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ABSTRACT

The use of Deep Neural Networks (DNN) as function approximators has led to
striking progress for reinforcement learning algorithms and applications. At the
same time, deep reinforcement learning agents have inherited the vulnerability
of DNNs to imperceptible adversarial perturbations to their inputs. Prior work
on adversarial perturbations for deep reinforcement learning has generally relied
on calculating an adversarial perturbation customized to each state visited by the
agent. In this paper we propose a more realistic threat model in which the adversary
computes the perturbation only once based on a single state. Furthermore, we show
that to cause a deep reinforcement learning agent to fail it is enough to have only
one adversarial offset vector in a black-box setting. We conduct experiments in
various environments from the Atari baselines, and use our single-state adversaries
to demonstrate the transferability of perturbations both between states of one
MDP, and between entirely different MDPs. We believe our adversary framework
reveals fundamental properties of the environments used in deep reinforcement
learning training, and is a tangible step towards building robust and reliable deep
reinforcement learning agents.

1 INTRODUCTION

Building on the success of DNNs for image classification, deep reinforcement learning has seen
remarkable advances in various complex environments Mnih et al. (2015); Schulman et al. (2017);
Lillicrap et al. (2015). Along with these successes come new challenges stemming from the lack of
robustness of DNNs to small adversarial perturbations to inputs. This lack of robustness is especially
critical for deep reinforcement learning, where the actions taken by the agent can have serious real-life
consequences (Levin & Carrie (2018)).

The initial work on adversarial examples in deep learning by Szegedy et al. (2014) showed that
imperceptible perturbations added to images could be used to cause a DNN image classifier to
misclassify, and hypothesized that this was a result of the DNN’s complexity and nonlinearities.
Follow-up work by Goodfellow et al. (2015) proposed a more computationally efficient fast gradient
sign method (FGSM) for computing adversarial examples, while simultaneously explaining the
presence of adversarial examples as a result of DNN classifiers learning approximately linear functions.
The authors additionally argue that the presence of a common high-dimensional linear decision
boundary is an explanation for the transferability of adversarial examples between models trained
on different minibatches of the same training set or with different architecture. The transferability
of perturbations themselves, in contrast to transferability of complete adversarial examples, was
investigated by Moosavi-Dezfooli et al. (2017). The authors showed how to compute one universal
perturbation from a minibatch of images that could be used to fool a classifier by adding it to each
image in the validation set. The authors argue the existence of universal perturbations is explained by
correlations between the local decision boundaries near many different points in the dataset.

More recently, a new body of research on adversarial perturbations for deep reinforcement learning
agents has developed, demonstrating that it is possible to make a high-performing agent fail by
adding perturbations to the agent’s perception of the current state Lin et al. (2017); Sun et al. (2020);
Huang et al. (2017); Pattanaik et al. (2018); Mandlekar et al. (2017). A major drawback of this prior
work is the threat model, in which the attacker computes perturbations and adds them to the agent’s
state in real-time before the state is perceived by the agent. Such a threat model is not practically
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feasible considering the heavy duty optimization methods used by Lin et al. (2017); Sun et al. (2020).
To address this we propose a new threat model where the attacker computes just one adversarial
offset vector based on a single state. Not only is this a more practical threat model from a security
perspective, but the success of attacks in this model can be used to give insight into the transferability
of adversarial examples and the properties of functions learned by trained deep reinforcement learning
agents.

We believe the adversarial perspective is an initial step towards understanding the loss landscape and
geometry of the decision boundaries of the algorithms in use, assessing the generalization capabilities
of trained agents, and building robust and reliable deep reinforcement learning agents. For these
reasons in our paper we focus on the adversarial perspective and make the following contributions:

• We introduce a framework of six unique adversary types encapsulating our new threat model
where the attacker is restricted to computing an adversarial perturbation based on a single
state.

• We use our framework to investigate the transferability of adversarial perturbations, both
between states of the same MDP and between MDPs.

• We show with experiments in the Atari baselines that single state attacks have significant
impact on agent performance.

• In particular, we show that by using only one perturbation computed based on a random
state of a random episode from a completely different environment, it is possible to have
a dramatic impact on the deep reinforcement learning agent’s performance. This transfer-
ability of adversarial perturbations between environments implies that there is a correlation
between the features learned by agents trained in different environments. While these results
demonstrate that deep reinforcement learning agents are indeed learning representations
that generalize across environments, they also demonstrate a critical vulnerability from
the security point of view that can be exploited without any knowledge of the training
environment or neural architecture.

2 RELATED WORK AND BACKGORUND

2.1 DEEP REINFORCEMENT LEARNING

In this paper we examine discrete action space MDPs that are represented by a tuple: M =
(S,A,P, r, γ, s0) where S is a set of continous states, A is a set of discrete actions, P : S×A×S→ R
is the transition probability, r : S× A→ R is the reward function, γ is the discount factor, and s0 is
the initial state distribution. The agent interacts with the environment by observing s ∈ S and taking
actions a ∈ A. The goal is to learn a policy πθ : S× A→ R which takes an action a in state s that
maximizes the cumulative discounted reward

∑T−1
t=0 γtr(st, at). For an MDP M and policy π(s, a)

we call a sequence of state, action, reward tuples, (si, ai, ri), that occurs when utilizing π(s, a) in M
an episode. We use pM,π to denote the probability distribution over the episodes generated by the
randomness in M and the policy π.

2.2 ADVERSARIAL PERTURBATION METHODS

In this work we create the adversarial perturbations via two different methods. The first is the Carlini
& Wagner (2017) formulation. In the deep reinforcement learning setup this formulation is,

min
sadv∈S

c · J(sadv) + ‖sadv − s‖ (1)

where s is the unperturbed input, sadv is the adversarially perturbed input, and J(s) is the augmented
cost function used to train the network. The second method we use to produce the adversarial
examples is the elastic net regularization (EAD) Chen et al. (2018) adversarial formulation,

min
sadv∈S

c · J(sadv) + λ ‖sadv − s‖ + λ ‖sadv − s‖ (2)
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3 EXPLORING TRANSFERABILITY

In this work we introduce the notion of single-state transferability in deep reinforcement learning,
and investigate its effects in state-of-the-art deep reinforcement learning environment baselines.
We explore single-state transferability in our proposed adversary framework, which consists of
computing an adversarial perturbation from a random state, and then adding that particular adversarial
perturbation to several other states, both within the same MDP and across different MDPs. We refer to
the transferability of adversarial perturbations between states in the same MDP as state transferability.
Similarly, we refer to transferability of perturbations between states in different MDPs as environment
transferability. To be able to fully explore the different types of transferability we define a framework
with several adversary variants in Section 3.2.

3.1 THREAT MODEL

In our work we propose a threat model that could plausibly be deployed in a physical deep reinforce-
ment learning setup. Physical adversaries for image classification have been extensively studied.
Kurakin et al. (2017) showed that it is possible to fool a DNN by printing out an adversarial picture
and then presenting the print out as an input to the classifier. Evtimov et al. (2018) demonstrated that
placing stickers on an object can also make DNN image classifiers fail. Athalye et al. (2017) showed
that one can physically build an adversarial object with a 3D printer that can fool a DNN classifier.
Recently, Li B. et al. (2019) proposed a realistic physical perturbation, a camera sticker, to fool DNN
image classifiers.

Previous work on adversary models in deep reinforcement learning has focused on computing the
adversarial examples customized to each state Huang et al. (2017); Mandlekar et al. (2017); Pattanaik
et al. (2018); Lin et al. (2017); Pinto et al. (2017); Sun et al. (2020). In particular, the adversary
model of Lin et al. (2017); Sun et al. (2020) requires real-time access to the agents perception system,
while using the highly computationally demanding Carlini & Wagner (2017) adversarial formulation
to compute perturbations. Such a model, where the adversarial perturbation for each input state is
computed and added in real time, is firstly not computationally efficient, and secondly not a realistic
adversarial scenario in many settings of interest. In our threat model we propose to only have one
offset vector to add to every clean image observed by the deep reinforcement learning agent. We
believe this scenario to be more physically viable, since this single adversarial perturbation could be
a change to the lens of the camera of the deep reinforcement learning agent.

3.2 ADVERSARIAL FRAMEWORK

In the following section we define six unique adversary models in our framework to evaluate our
proposed threat model. Given a policy π(s, a) we define η(s, π(s, a)) to be a perturbation computed
based only on the state s and the policy π(s, a) in state s. In all the following definitions we fix a
bound κ and set

ε(η) =
κ

‖η‖p
. (3)

Definition 1: Individual state adversary, Aindividual, is the adversary that calculates the perturbation
custom to each state.

s∗ = s+ ε(η) · η(s, π(s, a)) (4)

Definition 2: Initial state adversary, Ainitial, is the adversary that calculates the perturbation based
on the initial state of the agent in the given episode, and adds the initial state perturbation to the rest
of the states visited.

s∗ = s+ ε(η) · η(s0, π(s0, a)) (5)

Definition 3: Episode independent initial state adversary, Ainitial
e , is the adversary that calculates the

perturbation based on the initial state of the agent in a random episode e, and adds the initial state
perturbation to all states visited in episode e′. Given an episode e ∼ pM , the perturbed state is,
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s∗ = s+ ε(η) · η(s0(e), π(s0(e), a)) (6)

where M is the MDP and s0(e) is the initial state of episode e.

Definition 4: Episode independent random state adversary, Arandom
e , is the adversary that calculates

the perturbation based on a random state of the agent in a random episode e, and adds the random
state perturbation to all the states visited in episode e′. Given an episode e ∼ pM , the perturbed state
is,

s∗ = s+ ε(η) · η(srandom(e), π(srandom(e), a)) (7)

where M is the MDP and srandom(e) is a random state of episode e.

Definition 5: Environment independent initial state adversary,Ainitial
M , is the adversary that calculates

the perturbation based on the initial state of an agent in a random episode of the MDP M , and adds
the initial state perturbation to all of the states visited in an episode of the MDP M ′. Given an episode
e ∼ pM , the perturbed state is,

s∗ = s+ ε(η) · η(s0(e,M), π(s0(e,M), a)) (8)

where s0(e,M) is the initial state of episode e of MDP M .

Definition 6: Environment independent random state adversary, Arandom
M , is the adversary that

calculates the perturbation based on a random state of the agent in a random episode of the MDP M ,
and adds the random state perturbation to all the states visited in an episode of the MDP M ′. Given
an episode e ∼ pM , the perturbed state is

s∗ = s+ ε(η) · η(srandom(e,M), π(srandom(e,M), a)) (9)

where srandom(e,M) is a random state of episode e of MDP M .

4 EXPERIMENTS

In our experiments agents are trained with DDQN Wang et al. (2016) in the Atari environment
Bellemare et al. (2013) from OpenAI Brockman et al. (2016). We average over 10 episodes in our
experiments. We define the impact of the adversary on the agent by normalizing the performance
drop as follows

Impact =
Scoremax − Scoreadv

Scoremax − Scoremin
. (10)

Here Scoremax is the score of the baseline trained agent following the learned policy without the
presence of an adversary, Scoreadv is the score of the agent under the influence of the adversary, and
Scoremin is the score the agent receives when choosing the action minimizing its Q(s, a) function in
every state. All scores are recorded at the end of an episode. We chose this normalization because we
observed that the agent can still receive non-zero reward even when choosing the worst action in each
state.

In our framework the adversaries Ainitial, Ainitial
e and Arandom

e all explore different aspects of state
transferability. Arandom

e is the most natural test for transferability between states of one MDP, while
Ainitial and Ainitial

e represent more restricted adversaries that only have access to the initial state.
Similarly, Arandom

M is the most natural test for environment transferability, while Ainitial
M is a more

restricted version where the adversary does not have access to arbitrary states in the MDP M .
Therefore, higher impact inArandom

e andArandom
M indicates higher state and environment transferability

respectively.

Table 1 and Table 2 show impact values of six different adversary models from our adversarial
framework utilizing the Carlini & Wagner (2017) formulation and EAD formualtion respectively
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for various environments from the Atari baselines. These results show a striking level of both state
transferability and environment transferability. One can observe that while the EAD formulation has
significant state transferability for all environments, the Carlini & Wagner (2017) formulation only
has significant state transferability for CrazyClimber and Pong. Additionally, the EAD formulation
also has higher environment transferability in all environments except Pong and Roadrunner.

Table 1: Impacts of Carlini & Wagner (2017) for the six different adversary definitions within the
proposed adversarisal framework.

Environments Aindividual Ainitial Ainitial
e Arandom

e Ainitial
M Arandom

M

BankHeist 0.694 0.232 0.069 0.118 0.086 0.022
RoadRunner 0.876 0.674 0.755 0.649 0.064 0.919
JamesBond 0.038 0.048 0.086 0.019 0.942 0.304
CrazyClimber 0.646 0.637 0.601 0.956 0.014 0.036
TimePilot 0.734 0.334 0.316 0.228 0.068 0.017
Pong 0.998 1.0 1.0 1.0 0.007 0.966

Table 2: Impacts of EAD for the six different adversary definitions within the proposed adversarisal
framework.

Environments Aindividual Ainitial Ainitial
e Arandom

e Ainitial
M Arandom

M

BankHeist 0.646 0.144 0.009 0.764 0.182 0.496
RoadRunner 0.821 0.964 0.612 0.816 0.034 0.816
JamesBond 0.098 0.096 0.038 0.612 0.865 0.910
CrazyClimber 0.750 0.002 0.028 0.980 0.925 0.983
TimePilot 0.776 0.394 0.380 0.517 0.202 0.312
Pong 0.995 0.997 1.0 1.0 0.983 0.946

It is extremely surprising to notice that the impact of Aindividual in JamesBond is distinctily lower
than Arandom

e . The reason for this in JamesBond is that Arandom
e consistently shifts all actions towards

action 12 while Aindividual causes the agent to choose different suboptimal actions in every state. See
section 4.1 for more details. We observe that this consistent shift towards one particular action results
in a much more successful attack in certain environments. In JamesBond, there are certain obstacles
that the agent must jump over in order to avoid death, and consistently taking action 12 prevents the
agent from jumping far enough. In CrazyClimber, the consistent shift towards one action results in
the agent getting stuck in one state where choosing any other action would likely free it. See our
github page1 for videos of the agent’s behavior for these cases.

Table 3: Gaussian noise impact for the same `2-norm bound used in Table 1 and Table 2.

BankHeist RoadRunner JamesBond CrazyClimber TimePilot Pong

Impacts 0.078 0.027 0.038 0.054 0.031 0.045

In all the experiments we set the `2-norm bound κ to a level so that Gaussian noise with `2-norm
κ has insignificant impact. In Table 3 we show the Gaussian noise impacts on the environments of
interest with the same `2-norm bound κ used in the EAD and Carlini & Wagner (2017) formulations.
It is important to note that unbounded Carlini & Wagner (2017) produces perturbations large enough
in `2-norm that Gaussian noise of the same magnitude has similar impact. Therefore, we bound the
perturbation to a level where Gaussian noise is not effective.
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4.1 EMPIRICAL EVALUATION OF ACTIONS

In this subsection we will define the functions on actions taken by the agent that we will use to
understand the effects of the adversarial perturbations. In the following subsections we will use these
functions to explore the decision boundaries and representations learned by the deep reinforcement
learning agent.

In the OpenAI Atari baselines the discrete action set is numbered from 0 to |A|. For this purpose
for each episode we collected statistics on the probability P (a) of taking action a in the following
scenarios:

• Pbase(a) - the fraction of states in which action a ∈ A is taken by the agent in an episode
with no adversarial perturbation added.

Pong BankHeist

CrazyClimber RoadRunner

CrazyClimber JamesBond

Figure 1: Empirical action statistics of Arandom
e with EAD formulation for Pcontrol(a) , Pbase(a) and

Padv(a).

1 https://adversarialtransferabilitydeeprl.github.io
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• Padv(a) - the fraction of states in which action a ∈ A is taken by the agent in an episode
with the adversarial perturbation added.

• Padv(a, b) - the fraction of states in which action a ∈ A would have been taken by the agent
if there were no perturbation, but action b ∈ A was taken due to the added perturbation.

• Pcontrol(a) =
∑
b Padv(a, b) - the fraction of states in which action a ∈ A would have

been taken by the agent if there were no perturbation, in an episode with the adversarial
perturbation added.

The difference between Pcontrol(a) and Padv(a) measures how effectively the adversary changes the
action taken by the agent in each state. We refer to this as action manipulation. As a baseline an
adversary must conduct action manipulation in at least one state. The difference between Pcontrol(a)
and Pbase(a) measures how effectively the adversary changes the distribution of states visited by the
agent. We refer to this as state manipulation. Unlike action manipulation it is not readily apparent
that significant state manipulation is necessary to achieve a high impact on the agent’s performance.

In Figure 1 we observe that in Roadrunner, JamesBond, and TimePilot Pcontrol(a) and Pbase(a) are
similar. Thus, for these environments state manipulation is relatively small. However, significant
action manipulation is occurring. In Pong, BankHeist, and CrazyClimber the adversary achieves both
significant state manipulation and action manipulation.

4.2 ACTION MANIPULATION

In Figure 2 we show the heatmaps corresponding to Padv(a, b). In these heatmaps we show which
particular control action has been shifted to a particular adversarial action. In some environments
there is a dominant action shift towards one particular adversarial action from one control action
as in CrazyClimber or in TimePilot. In some games there are one or more clear bright columns
where all the control actions are shifted towards the same particular adversarial action, for instance
in JamesBond. Recall that all experiments were conducted using a single adversarial offset vector
added to every visited state. Thus, the presence of a bright column indicates that, for many different
input states, this vector points across a decision boundary that separates one particular action from

Pong BankHeist TimePilot

CrazyClimber RoadRunner JamesBond

Figure 2: Heat map of Padv(a, b) for Arandom
e with EAD formulation.
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Figure 3: Environment transferability for Arandom
M with EAD formulation. Each row shows the

environment where the perturbation is added, and each column shows the environment from which
the perturbation is computed.

all other actions. A plausible explanation for these bright columns is that each one corresponds to a
diverse set of states for which the neighboring decision boundary geometry is highly correlated.

4.3 ENVIRONMENT TRANSFERABILITY

In this section we investigate transferability between environments. In these experiments we utilize
Arandom

M where the perturbation is computed from a random state of a random episode of one envi-
ronment, and then added to a completely different environment. In Figure 3 we show the impacts
for the Arandom

M adversary in six different environments. Each row shows the environment where the
perturbation is added, and each column shows the environment from which the perturbation is com-
puted. Note that the diagonal of the environment transferability matrix represents state transferability,
while the off diagonal elements represent environment transferabilty. One can observe intriguing
properties of the Atari baselines where certain environments are highly transferable. We show that
the perturbations computed from RoadRunner are highly effective in other environments and the
perturbations computed from other environments are effective in RoadRunner. Additionally, in half
of the environments higher or similar impact is achieved when transferring a perturbation from a
different environment rather than using one computed in the environment itself. This high level of
environment transferability is a sign deep reinforcement learning agents are learning representations
that have correlated features across different environments.

5 CONCLUSION

In this paper we introduce a framework based on six different adversaries within our proposed
transferability threat model. Using our framework we investigate the transferability properties of
the environments and algorithms used for deep reinforcement learning training. We show that using
a perturbation computed from a random state of a random episode of one environment can cause
significant detrimental effects in a completely different environment. While this transferability brings
several complications from the security point of view, where an attacker can manipulate an agent in a
black-box setting without having access to the training environment and neural architecture, we also
argue that it is a clear sign that deep reinforcement learning agents indeed learn representations that
generalize across different environments. In particular, environment transferability of perturbations
indicates that agents have promising underlying generalization skills. We believe our results can give
us a perspective on the generalization capabilities of deep reinforcement learning agents, and can be
instrumental in building reliable and robust deep reinforcement learning agents.
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A APPENDIX

A.1 INVESTIGATION OF POLICY GRADIENT METHODS

In this section we provide an investigation into policy gradient algorithms. In Table 4 we demonstrate
the impact results of the adversary definitions within the proposed adversarial framework with the
EAD formulation. Note that the Arandom

e ,Ainitial
e , Ainitial

M , and Arandom
M adversaries in this example are

computed by using one single perturbation from a random state of an agent trained with DDQN
and then applying this perturbation to the agent trained with A3C. It is quite striking to observe
that compared to Gaussian noise the Arandom

M adversary has great success on degrading the agent’s
performance. Recall that the Arandom

M adversary is computing a single adversarial perturbation from a
random state of a completely different MDP trained with a different algorithm.

Table 4: Impacts of the adversary definitions within the proposed adversarial framework as applied to
A3C trained agent’s observation system where the perturbation is computed with the EAD formulation
for an agent trained with DDQN.

Environment AGaussian Ainitial
e Arandom

e Ainitial
M Arandom

M

Pong 0.0789 0.783 0.751 0.724 0.632
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A.2 PERCEPTUAL SIMILARITIES

In this section we provide an analysis of the perceptual similarities between states in the same
MDP and states from different MDPs. In particular the perceptual similarity distance P measures
the difference between two inputs based on internal activations of a neural network independent
from the network architecture Zhang et al. (2018). Figure 4 demonstrates the perceptual similarity
distance between states of different MDPs and states in the same MDP. Note that the perceptual
similarity between states is not correlated with environment transferability as shown in Figure 3. In
particular, the transferability from Pong to CrazyClimber is high as can be seen in Figure 3, while
the perceptual similarity distance between states from the two MDPs is also high (i.e the states
are perceptually dissimilar). Thus the perturbations transfer between these two MDPs despite the
perceptual dissimilarity between the states of the two different MDPs.

Figure 4: Perceptual similarity distances between states inside the same MDP and between different
MDPs.

A.3 ARCHITECTURAL DIFFERENCES AND HYPERPARAMETERS

In this section we provide transferability results between different architectures for Arandom
e and

Arandom
M adversaries. In general we found no difference between DDQN architectures. In the

experiments in this section the perturbation is computed in the DDQN Prior Duel architecture, and
then added to the agent’s observation system trained with DDQN, DDQN Prior, DDQN Duel and
DDQN Prior Duel.

Table 5: Impacts of the adversary definitions within the proposed adversarisal framework where the
perturbation is computed in the DDQN Prior Duel architecture and added to the agent’s observa-
tion system trained with DDQN, DDQN Prior, DDQN Duel and DDQN Prior Duel for the Pong
environment.

Architectures AGaussian Ainitial
e Arandom

e Ainitial
M Arandom

M

DDQN 0.002 1.0 1.0 1.0 0.995
DDQN Prior 0.075 1.0 1.0 1.0 0.985
DDQN Duel 0.036 1.0 1.0 1.0 0.966
DDQN Prior-Duel 0.041 1.0 1.0 1.0 0.981
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DDQN hyperparameters as follows: learning rate for Adam optimizer is 5 × 10−5, buffer size is
50000, final value of random action probability 0.02, batch size 32, discount factor is 1.0. See more
details on implementation and hyperparameters in Dhariwal et al. (2017).

A.4 ENVIRONMENTS

In Figure 5 we show the screenshots of the MDPs considered in this paper. We observe that some
environments from the Atari baselines have extremely high transferability. For the extreme example,
the impact of the EAD formulation in Pong is 0.974 for Arandom

e . Moreover, it is 0.906 forArandom
M

Note that this means the perturbation is computed based on a random state of a random episode from
a random environment M , and still causes the agent to perform extremely poorly.

TimePilot JamesBond BankHeist RoadRunner CrazyClimber Pong

Figure 5: Different environments from Atari Baselines
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