Maximum State Entropy Exploration using Predecessor and Successor
Representations

Arnav Kumar Jain'2 Lucas Lehnert? Irina Rish'2 Glen Berseth ! 2

Abstract

Animals have a developed ability to explore that
aids them in important tasks such as locating food,
exploring for shelter, and finding misplaced items.
These exploration skills necessarily track where
they have been so that they can plan for finding
items with relative efficiency. Contemporary ex-
ploration algorithms often learn a less efficient
exploration strategy because they either condi-
tion only on the current state or simply rely on
making random open-loop exploratory moves. In
this work, we propose ni-Learning, a method
to learn efficient exploratory policies by condi-
tioning on past episodic experience to make the
next exploratory move. Specifically, ni-Learning
learns an exploration policy that maximizes the
entropy of the state visitation distribution of a
single trajectory. Furthermore, we demonstrate
how variants of the predecessor representation
and successor representations can be combined
to predict the state visitation entropy. Our exper-
iments demonstrate the efficacy of ny-Learning
to strategically explore the environment and max-
imize the state coverage with limited samples.

1. Introduction

Animals and humans are very efficient at exploration com-
pared to their data-hungry algorithms counterparts (Lit-
man, 2005; Kidd & Hayden, 2015; Schmidhuber, 1991;
2009; Clark, 2018; Ecoffet et al., 2019; Vinyals et al., 2017;
Schmidhuber, 2010). For instance, when misplacing an item,
a person will methodically search through the environment
to locate the lost item. To efficiently explore, an intelli-
gent agent must consider past interactions to decide what to

"Mila—Quebec AI Institute >University de Montreal *Meta
Al, FAIR. Correspondence to: Arnav Kumar Jain <arnav-
kumar.jain@mila.quebec>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

explore next and avoid re-visiting previously encountered
locations to find rewarding states as fast as possible. Con-
sequently, the agent needs to reason over potentially long
interaction sequences, a space that grows exponentially with
the sequence length. Here, assuming that all the information
the agent needs to act is contained in the current state is
impossible (Mutti et al., 2022a).

In this paper, we present n)-Learning, an algorithm to learn
an exploration policy that methodically searches through a
task. This is accomplished by maximizing the entropy of the
state visitation distribution of a single finite-length trajectory.
This focus on optimizing the state visitation distribution of a
single trajectory distinguishes our approach from prior work
on exploration methods that maximize the entropy of the
state visitation distribution (Hazan et al., 2019; Tarbouriech
& Lazaric, 2019; Lee et al., 2019; Mutti & Restelli, 2020;
Guo et al., 2021). For example Hazan et al. (2019) focus on
learning a Markovian policy—a decision-making strategy
that is only conditioned on the current state and does not con-
sider which states have been explored before. A Markovian
policy constrains the agent in its ability to express different
exploration policies and typically results in randomizing
at uncertain states to maximize the state entropy objective.
While this will lead to uniformly covering the state space
in the limit, such behaviors are not favorable for real-world
tasks where the agent needs to maximize state coverage with
limited number of interactions.

Figure 1 presents a didactic example to illustrate how an
intelligent agent can learn to efficiently explore a 4 x 4 grid.
In this example, the agent transitions between different grid
cells by selecting one of four actions: up, down, left, and
right. To explore optimally, the agent would select actions
that maximize the entropy of the visited state distribution of
the entire trajectory. Suppose the agent started its trajectory
in the top left corner of the grid (shown in Figure 1(a)) and
has moved to the right twice and made one downward step
(indicated by red arrows). At this point, the agent has to
decide between one of the four actions to further explore the
grid. For example, it could move left and follow the green
trajectory as outlined in Figure 1(b). This path would be
optimal in this example because every state is visited exactly
once and not multiple times. However, the top action would

Maximum State Entropy Exploration using Predecessor and Successor Representations

N4

|
M
Te T “Te | ¢

1

A

——

e
y
€:¢<—

4 >

(a) (b)

(©) (d)

Figure 1: Consider a 4x4 grid-world for illustration. (a) Agent starts at the top left corner and takes a few actions(red
arrows show the trace), (b) optimal trajectory covering the grid (green arrows), (c) sub-optimal trajectory where agent visits
a previously observed state in the last step, (d) another sub-optimal trajectory an observed state is visited at an earlier step.

lead to a sub-optimal trajectory as the agent would visit
the previous state. To mitigate sub-optimal exploration, an
intelligent agent must keep track of visited states to avoid
revisiting states. Although taking the right action will lead
to a novel state in the next step, the overall behavior will be
sub-optimal as the agent will have to visit a state twice to
explore the entire grid (depicted in Figures 1(c) and 1(d)).
This further requires an agent to carefully plan and account
for the states that would follow after taking an action.

In this work, we propose n-Learning, an algorithm to
compute an exploration strategy that methodically explores
within a single finite-length trajectory—as illustrated in Fig-
ure 1(b). ny-Learning maintains two state representations:
a predecessor representation (van Hasselt et al., 2021; Bailey
& Mattar, 2022) to encode past state visitation frequencies
and a Successor Representation (SR) (Dayan, 1993) to pre-
dict future state visitation frequencies. The two representa-
tions are used to evaluate at every time step the decision that
leads to covering all states as uniformly as possible. Specifi-
cally, for every potential action the agent can take, the SR is
combined with the predecessor representation to predict the
state visitation distribution for the current trajectory. Then,
the action that results in the highest entropy of this state vis-
itation distribution is selected for exploration. Furthermore,
this exploration policy can be deterministic and does not
randomize to achieve its maximum state entropy objective.

To summarize, the contributions of this work are as fol-
lows: Firstly, we propose a mechanism to combine succes-
sor (Dayan, 1993) and predecessor (van Hasselt et al., 2021)
representations for maximizing the entropy of the state visi-
tation distribution of a finite-length trajectory. To the best
of our knowledge, this is the first work using the two repre-
sentations to optimize the state visitation distribution and
learn an efficient exploration policy. Secondly, we introduce
mp-Learning, a method that utilizes the combination of two
representations to learn deterministic and non-Markovian
exploration policies for the finite-sample regime. Thirdly,
we discuss how ni)-Learning optimizes the entropy-based

objective function for both finite and (uncountably) infi-
nite action spaces. In Section 5 we demonstrate through
empirical experiments that ni-Learning achieves optimal
coverage within a single finite-length trajectory. Moreover,
the visualizations presented in Section 5 demonstrate that
n-Learning learns an exploration policy that maneuvers
through the state space to efficiently explore a task while
minimizing the number of times the same state is revisited.

2. Related Work

The domain of exploration in Reinforcement Learning (RL)
focuses on discovering an agent’s environment via intrinsic
motivation to accelerate learning optimal policies. Many of
the existing exploration methods seek novelty by using pre-
diction errors (Pathak et al., 2017; Burda et al., 2019; Sekar
et al., 2020; Stadie et al., 2015) or pseudo-counts (Strehl &
Littman, 2008; Bellemare et al., 2016; Machado et al., 2020).
However, such methods only add an intrinsic reward signal
to improve sample efficiency in a single task setting. They
do not explicitly learn a policy that is designed to efficiently
explore a task. In contrast, we present a method for explic-
itly learning an efficient exploration strategy by maximizing
the entropy of a single trajectory’s state visitation distribu-
tion. We believe many subareas of RL can benefit from such
efficient exploration behaviors. Some applications include
Meta RL (Finn et al., 2017; Zintgraf et al., 2019; Rakelly
etal., 2019; Liu et al., 2021), Continual RL (Khetarpal et al.,
2020; Lehnert et al., 2017), and Unsupervised RL (Laskin
etal., 2021). For example, in Meta RL an agent needs to first
explore to identify which of the previously observed tasks
it is in before the agent can start exploiting rewards in the
current task. In this context, VariBAD (Zintgraf et al., 2019)
maintains a belief over which task the agent is in given the
observed interactions. While Zintgraf et al. argues that a
Bayes-optimal policy implements an efficient exploration
strategy, we propose a method that explicitly learns an effi-
cient exploration policy, resulting in discovering rewarding
states more efficiently than VariBAD (Section 5).

Maximum State Entropy Exploration using Predecessor and Successor Representations

The core idea behind 7y-Learning is the use of the pre-
decessor and successor representations to predict the state
visitation distribution induced by a non-Markovian policy
for a single finite-length trajectory. Instead of using the
successor representation for transfer, lifelong learning, or
learning one representation that solve a set of tasks (Bar-
reto et al., 2017; Zhang et al., 2017; Barreto et al., 2018;
Borsaetal., 2018; Maetal., 2018; Siriwardhana et al., 2019;
Hansen et al., 2019; Barreto et al., 2020; Lehnert & Littman,
2020; Lehnert et al., 2020; Abdolshah et al., 2021; Touati
& Ollivier, 2021), we use the successor representation to
estimate the state visitation distribution and maximize its en-
tropy. By using the successor representation in this way, the
n-Learning does not rely on density models (Hazan et al.,
2019; Lee et al., 2019), an explicit transition model (Tar-
bouriech & Lazaric, 2019; Mutti & Restelli, 2020), or non-
parametric estimators such as k-NN (Mutti et al., 2021). In
the following sections we will discuss how 7n-Learning
learns a deterministic exploration policy and does not rely
on randomization techniques (Mutti et al., 2021; Lee et al.,
2019) or mixing multiple policies to manipulate the state
visitation distribution (Lee et al., 2019; Hazan et al., 2019).
Moreover, Mutti et al. (2022b) provide a theoretical analysis
proving that efficient (zero regret) exploration is possible
with a deterministic non-Markovian policy but computing
such a policy is NP-hard. In this context, ny-Learning is
to our knowledge the first algorithm for computing such an
efficient exploration policy.

3. Maximum state entropy exploration

We formalize the exploration task as a Controlled Markov
Process (CMP), a quadruple M = (S, A, p, 1) consisting
of a (finite) state space S, a (finite) action space A, a tran-
sition function p specifying transition probabilities with
p(s,a,s") =P(s'|s,a), and a start state distribution p spec-
ifying probability of starting a trajectory at state s with
u(s). A trajectory is a sequence 7 = (81,a1, ..., Ap—1, Sh)
of some length A that can be simulated in a CMP. A policy
7 specifies the probabilities with which an agent selects
actions when simulating a trajectory in a CMP. Typically,
this policy is conditioned on the task state and specifies the
probabilities of selecting a particular action in standard RL
algorithms like Q-learning (Christopher, 1992; Sutton &
Barto, 2018). However, as illustrated in Figure 1, the past
trajectory (shown with red arrows) determines which next
action leads to the best exploratory trajectory. Consequently,
we consider policies that are functions of trajectories rather
than just states.

The state visitation frequencies of a trajectory 7, =
(s1,a1, ..., an—1,) of length h can be formally expressed
in a probability vector by first encoding every state s; as
a one-hot bit vector e;, and then computing the marginal

across time steps for a single trajectory 7:

h
E’y,‘r = Z'Y(t)est‘ (1)
t=1

The marginal in Equation 1 uses a discount function y :
N — [0, 1] (where we denote the set of positive integers
with N), such that Z?zl ~(t) = 1. We note that this use of
a discount function is distinct from using a discount factor
in common RL algorithms such as Q-learning (Christopher,
1992) but using a discount function is necessary as we will
elaborate in the following section.

In the example in Figure 1, the optimal exploratory agent
would keep a similar visitation frequency for each state,
as illustrated in Figure 1(b) where the optimal trajectory
traverses every state once within the first 15 steps. For this
trajectory the vector £, , would encode a uniform proba-
bility vector, given (t) = + for any ¢. In fact, an optimal
exploration policy 7* maximizes the entropy of marginal of
this probability vector and solves the optimization problem

e argmaxH(IET[%T]) 2)

where the expectation is computed across trajectories that
are simulated in a CMP and follow the policy 7.! In the
remainder of the paper, we will show how optimizing this
objective leads to the uniform sweeping behavior illustrated
in Figure 1 and the agent learns to maximize the entropy
of the state visitation distribution in a single finite length
trajectory. In the following section, we describe how 71)-
Learning optimizes the objective in Equation 2.

4. m)-Learning

To learn an efficient exploration policy, we need to es-
timate the state visitation history and predict the distri-
bution over future states. Consider a trajectory 7 =
(s1,a1, ..., ST—1,Q7-1, ST, ...QKL—1, S). At an intermedi-
ary step 7', we denote the T — 1-step prefix with m.p_1 =
(s1,a1,...,s7—1) and the suffix starting at step T' with
7r. = ($1,07..., 081, S,). Using this sub-trajectory nota-
tion, the discounted state visitation distribution in Equation 1
can be written as

=

-1

£y =

t

h
Y(tes, + Y v(bles,- 3)
t=T

1

Assuming the scenario presented in Section 3, suppose the
agent has followed the trajectory 7.7 until time step 7'. At
this time step, the agent needs to decide which action ar
leads to covering the state space as uniformly as possible

'Here, we consider the Shannon entropy H(p) =
— >, pilogp;, where the summation ranges over the entries of
the probability vector p.

Maximum State Entropy Exploration using Predecessor and Successor Representations

and maximizes the entropy of the state visitation distribution.
The expected state visitation distribution for a policy 7 can
be expressed by conditioning on the trace 7.7 and a potential
action ar € A:

]ET,7T|: ~,7|T:T aT} (4)
T—1 h
=Err| > y(tes, + Y (t)es, |Tir, aT])
t=1 t=T
T-1 h
- 'Y(t)es,, + ETT+1:,7T [Z ’Y(t)est T.T, QT] 5 (6)
t=1 t=T
=n(T.7-1) =y7 (1.7,ar)

where the vector (7.p—1) is a variant of the predecessor
representation (van Hasselt et al., 2021; Bailey & Mattar,
2022) and the vector 9™ (7.1, ar) is a variant of the suc-
cessor representation (SR) (Dayan, 1993). Splitting the
expected state visitation distribution into a vector i and
9™ as outlined in Equation 6 is possible because we are
assuming a discount function ~y as defined in Section 3. At
time step 7', the two representations can be added together
to estimate the expected state visitation probability vector.
Simulating the proposed algorithm is analogous to effec-
tively drawing Monte-Carlo samples from the expectation
at different steps 7" to learn a SR and predict the expected
visitation frequencies of £ .

The predecessor representation vector 7)(7.7—1) can still be
estimated incrementally similarly to the eligibility trace in
the TD(A) algorithm (Sutton, 1988) (but with a different
weighting scheme that uses the discount function). While
the definition of the vector n(7.r) is similar to the defini-
tion of eligibility traces (Sutton & Barto, 2018, Chapter 12),
we do not use the predecessor trace for multi-step TD up-
dates to learn more efficiently. Instead, the vector 9(7.7—1)
estimates the visitation frequencies of past states—the pre-
decessor states—to decide which states to explore next.

While the predecessor representation can be maintained us-
ing an update rule because the observed states are known,
predicting future state visitation frequencies is more chal-
lenging. A potential solution is to exhaustively search
through all possible sequences of trajectories starting from
the current state. This is computationally infeasible and
requires a dynamics model of the environment. Moreover,
such a model is not always available, and learning them is
prone to errors that compound for longer horizons (Ross
et al., 2011; Janner et al., 2019). To this end, we learn a vari-
ant of the successor representation (SR), which predicts the
expected frequencies of visiting future or successor states
under a policy (Dayan, 1993). In contrast to previous meth-
ods which learn successor representation (SR) conditioned
on the current state (Dayan, 1993; Barreto et al., 2017), ni-

Learning conditions the SR on the entire history of states

h

"I’W (T:T7 aT) = ETT+1;,7T [Z 'y(t)est

t=T

T.T, GT} .

Conditioning the SR on the trajectory 7. is necessary be-
cause policy 7 is also conditioned on 7.7 and therefore the
visitation frequencies of future states depend on 7.7. More-
over, the expectation evaluates all possible trajectories after
taking action ar at time 7' and following policy « after-
ward. We discuss in Appendix C how the SR vectors are
approximated using a recurrent neural network.

We saw in Equation 6 that the predecessor representation
and successor representation can be combined to predict the
state visitation distribution for a policy 7 and a trajectory-
prefix 7.7. mp-Learning uses the estimated state visitation
distribution to compute the entropy term in the objective
defined in Equation 2. Specifically, the utility function Qexpi
approximates the entropy of the state visitation distribution
for an action a at every time step. By defining

Qexpl(Tor,01) = H (n(1r-1) + 9" (11, 7)), (8)

the action that leads to the highest state visitation entropy is
assigned the highest utility value. Notably, the proposed Q-
function differs from prior methods using the SR, as we nei-
ther factorize the reward function (Barreto et al., 2017; 2018;
Borsa et al., 2018; Touati & Ollivier, 2021) nor use the SR
for learning a state abstraction (Lehnert & Littman, 2020).
Optimizing the exploration Q-function stated in Equation 8
is challenging as it depends on the SR that itself depends
on the policy m which changes during learning. Further-
more, Guo et al. (2021) that the Shannon-entropy based ob-
jective is difficult to directly optimize using gradient-based
methods (due to the log term inside an expectation) (Lee
et al., 2019; Pong et al., 2019; Guo et al., 2021). In contrast,
we outline in the following paragraphs how the entropy ob-
jective in Equation 8 can be directly optimized using either
a Q-learning (Christopher, 1992) style method or a method
based on the Deterministic Policy Gradient (Silver et al.,
2014) framework for finite and infinite action spaces.

Finite action space framework Since the predecessor
representation is fixed for a given trajectory 7.7, optimizing
the Q-function defined in Equation 8 boils down to predict-
ing the optimal SR for a given history 7.7. Similar to prior
Successor Feature learning methods (Barreto et al., 2017;
2018; Lehnert et al., 2017), we approximate the SR with
a parameterized and differentiable function %y and use a
loss based on a one-step temporal difference error. Given an
approximation g, the SR prediction target is obtained by
the current state embedding and SR of the optimal action at
the next step:

"J(T:T+17 a{]"«l,»l) = eST + ’Y(T + 1)¢9(T:T+17 a{1“+1); (9)

Maximum State Entropy Exploration using Predecessor and Successor Representations

where 7.7, is obtained by adding action ar and the re-
ceived next state s7 to the trajectory 7.7. Analogous to
Q-Learning (Christopher, 1992), the optimal action at the
next step is specified by

ap,, = arg max Qexpl(T:7+1, @) (10

Being greedy with respect to these entropy values to esti-
mate the target leads to improving the policy 7 which in turn
finds the SR for the optimal policy. (Appendix A presents a
convergence analysis of this method in a dynamic program-
ming setting.) Then, the function g is optimized using
gradient descent on the loss function Lgg, given by

Lsr = |Ye(rr.ar) — y(rrs1, apy)l (11)

where gradients are not propagated through the target
y(T.r41, a7,). Finally, the optimal policy selects actions
greedily with respect to the Qexp function. Algorithm 2
describes the training procedure for the proposed variant for
finite action spaces.

Infinite action space framework Directly obtaining gra-
dient estimates of objective defined in Equation 2 is chal-
lenging because of the expectation term in the non-linear
logarithmic term. Previous approaches have used alternative
optimization methods (Lee et al., 2019; Pong et al., 2019)
or resorted to a simpler noise-contrastive objective func-
tion (Guo et al., 2021). In contrast with prior algorithms,
we derived an 771)-Learning variant for infinite action spaces
that optimizes an actor-critic architecture using policy gra-
dients to maximise the maximum state entropy objective.
The agent uses an actor-critic architecture where actor and
critic networks are conditioned on the history of visited
states. The actor 7, (7) is parameterized with a parameter
vector p and is a deterministic map from a trajectory to an
action. The critic predicts the utility function conditioned
on a given trajectory and action. Similar to the finite action
space variant, the predecessor representation is fixed for a
given trajectory and the network has to predict SR %y (7, a)
for a given trajectory 7 and action a. Here, the target value
of SR to update the critic is specified by the action obtained
using the policy a7, | = 7, (7.741), given by

y=es, + (T + DYo(Tirs1, a7y 4). (12)

The critic is trained with the same loss function Lgg as de-
fined in Equation 11, where the gradients are not propagated
through the target. The actor is optimized to maximize the
estimated utility function (Equation 2). Since the actor is
deterministic, policy gradients are computed using an adap-
tation of the deterministic policy gradient theorem (Silver
et al., 2014). Because the actor network has no depen-
dency on predecessor trace (which depends on the observed
states only), gradients for the actor parameters are obtained

by applying chain rule leading to the following gradient
of Equation 8 (please refer to Proposition Theorem B.1 for
more details on the derivation):

V/LJ(T(/L) =]ETNp [Z Zivlﬂru (T)V(L"/J1 (Ta a) |a:ﬂ.“(7):| y

2

(13)

where z; = —log[n(7.—1); + (7, 7,(7));] — 1 is the mul-
tiplicative factor for state ¢, and depends on the expected
probability of visiting a state. The factor z; can take val-
ues between between -1 and co, with positive values of
high magnitude for states with low visitation probability
and negative values for state with high probability of vis-
itation. Thus, the factor z; scales the policy gradients to
maximize the entropy of the state visitation distribution.
In Algorithm 3 we outline the training procedure for the
infinite action space framework.

5. Experiments

To analyze and test if n)-Learning learns an efficient explo-
ration policy, we evaluate the proposed method on a set of
discrete and continuous control tasks. In these experiments,
we are recording a set of different performance measures to
access if the resulting exploration policies do in fact max-
imize the entropy of the state visitation distribution and
if most states are explored by ny-Learning. The follow-
ing results demonstrate that by maintaining a predecessor
representation and conditioning the SR on the simulated tra-
jectory prefix, the n1)-Learning agent learns a deterministic
exploration policy that minimizes the number of interac-
tions needed to visit all states. In addition, we expand our
method to continuous control tasks and demonstrate how
mp-Learning can efficiently explore in complex domains
with infinite action space. Our method is ideal for searching
out rewards in difficult sparse reward environments. We
compare ni-Learning, which learns to explore an environ-
ment as efficiently as possible, to recent meta-RL meth-
ods (Zintgraf et al., 2019) that aim to learn how to optimally
explore an environment to infer the rewarding or goal state.

Environments: We experiment with different tasks with
both finite and infinite action spaces. The ChainMDP and
RiverSwim (Strehl & Littman, 2008) is a six-state chain
where the transitions are deterministic or stochastic, respec-
tively. In these tasks a Markovian policy cannot cover the
state space uniformly because the agent has to pace back
and forth along the chain, visiting the same state multiple
times. For the RiverSwim environment , a non-stationary
policy, a policy that is a function of the time step, cannot
optimally cover all states because non-determinism in the
transitions can place the agent into different states at random.
Furthermore, we include the 5 x 5 grid world example used
in Figure 1. We also test ny-Learning on two harder ex-

Maximum State Entropy Exploration using Predecessor and Successor Representations

ChainMDP RiverSwim

3.25

1.6 3.00

2.25

0.75 0.8
2.00

0 200 400 600 800 1000 O 200 400 600 800 1000 O

1.0 1.0 1.0

o.s\/*/\/v’\ 0.8 08
/’-"\/_,\,.__,_

0. 0.6

o
> o

0.4 0.4

State Coverage

0.2 0.2 0.2

0 200 400 600 800 10000'00 200 400 600 800 10000'00

5x5 GridWorld

200 400 600 800 1000 O

200 400 600 800 10000'00

TwoRooms FourRooms

2 1.4 2.75

S1.25 .

g 1.2

5 /‘\/\/\/‘/ 2.50 3.0

W1.00 1.0/ \/-/_,.v_/‘ 2.50 . \/_/_/-—/—

200 400 600 800 1000 O 250 500 750 1000 1250
1.0 1.0

0.8 0.8

06V ——— 0 06
[

0.4 0.4\/_\/__/—\/-

0.2 0.2

200 400 600 800 10000'00 250 500 750 1000 1250

g 100 500 e e 200 e 1000 1000 —nuu —
[/

g 400 150 800/_\/ 800

@ 60 300 600 600

g 100

§ 40 200 400 400

S 20 100 50 200 200

i

9“0 0 0 [0

0 200 400 600 800 1000 O
Episodes

200 400 600 800 1000 O
Episodes

—— MaxEnt

200 400 600 800 1000 O
Episodes

200 400 600 800 1000 "0
Episodes

250 500 750 1000 1250
Episodes

ny-Learning

Figure 2: Comparison of n-Learning and MaxEnt (Hazan et al., 2019) on three metrics: Entropy (top row) of state visitation
distribution, State Coverage (middle row) representing the fraction of state space visited, and Search Completion Time

(bottom row) denoting steps taken to cover the state space.

ploration tasks—the TwoRooms and FourRooms domains,
which are challenging because it is not possible to obtain
exact uniform visitation distribution due to the wall struc-
ture. For continuous control tasks, we evaluate on Reacher
and Pusher tasks, where the agent has a robotic-arm with
multiple joints. The task is to maximize the entropy over
the locations covered by the fingertip of the robotic-arm.
Appendix E provides more details on the environments and
the hyper-parameters are reported in Appendix F.

Prior Methods: To our knowledge, existing work focusses
on learning Markovian exploration policies (Mutti et al.,
2022a). We use MaxEnt (Hazan et al., 2019) as a baseline
agent for our experiments because this method optimizes a
similar maximum entropy objective as ni-Learning—with
the difference that MaxEnt learns a Markovian policy and
resorts to randomization to obtain a close to uniform state
visitation distribution. A comparison with SMM (Lee et al.,
2019) and MEPOL (Mutti et al., 2021) is skipped because
these methods optimize a similar maximum entropy objec-
tive with a Markovian policy and cannot express the same
exploration behaviour as ny-Learning.

Evaluation Metrics: Entropy measures a method’s ability
to have similar visitation frequency for each state in the
state space. This signifies the gap between the observed
state visitation distribution and the optimal distribution that
maximizes the entropy term. The Entropy metric is com-
puted using the objective defined in Equation 2 over a single
trajectory generated by the agent. A constant discount factor

of v(t) = + is used to obtain the state visitation distribution
during evaluation. An agent can maximize this measure
without actually exploring all states of an environment—a
desirable property for RL where rewards may be sparse
and hidden in complex to-reach states. We record the state
coverage metric which represents the fraction of states in
the environment visited by the agent at least once within
a trajectory. Lastly, we want agents to explore the state
space efficiently. For example, an optimal agent can sweep
through the gridworld presented in Figure 1 with a search
completion time of 15 steps (Figure 1(b) shows an optimal
trajectory). The search completion time metric measures
the steps taken to discover each state in the environment.
All results report the mean performance computed over 5
random seeds with 95% confidence intervals shading.

Quantitative Results: Figure 2 presents the results ob-
tained for 7i-Learning and MaxEnt (Hazan et al., 2019).
Compared to MaxEnt, which learns a Markovian policy, ni)-
Learning achieves 20-50% higher entropy. This indicates
that the MaxEnt algorithm by learning a Markovian and
stochastic policy was randomizing at certain states which
lead to sub-optimal behaviors. The performance gain was
more prominent in grid-based environments because the
MaxEnt agent was visiting some states more frequently
than others, which are harder to explore efficiently. Fur-
thermore, high entropy values suggest that the agent visits
states with similar frequency in the environment and does
not get stuck at a particular state. We attribute this behavior

Maximum State Entropy Exploration using Predecessor and Successor Representations

Y(o) (=) 140

[|

v

(s,@)

0.10
~
0.08 ”
~

0.06
0.04 ‘]‘
i
0.02 ”
E~

[\/ 0.00

(a)

(b)

Figure 3: (a) Heatmap of state visitation distribution by unrolling a trajectory using MaxEnt (left) and nv-Learning (right)
on TwoRooms and FourRooms environments. (b) Visualization of learned SR of each action (denoted with ¢(.)) at time
steps T = 7, 14 for a trajectory using ni-Learning on 5 x 5 grid. (s, a) denotes the state (black) and action taken by the
agent (direction of white arrow), 7 is the predecessor representation till time 7" (higher values have darker shade)

of n-Learning to the proposed Q-function that picks action
to visit different states and maximize the objective.

Figure 2 also shows that ny-Learning achieves optimal
state coverage across environments exemplifying that ni)-
Learning while maximizing the entropic measure also learns
to cover the state space within a single trajectory. However,
the baseline MaxEnt was not able to discover all the states
in the environment. MaxEnt was unable to visit all the
states in ChainMDP and RiverSwim environments with tra-
jectory length of 20 and 50, respectively. Moreover, the
state coverage of MaxEnt was around 50-60% on the harder
TwoRooms and FourRooms tasks, where the agent has to
navigate between different rooms and is required to remem-
ber the order of visiting different rooms. These results reveal
that Markovian policy limits an agent’s ability to maximize
the state coverage in a task. The proposed method also out-
performed the baseline on the search completion time metric
across all environments. Notably, on ChainMDP, the 5 x 5
gridworld, and TwoRooms environments, ni-Learning con-
verged within 500 episodes. However, ni-Learning did not
achieve optimal search exploration time on the FourRooms
environment as it missed a spot in a room and resorted to it
later in the episode.

To further understand the gains offered by 7niy-Learning,
we visualized the state visitation distributions on a single
trajectory (in Figure 3(a)). On the TwoRooms environment,
n-Learning had similar density on the states in both the
rooms, where the density is more around the center. This is
because the agent was sweeping across rooms alternatively.
ny-Learning showed a better-visited state distribution on
the FourRooms environment with more distributed density
across states. However, MaxEnt was not visiting all states
and also visited a few states more frequently than others,
elucidating the lower performance on entropy and state
coverage. We further visualized the learned SR to see if

mp-Learning learns a SR for the optimal exploration pol-
icy through generalized policy improvement (Barreto et al.,
2017). For this analysis, we sampled a trajectory on 5 X 5
gridworld. Figure 3(b) reports the heatmaps of the learned
SR vector for each action at different steps in the trajectory.
We observe that the SR vector for each action has lower
density on the states already observed in the trace. This
exemplifies that the learned SR captures the history of the
visited states that further aids in taking actions to maximize
the entropy of state visitation distribution. We also study if
MaxEnt can show similar gains when trained with a recur-
rent policy (Appendix H.1) and compared the agents when
evaluated across multiple trajectories (Appendix H.2).

Continuous Control tasks: The efficacy of ni-Learning
is further tested on environments with infinite action space.
Figure 4(a) reports the Entropy and State Coverage metric
on Reacher and Pusher environments, where 7-Learning
outperformed the baseline MaxEnt on both metrics. The
gains are more significant on the Pusher environment which
is a harder task because of multiple hinges in the robotic-
arm. The proposed method 770-Learning achieves close to
90% coverage in both environments, whereas the MaxEnt
had only close to 50% and 40% coverage on Reacher and
Pusher environments, respectively. In Figure 4(b), heatmaps
of the state visitation density for a single trajectory shows
that 7mi-Learning has more uniformly distributed density
compared to MaxEnt. The Pusher environment has high
density at the top-right corner of the grid denoting the time
taken by the agent to move the fingertip to other locations
from the starting state. Notably, the proposed method 71)-
Learning has lower density at the starting state and we be-
lieve that conditioning on the history of states is guiding
the agent to move the robotic-arm to other locations to max-
imize the entropy over the state space. In Appendix H.4,
a visualization of a rolled-out trajectory generated using
ny-Learning is presented showing that the agent learns to

Maximum State Entropy Exploration using Predecessor and Successor Representations

Reacher Pusher

3.5

3
3.0\,

ntropy

/'\
25 \W 2
§20
1
15 ‘

1.0
0

0
200 400 600 800 1000 O 200 400 600 800 1000
1.0 1.0

© 0.8 0.8

00.6/\ 0.6 ‘

o
Sod RV - |,
2

8
002 0.2

0'00 200 400 600 800 1000000 200 400 600 800 1000

Episodes Episodes
—— MaxEnt ny-Learning

(a)

Reacher Pusher 5x5 GridWorld

1.0
)

0.14 508

Lo6
S
s
wn

0.10 0.2

0.0 10° 104 10° 108 107

0.08 50

I 240
0.06 =

f: 30
]

[0.04 & 20

g 10
0.02 ©

0 10° 104 10° 108 107
0.00 Environment Steps
L —— VariBAD ny-Learning
(b) (©)

Figure 4: (a) Comparison of ni-Learning and MaxEnt (Mutti et al., 2022a) on Reacher and Pusher environments (b)
Heatmaps of state visitation distribution of MaxEnt (top) and ni-Learning (bottom), (c) comparison with VariBAD (Zintgraf

et al., 2019) on State Coverage and Goal Search Time metrics.

efficiently maneuver the fingertip of the robotic-arm to dif-
ferent locations in the environment.

Comparison with Meta-RL: A question central to Meta-
RL (Finn et al., 2017; Zintgraf et al., 2019; Liu et al., 2021)
is the ability to quickly explore a task and find rewarding
states in complex tasks where the rewards are sparse. In this
context, Zintgraf et al. (2019) present the VariBAD method,
which maintains a belief over different tasks to infer the
optimal policy—Ileading to efficient exploration behaviour
that enables the agent to discover rewarding states quickly.
Similar to VariBAD, the predecessor representation 7 in 7-
Learning keeps track of which states have been explored
and which states are not explored. Figure 4(c) compares
the exploration behaviour of 7i-Learning to VariBAD: In
terms of the State Coverage and Goal Search Time metric,
ny-Learning outperforms VariBAD significantly because
ny-Learning is designed to optimize the entropy of the
state visitation frequencies of a single trajectory instead of
performing Bayes-adaptive inference across a task space.
We refer the reader to Appendix G for more details.

6. Discussion

To explore efficiently, an intelligent agent needs to con-
sider past episodic experiences to decide on the next ex-
ploratory action. We demonstrate how the predecessor
representation—an encoding of past state visitations—can
be combined with the successor representation—a predic-
tion of future state visitations—to learn efficient exploration
policies that maximize the state-visitation-distribution en-
tropy. Across a set of different environments, we illus-
trate how ni-Learning consistently reasons across different
trajectories to explore near optimally—a task that is NP-
hard (Mutti et al., 2022a).

To the best of our knowledge, ni-Learning is the first al-
gorithm that combines predecessor and successor represen-
tations to estimate the state visitation distribution. Further-
more, nt-Learning learns a non-Markovian policy and can
therefore express exploration behavior not afforded by ex-
isting methods (Hazan et al., 2019; Lee et al., 2019; Mutti
et al., 2021; Guo et al., 2021). To further increase the appli-
cability of ni)-Learning, one interesting direction of future
research is to extend ni-Learning to POMDP environments
where states are either partially observable or complex such
as images. This is challenging because the agent has to
learn an embedding of state observations that capture only
the relevant components of the state space to maximize the
entropy. We believe a promising approach would be to
leverage the idea of Successor Measures (SM) (Touati &
Ollivier, 2021; Touati et al., 2022; Farebrother et al., 2023)
which have shown promising results when scaled to high-
dimensional inputs like images. Furthermore, the presented
approach can be also used for designing other algorithms
that control the state visitation distribution. An application
is goal-conditioned RL, where the agents need to minimize
the KL divergence between visitation distribution of policy
and goal-distribution (Lee et al., 2019; Pong et al., 2019).
Another application is Safe RL (Wagener et al., 2021) where
agents receive a penalty upon visiting unsafe states to avoid
observing them.

We study reinforcement learning, which aims to enable au-
tonomous agents to acquire search behaviors. This study of
developing exploration behaviors in reinforcement learning
is guided by a fundamental curiosity about the nature of
autonomous learning; it has a number of potential practical
applications and broad implications. First, autonomous ex-
ploration for pre-training in general, can enable autonomous
agents to acquire useful skills with less human intervention

Maximum State Entropy Exploration using Predecessor and Successor Representations

and effort, potentially improving the feasibility of learning-
enabled robotic systems. Second, the practical applications
that we illustrate, such as applications to continuous en-
vironments, can accelerate reinforcement learning in cer-
tain settings. Specific to our method, finite length entropy
maximization may also in the future offer a useful tool for
search and rescue, by equipping agents with an objective
that causes them to explore a space systematically to locate
lost items. However, these types of reinforcement learning
methods also have a number of uncertain broad implications:
agents that explore the environment and attempt to acquire
open-ended skills may carry out unexpected or unwanted
behaviors, and would require suitable safety mechanisms of
their own during training.

Acknowledgements

The authors would like to thank Harley Wiltzer for his valu-
able feedback and discussions. The writing of the paper
also benefited from discussions with Darshan Patil, Chen
Sun, Mandana Samiei, Vineet Jain, and Arushi Jain. AJ and
IR acknowledge the support from Canada CIFAR AI Chair
Program and from the Canada Excellence Research Chairs
(CERC) program. The authors are also grateful to Mila
(mila.quebec) and Digital Research Alliance of Canada for
computing resources.

References

Abdolshah, M., Le, H., George, T. K., Gupta, S., Rana, S.,
and Venkatesh, S. A new representation of successor
features for transfer across dissimilar environments. In
International Conference on Machine Learning, pp. 1-9.
PMLR, 2021.

Bailey, D. and Mattar, M. Predecessor features. arXiv
preprint arXiv:2206.00303, 2022.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T,
van Hasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D.,
Hessel, M., Mankowitz, D., Zidek, A., and Munos, R.
Transfer in deep reinforcement learning using successor
features and generalised policy improvement. In Infer-
national Conference on Machine Learning, pp. 501-510.
PMLR, 2018.

Barreto, A., Hou, S., Borsa, D, Silver, D., and Precup, D.
Fast reinforcement learning with generalized policy up-
dates. Proceedings of the National Academy of Sciences,
117(48):30079-30087, 2020.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,

Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Advances in Neural
Information Processing Systems, pp. 1471-1479, 2016.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. /EEE
transactions on neural networks, 5(2):157-166, 1994.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D., Munos,
R., Van Hasselt, H., Silver, D., and Schaul, T. Uni-
versal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O.
Exploration by random network distillation. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
1id=H11JJInR5Ym.

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Christopher, J. Watkins and peter dayan. Q-Learning. Ma-
chine Learning, 8(3):279-292, 1992.

Clark, A. A nice surprise? predictive processing and the ac-
tive pursuit of novelty. Phenomenology and the Cognitive
Sciences, 17(3):521-534, 2018.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural computa-
tion, 5(4):613-624, 1993.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995,
2019.

Farebrother, J., Greaves, J., Agarwal, R., Lan, C. L.,
Goroshin, R., Castro, P. S., and Bellemare, M. G. Proto-
value networks: Scaling representation learning with aux-
iliary tasks. arXiv preprint arXiv:2304.12567, 2023.

Finn, C., Abbeel, P.,, and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126—1135.
PMLR, 2017.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018.

Guo, Z. D., Azar, M. G., Saade, A., Thakoor, S., Piot,
B., Pires, B. A., Valko, M., Mesnard, T., Lattimore, T.,
and Munos, R. Geometric entropic exploration. arXiv
preprint arXiv:2101.02055, 2021.

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

Maximum State Entropy Exploration using Predecessor and Successor Representations

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861-1870. PMLR,
2018.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Hansen, S., Dabney, W., Barreto, A., Van de Wiele, T.,
Warde-Farley, D., and Mnih, V. Fast task inference with
variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A.
Provably efficient maximum entropy exploration. In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 2681-2691. PMLR, 09-15 Jun 2019.
URL https://proceedings.mlr.press/v97/
hazanl%a.html.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32, 2019.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. To-
wards continual reinforcement learning: A review and
perspectives. arXiv preprint arXiv:2012.13490, 2020.

Kidd, C. and Hayden, B. Y. The psychology and neuro-
science of curiosity. Neuron, 88(3):449—460, 2015.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Laskin, M., Yarats, D., Liu, H., Lee, K., Zhan, A., Lu,
K., Cang, C., Pinto, L., and Abbeel, P. Urlb: Unsuper-
vised reinforcement learning benchmark. arXiv preprint
arXiv:2110.15191, 2021.

Lee, L., Eysenbach, B., Parisotto, E., Xing, E., Levine,
S., and Salakhutdinov, R. Efficient exploration via state
marginal matching. arXiv preprint arXiv:1906.05274,
2019.

Lehnert, L. and Littman, M. L. Successor features combine
elements of model-free and model-based reinforcement
learning. J. Mach. Learn. Res., 21:196-1, 2020.

Lehnert, L., Tellex, S., and Littman, M. L. Advantages
and limitations of using successor features for transfer in
reinforcement learning. arXiv preprint arXiv:1708.00102,
2017.

Lehnert, L., Littman, M. L., and Frank, M. J. Reward-
predictive representations generalize across tasks in rein-
forcement learning. PLoS computational biology, 16(10):
€1008317, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Litman, J. Curiosity and the pleasures of learning: Wanting
and liking new information. Cognition & emotion, 19(6):
793-814, 2005.

Liu, E. Z., Raghunathan, A., Liang, P., and Finn, C. Decou-
pling exploration and exploitation for meta-reinforcement
learning without sacrifices. In International conference
on machine learning, pp. 6925-6935. PMLR, 2021.

Ma, C., Wen, J., and Bengio, Y. Universal successor rep-
resentations for transfer reinforcement learning. arXiv
preprint arXiv:1804.03758, 2018.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-
based exploration with the successor representation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5125-5133, 2020.

Mutti, M. and Restelli, M. An intrinsically-motivated ap-
proach for learning highly exploring and fast mixing poli-
cies. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 5232-5239, 2020.

Mutti, M., Pratissoli, L., and Restelli, M. Task-agnostic
exploration via policy gradient of a non-parametric state
entropy estimate. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 9028-9036,
2021.

Mutti, M., De Santi, R., and Restelli, M. The impor-
tance of non-markovianity in maximum state entropy
exploration. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pp. 16223-16239. PMLR, 17—
23 Jul 2022a. URL https://proceedings.mlr.
press/v162/mutti22a.html.

Mutti, M., Mancassola, M., and Restelli, M. Unsupervised
reinforcement learning in multiple environments. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 7850-7858, 2022b.

Pathak, D., Agrawal, P.,, Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 16-17,
2017.

https://proceedings.mlr.press/v97/hazan19a.html
https://proceedings.mlr.press/v97/hazan19a.html
https://proceedings.mlr.press/v162/mutti22a.html
https://proceedings.mlr.press/v162/mutti22a.html

Maximum State Entropy Exploration using Predecessor and Successor Representations

Patil, D., Rahimi-Kalahroudi, A., Nekoei, H., Gottipati,
S. K., Samsami, M. R., Gupta, K., Poddar, S., Zho-
lus, A., Hashemzadeh, M., Zhao, X., and Chandar, S.
Rlhive. https://github.com/chandar—-1lab/
RLHive, 2023.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and
Levine, S. Skew-fit: State-covering self-supervised re-
inforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D.
Efficient off-policy meta-reinforcement learning via prob-
abilistic context variables. In International conference on
machine learning, pp. 5331-5340. PMLR, 2019.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627-635. JMLR Workshop and Conference Proceedings,
2011.

Schmidhuber, J. Curious model-building control systems. In
[Proceedings] 1991 IEEE International Joint Conference
on Neural Networks, pp. 1458-1463. IEEE, 1991.

Schmidhuber, J. Simple algorithmic theory of subjective
beauty, novelty, surprise, interestingness, attention, cu-
riosity, creativity, art, science, music, jokes. Journal of
the Society of Instrument and Control Engineers, 48(1):
21-32, 2009.

Schmidhuber, J. Formal theory of creativity, fun, and in-
trinsic motivation (1990-2010). IEEE transactions on
autonomous mental development, 2(3):230-247, 2010.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In ICML, 2020.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.

In International conference on machine learning, pp. 387—
395. Pmlr, 2014.

Siriwardhana, S., Weerasakera, R., Matthies, D. J., and
Nanayakkara, S. Vusfa: Variational universal successor
features approximator, 2019.

Stadie, B. C., Levine, S., and Abbeel, P. Incentivizing ex-
ploration in reinforcement learning with deep predictive
models. arXiv preprint arXiv:1507.00814, 2015.

Strehl, A. L. and Littman, M. L. An analysis of model-
based interval estimation for markov decision processes.
Journal of Computer and System Sciences, 74(8):1309—
1331, 2008.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9-44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tarbouriech, J. and Lazaric, A. Active exploration in markov
decision processes. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pp. 974-982.
PMLR, 2019.

Touati, A. and Ollivier, Y. Learning one representation to
optimize all rewards. Advances in Neural Information
Processing Systems, 34:13-23, 2021.

Touati, A., Rapin, J.,, and Ollivier, Y. Does zero-
shot reinforcement learning exist? arXiv preprint
arXiv:2209.14935, 2022.

van Hasselt, H., Madjiheurem, S., Hessel, M., Silver, D.,
Barreto, A., and Borsa, D. Expected eligibility traces. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 9997-10005, 2021.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhn-
evets, A. S., Yeo, M., Makhzani, A., Kiittler, H., Agapiou,
J., Schrittwieser, J., et al. Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782,
2017.

Wagener, N. C., Boots, B., and Cheng, C.-A. Safe rein-
forcement learning using advantage-based intervention.
In International Conference on Machine Learning, pp.
10630-10640. PMLR, 2021.

Yu, Y., Gong, Z., Zhong, P., and Shan, J. Unsupervised
representation learning with deep convolutional neural
network for remote sensing images. In International
conference on image and graphics, pp. 97-108. Springer,
2017.

Zhang, J., Springenberg, J. T., Boedecker, J., and Bur-
gard, W. Deep reinforcement learning with successor
features for navigation across similar environments. In
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2371-2378. IEEE, 2017.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hof-
mann, K., and Whiteson, S. Varibad: A very good method

for bayes-adaptive deep rl via meta-learning. arXiv
preprint arXiv:1910.08348, 2019.

https://github.com/chandar-lab/RLHive
https://github.com/chandar-lab/RLHive

Maximum State Entropy Exploration using Predecessor and Successor Representations

A. Convergence Analysis

To gain a deeper understanding why the 71)-Learning converges to a maximum entropy policy, we consider in this section a
simplified dynamic programming variant in Algorithm 1. Note that the n-Learning estimates the SR for a finite CMP for
a finite horizon length h. Consequently, the trajectory-action conditioned SR %™ (7.7, a) and exploration policy 7 can be
stored in an exponentially large but finite look-up table. Furthermore, with every transition an additional state is appended
to the trajectory 7.7, meaning the agent cannot loop back to the same trajectory. Using these two properties, we state a
dynamic programming variant of ni-Learning in Algorithm 1 and then prove its convergence to a policy that maximizes the
entropy term H (9(7.7—1) + %™ (7.7, a)) at every time step.

Algorithm 1 ni-Learning: Dynamic Programming Framework

—

: for all 7,,a do
1)b7r(7-:h7 (l) < €g,
end for
fort =nh,...,2do
for all 74, a do
7w(74) < argmax, H (N(7.4-1) + ™ (71,)
"pﬂ (T:tfh a) — estfl + V(t)'l)bﬂ- (T:t7 71—(7—:t))
end for
end for
return 7 such that 7(7) = arg max, H(n(r.—1) +9(7,a)).

R A A R

_
=4

The convergence proof uses the following property of the predecessor trace n and SR 9™: Consider a trajectory 7 which
selects action ar at time step 7, then

T-1 h
n(T:Tfl) + "pﬂ' (T:T7 aT) = V(t)est + ETT+1;,7I' [Z V(t)eSt T.T, aT] (by Eq (6))
t=1 t=T
=n(r.7-1) =y~ (T.T,aT)
T-1 h
= Y(t)es, + Erpprr [V(T)esy + Z v(t)es, 7—:T»aT‘| (14)
t=1 t=T+1
T h
=Y (t)es, + Errpyn [> ey, |mr, aT] (15)
t=1 t=T+1
=0(rr) + Erpyyon W7 (Tirg1, 7(Ter41)) | e, a7 (16)

Using this identity, we can prove the convergence of Algorithm 1.

Proposition A.1. The policy 7 returned by Algorithm 1 is such that for every t-step trajectory 7., where t < h,

7 (7.4) € arg max Hm(r—1) + ™ (14, w(Tt)))- (17)
Proof. The proof proceeds by induction on the length of an h-step trajectory, starting with a length of h and iterating to a
length of one.

Induction hypothesis: We define a sub-sequence optimal policy 7; such that for every k-step trajectory prefix 7.5 and
t<k<h,

T € argmng(n(T:k,l) + Y™ (1, 7(71))). (18)
The exploration policy 7, is the optimal after executing the first ¢ steps of an h-step trajectory 7. The goal is to prove that
the induction hypothesis in line (18) holds for ¢t = 1.

Base case: The base case for ¢ = h holds trivially, because SR does not have a dependency on the policy 7 for an h-step
trajectory. Therefore the policy 7 can output any action for a trajectory sequence of length h:

mEXH("l(T:h—l) + "/)W(T:hv 7r(Tzh))) = H(n(T:h—l) + ’Y(h')esm)- (19)

Maximum State Entropy Exploration using Predecessor and Successor Representations

Induction Step: Suppose the induction hypothesis in line (18) holds for some ¢ > 1 and 7, is the maximizer of

Hn(rk-1) + 4™ (Tk, 7 (Tik))) (20)
where t < k < h. For time step ¢ — 1, we have that for some action a,
H(n(T:t—Q) + 1/)7“ (T:t—la (I)) = H(n(T:t—Z) + 7(t - l)est_l + E [’lpﬂt (T:tv Tt (T:t)|5t—1a CL]) (21)
= H(74-1) + EQ™ (.4, me(74))|8¢-1, a]) (22)
= HEW(1i—1) + ™ (14, (1)) |[51-1, @]). (23)

We note that the term inside the expectation is already maximized by 7, (by induction hypothesis). If we now set 741 to be
equal to 7, for every t-step or longer trajectory and set

m—1(T—1) = arg max H(n(ri—2) +¥™ (T4-1,a)), (24)

thenfort —1 <k <h
i1 € argmax Hn(rp—1) + " (T, 7(T1)))- (25)
This completes the proof. O

B. ny-Learning- Policy Gradient

Application of Q-Learning based approaches to continuous action space is not easy because finding the greedy action at
any time step can be slow to be practical with large, unconstrained function approximators and nontrivial action spaces.
In this work, we take a similar approach to deterministic policy gradient (Silver et al., 2014) to learn exploratory policies.
The objective remains the same which is to maximize the entropy of state visitation distribution. However, it is challenging
to estimate the gradient where the objective is based on the entropy term. Previous works have either used alternate
optimization (Pong et al., 2019; Lee et al., 2019) or similar objective functions (Guo et al., 2021). The challenge is because
of the expectation inside the logarithm in Equation 2. (Lee et al., 2019; Pong et al., 2019) addressed this intractability by first
estimating the visited state distribution and then using this estimate to optimize the entropy-based objective. Unfortunately,
such alternating approaches are often are prone to instability and slow convergence (Guo et al., 2021). In this work, we take
an alternative direction and learn a network to directly estimate the visited state distribution. The combination of predecessor
trace i and successor representation ¥™ can be leveraged to estimate the state visitation distribution which is obtained using:

T-1 h
n(T:Tfl) + ¢ﬁ(T:T7 aT) = Z ’y(t)est + ETT+1::7T [Z ’V(t)es,s
t=1 t=T

T.Ts GT] (by Eq. (6))

=n(T.T-1) =7 (.7,a71)

(26)

The SR vector can be learned with gradient based optimization and provides the estimate of state visitation distribution for a
given policy 7 and trajectory. The policy can utilize this estimate to learn optimal behaviors for efficient exploration in the
environment.

To learn optimal behaviors for continuous action spaces, n-Learning uses an actor-critic architecture comprising of a
deterministic actor 7, (7) that provides the action and a critic to estimate the utility function. Here, both the actor and
critic networks are non-Markovian and depend on the entire history of visited states. The goal of the critic network is to
approximate the Q-function for a given trajectory 7 and a given action a € A. For a given trajectory 7., critic computes this
by combining the predecessor representation and the SR vector. The predecessor representation is fixed for a given history,
implying that the critic only needs to approximate the SR 9y (7, a). To summarize, the critic estimates the Q-function as
shown below:

Qbexpl (T a1) = H ((T:7-1) + Yo (i1, a1)) 27)

To update the critic network, we update the SR approximator network using temporal-difference error. The target for the SR
is obtained using the action coming from the current policy a7, = 7, (7.7+1), and is given by

Y =eor + (T + Dpo(rri1, a7). (28)

Maximum State Entropy Exploration using Predecessor and Successor Representations

The SR network is updated with gradient-based learning to optimize the Mean-Squared Error between the predicted SR and
the target, and the loss function Lg g is given by

Lsr = |[Ye(r.r.ar) —y(Tri1, ap)| (by Eq. (11))

Given an estimate of the SR for the current policy, we need a mechanism to update the actor network to maximize the
objective. Deterministic policy gradient algorithm (Silver et al., 2014) provided a way of learning optimal policies with a
deterministic actor. In this work, we formulate the gradient for the actor parameters using similar mechanism with the goal
to maximize the entropy-based utility function. Proposition Theorem B.1 presents a derivation of the gradients for the actor
network parameters obtained by applying the chain rule on the Shannon-entropy based Q-function.

Proposition B.1. Assuming the CMP satisfies (Silver et al., 2014, conditions A.1) (all functions are continuous and
differentiable across all parameters) and for a p-parameterized policy function 7, the gradient with respect to |1 of the
maximum entropy objective

J(mu) = Erp[H((7.1) + (7, 70 (7))]

V() =Ern, [Z 2V 1 (T)Vatpi (1, a) |a:7ru(T)])

where z; = —log[n(T.—1); + (7, 7,(7));] — 1, H is the Shannon-Entropy function over the representation vectors, and
the expectation over trajectories is computed with respect to some trajectory visitation distribution p.

Proof. We begin by rewriting the Shannon Entropy here for a T'-step trajectory as
H(n(r.r-1) + (11, ar)) = — Z(U(T:T—1)i +Y(rir, ar)i) log(((r.r-1)i + ¥(Tir, ar)i), (29)
where ar = 7, (T.7).

To simplify the notations, we will use ; = 9(7.7—1); and ¥; = Y (7.7, ar); to represent the ith term of the predecessor and
successor representation vectors. Now taking the gradient with respect to the actor parameters y gives:

Vi (i + i) = =V, 3 (0 + i) log(m: + 9s) (30)
== 2_[Vulmi + i) log(m: + 1)) 31)
=— Z[log(m +)V + i) + (i +)V, log(n: +)] (32)
= = 2 _llog(mi + i) V,ithi + Vutpi (33)
= = _llog(mi + i) + 1]V, (34)

Now, using the chain rule on the ith feature in SR, we obtain
Vi = Vumu(rr)Vab (T, a)ila=r, (r.0) (35)

By substitution

Vi Hmi %) == [log(m +%:) + UV umu(r:r) Ve (T, a)ilar, () (36)

Therefore, the gradient of the overall objective is

vu‘](ﬂ'u) = ETNP[VMH(W(T:—I) + (T, Tu (7—))] 37

=-E;p Z[log(m + i) + 1]VM7TM(T:T>Va’/)<T:T7 a)i‘a:m('r;T) . (38)

i

This completes the proof. O

Maximum State Entropy Exploration using Predecessor and Successor Representations

Algorithm 2 ni-Learning: Finite Action Space Framework

1: Initialize SR network with parameters # and the replay buffer 5 = {}
2: Denote the predecessor feature with 7, discount function with -+, and episode length with A
3: while Training do
4: Collect ez, = {51, a1, .., S} using current policy 7 and add it to replay buffer B=B U 7.y,
5: for each training step do
6: Sample batch of 7 = (s1,..a;—1, $;) ~ B of sequence length [€ {2,..,h}
7: Compute a'= arg max,c 4 H(n(7) + o (7, a))
8: Compute targety = e;,_, + v(1)o(r,a’)
9: Update SR network by performing gradient step on ||y - % (7.1, a;_1)||3
10: end for
11: end while

In Proposition B.1, we derive the gradient of the actor parameters for the maximum state entropy exploration objective.
Taking inspiration from algorithms (Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018) that extend
Deterministic Policy Gradient (DPG) to make the optimization process stable when scaling to larger state and action space,
we base our implementation to be similar to the TD3 (Fujimoto et al., 2018) algorithm. In Appendix C, we outline the
learning procedure to learn using the policy gradient derived in Proposition B.1. Furthermore, we also discuss how the
proposed algorithm handles continuous state spaces.

C. Neural Network Architecture

n-Learning approximates the SR with a parameterized function g to learn an exploration policy and predict the state

visitation distribution. Because the SR is conditioned on a trajectory 7 of variable length, we implement the function
1hg with a Recurrent Neural Network (RNN) architecture, as outlined in Figure 5. In this architecture, the states in a
trajectory 7.7 are first fed through a encoder network (E) comprising of Multi-Layer Perceptron (MLP) layers. Subsequently,
the output of the Multi-Layer Perceptron (MLP) is fed through an Recurrent Neural Network (RNN) (denoted with F)
architecture to compress the state sequence into one real-valued feature vector. Since, RNN are known to suffer from
vanishing gradients (Bengio et al., 1994), we implement the RNN with a Gated Recurrent Unit (GRU) (Cho et al., 2014).
Leveraging recurrent networks to learn the SR has been explored previously in (Barreto et al., 2018; Borsa et al., 2018).
Finally, the recurrent state obtained from the RNN is concatenated with the representation of the current state and is passed
through the the decoder (D) with MLP layers to predict an SR vector for a given action. In the following paragraphs, we
elaborate on how the proposed architecture was used to train the agent for finite and infinite action spaces.

Finite Action Space Variant For the finite action space variant, the decoder outputs a SR vector for each action a € A.
This is similar to prior method that learn Successor Features (SF) for discrete action spaces (Lehnert et al., 2017; Barreto
et al., 2017). Algorithm 2 describes the learning procedure for training n-Learning to get exploratory policies.

Infinite Action Space Variant For infinite action space variant, the hidden state from the recurrent network is passed
through a deterministic actor network which comprises of MLP layers. The policy network (actor) is conditioned on the
hidden states because in ni-Learning the policy is a function of trajectories and not individual states. The hidden state from
the recurrent network is concatenated with the action to predict the SR vector. The estimated SR vector is used to calculate
the visitation distribution over one-hot embeddings of states and these SR predictions are then used to computed to loss
objective for optimization. For the Reacher and Pusher tasks, we manually sub-select which dimensions of the state space
are one-hot encoded. In these cases, ni-Learning learns an exploration policy that maximizes the entropy of visitation
distribution across these sub-selected dimensions only. This approach to sub-selecting state dimensions is similar to prior
work on maximum state entropy exploration (Hazan et al., 2019; Mutti et al., 2022a). In this work, the agent is trained
using similar techniques as the TD3 agent (Fujimoto et al., 2018). The agent keeps a single encoder and recurrent network
to encode the history of observed states. The encoded states are passed through two decoder networks to predict the SR
vectors, which are used to represent the two critic networks. The target for SR is computed using the vector that leads
to a smaller value of the two utility functions. There is a single actor network that specifies the action from the hidden
state. In addition, n1)-Learning-maintains a target network for all the components—encoder, recurrent, critics, and actor
networks. Furthermore, similar to the TD3 algorithm, a clipped noise is added to each dimension of the action from the

Maximum State Entropy Exploration using Predecessor and Successor Representations

Algorithm 3 n-Learning: Infinite Action Space Framework

1: Initialize SR network with parameters 1, 6, policy parameters u and the replay buffer B = {}

2: Set target parameters equal to the main parameters: 0;4rg,1 = 61, Otarg,2 = 02, and piyarg < 1

3: Denote the predecessor feature with 5, discount function with ~, and episode length with i

4: while Training do

5 Collect 7eyp = {s1,0a1, .., s, } using target policy Trar, and add it to replay buffer B=B U Teap
6: for each training step j do '

7: Sample batch of 7 = (s1,..a;—1, 8;) ~ B of sequence length [€ {2,..,h}

8: Compute target actions a’ = clip(m,,,,,(71) + clip(e, —¢,), aLow, amign), € ~ N(0,1)

9 Compute i=arg minge ¢y 21 HM(71-1) + g, (T1-1,0"))

10 Compute target y=es, + (1) o, (T:1-1,a")

11: Update the SR networks by performing gradient steps on
Hy'l/)9i(7—:l717al*1)||%’ i=1,2

12: if j % policy_update == 0 then

13: Perform update step for policy by computing gradients using

Zi 2; Vg 1/’01 (T:la a) ‘a:‘n'(T;l) vu W/L(T:l)’
where z; = —log(n(7.1); - Yo, (T, mu(740))i) + 1

14: Update target networks with
etarg,i — petarg,i + (1 - ,0)91‘, 1=1,2
/”'targ — p/f"targ + (1 - p)/‘

15: end if

16: end for

17: end while

target network. Moreover, we also use delayed actor updates where the actor network is updated less frequently than the SR
networks. Lastly, the gradients from the actor are not passed through the encoder and the recurrent networks. The procedure
for training this variant is provided in Algorithm 3.

D. Discount Function

In this work, we have used a time-dependent y-function. Using the gridworld example described in Figure 1, we now present
how the choice of y-function affects the entropy term in the objective. Suppose there are three trajectories followed by the
given trace 7.7, where we denote the i-th trajectory with 7(), Here, Figure 1(b) shows an optimal trajectory (7(1)) which
combined with the trace covers each cell of the grid with 15 steps. Figure 1(c) presents a suboptimal trajectory (7(2)) where
the agent takes the right action from the current state and visits a previously observed state in the last step. Figure 1(d)
shows another sub-optimal trajectory (7(*)) which takes the right action in the current state but visits the new state twice
because it goes to the top right corner of the grid.

. . . . T—
For the intermediate step T, we define the discount factor for the predecessor representation for the trace as y(t) = “Tt,

where « is a scalar between (0, 1], and Z = XT_jaT~* + ¥ _.a'~T is the normalization factor. The ~-function for the
successor representation is denoted using y(t) = atZ_ . The proposed ~-function for both the representations is similar to
discounting used in standard RL literature (Dayan, 1993; Sutton, 1988). Upon comparing the entropy for given trajectories
with a = 0.9, 1.0, we observe in Figure 6 that 7(1) being the optimal trajectory attains higher entropy when compared with
7(2) and 7). The other sub-optimal trajectories 7(2) and 7(%) achieve same entropy when « is set to 1.0. However, for
a = 0.9, the discount function v emphasizes which states are visited earlier in the trajectory and assigns the lowest score to
the trajectory 7(3) because this trajectory revisits states earlier in the sequence than the other options 7(2) and 7(!). This
example illustrates how the y-function can be used to trade off near-term vs. long-term exploration behavior. Depending on
the « setting, the agent can be encouraged to avoid re-visiting states either only in the short-term or the long-term, similar to
how discounting encourages maximizing short-term over long-term rewards in algorithms like Q-learning (Christopher,
1992).

Maximum State Entropy Exploration using Predecessor and Successor Representations

Yo(te,-)

So St—1 St

Figure 5: Network architecture to learn the SR. The states are firstly passed through an encoder (E), followed by feeding the
encoded states through a RNN (GRU in our case) (F). This compresses the history of visited states, and the obtained hidden
state is concatenated with the encoded state to predict the SR vector for an action using a decoder network (D).

E. Environments

For finite action space variant, we experimented with ChainMDP, RiverSwim, 5 x 5 Grid-world, TwoRooms and FourRooms
environments, which have finite action and state space, respectively. For infinite action space variant, we experiment with
Reacher and Pusher environments where we want the agent to move its fingertip to different locations in the environment.
The environments used in this work are further described below:

ChainMDP: ChainMDP is an environment where the agent can take only move in two directions—Ileft or right. In this
work, we experiment with both deterministic and stochastic version of ChainMDP environments. The stochastic ChainMDP
is similar to RiverSwim environment (Strehl & Littman, 2008) (Figure 7(a)).

GridWorld: In the Gridworld environment (shown in Figure 1), the agent can take 4 actions to move in any of the 4
directions. In this work, we experiment with the gridworld of dimensions 5 x 5. The agent always start in the top left corner
of the grid. For the gridworld, there are multiple possible optimal trajectories, and the number of such trajectories increases
explonentially with size of grid.

TwoRooms: The proposed TwoRooms environment is a gridworld with some walls. As shown in Figure 7(b), the agent
starts at the center of wall between the two rooms and has to first navigate in one of the rooms, visit the starting state and
then move to the other room. This makes the task challenging as the agents requires to track the trace because when the
agents reaches initial state after exploring one room, the information of which room was visited should aid in going to the
other room.

FourRooms: The FourRooms environment (depicted in Figure 7(c)) has four rooms connected which are connected by
open shots between the walls. This task is even more challenging as the agents while navigating need to first explore the
current room followed by efficiently going across different rooms.

Reacher: The Reacher environment (shown in Figure 8(a)) is a continuous control environment having a two-jointed
robotic arm with continuous state and action spaces. The action space denotes the torques applied to the hinges. The state

Maximum State Entropy Exploration using Predecessor and Successor Representations

mo=1.0 ma=0.9

2.7

2.6

2.5

2.4

D @ B3

Figure 6: Illustration of the values of the entropy with different value of o hyperparameter in the proposed y-function for
the trajectories introduced in Figure 1.

<0,1> <0,1> <0, 1> <0, 1> <0, 1>
<0,1> <1,0.1> <1,0.1> <1,01> <1,0.1> <1,0.7>

<1,03>

(a) (b) (©)

Figure 7: (a) RiverSwim (Strehl & Littman, 2008), (b) TwoRooms, and (c) FourRooms environments, respectively. The
yellow block denote the initial state of the agent in each episode. The brick red regions represent the walls in the environment.
When taking an action that collides with the walls, the chosen action does not change the state of the agent.

denotes the position, angles and angular velocities of the arms. The agent is tasked to maximize the entropy over the position
of the fingertip.

Pusher: The Pusher environment (shown in Figure 8(b)) is a continuous control environment having a multiple-jointed
robotic arm with continuous state and action spaces. The action space denotes the torques applied to the hinges. The state
denotes the position, angles and angular velocities of the arms/hinges. Similar to the Reacher environment, the agent is
tasked to maximize the entropy over the position of the fingertip. However, this task is harder to solve because having
multiple joints leads to a larger action and state space making it a more challenging control problem.

For training and evaluation, we have used different parameters specific to each of the environment. For training, the
parameters are the length of an episode and the number of episodes used for training. The number of environment steps can
be obtained by multiplying these 2 parameters. For evaluation of an agent, we use different episode length for the three
metrics defined to measure the performance of agents in Figure 5.

F. Hyper Parameters

In this section, we describe the hyperparameters used for training the proposed method 7ni)-Learning. Table 3 and Table 4
presents the list of hyperparameters for the discrete and continuous control environments, respectively. All models were
trained on a single NVIDIA V100 GPU with 32 GB memory. The implementation of the proposed method was done using

Maximum State Entropy Exploration using Predecessor and Successor Representations

(a) (b)

Figure 8: (a) Reacher and (b) Pusher environments for experiments with infinite action space.

Name \ChainMDP RiverSwim Gridworld TwoRooms FourRooms

Training Parameters

Length of trajectory from environment 20 50 50 100 200
Number of episodes 1000 1000 1000 1000 2500

Evaluation Parameters

Horizon h for Entropy metric 20 50 50 100 200
Horizon h for State Coverage metric 20 50 50 100 200
Horizon h to measure Episode Length 100 500 200 1000 1000

Table 1: Defines the parameters of the environments with discrete actions during training and evaluation, respectively.

Name | Reacher Pusher

Training Parameters

Length of trajectory from environment 100 200

Number of episodes 1000 1000
Evaluation Parameters

Horizon h for Entropy metric 100 200

Horizon h for State Coverage metric 100 200

Table 2: Defines the parameters of the environments with continuous actions during training and evaluation, respectively.

the RLHive (Patil et al., 2023) library.

G. Meta-RL

In this work, we demonstrated how ni-Learning can learn optimal policies that can maximize the entropy of state visitation
distribution. Such policies are useful for many subareas of RL where during evaluation the task is to adapt to new reward
functions with minimal interactions with the environment. A challenging subproblem in such tasks is to infer the reward
function. This is especially harder when the reward is sparse. Some recent works have explored adding exploratory behaviors
for initial interactions with the environment to allow agent to infer the reward function. VariBAD (Zintgraf et al., 2019)
algorithm learns optimal policies that can explore during evaluation to speed up adaptation for Meta-RL tasks. VariBAD
maintains a belief over the state space to explore in the environment and upon discovering the reward function adapts to the
To illustrate the exploratory capabilities of ni)-Learning, we compare with VariBAD as baseline in this section.

The implementation of VariBAD provided by the authors is used to conduct this experiment. The baseline was trained for
10 million environment steps on the 5 x 5 gridworld using the setup described in the paper. Two metrics are employed to
compare the agents:

Maximum State Entropy Exploration using Predecessor and Successor Representations

Name Value

Batch Size 32

Sequence Length 10/20/50/50/100

« for y-function 0.95

Encoder layers 1

Encoder output dimensions 64/64/128 /128 /256
Encoder activation LeakyReLU (Yu et al., 2017)
Hidden state of GRU 64 /647128 /128 /256
Hidden layer dimension for SR decoder 32/32/64/64/128
Decoder activation None

Optimizer Adam (Kingma & Ba, 2014)
Learning rate 3e-4

Capacity of replay buffer 200000

Table 3: Hyper parameters used for training nt)-Learning. When parameters are separated by /./././., it means the correspond-
ing hyperparameters for ChainMDP, RiverSwim, Gridworld, TwoRooms and FourRooms environments, respectively. When
tuning the agent for a task, we recommend searching over « € {0.9,0.95,0.98,0.99}, and hidden state dimension of GRU
and encoder output dimensions in {64, 128, 256, 512}. For the replay buffer, we have used the replay buffer implemented in
DreamerV?2 (Hafner et al., 2020), which for an episode samples a chunk of a given length.

Name \ Value

Batch Size 256

Sequence Length 100

a for y-function 0.95

Encoder layers 2

Encoder output dimensions 256

Encoder activation LeakyReLU (Yu et al., 2017)
Hidden state of GRU 256

Hidden layer dimension for SR decoder 256

Decoder activation None

Optimizer Adam (Kingma & Ba, 2014)
Learning rate 3e-4

Capacity of replay buffer 200000

Polyak constant 0.005

Grad Clip 5.0

Action noise 0.1

Target noise 0.2

Table 4: Hyper parameters used for training 71)-Learning on continuous state space environments. When tuning the
agent for a task, we recommend searching over a € {0.9,0.95,0.98,0.99}, and hidden state dimension of GRU and
encoder output dimensions in {64, 128, 256, 512}. For the replay buffer, we have used the replay buffer implemented in
DreamerV2 (Hafner et al., 2020), which for an episode samples a chunk of a given length.

* State Coverage computes the fraction of the state space covered by the agent.

* Goal Search Time computes the environment steps taken to locate the sparse reward goal state. This evaluates the
ability of the agent at quickly finding the reward which is essential for swift adaptation to novel tasks.

The two metrics evaluate the agents on average time taken to find the reward function and the average search completion
time for covering the grid. The VariBAD (Zintgraf et al., 2019) algorithm considered sparse reward task where a random
location is sampled after each episode as the goal state and is assigned a high reward. To compute the Goal Search Time
metric, we sample a goal state randomly and record the steps taken to locate the target state. For evaluation, the metric is

Maximum State Entropy Exploration using Predecessor and Successor Representations

averaged over 16 sampled goal state for each seed. Figure 4(c) presents the comparison of VariBAD and 71)-Learning on
both metrics across 5 seeds. The proposed method n-Learning achieves outperforms VariBAD on both metrics while only
being trained for 100K environment steps. This demonstrate the efficacy of ni-Learning at exploring in environment that
involves inferring the reward function during evaluation. We believe ni)-Learning can be combined with a adaptation policy,
where the proposed method can explore to find the reward and the adaptation policy is trained to adapt quickly to the reward
function, and we leave this for future work.

H. Ablation Studies

In this section, we present ablations studies to understand the gains of the proposed method nv-Learning.

H.1. MaxEnt with a recurrent network

RiverSwim TwoRooms FourRooms
1.75
‘ 30 ‘ 4.0
1.50 35
> 2.5
§1.25 3.0
£1.00
w 20 25
0.75
1.5 2.0
0.50
0 200 400 600 800 1000 O 200 400 600 800 1000 O 250 500 750 1000 1250
1.0 . 1.0 1.0

State Coverage
o o o
> o ®
© o o
> o ®

© © o
Yy (o)} [ec]

0.2 0.2 0.2

0.0 0.0 0.0

0 200 400 600 800 1000 "0 200 400 600 800 1000 O 250 500 750 1000 1250
. 500 1000 1000 [—~———0_
meﬁxﬁ o o
o [
@300 | 600/ || 600
£
S 200 400\/\/—\/\//\ 400
@]
<
© 100 200 200
3 :)

% 200 400 600 800 1000 % 200 400 600 800 1000 0 250 500 750 1000 1250

Episodes Episodes Episodes
—— MaxEnt — MaxEnt-GRU ny-Learning

Figure 9: Comparison of the baseline MaxEnt when trained with a recurrent network.

We conduct an experiment with a modification to the baseline MaxEnt (Hazan et al., 2019) where agent observed the history
of visited states. This is done to evaluate if the improvements are coming from having a recurrent policy. To this end,
the state-conditioned policy in MaxEnt is replaced with a recurrent policy where the GRU (Cho et al., 2014) encodes the
states observed in the trajectory. The parameters of the recurrent policy is optimized using the loss function described in
MaxEnt (Hazan et al., 2019). Figure 9 presents the results of MaxEnt with a recurrent policy (named MaxEnt-GRU) where
no gains are observed by having a recurrent policy and the proposed objective function used to train n-Learning is crucial
for learning optimal behaviors.

Maximum State Entropy Exploration using Predecessor and Successor Representations

5x5 GridWorld TwoRooms FourRooms
3.2
= 3.2 5 =
s I 3.6 ()
3.0 I 3.0 I ()
3 T 54
g .
528 2.8 ()
w 3.2
2.6 2.6
30 ¢
2.4
1 2 5 10 25 1 2 5 10 25 1 2 5 10 25
1.0 * < 1.0 & L 4 L J 1.0 E] L J L 2
() [} [3
2038 0.8 0.8
o
[x
é 0.6 0.6 = 0.6
804 0.4 04 ®
S
N0.2 0.2 0.2
0.0 1 2 5 10 25 0.0 1 2 5 10 25 0.0 1 2 5 10 25
Number of Trajectories Number of Trajectories Number of Trajectories
$ MaxEnt ny-Learning

Figure 10: Comparison of ni-Learning with baseline MaxEnt when metrics are computed using multiple trajectories.
MaxEnt-X denotes the evaluation with X trajectories.

H.2. Comparison across multiple trajectories

Contemporary methods on Maximum State Entropy Exploration (Hazan et al., 2019; Mutti et al., 2021) were evaluated by
averaging the state visitation distribution over multiple trajectories. In this work, we demonstrate that ni-Learning can
achieve optimal behaviors over a single trajectory of finite length. In this study, we also explore comparison of the baseline
MaxEnt when evaluated over multiple trajectories. For this evaluation, we sample a batch of trajectories and then average
the state visitation distribution of trajectories. The metrics are then computed using this averaged visited state distribution.
In Figure 10, we compare the Entropy and State Coverage over this averaged distribution. MaxEnt-X denotes the metric of
MaxEnt after sampling X trajectories during evaluation. The proposed method ni)-Learningwas evaluated using a single
trajectory. We do not report metrics of ny-Learningacross multiple trajectories as we observed that the gains do not vanish
with an increasing number of trajectories. The metrics for the MaxEnt algorithm improve with the increasing number of
trajectories used for evaluation. With 10 or more trajectories, the baseline achieves optimal State Coverage. However,
n-Learning achieves full coverage with a single trajectory demonstrating the efficiency of the exploration policies learned
using the proposed method. The baseline MaxEnt show similar behaviors by improving on the Entropy metric with more
trajectories used for evaluation, whereas ni-Learning still outperforms the baseline when evaluated using a single trajectory.
This demonstrates that the proposed method explores the state-space with near-equal state visitations to maximize the
entropy while having optimal state coverage in a single trajectory.

H.3. Effect of the o parameter

We also study the effect of the hyper-parameter « of the y-function (discussed in Appendix D). We note that « can be
selected using the same method used to select the discount factor in the standard RL. We conducted experiments with
={0.8,0.9,0.95,0.99} across three environments- RiverSwim, TwoRooms, and FourRooms (Figure 11). On the RiverSwim
environment, all methods converged with similar values across all metrics. On the TwoRooms environments, agents with
a={0.8, 0.99} were not performing well across the three metrics. Moreover, the convergence was slower for agent with
o = 0.9 when compared with agent trained with o = 0.95. Our intuition behind this is that when « is smaller, the memory
of the visited states in predecessor representation (7)) reduces leading to a re-visitation of observed states. Whereas when

Maximum State Entropy Exploration using Predecessor and Successor Representations

RiverSwim TwoRooms FourRooms
3 . 3
2 2
1 1

0.5

0 200 400 600 800 1000 O 200 400 600 800 1000 0 200 400 600 800 1000

1.0 1.0 | 1.0
g o. 0.8 0.8
o
2o 0.6 0.6
o)
S
v 0.4 0.4 0.4
-
S
“ 0.2 0.2 0.2

0.0 0.0 0.0

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
GE)IOOO 1000 2500
= 800 800 2000
(o]
@ 600 600 1500
£
g 400 400 1000 v
e
S 200 200 500
3 ,

% 200 400 600 800 1000 %0 200 400 600 800 1000 ’0 200 400 600 800 1000

Episodes Episodes Episodes
— a=0.8 — a=0.9 — a=0.95 — a=0.99

Figure 11: Evaluation with different value of o hyperparameter in the proposed ~y-function.

« is large, then the agent does similarly discount a future state at any point in the trajectory. Lastly, on the FourRooms
environment, the results are similar to the TwoRooms environment but with more pronounced differences in metrics for
different values of a.. This is because FourRooms environment is harder to solve than TwoRooms environments. Notably, the
Search Completion Time metric diverges for all values of o # 0.95, which shows that o = 0.95 leads to optimal behavior
for our task. For new tasks, we believe « can be tuned similarly to the discount factor used in standard RL.

H.4. Visualization of trajectories

The maneuvers taken by the learned 71)-Learning agent were also visualised. For the Reacher environment, the agent was
first covering the faraway states followed by covering the nearby states to the central position. Similar behaviors were
observed for the Pusher environment, where the agent was moving the fingertip to different locations on the table top and
tried visiting all reachable locations on the table.

Maximum State Entropy Exploration using Predecessor and Successor Representations

T=1 T=20 T=25 T=30 T=35 T=40

Figure 12: Rolled out trajectories using the learned 7nt-Learning agent on the Reacher (top row) and Pusher (bottom row)
environments at different time steps, respectively.

