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Abstract

We propose a new approach to vision-based dexterous grasp translation, which
aims to transfer grasp intent across robotic hands with differing morphologies.
Given a visual observation of a source hand grasping an object, our goal is to
synthesize a functionally equivalent grasp for a target hand without requiring paired
demonstrations or hand-specific simulations. We frame this problem as a stochastic
transport between grasp distributions using the Schrodinger Bridge formalism. Our
method learns to map between source and target latent grasp spaces via score and
flow matching, conditioned on visual observations. To guide this translation, we
introduce physics-informed cost functions that encode alignment in base pose,
contact maps, wrench space, and manipulability. Experiments across diverse hand-
object pairs demonstrate that our approach generates stable, physically grounded
grasps with strong generalization. This work enables semantic grasp transfer for
heterogeneous manipulators and bridges vision-based grasping with probabilistic
generative modeling. Additional details at grasp2grasp.github.io.

1 Introduction

Robotic grasping remains a central challenge in autonomous manipulation, especially in the context
of dexterous, multi-fingered hands. Unlike parallel-jaw grippers or simple suction devices, dexterous
hands offer significantly more control and flexibility but also bring high-dimensional configuration
spaces [3\ 18] and non-trivial contact dynamics [65]]. These properties pose difficulties [53]] in data
collection, modeling, and learning robust grasp strategies. While recent data-driven works [9} 46|
52,191, 1100, [101] have shown success in generating feasible grasps from large-scale datasets [32|
46! 187, 194], a key limitation persists: models typically operate in a hand-specific setting. This lack
of generalization requires retraining or significant fine-tuning to adapt to new robotic hands [41],
which poses a practical bottleneck in the rapidly evolving landscape of robotic hardware and limits
the applicability of learned policies in real-world systems [97].

Therefore, it is desirable to reuse the grasp knowledge acquired from one hand to infer meaningful
grasp strategies for another. However, the morphological differences between hands mean that naive
transfer, such as copying joint angles or end-effector poses, might lead to physically invalid or
unstable grasps [2} 58} 168]]. A more fundamental challenge is the acquisition of paired demonstration
data, where a grasp for a source hand is mapped to a functionally equivalent grasp for a target.
Manually creating or algorithmically discovering such pairings at scale is extremely difficult. This
motivates the need for a framework that can learn to translate the intent of a grasp from a source hand
to a target hand using only unpaired, hand-specific grasp datasets, leveraging the underlying object
geometry and physics to bridge the morphological gap.
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This paper aims to address the problem of vision-based dexterous grasp translation. As shown
in Fig. [T} given a visual observation of a source robotic hand grasping an object, we aim to gen-
erate a plausible grasp for a target hand with a different morphology. This setting arises natu-
rally in scenarios such as human-to-robot imitation [96]], hardware substitution in manipu-
lation pipelines [30], and learning from heterogeneous demonstrations [38]. Although reminis-
cent of teleoperation [24, or behavior cloning [16, [97], our formulation diverges in a critical
way: the goal is not to replicate the precise joint configuration or trajectory of the source hand.
Instead, we seek to preserve the functional intent of the
grasp, expressed through physical quantities such as
contact locations, grasp wrenches, or stability measures,
while accounting for the morphological differences be-
tween the source and target manipulators.

To this end, we cast the grasp translation task as a
probabilistic transport problem between the distribu-
tion of grasps executed by the source hand and those
executable by the target hand. We leverage the formal-
ism of the Schrodinger Bridge (SB) [43, [77], which
models the most likely stochastic process interpolating
between two distributions under a reference dynam-
ics. This perspective allows us to frame grasp trans-
lation as learning a distributional flow from observed
source grasps to compatible target grasps, guided by a |
meaningful notion of grasp similarity and grounded in |- [

physics. Figure 1: (top) Comparison of morphology and
scale across hands. (bottom) Object-agnostic
methods often miss fine-grained contacts, lead-
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Our approach builds on a growing body of work [13]
21, @’ Iﬂ] that frames gen,eratwe modeling ing to invalid grasps. Our method produces
as .a.S(.:hrodlnger Bridge proble.m, which eqabl.es PrOb' contact-consistent, stable grasps across diverse
abilistic transport between arbitrary data distributions  hand morphologies.

under stochastic dynamics. In particular, recent devel-

opments have demonstrated how score-based [211, 03]

and flow-based [22] [84] [83] objectives can be leveraged to learn such bridges without the need for
simulating full stochastic processes, offering scalable and flexible tools for distribution alignment.
We adapt and extend these ideas to the domain of dexterous grasp translation, where the source and
target distributions represent physically meaningful grasps from different robotic hands. To this end,
we develop a latent-space learning pipeline for distribution-level grasp translation conditioned on
vision-based observations of the source hand. Within this framework, we design custom ground cost
functions that capture task-relevant physical properties, such as contact patterns and grasp stability,
rather than relying on generic Euclidean or geodesic distances. This allows us to generate grasps that
are not only kinematically feasible for the target hand but also functionally aligned with the intent of
the source grasp.

We summarize our contributions as follows:
» We formulate vision-based dexterous grasp translation as a Schrodinger Bridge problem between
source and target grasp distributions, capturing the stochastic nature of plausible grasps.

* We introduce novel ground cost functions tailored to the grasping domain, enabling semantic and
physically-informed translation across different hand morphologies.

* We develop a latent-space learning pipeline based on score and flow matching, enabling simulation-
free, distribution-level training on unpaired visual grasp observations.

* We evaluate our method across diverse hand-object combinations, demonstrating that our ap-
proach generates functionally equivalent and physically robust grasps with strong generalization
capabilities.

2 Related Work

Dexterous Grasp Generation has been a long-standing topic in robotics, aimed at enabling robotic
hands with multiple degrees of freedom (DoFs) to securely and effectively manipulate diverse objects.
Early approaches [6] 8] [67]) relied on analytical models of hand kinematics and contact



mechanics [[7,60] to compute force-closure [49,162} 64,167, 87] or form-closure [59,86] grasps, which
are often constrained by assumptions of perfect information and simple object geometries [[7, 60]. The
advent of vision-based data-driven techniques has led to significant advances [66}99], particularly
through direct regression [48 [76] or generative modeling techniques [33| 34, 42| such as VAEs [41,,
46, 161]], GANs 19,154,155, 161]], and diffusion models 136} 52,88l 195]]. These generative approaches
enable the synthesis of diverse grasp configurations conditioned on visual inputs such as RGB-D
images [39} 140] or segmented point clouds [36} 152, 95], allowing for more flexible and scalable grasp
generation. For example, GenDexGrasp [46]] introduces a hand-agnostic grasping algorithm trained on
the MultiDex dataset [46], which leverages contact maps as intermediate representations to efficiently
generate diverse and plausible grasping poses transferable among various multi-fingered robotic
hands. Similarly, UGG [52] presents a unified diffusion-based dexterous grasp generation model that
operates within object point cloud and hand parameter spaces. While these generative approaches
have advanced the field, they often remain tailored to specific robotic hands and lack mechanisms
for transferring grasp knowledge across different hand morphologies. Our work addresses these
limitations by developing a grasp translation framework that operates at the distributional level,
enabling the reuse of grasp knowledge across different robotic platforms through a physically
meaningful transport mechanism.

Grasp Transfer is closely related to teleoperation [72] and imitation learning [4]], where the objective
is to map motions or actions from a source agent (e.g., a human or a robot) to a target robot. Teleop-
eration methods [24} 37, [70, 78l 180, 104] often aim for one-to-one replication of joint trajectories or
end-effector poses, which is generally effective when the source and target share similar kinematics.
However, such approaches struggle when transferring grasps between manipulators with significantly
different morphologies, as direct replication can lead to infeasible or suboptimal grasps [2} 58] |68]].
To address this morphological gap, retargeting methods have been explored. For instance, works
like [14} 135} [72]] explore positional optimization for key points, while CrossDex [98]] uses a neural
network trained with data generated from [72]] for retargeting. These approaches, however, often
rely on pre-defined link-to-link correspondences or human-annotated templates, which can limit
their generalizability. More recent work, such as RobotFingerPrint [41]], addresses this challenge
by mapping grippers into a shared Unified Gripper Coordinate Space (UGCS) based on spherical
coordinates to facilitate grasp transfer. While promising, this approach requires simulation-based
preprocessing and detailed gripper models, which impose a strong prior that limits flexibility. More-
over, the UGCS approach focuses on point correspondences and is thus object-agnostic, rather than
explicitly preserving functional grasp intent. In contrast, our formulation aims to translate grasps
in a distributional sense grounded in physical properties. It requires no hand-specific simulation
preprocessing, which enables broader applicability and more semantically meaningful grasp transfer.

Optimal Transport (OT) and Schrodinger Bridges (SB) have recently emerged as powerful
frameworks in the machine learning community for modeling distributional transformations. OT [69}
75,1811 192] provides a principled way to compute mappings between probability distributions that
minimize a cost function, typically grounded in geometric distances. Aligning distributions is a central
challenge in tasks like domain adaptation [17,|102], and classical OT has been successfully applied
for this purpose [20, 27], as well as for other applications like shape matching [25] 44, |83]]. However,
it often requires solving computationally intensive optimization problems [63] [81]]. Schrodinger
Bridges [45, [77] extend OT by introducing a stochastic reference process, which enables more
flexible and entropically regularized transport. This has proven particularly useful in generative
modeling [I15, 21} 147, [79} 84, 90, 93], where SBs offer a probabilistic interpolation between data
distributions. Recent advances in simulation-free training methods [50! |84, [85]] have made these
techniques more scalable by bypassing the need to simulate stochastic processes during training. In
robotics, these frameworks have been explored for motion planning [43]], distribution alignment [82],
and dynamical system modeling [10]. However, their application to grasp synthesis and translation
remains underexplored. Our work leverages SBs not just for smooth transport between distributions,
but for preserving task-specific physical properties of grasps across different hand morphologies,
pushing the boundaries of OT/SB utility in robotic manipulation.

3 Preliminaries

3.1 Schrodinger Bridge Formulation

The Schrodinger Bridge (SB) problem [45, [77] provides a principled framework for defining the
most likely stochastic evolution between two probability distributions, a source ¢o () and a target
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Figure 2: Nlustration of the Schriodinger Bridge Models. The Schrodinger Bridge process transports samples
from a source distribution (go) to a target (q1). At an intermediate point x+ on a Brownian bridge trajectory
between coupled samples (zo, 21), our model learns the conditional flow drift u§ that drives transport and the
conditional score V log p; that corrects the path.

¢1(x), under a reference process. The optimal process can be found by weighting paths according to
an entropically regularized optimal transport (OT) plan, 7%. This plan seeks a coupling between the
distributions that minimizes a ground cost d(, -) plus a regularization term:

;= argmin /d(.To,SCl)QdTF(l’o,ZL’l) + eKL(7||90 ® q1), (1)
m€U(q0,91)

where U(qo, ¢1) is the set of all couplings between ¢ and ¢;. This connection allows the complex
dynamic optimization to be grounded in a more tractable static transport plan. We refer readers to
Appendix [A] for a detailed formulation.

3.2 Score-based and Flow-Matching Methods
We model the stochastic dynamics of the SB with an [t6 SDE of the form:
dzy = ug(@e)dt + g(t)dw, 2

where u(z) is a drift vector field and w; is standard Brownian motion. This process induces time
marginals p; () that can also be described by an equivalent deterministic probability flow ODE:

2
mﬁ(wm—“ﬁvamQﬁ, 3)

ug (z)

Following the [SF]>M framework [84], we learn the stochastic dynamics by training neural networks
vg(t, x) and sg(t, z) to approximate the ODE drift () and the score term (V log p;(z)), respectively.
The training targets are derived from conditional Brownian bridge paths between pairs of samples
(0, 1) drawn from the entropic OT plan 7} (Eq. . A visualization of these conditional targets is
provided in Fig.

The resulting conditional loss function combines flow and score matching terms:

Loepu@ = | B [lea(t.2) —uieloo,z) | + X0 ot 2) ~ Vlog pu(alao, )]
TPt (ﬂm)o,wl)
(zo,x1)~7]

“)
where uf (-) and V log p;(-) are the conditional ODE drift and score targets, and A(¢) is a weighting
schedule. The full derivation of the training targets and weighting schedule is provided in Appendix [A]

3.3 Problem Definition

We formalize the vision-based dexterous grasp translation problem as a stochastic transport task
between grasp distributions associated with different robotic hands. Let Gyource C R™ and Gearget C
R™ denote the source and target hand configuration spaces with n and m degrees of freedom,
including the pose of the hand base in SFE(3), and let O represent the space of grasp observations.
Given a segmented visual observation (0gpj, 0nand) € O depicting the source hand with configuration
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Figure 3: Architecture overview. Blue modules correspond to stage 1: the source hand observation is encoded
via a VAE. Orange modules correspond to stage 2: the latent is translated using a U-ViT Schrédinger Bridge
model conditioned on object shape and contact anchors. The translated latent is decoded to produce the target
hand grasp.
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Jsource € Tsource grasping an object, our goal is to generate a corresponding grasp configuration
Grarget € Grarget fOr the target hand such that certain physical grasp properties are preserved.

We assume that grasps from the source hand follow a distributiorﬂ 40 (gsource|0obj), While feasible
grasps for the target hand follow ¢; (gtarget \oobj ), both conditioned on the same object observation.
These distributions capture the variability and physical plausibility of grasps within each hand’s
morphology. The problem is to learn a mapping between ¢y and ¢; that respects both the structure of
the source grasp and the constraints of the target hand.

To achieve this, we define a stochastic process { gﬁarget}te[o’l] interpolating between ¢y and ¢,
governed by a Schrodinger Bridge with a suitable reference dynamics. The transport should min-
imize the deviation from a reference process (e.g., Brownian motion) while aligning the marginal
distributions at ¢ = 0 and ¢ = 1. Crucially, a common choice [84} 83] in related works is to define the
transport cost d(-, -) in terms of Euclidean or geodesic distances, which primarily capture geometric
dissimilarities. However, such measures are insufficient in our context, as they do not reflect the
functional equivalence of grasps. Therefore, we also require a physically grounded notion of cost
that considers the grasp’s effect on the object, motivating the design of more expressive transport
mechanisms aligned with the task’s semantics.

The translation task thus reduces to learning a generative model for g1 (gsarges|0ob;j) that aligns
with go(Ggsource|0obj) under the SB formulation, leveraging both vision-based cues and physical
constraints.

4 Methodology

4.1 Latent Score and Flow Matching

We now apply the general Schrodinger Bridge framework from Sec. 3] to our specific problem of
grasp translation. The abstract distributions gg and g; become the latent distributions of source and
target grasps, respectively. The transport process between them is learned by optimizing the [SF]*M
objective from Eq.[din a latent space. We approach grasp translation as stochastic transport in a
learned latent space, where the high-dimensional grasp configurations for source and target hands are
first embedded into a shared latent representation. This is achieved through a two-stage pipeline, as
illustrated in Fig.[3] In the first stage, we train a variational autoencoder (VAE) [42] that encodes
segmented visual observations of the source hand grasping an object into a latent variable z € Z.
The VAE consists of an encoder mapping O — Z and a decoder mapping Z — G. The decoded
grasp configuration § = Dec(z) is passed through a differentiable kinematic layer FK : G — R3V,
yielding the 3D mesh vertices of the hand © = FK(g). The VAE is optimized with a combined loss
with a small KL term:

Lyag =Eonolll§ = gl* + @l = FK(9)|*] + BKL (gene (2]0) IN'(0, 1)) , o)

where g denotes the ground truth grasp configuration and «, 8 are weighting coefficients. This
training encourages the latent space Z to encode semantically meaningful and physically grounded
grasp features that generalize across hands.

1Helre, Gsource 18 implicitly defined by onand.



Algorithm 1 VAE Training Algorithm 2 Latent SB Algorithm 3 Inference

Require: adataset of (0, g), ini- Require: Trained Enc, source and areet Require: Trained Enc, Dec, vy,
tial network Enc, Dec, FK dataset, OTPlan, initial vg,s¢ Sg, test observation oy

1: while Training do .
layer . 2: Sample o5, o4 from dataset L: 20 EHC(OS) .
1: for all (0, g) indatasetdo  3: 2. « Enc(o.) 2: z1 ~ p1(z|os) using vy, sy
2:  z~Enc(o) 41 2z Bnc(or) 3: g + Dec(z1)
5: 72 < OTPlan(zs, z¢)
3 g + Dec(z) : c oo 4: return g
9 6: (z0,21) ~ m] . gt
4 0+ FK(§) 70 t~UO,1)
. . t
5: Update Lyag with Eq.[5] 8 2" ~pi(z | 20, 21)
6: Update Enc. D 9: Update £ with Eq. Algorithm 1: Training and inference pro-
. p ¢, bec 10: Update vg, sg cedures. Left: VAE training. Center:
7: end for 11: end while Simulation-free Schrodinger Bridge training
8: return EHC, Dec 12: return vg,sg in latent space. Right: Inference by latent evo-

lution.

In the second stage, we model a Schrodinger Bridge between the latent source and target distributions,
q0(Zsource|0obj) and q1 (Ztarget|0obj), With a simulation-free framework. The stochastic path z* € Z,
t € [0, 1] is governed by the SDE in Eq. with marginals p;(z) and corresponding deterministic flow
ODE as in Eq.[3]

As introduced in Sec. we train neural networks vy (¢, z) and sg(t, z) to approximate the condi-
tional flow u (2|29, 21) and score V log p;(z|zo, 21), respectively. The training is performed using
conditional Brownian bridge samples 2* ~ p;(z|z0, 21) where (20, 21) ~ 7, which is the entropic
OT plan defined in Eq.[T|between gy and ¢;. The training objective is then defined as Eq.

During inference, given a visual observation of a grasp with the source hand (0op;, Ohand )> We sample
a latent trajectory starting from a source encoding zp = Enc(0nhand) ~ qo(Zsource|00b;) and evolve it
forward using the learned SDE dynamics to obtain a translated grasp latent code 21 ~ ¢1(Ztarget|Oobj)-
This code is decoded to produce the target hand configuration gsarget = Dec(z1 ), which is then used
to actuate the target hand. The training and inference processes are detailed in Alg. 1, 2, and 3.

A central challenge in learning this SB is the absence of paired samples between source and target
hand configurations. Without a principled coupling, arbitrary samples from gy and ¢; may lead to
latent translations that are uninformative or misaligned. This motivates the next section, where we
introduce physically grounded ground costs for entropic OT to induce meaningful correspondences
between source and target grasps.

4.2 Grasp-specific OT Cost Design

To guide the Schrodinger Bridge, we must first compute an entropic OT plan 7} (Eq.[I)), which is
defined by a ground cost d(-, -). We design several physics-informed costs for this purpose. For a
given cost, we compute the OT plan between minibatches of source and target latent samples. We
then draw pairs (zg, z1) ~ 7 and use these pairs to construct the conditional training targets for the
SB model as described in Sec.[3.2]and used in the loss function of Eq.[d] This allows us to enable
meaningful grasp translation between different hand morphologies by guiding the process with a
ground cost that reflects task-relevant physical properties rather than naive geometric alignment.
Conventional entropic OT approaches [84} [85]] typically define the ground cost d(-, ) using Euclidean
or geodesic distances in either configuration or latent space. However, such metrics fail to capture the
functional equivalence of grasps, particularly when source and target hands differ significantly in
kinematics and contact modalities. We propose a set of physics-informed cost functions that better
encode grasp quality and intent.

Base Pose Cost. We define a cost dpose 0n the global wrist pose in SE(3) between the source and
target hands. The pose is represented as a concatenation of the 3D base position and a 6D continuous
representation for the rotation [103] to ensure smoothness. The 6D vector is first converted to a 3 x 3
rotation matrix R € SO(3). The cost then combines the squared L2 norm for translation and the
squared Frobenius norm for rotation:

dpose == ||hsource - htarget H; + ||Rsource - Rtarget ||i* ) (6)

where h € R3 is the translation vector and R € SO(3) is the rotation matrix of the base pose,
extracted from gsource and Grarget, respectively. This cost encourages coarse alignment of the grasps
in workspace coordinates.



Contact Map Similarity. Each grasp is associated with a contact map indicating the location of
contacts on the object surface. We represent these contact maps as 3D point clouds and compute the
bidirectional Chamfer distance between the source and target maps Csource, Ctarget:

dcontact = Chamfer(csourcev Ctarget) = § min H’T - yH2+ E min Hy - {EH2 .
YEClarget z€Csource
@)

E€Csource yectarget
This encourages preservation of local interaction geometry across morphologically distinct hands.

Grasp Wrench Space Overlap. The grasp wrench space (GWS) [29] characterizes the set of
wrenches (forces and torques) that can be exerted on an object by a grasp. For each grasp, we
compute a set of wrench vectors from contact locations and normals, then take the convex hull to
approximate the GWS in R® to form the grasp wrench hull (GWH). We define the cost based on the
intersection-over-union (IoU) of GWH volumes between source and target hulls:

d —1_ VOl (Huu(GWSsource) N HuH(GWStarget))
wrench = Vol (HUH(GWSsource) U HuH(GWStarget)) .

This term promotes similarity in the mechanical capabilities of the two grasps.

®)

Jacobian-based Manipulability. To capture the grasp’s potential for object actuation, we execute
the grasp in a differentiable simulator [56] and compute the Jacobian .J € R¢*("=6) of the object’s
translational and rotational motion with respect to the hand’s joint angles, excluding the translation
and rotation of the hand base. Taking a max over the joint dimension yields a 6D vector summarizing
the maximal motion in each direction m = max; |J;| € R®. The cost is then defined as the squared
L2 distance between these maximal effect vectors:

2
djac = ||msource - mtarget” . (9)
This metric encourages the translated grasp to retain similar object-level controllability.

Minibatch Approximation. For each of the four cost functions above, we compute a separate
entropic OT plan 7} using Sinkhorn’s algorithm [81]. Following Tong et al. [84], we adopt a
simulation-free approach to train the SB dynamics using these plans as static couplings. Since exact
OT scales quadratically with sample size, we employ minibatch entropic OT [26, [28]] to efficiently
estimate the plans during training. Specifically, for each minibatch of source-target samples, we
compute a local OT plan using the corresponding cost matrix and regularization parameter €. These
minibatch couplings serve as conditioning for generating Brownian bridge paths and estimating
regression targets for score and flow matching. This strategy preserves the SB formulation’s structure
while enabling scalable learning in high-dimensional latent spaces.

4.3 Implementation Details

Our VAE is implemented using a PVCNN-based backbone [51]]. For object shape representation, we
encode the object point cloud using a LION VAE [89] pretrained on ShapeNet [13]], which yields
one global shape token and 512 local tokens. The hand observation latent is encoded into a single
token. We further incorporate five contact anchor tokens, following the strategy introduced in [52], to
guide translation via physical grounding. The latent Schrodinger Bridge is modeled using a U-ViT
model [5]], which serves as the backbone for sy and vy.

For the Grasp Wrench Space Overlap cost, we reduce the 6D convex hull to its first three spatial
dimensions, approximating the set of achievable center-of-mass forces. Monte Carlo estimation is
used to evaluate the IoU of these 3D hulls efficiently on GPUs. For the Jacobian-based maximal effect
descriptor, we leverage the Warp differentiable simulator [S6] to simulate the grasp and compute the
Jacobian of object pose with respect to joint angles. At inference time, latent samples are evolved
using Euler-Maruyama integration of the learned SDE with discretized steps. No test-time finetuning
is performed. Additional architectural and hyperparameter details are provided in the supplementary
materials.

S Experiments

5.1 Experimental Setup

Dataset. We evaluate our method on the MultiGripperGrasp dataset [12]], a large-scale benchmark
containing 30.4 million grasps across 11 robotic manipulators and 345 objects. For our experiments,



Table 1: Comparison of grasp translation methods on success rate, diversity, and 6D GWH IoU. Tasks
include Human— Allegro, Human— Shadow, Shadow— Allegro, and the mean across them.

Method Success Rate (%)7 Diversity (rad)? 6D GWH IoU (%)t
H—A H—-S S—A | Mean | HHA H—S S—A | Mean | HHA H—S S—A | Mean
RFP [41] 66.80 33.89 70.31 | 57.00 | 0.225 0.186 0.199 | 0.203 | 7.51 6.62 8.99 7.77
Dex-Retargeting [72] | 56.93 16.21 56.44 | 43.19 | 0.221 0.186 0.196 | 0.201 | 5.67 441 6.97 5.68
CrossDex [98] 36,51 897 35.12 | 26.87 | 0.195 0.201 0.223 | 0.206 | 5.69 424 586 | 5.26
Diffusion 72.57 3874 71.19 | 60.83 | 0.301 0.206 0.307 | 0.271 | 9.54 9.12 10.07 | 9.58
Ourspge 74.68 42.16 76.11 | 64.32 | 0.269 0.194 0.288 | 0.250 | 9.83 11.04 11.16 | 10.68
Ours onsact 74778 37.10 7637 | 62.75 | 0.294 0.211 0.311 | 0.272 | 15.89 15.18 12.54 | 14.54
Oursgwy 7773 4259 78.74 | 66.34 | 0.293 0.197 0.309 | 0.266 | 15.09 14.14 14.67 | 14.63
OurSjucobian 77.23 4515 79.98 | 67.45 | 0.278 0.205 0.292 | 0.258 | 11.16 9.77 11.73 | 10.88

we select 138 objects for training and 34 unseen objects for testing. Our primary evaluation scenarios
focus on translating grasps between an articulated human hand (5 fingers, 20 DoFs), the Allegro hand
(4 fingers, 16 DoFs), and the Shadow hand (5 fingers, 22 DoFs).

Metrics. We assess performance using several quantitative metrics. First, we report the grasp success
rate using IsaacGym [S7]], following the GenDexGrasp [46] evaluation protocol. A grasp is considered
successful if it maintains a stable hold on the object under six perturbation trials, where external
forces are applied along +x, £y, and +2 axes. We apply each force as a uniform acceleration
of 0.5m/s? for 60 simulation steps and measure whether the object translates more than 2 cm. A
grasp passes if it withstands all six trials. Simulation parameters include a friction coefficient of
10 and an object density of 10,000. We use IsaacGym’s built-in positional controller to achieve the
desired joint configurations. In addition to the success rate, we report the diversity of the generated
grasps, computed as the average standard deviation across all revolute joints, as well as the functional
similarity between source and translated grasps. The latter is measured using the full 6D IoU of
GWH as defined in Eq.[§]

Baselines. We evaluate all four variants of our model, each trained using a distinct physics-based OT
cost introduced in Sec. As baselines, we compare against several methods. We include three
recent grasp transfer approaches: RobotFingerPrint [41], which uses a unified gripper coordinate
space; Dex-Retargeting [[72], an optimization-based method that retargets key points on finger links;
and the neural retargeting module from CrossDex [98]]. Notably, both Dex-Retargeting and CrossDex
require pre-defined, manually annotated link-to-link correspondences, which limit their generality for
arbitrary hand morphologies. Finally, we compare against a generative baseline: a diffusion-based
model trained with samples from Contact Map Similarity OT and conditioned on the source contact
map.

5.2 Quality of Translated Grasps

We evaluate the overall quality of the translated grasps using two key metrics: success rate under
physical perturbations and configuration diversity across generated samples. Table [I] (left and
middle blocks) reports these metrics across three grasp translation tasks: Human— Allegro (H—A),
Human— Shadow (H—S), and Shadow— Allegro (S—A), as well as their mean.

Our method significantly outperforms all baselines in terms of grasp success rate. Our approach using
the Jacobian-based OT cost and GWH-based variants achieves the highest mean success rates (67.45%
and 66.34%, respectively), which suggests that both wrench- and control-aligned transport costs are
particularly effective for grasp transfer. The IK-style optimization baselines, Dex-Retargeting [[72]
and CrossDex Retargeting Module [98]], perform poorly. Their focus on select links often ignores
collisions with other parts of the hand (e.g., the palm), leading to a high rate of physically invalid
grasps. In contrast, our generative approach learns to produce configurations that respect the full-hand
morphology. Qualitative results in Fig. @] (left) further illustrate that our method generates stable
grasps even from sub-optimal source poses where baselines fail.

On the diversity metric, our contact-based variant achieves the highest mean diversity, producing
a wide range of plausible grasps. This highlights that our methods can generate diverse grasp
configurations while maintaining physical feasibility. Interestingly, other OT costs show lower
diversity despite achieving high success rates, indicating that geometric alignment alone may lead to
more conservative grasps. While the diffusion baseline is also highly diverse, our method achieves
this while demonstrating superior performance on stability and functional alignment.
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Figure 4: (left) Qualitative results. The ‘Pose’, ‘Contact’, ‘GWH’, and ‘Jacobian’ columns show results from
our method when trained using the respective OT cost functions from Sec.[#-2] Our method generates stable and
consistent grasps across different OT variants, even when the source grasp is sub-optimal, where RFP fails.
(right) Failure Modes where our method struggles with thin-shell objects due to challenging geometry.

In addition to performance, our approach offers significant computational advantages over
optimization-based baselines. Methods like RobotFingerPrint [41]] require costly per-grasp iter-
ative optimization, leading to an average inference time of over 5 seconds. In contrast, our generative
method amortizes this cost through batch processing. With 100 integration steps, our model achieves
an average inference time of approximately 0.8 seconds per grasp, comparable to the diffusion base-
line and substantially faster than RobotFingerPrint. While lightweight methods like CrossDex
are faster due to their single-pass architecture, our approach provides a strong balance between
computational efficiency and the generation of high-quality, physically robust grasps. A more detailed
efficiency report is included in Appendix [D.2]

5.3 Physical Alignment between Translated Grasps

To evaluate whether our translated grasps preserve the functional intent of the source grasp, we
compute the 6D GWH IoU between the source and the translated target grasps. As shown in
Table I] (right block), our methods trained with the GWH-based and Contact-based OT costs achieve
the highest mean IoU by a substantial margin (14.63% and 14.54%, respectively), significantly
outperforming all baselines. This indicates that our approach more effectively preserves the object-
level physical capabilities of the grasp, rather than simply mimicking coarse finger geometry. We
provide a complementary analysis on the geometric alignment of contact points in Appendix [D.3]
which further supports these findings.

Taken together, our results reveal a key trade-off between the different physics-informed objectives.
The Jacobian-based cost yields the highest success rate, suggesting it is most effective at capturing
the kinematic relationships required for stability. However, the GWH and Contact costs achieve
superior functional alignment, as measured by GWH IoU. This indicates that directly optimizing for
force-exertion capabilities (GWH) or contact patterns (Contact) is more effective for transferring the
grasp’s underlying mechanical intent, even if this sometimes results in a slightly lower stability score
compared to a pure manipulability-based objective.

5.4 Ablation Study

We conduct an ablation study to assess the sensitivity of our method to two key hyperparameters
in the Schrodinger Bridge formulation: the magnitude of the diffusion rate o, and the number
of discretization steps used during Euler—Maruyama integration at test time. Both ablations are
performed on the H— A task using the Contact Map OT model, and results are reported in Tables
and 3l

Effect of Diffusion Rate. We vary the diffusion rate o € {0.01,0.1, 1.0} and observe that smaller
diffusion magnitudes lead to better grasp success and GWH IoU. Larger diffusion (o = 1.0) produces
noisier paths and degrades both physical precision and grasp quality, despite yielding higher diversity.
This supports the intuition that overly noisy reference processes can disrupt fine-grained transport
and hinder alignment with physical intent.

Effect of Discretization Steps. We evaluate our method under varying numbers of time steps during
test-time integration: {10, 100, 200}. As shown in Table[3] using 100 steps offers a strong tradeoff
between accuracy and efficiency, while more steps lead to better physical alignment. Interestingly,
our method remains robust even with as few as 10 steps, outperforming the diffusion baseline across



Table 3: Effect of number of discretization steps on
performance (H—A) from our method and the diffu-
sion baseline.

Table 2: Effect of diffusion rate o on perfor-
mance (H—A).

g ‘ Success %1 Div. (rad)T  ToUT # St Success %1 Div. (rad)t ToU?T
0.01 7716 0284 1672 P | Ours Diff. | Ours Diff. | Ours Diff.
0.1 74.78 0.294 15.89 10| 7145 60.00 | 0278 0344 | 1380 6.19
1.0 64.39 0378  13.83 100 | 75.12 72.57 | 0.283 0301 | 14.00 9.54

200 | 7478 73.7 | 0294 0297 | 1589  9.66

all metrics and steps. In contrast, the diffusion model’s performance degrades substantially under low
discretization, highlighting the benefit of our SB-based formulation, which yields more stable and
sample-efficient generation dynamics.

6 Discussion

In this work, we present a novel formulation of vision-based dexterous grasp translation as a
Schrodinger Bridge problem between grasp distributions. By leveraging a latent score and flow
matching framework and designing physics-informed ground costs, our method enables simulation-
free, distribution-level grasp transfer across robotic hands with distinct morphologies. Empirical
evaluations across several hand-object settings demonstrate that our approach not only produces
stable and diverse grasps but also preserves functional grasp properties more effectively than object-
agnostic or geometry-based baselines. These results highlight the promise of distributional transport
techniques for advancing semantic grasp understanding and generalization in robotic manipulation.

Limitations. Despite its strengths, our approach has some limitations. Most notably, as shown in
Fig. @] (right), the performance drops in scenarios involving thin-shell objects with ambiguous or
minimal contact regions, where the valid grasp configuration space is largely confined. Additionally,
we observe that the results for the Shadow hand are consistently lower than for the Allegro hand
across multiple metrics, which aligns with prior findings in the MultiGripperGrasp dataset [12] due
to its more complex kinematics and larger workspace. Furthermore, our current framework does not
generalize to unseen hand morphologies at inference time. The VAE decoder implicitly learns the
kinematic structure of the target hand, and would thus require retraining or fine-tuning on data from a
new hand to generate valid grasps. Finally, these discrepancies suggest that improving dataset quality
and coverage for specific hands may further enhance generalization and translation fidelity.

Societal Impact. Finally, while our framework is designed for general-purpose manipulation, it
introduces broader implications for deployment in real-world systems. Effective grasp translation
could accelerate learning from heterogeneous demonstrations or expand manipulation capabilities in
assistive robotics. However, it also raises considerations around safe deployment, failure detection,
and responsible generalization across users and hardware. We encourage future work to examine
how distributional grasp priors can be integrated into transparent and human-aligned manipulation
pipelines.
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of the paper (regardless of whether the code and data are provided or not)?
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either be a way to access this model for reproducing the results or a way to reproduce
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the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental settings are discussed in Section 5 and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While the paper reports mean performance metrics across multiple tasks and
model variants, it does not include error bars or confidence intervals. This is consistent with
standard practice in robotics literature, where results are typically reported deterministically
due to the high cost of simulation and the controlled evaluation protocols.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We comply with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in section 6.
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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that a generic algorithm for optimizing neural networks could enable people to train
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The proposed models and data pose minimal risk of misuse
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses datasets and models with permissive licenses and proper
citations and terms of use are respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Documentation will be provided alongside released code and models.
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* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
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* The paper should discuss whether and how consent was obtained from people whose
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* At submission time, remember to anonymize your assets (if applicable). You can either
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Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The work does not involve human subjects or crowdsourced data.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
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Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: IRB approval is not applicable.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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for what should or should not be described.
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A Background on Schrodinger Bridges and Simulation-Free Training

A.1 The Schrodinger Bridge Problem

The Schrodinger Bridge (SB) problem seeks a stochastic process P that evolves from a source
distribution go(x) to a target distribution ¢; (x) while being as "close" as possible to a reference
process Q (typically Brownian motion). This is formally expressed as minimizing the Kullback-
Leibler (KL) divergence between the path measures:

P* = argmin KL(P||Q). (10)
P:po=qo,p1=q1

The optimal process P* can be characterized as a mixture of Brownian bridges weighted by an
entropically regularized optimal transport (OT) plan [11l21]. As shown in Eq.[I)in the main text, this
plan 77 finds a low-cost coupling between gy and g;. The work of Follmer [31]] shows that if Q is
Brownian motion, the SB is uniquely described by a mixture of Brownian bridges drawn according to
«X. This insight is crucial, as it reduces a complex dynamic optimization problem to a more tractable
computation over static distributions.

A.2 Learning Stochastic Dynamics with [SF]*M

The dynamics of the SB are modeled by the Ité6 SDE in Eq.[2| The marginal densities p;(z) induced
by this SDE evolve according to the Fokker-Planck equation [73]:

% t)?

% ==V (pru) + 9(2) Ap, (11)
where Ap, = V - (Vpy) is the Laplacian. The probability flow ODE in Eq. [3| shares the same
marginals p;(x). To learn these dynamics from data without direct access to the marginals p;, the
[SF]?M framework [84] leverages the connection to entropic OT. By sampling a source-target pair
(0, 1) from the entropic OT plan 7%, one can construct a conditional Brownian bridge path between
them. For a constant diffusion rate g(¢) = o, the conditional distribution p¢(x | 2o, z1) is a Gaussian
N (x; (1 —t)xg+twy,0%t(1—t)I). From this, we obtain closed-form expressions for the conditional
score and probability flow drift, which serve as regression targets for the neural networks:

1-2¢
ug (z|zo, 1) = m(ﬂﬁ = ((1 = t)wo + tw1)) + (x1 — o),
(I-t)xg+te —z (12)
Vlogpt(x‘x()vxl) = O'Qt(()l _t)l

These targets are used in the loss function shown in Eq.[4]
A.3 Weighting Schedule \(%)

Following Tong et al. [84], we apply a time-dependent weighting schedule A(t) to stabilize the score
regression loss across time. This is essential because the conditional score V log p:(x | o, 1)
grows unbounded as ¢ — 0 or ¢ — 1, leading to an imbalance in the loss. To address this, we
adopt the formulation that standardizes the regression target to have unit variance. This is done by
predicting the noise added in sampling z; from the linear interpolation p; = (1 — t)z¢ + tz1 under a
Brownian bridge with variance 07 = o%t(1 — t). This leads to:

At) =0 =0o\/t(1 —t).

This setting ensures that the target score V. log pt(z | zo, z1) corresponds to €/o¢, with € ~ N (0, I),
making the scaled target distributed as standard Gaussian.

In practice, we use an alternative numerically stable formulation derived by rescaling the target by
%vazpt, which yields the weighting schedule:

Mt) = iot - 27Vt(1_t) (13)

g
Under this form, the squared score loss term simplifies to:

A(b)? s0(t, ) — Vlog py(z]zo, @1)||* = | A(t)se(t, @) + e
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This avoids any division by small values resulting from boundary conditions and improves numerical
stability. All models in our experiments were trained using this second formulation and the simplified
regression objective:

o= k. Mvg(t,x)fuf(x\:z:o,xl)||2+||)\(t)59(t,9:)+et||2]. (14)
:vat(x|a:7o,x1)
(o, z1)~T™

B Architecture and Training Details
B.1 VAE Training

Our VAE consists of two main components: a point cloud encoder for the segmented hand point
cloud, and an MLP-based latent autoencoder that encodes and decodes grasp configurations.

Hand Encoder. We use a PVCNN-based architecture [31] to process the input hand point cloud. The
input to the encoder is a point cloud of size N x 3. The PVCNN follows a hierarchical structure with
point and voxel convolution blocks as described below:

Table 4: PVCNN Point Feature Blocks
Output Channels | Num Layers | Kernel Size | Voxel Resolution Multiplier

64 1 32 v
64 2 16 v
128 1 16 v
1024 1 N/A X

The final 1024-dimensional global features are passed through an MLP consisting of [256, 128]
hidden units, followed by max pooling to produce a single global feature vector for each input.

Grasp Configuration VAE. The latent grasp representation is modeled using a fully connected
variational autoencoder. The encoder receives the hand representation and maps it into a latent space
of size 768. The decoder reconstructs the full hand joint configuration. Layer sizes are as follows:

Table 5: Latent VAE Layer Sizes
Network | Input  Hidden Layers  Latent Dim Output Dim

Encoder 1472 [2048, 1024] 768 -
Decoder 768 [2048, 1024, 256] - 9 + # DoFs

Training Configuration. We train the VAE for 18 epochs using a batch size of 256, Adam optimizer
with a learning rate of 3 x 10~%, and 16 dataloader workers. The loss function includes a weighted
combination of reconstruction losses with a = 0.6 and a KL divergence term with a very small
weight (8 = 1 x 1075). The training time is approximately one GPU day on a single NVIDIA A6000
GPU.

B.2 Score and Flow Model Architecture

Both the score network sy and the flow network vy in our pipeline share the same U-ViT-based
backbone architecture [5]. The input to each model consists of a concatenation of latent hand
representations, object shape encodings, and contact anchor tokens, following the conditioning design
described in Sec. [4.3]of the main paper.

U-ViT Backbone. We use a vision transformer architecture adapted for point-based data. The network
is composed of 12 transformer blocks, each with multi-head self-attention and MLP layers. Time
conditioning is injected via learned embeddings scaled by a temperature factor. The configuration is
detailed in Table
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Table 6: U-ViT Backbone Configuration

Parameter | Value
Number of Transformer Layers (Depth) 12
Embedding Dimension 512
Number of Attention Heads 8
MLP Expansion Ratio 4
Time Embedding Scale 1000.0
Dropout Rate 0.0
Attention Dropout Rate 0.1

Input Dimensions. The model is conditioned on several input tokens:

* Latent Hand Token: 768-dimensional vector produced by the VAE encoder.
* Global Object Token: 128-dimensional latent from the pretrained LION object encoder.
* Local Object Tokens: 2048 points, each with 4 dimensions (XYZ + latent code).

* Contact Anchor Tokens: 5 tokens computed by applying farthest point sampling to object
points identified via thresholding (within 0.005 m) to the nearest point to the hand point
cloud.

Training Configuration. We train both the score and flow networks using the loss in Eq. [I4] with the
weighting schedule described in Appendix[A.3] The training setup is summarized in Table[7] The
training time is approximately 650 GPU hours on NVIDIA L40 GPUs.

Table 7: Training Hyperparameters for Score and Flow Models

Hyperparameter \ Value
Total Steps 20000
Batch Size (on each GPU) 512
Learning Rate 2x 1074
Linear Warmup Steps 256
Gradient Clipping 1.0
EMA Decay 0.999
EMA Start Step 10000
o (used in Table. [1) 0.1

C OT Cost Formulation and Computation

We implement four distinct ground costs for the optimal transport (OT) coupling in our framework.
Two of these (Euclidean base pose and contact map Chamfer distance) are computed in closed
form using standard metrics in R™. The remaining two involve more complex geometry- and
physics-informed reasoning.

Grasp Wrench Space Overlap. The grasp wrench space (GWS) [29] of a grasp represents the set of
all wrenches (forces and torques in RY) that the grasp can apply to an object through contact. For a
grasp with k contact points {c; }X_; and associated contact normals {n;}, we construct a set of unit
wrench vectors {w; } as follows:

w; = |:Ci {(lz fz:| S RS, fi=a;n;, a; > 0.

We form the convex hull of these wrenches to approximate the GWS, denoted as the grasp wrench
hull (GWH). The distance between two grasps is then defined as 1 minus the intersection-over-union
(IoU) of their GWH volumes:

Vol (Hull(GW Ssource) N Hull(GW Starget))
Vol(Hull(GW Ssource) U HUll(GW Syarger))

dwrench =1
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Since computing the exact intersection and union volumes of 6D convex hulls is intractable in closed
form, we approximate the GWH IoU using GPU-accelerated Monte Carlo sampling. We sample a
large number of points (typically O(10)) in the 6D bounding box enclosing both hulls, and compute
membership in each hull using their supporting hyperplane inequalities. Intersection and union
volumes are then estimated as:

__ #pts in both

Volinterseet #STples Olpox -
A 3D implementation of this approximation is used to compute batch-wise GWH IoU efficiently
during training, and the full 6D implementation is reported for the experiments.

Jacobian-based Manipulability. To capture the potential of a grasp to actuate the object, we compute
the Jacobian matrix J € R%*("~6) relating hand joint velocities to object motion. The Jacobian is
computed using the Warp differentiable simulator [56]] following the setup from Turpin et al. [87]]
with fixed object and grasp configurations. We exclude the 6-DoF base pose of the hand, focusing
only on internal joints.

Each column J; of the Jacobian represents the effect of joint j on the object’s linear and angular
velocity. We summarize the object-level actuation capability of a grasp by computing a 6D vector m
of maximal manipulability across joints:

m = max|J;| € R®.
j

The OT cost is then defined as the squared /2 distance between source and target maximal actuation
vectors:
2
djac = ||msource - mtarget” .

This cost encourages the translated grasp to maintain similar controllability over object motion.
D Additional Results

D.1 Qualitative Examples Across Tasks

Figure [5] presents additional qualitative examples across all three grasp translation tasks:
Human— Allegro, Human— Shadow, and Shadow— Allegro. Our method remains robust and pro-
duces stable, contact-consistent grasps even when the source grasp is suboptimal or incomplete.
In contrast, the object-agnostic baseline RFP often fails to recover valid contact configurations,
particularly for complex hand-object interactions or geometrically mismatched hands.

D.2 Inference Time Comparison

We compare the amortized inference time of our method against all baselines in Table[§] While our
framework is designed primarily as an offline planner, its inference speed is competitive.

As shown in the table, our method takes approximately 0.8 seconds to generate a grasp using 100
Euler-Maruyama steps. This is comparable to the diffusion baseline (0.5s). The iterative sampling
process, where each of the 100 steps requires a full forward pass through our U-ViT model, is the
primary factor for this timing. In contrast, lightweight methods like CrossDex are significantly
faster, as they only require a single forward pass through a small MLP. Nevertheless, our approach is
substantially faster than the optimization-based RobotFingerPrint, which requires over 5 seconds per
grasp due to its costly per-instance optimization procedure.

Table 8: Average inference time per grasp (amortized, in seconds). Our method is comparable to the
diffusion baseline and significantly faster than optimization-based approaches.

Time (sec/grasp)
H—A H—-S S—A | Mean

CrossDex Retargeting [98]] | 1.1e-5 1.1e-5 1.le-5 | 1.le-5

Method

Dex-Retargeting [[72] 0.13 0.16 0.08 0.12
Diffusion (100 steps) 0.5 0.5 0.5 0.5
Ours (100 steps) 0.8 0.8 0.8 0.8
RobotFingerPrint [41] 52 5.8 5.1 5.37
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D.3 Contact Alignment

In addition to the GWH IoU metric presented in the main text, we evaluate the geometric alignment
of contact patterns using a Contact Alignment metric. This metric is defined as the squared Chamfer
distance between the source and target contact maps on the object surface, where a lower value
indicates better alignment. This serves as a useful proxy for how well the local interaction geometry
of the grasp is preserved during translation.

Table@]presents the results. Our model trained with the Contact OT cost (Oursonacr) achieves a mean
distance of just 4.99 cm?, significantly outperforming all other methods. This quantitatively confirms
that this variant is highly effective at preserving the precise locations of contact, which is a critical
precondition for achieving a functionally similar and physically stable grasp. The other baselines
struggle to align contact points, resulting in much larger distances and, as shown in the main paper,
lower success rates.

Table 9: Comparison on Contact Alignment (cm?)}. Lower values indicate better alignment between
the source and target grasp’s contact points on the object surface.

Contact Alignment (cm?)]
Method HSA HoS S—A | Mean
RobotFingerPrint [41]] 19.21 16.66 11.27 | 15.71
Dex-Retargeting [[72] 9.53 1292 6.68 9.71
CrossDex Retargeting [98] | 9.85 14.52 7.06 | 10.48
Ours (Contact OT) 5.05 3.37 6.54 4.99
Ours (GWH OT) 10.71 726  10.19 | 9.39

D.4 VAE Ablation Study

To validate the design choices for our Variational Autoencoder (VAE), we conduct an ablation study
comparing our full model against three alternatives:

* PointNet VAE: A baseline inspired by [[1] that reconstructs the hand point cloud via Chamfer
distance and decodes hand parameters in a separate branch.

* Ours w/o Mesh Loss: Our VAE trained only on the hand parameter reconstruction loss
(Lvae = E[||g — g|I*]). without the differentiable FK layer and mesh vertex loss.

* Ours w/o Param Loss: Our VAE trained only on the mesh vertex loss (Lyap =
E[||6 — FK(g)||*]), without the direct parameter reconstruction loss.

We evaluate reconstruction quality using the L2 error on the decoded hand parameters, tested on a held-
out set of objects. As shown in Table |10} our proposed VAE architecture significantly outperforms all
alternatives.

Table 10: Evaluation of VAE architectures using Hand Parameters L2 Error.
Method | Allegro Shadow Human

PointNet VAE 0.1965 0.2001 0.2468
Ours w/o Mesh Loss 0.0967 0.0933 0.1270
Ours w/o Param Loss | 0.0439 0.0441 0.0534
Ours (Full) 0.0335 0.0286 0.0523

Our analysis indicates that the PointNet VAE struggles because the Chamfer distance loss can be
indiscriminative; it may achieve a low value even if the reconstructed pose is incorrect but has large
overlapping regions with the ground truth. Ablating the mesh loss harms the learning of fine-grained
geometric details, while ablating the parameter loss can lead to memorization issues, as the high-
capacity latent space (dim=768) can overfit to the relatively low-dimensional hand configuration
space (typically ~20 DoFs).
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D.5 Results on Additional Transfer Settings

To provide a more comprehensive evaluation, we run experiments on the three remaining transfer
settings: Allegro—Human (A—H), Shadow—Human (S—H), and Allegro—Shadow (A—S).

We note a technical limitation in reporting the IsaacGym success rate for tasks where the human hand
is the target. Our human hand is an articulated model based on MANO [74] with non-watertight
link meshes, which causes instabilities in the IsaacGym simulator. We are therefore unable to report
success rates for the A—H and S—H settings.

The results for success rate (A—S only), diversity, and 6D GWH IoU are presented in Tables[I1] [12]
and [T3] respectively. Our method consistently outperforms the baselines in preserving functional
intent, achieving significantly higher GWH IoU, particularly when transferring to the complex human
hand. We also generate a more diverse set of plausible grasps, highlighting the flexibility of our
learned transport plan. Finally, in the A—S setting where a direct stability comparison was possible,
our method achieved the highest success rate, demonstrating superior physical plausibility. These
findings show that the advantages of our approach are robust across these challenging transfer settings.

Table 11: Comparison on Success Rate (%) for A—S.

Method | A—=S
RobotFingerPrint | 30.27
Diffusion 33.96

Ours (Contact OT) | 38.00
Ours (GWH OT) 41.49

Table 12: Comparison on Diversity (rad)t.

Diversity (rad){
A—H S—H A—S | Mean

RobotFingerPrint 0.196 0.180 0.182 | 0.186
Diffusion 0.283 0.298 0.207 | 0.263
Ours (Contact OT) | 0.317 0.332 0.212 | 0.287
Ours (GWH OT) 0.310 0.327 0.178 | 0.272

Method

Table 13: Comparison on 6D GWH IoU (%)1.

6D GWH IoU (%)}
A—H S—H A—S | Mean

RobotFingerPrint 3.46 4.11 3.51 3.69
Diffusion 1041 11.82 878 | 10.34
Ours (Contact OT) | 13.59 1537 8.87 | 12.61
Ours (GWH OT) 11.76 13.30 9.16 | 11.41

Method

E Compute Resources

Our experiments were conducted on a combination of local servers and a high-performance computing
cluster. The local server consists of a 24-core CPU and 2 NVIDIA A6000 GPUs, which were used
for model development, ablation studies, and VAE training. For large-scale training, we utilized a
compute cluster, where each cluster node is equipped with two 26-core CPUs and 8 NVIDIA L40
GPUs.
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Figure 5: More qualitative examples. Each column shows a source grasp and its translated output
for different methods. Our method consistently recovers physically plausible grasps across tasks,
while RFP frequently fails, especially with noisy source grasps.
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