 0.500 - - - -
Accuracy↑ 0.125 - 0.126 - - - -
Macro-F1↑ 0.021 - 0.081 - - - -

NLI
MedNLI Accuracy↑ 0.001 - 0.080 - - - 0.838

evaluated on. This speaks to the non-uniformity in the existing evaluation regimes. Second,
closed models such as MAIRA-1 (on report generation) and MedPaLM M (on QA, image
classification, etc.) show superior performance compared to open-source models. Third, we
can see an improvement in VLMs’ performance on QA and image classification. In both
cases, MedPaLM M outperforms the others by a significant margin. Fourth, the most recent
open-source model (BiomedGPT) seems to be very promising. On metrics reported by both
MedPaLM M and BiomedGPT, the latter shows a competitive performance. At image
classification (Macro-F1 on CBIS-DDSM), BiomedGPT even outperforms MedPaLM M,
showing an encouraging prospect for open-source models. Fifth and finally, the number of
empty cells clearly showcases the need for a standardized evaluation protocol for medical
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Table 5: Continuation of the VLM benchmark from Table 4.
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QA
MedQA Accuracy↑ 0.230 - 0.241 - 0.697 - -
MedMCQA Accuracy↑ 0.288 - 0.309 - 0.626 - -
PubMedQA Accuracy↑ 0.336 - 0.488 - 0.800 - -

Report summarization

MIMIC-III

ROUGE-L↑ 0.157 - 0.164 - 0.320 - 0.307
ROUGE-1↑ 0.221 - 0.222 - - - -
BLEU-1↑ 0.127 - 0.129 - 0.154 - -
BLEU-4↑ 0.016 - 0.030 - - - -
F1-RadGraph↑ 0.149 - 0.211 - 0.347 - 0.312
RadCliQ↓ 1.396 - 1.315 - - - -
CheXbert vector↑ 0.602 - 0.596 - - - -
METEOR↑ 0.191 - 0.314 - - - -

VQA

VQA-RAD

BLEU-1↑ 0.443 0.522 0.058 - 0.713 - -
closed Q accuracy↑ 0.581 - 0.621 0.614 - - 0.732
open Q recall↑ 0.326 - 0.335 0.282 - - -
recall↑ 0.468 0.428 0.485 - - - -
open Q accuracy↑ 0.260 - 0.255 - - - 0.732
F1 ↑ 0.454 - 0.102 - 0.621 - -

Slake-VQA

BLEU-1↑ 0.707 0.786 0.051 - 0.927 - -
closed Q accuracy↑ 0.715 - 0.515 0.522 - - 0.861
open Q recall↑ 0.720 - 0.408 0.392 - - -
recall↑ 0.718 0.744 0.444 - - - -
open Q accuracy↑ 0.684 - 0.361 - - - 0.861
F1 ↑ 0.718 - 0.090 - 0.893 - -

Path-VQA

BLEU-1↑ 0.254 - 0.029 - 0.723 - -
closed Q accuracy↑ 0.500 - 0.511 0.541 - - 0.581
open Q recall↑ 0.019 - 0.079 0.123 - - -
recall↑ 0.259 - 0.290 - - - -
open Q accuracy↑ 0.008 - 0.037 - - - 0.581
F1 ↑ 0.256 - 0.052 - 0.627 - -

Report generation

MIMIC-CXR
Report
Generation

F1-RadGraph↑ 0.108 - 0.021 - 0.267 0.243 -
BLEU-1↑ 0.127 0.194 0.109 - 0.323 0.392 -
BLEU-4↑ 0.004 - 0.000 - 0.115 0.142 -
ROUGE-1↑ 0.208 0.262 0.149 - - - -
ROUGE-L↑ 0.128 - 0.103 - 0.275 0.289 -
RadCliQ↓ 1.994 - 2.415 - - 3.100 -
CheXbert vector↑ 0.214 - 0.156 - - 0.440 -
METEOR↑ 0.178 - 0.123 - - 0.333 -

VLMs as well as an easy-to-use toolkit that performs the evaluation so that researchers can
cater more focus on the development of the models.

5. Conclusion

Medical vision-language models are just gathering momentum, they already show interest-
ing generalizable capabilities, and their capabilities are bound to expand. Therefore, this
is an opportune moment to establish a standard evaluation protocol based on community
consensus. Addressing this, we presented MultiMedEval, a Python toolkit to comprehen-
sively assess the performance of any VLM model on multiple medical tasks. Using this,
we benchmarked RadFM and LLaVVa-Med and compared their results to the reported
performances of state-of-the-art medical VLMs.

Future work. MultiMedEval will be released to the community and will be actively
maintained by adding new tasks, metrics, and datasets. To this end, we will work with
open-source medical imaging libraries such as MONAI (MONAI Consortium, 2023) and
MLCommons (MLCommons Consortium) to increase community adoption.
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Appendix A. Example of prompts

We give examples of prompts for each of the datasets that we benchmark in our tool. For
each example, we put the text from the dataset in black and the prompt we added in gray.

Table A1: Prompt example for each of the MedMNIST image classification datasets.
Dataset Prompt example

OCT MNIST <img> Options: \n 1: choroidal neovascularization \n 2: diabetic macular

edema \n 3: drusen \n 4: normal \n Which options correspond to the image?

Path MNIST <img> Options:\n 1: adipose \n 2: background \n 3: debris \n 4: lym¨

phocytes \n 5: mucus \n 6: smooth muscle \n 7: normal colon mucosa \n 8:

cancer-associated stroma \n 9: colorectal adenocarcinoma epithelium \n Which

options correspond to the image?

Blood MNIST <img> Options:\n 1: basophil \n 2: eosinophil \n 3: erythroblast \n 4:

immature granulocytes(myelocytes, metamyelocytes and promyelocytes) \n 5:

lymphocyte \n 6: monocyte \n 7: neutrophil \n 8: platelet \n Which options

correspond to the image?

Breast MNIST <img> Options:\n 1: malignant \n 2: normal, benign \n Which options
correspond to the image?

Derma MNIST <img> Options:\n 1: actinic keratoses and intraepithelial carcinoma \n 2:

basal cell carcinoma \n 3: benign keratosis-like lesions \n 4: dermatofi¨

broma \n 5: melanoma \n 6: melanocytic nevi \n 7: vascular lesions \n Which

options correspond to the image?

OrganC MNIST <img> Options:\n 1: bladder \n 2: femur-left \n 3: femur-right \n 4:

heart \n 5: kidney-left \n 6: kidney-right \n 7: liver \n 8: lung-left

\n 9: lung-right \n 10: pancreas \n 11: spleen \n Which options correspond

to the image?

OrganS MNIST <img> Options:\n 1: bladder \n 2: femur-left \n 3: femur-right \n 4:

heart \n 5: kidney-left \n 6: kidney-right \n 7: liver \n 8: lung-left

\n 9: lung-right \n 10: pancreas \n 11: spleen \n Which options correspond

to the image?

Pneumonia
MNIST

<img> Options:\n 1: normal \n 2: pneumonia \n Which options correspond to

the image?

Retina MNIST <img> Options:\n 1: 0 \n 2: 1 \n 3: 2 \n 4: 3 \n 5: 4 \n Which options

correspond to the image?

Tissue MNIST <img> Options:\n 1: Collecting Duct, Connecting Tubule \n 2: Distal Convo¨

luted Tubule \n 3: Glomerular endothelial cells \n 4: Interstitial endothe¨

lial cells \n 5: Leukocytes \n 6: Podocytes \n 7: Proximal Tubule Segments

\n 8: Thick Ascending Limb \n Which options correspond to the image?
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Table A2: Prompt example for each of the image classification datasets.
Dataset Prompt example

MIMIC-CXR
Image Classifi-
cation

<img> List the conditions that can be seen in this picture.

VinDr Mammo <img> What is the BI-RADS level in this mammography (from 1 to 5)?

Pad UFES 20 <img> Options: Basal Cell Carcinoma (BCC) Squamous Cell Carcinoma
(SCC) Actinic Keratosis (ACK) Seborrheic Keratosis (SEK) Bowen’s dis¨
ease (BOD) Melanoma (MEL) Nevus (NEV) What is the most likely diagno¨
sis among the following propositions?

CBIS-DDSM
Mass

<img> Is the mass benign, malignant or benign without callback?

CBIS-DDSM
Calcification

<img> Is the calcification benign, malignant or benign without call¨
back?
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Table A3: Prompt example for each of the QA datasets.
Dataset Prompt example

MedQA A 67-year-old man with transitional cell carcinoma of the bladder comes to

the physician because of a 2-day history of ringing sensation in his ear. He

received this first course of neoadjuvant chemotherapy 1 week ago. Pure tone

audiometry shows a sensorineural hearing loss of 45 dB. The expected benefi¨

cial effect of the drug that caused this patient’s symptoms is most likely due

to which of the following actions? Options: A: Inhibition of thymidine syn¨

thesis. B: Inhibition of proteasome. C: Hyperstabilization of microtubules.

D: Generation of free radicals. E: Cross-linking of DNA. What is the correct

answer?

MedMCQA Which of the following is not true for myelinated nerve fibers: a: Impulse

through myelinated fibers is slower than non-myelinated fibers. b: Membrane

currents are generated at nodes of Ranvier. c: Saltatory conduction of im¨

pulses is seen. d: Local anesthesia is effective only when the nerve is not

covered by myelin sheath. What is the correct answer?

PubMedQA Answer the question with yes, no or maybe. Dyschesia can be provoked by in¨

appropriate defecation movements. The aim of this prospective study was to

demonstrate dysfunction of the anal sphincter and/or the musculus (m.) pub¨

orectalis in patients with dyschesia using anorectal endosonography. Twenty

consecutive patients with a medical history of dyschesia and a control group

of 20 healthy subjects underwent linear anorectal endosonography (Toshiba

models IUV 5060 and PVL-625 RT). In both groups, the dimensions of the anal

sphincter and the m. puborectalis were measured at rest, and during voluntary

squeezing and straining. Statistical analysis was performed within and be¨

tween the two groups. The anal sphincter became paradoxically shorter and/or

thicker during straining (versus the resting state) in 85% of patients but

in only 35% of control subjects. Changes in sphincter length were statisti¨

cally significantly different (p<0.01, chi(2) test) in patients compared with

control subjects. The m. puborectalis became paradoxically shorter and/or

thicker during straining in 80% of patients but in only 30% of controls. Both

the changes in length and thickness of the m. puborectalis were signifi¨

cantly different (p<0.01, chi(2) test) in patients versus control subjects.

Is anorectal endosonography valuable in dyschesia?

Table A4: Prompt example for each of the VQA datasets.
Dataset Prompt example

VQA-Rad Answer the following question with yes or no. <img> are regions of the

brain infarcted?

Path-VQA <img> where are liver stem cells (oval cells) located?

SLAKE <img> What is the main organ in the image?
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Table A5: Prompt example for report generation and report summarization.
Dataset Prompt example

MIMIC-III intracranial vessels are all normal in appearance including the carotid ar¨

teries and circle of without any aneurysm identified. again noted is the

right parafalcine subdural hematoma extending over the right tentorium with¨

out significant change from recent prior exam. no gross reaccumulation of

the left sided subdural hematoma is appreciated, though evaluation for subtle

hemorrhage is difficult as this was a contrast-enhanced study. there has been

interval placement of a right sided ventriculostomy tube terminating in the

posterior aspect of the right lateral ventricle. again noted is some high

attenuation material in the left lateral ventricle, third ventricle and fourth

ventricle which likely represents clot adherent to choroid plexus. there is

mild ventriculomegaly which is not significantly changed from the prior exam.

intraparenchymal high attenuation surrounding the ventriculostomy tube in the

right frontal lobe likely represents a small amount of intraparenchymal hem¨

orrhage. the subarachnoid hemorrhage noted in the right sylvian fissure on

the prior exam is difficult to appreciate due to contrast-enhancement, but is

likely not significantly changed. limited views through the cervical spine

demonstrate multilevel spondylosis with mild anterolisthesis of c3 upon c4,

likely on the basis of facet degenerative change as no spondylolysis is iden¨

tified. there is no significant central canal stenosis. incidentally noted

is enlargement of the right lobe of the thyroid gland which contains a fo¨

cus of high attenuation possibly representing calcification. Summarize the

findings.

MIMIC-CXR <img> <img> <img> Please caption this scan with findings and impression.

Table A6: Prompt example for each of the Natural Language Inference datasets.
Dataset Prompt example

MedNLI Sentence 1: Labs were notable for Cr 1.7 (baseline 0.5 per old
records) and lactate 2.4.\n Sentence 2: Patient has elevated Cr\n
Determine the logical relationship between these two sentences.Does
the second sentence logically follow from the first (entailment), con¨
tradict the first (contradiction), or if there is no clear logical
relationship between them (neutral)?

16



MultiMedEval: A Benchmark and a Toolkit for Evaluating Medical VLMs

Table A7: Origin of the prompt for each dataset. For the first 8, we took the same prompt
as the reference paper. For the other ones, we adapted or created a new prompt
entirely. We give examples of the adapted prompts to show the differences.

Dataset Reference

MedQA Med-PALM M

MedMCQA Med-PALM M

PubMedQA Med-PALM M

VQA-Rad LLaVA-Med

SLAKE LLaVA-Med

VQA-Path LLaVA-Med

MIMIC-CXR Report gen MAIRA-1 & RadFM

Pad UFES 20 Med-PALM M

VinDr Mammo Med-PALM M: Given mammogram image <img>. Image view: bilat-
eral craniocaudal Q: What is the most likely breast BI-RADS score?
(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
MultiMedEval: <img>What is the BI-RADS level in this mammog-
raphy (from 1 to 5)?

CBIS-DDSM Mass Med-PALMM: Given mammogram image <img>. Image view: CC Q:
Which of the following is the most likely type of the patient’s breast
calcification? (A) BENIGN (B) BENIGN WITHOUT CALLBACK
(C) MALIGNANT
MultiMedEval: <img>Is the mass benign, malignant or benign with-
out callback?

CBIS-DDSM Calcification Med-PALM M: Given mammogram image . Image view: CC Q: Which
of the following is the most likely type of the patient’s breast calci-
fication? (A) BENIGN (B) BENIGN WITHOUT CALLBACK (C)
MALIGNANT
MultiMedEval: <img>Is the mass benign, malignant or benign with-
out callback?

MIMIC-CXR Image classifica-
tion

Med-PALMM: Identify if a specific type of abnormality is shown in the
X-ray. Given the AP view X-ray image <img>. Q: Is cardiomegaly
indicated by the image? (A) No (B) Yes
MultiMedEval: <img>List the conditions that can be seen in this
picture.

All MedMNIST datasets &
MedNLI

BiomedGPT does not mention the prompt they use so used the
prompts listed in Table A.

Appendix B. Text cleaning and tokenization for VQA tasks

For the VQA tasks, the generated answer is cleaned and tokenized to compute the recall
which is in turn used for the accuracy metrics. This preprocessing pipeline is in line with
the one used in LLaVA-Med. First, we clean the generated string by removing punctuation
and articles (”a”, ”an”, ”the”), then we turn all numbers into numerals (”one” → ”1”) and
expand contractions that lack apostrophes. We then split the sentence at spaces and end
up with a list of words that we turn into a set (removing duplicates).
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