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Abstract
3D molecular representation learning has gained
tremendous interest and achieved promising per-
formance in various downstream tasks. A series of
recent approaches follow a prevalent framework:
an encoder-only model coupled with a coordinate
denoising objective. However, through a series of
analytical experiments, we prove that the encoder-
only model with coordinate denoising objective
exhibits inconsistency between pre-training and
downstream objectives, as well as issues with
disrupted atomic identifiers. To address these
two issues, we propose MOL-AE for molecular
representation learning, an auto-encoder model
using positional encoding as atomic identifiers.
We also propose a new training objective named
3D Cloze Test to make the model learn bet-
ter atom spatial relationships from real molec-
ular substructures. Empirical results demonstrate
that MOL-AE achieves a large margin perfor-
mance gain compared to the current state-of-
the-art 3D molecular modeling approach. The
source codes of MOL-AE are publicly available
at https://github.com/yjwtheonly/MolAE.

1. Introduction
Pre-training based molecular representation learning has
shown remarkable performance across various molecu-
lar understanding tasks, such as drug discovery (Pinzi &
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Figure 1. Illustrations of the coordinate denoising (a) and 3D cloze
test (b) objectives.

Rastelli, 2019; Adelusi et al., 2022), molecular property
prediction (Luo et al., 2022; Liu et al., 2022b; Zhou et al.,
2023; Yu et al., 2023; Ju et al., 2023) and reaction predic-
tion (Gastegger et al., 2021; Schwaller et al., 2021). Early
approaches tend to model 1D SMILES (Wang et al., 2019;
Guo et al., 2021; Honda et al., 2019) or 2D graphs (Li
et al., 2021; Lu et al., 2021; Fang et al., 2022b; Xia et al.,
2022). More recently, there has been a growing interest
in 3D molecular data, with its inclusion of 3D structure
information providing more comprehensive information of
molecules. Consequently, numerous studies have explored
the individual or joint pre-training of 3D modality for bet-
ter molecular understanding (Liu et al., 2022a; Fang et al.,
2022a; Zhou et al., 2023; Luo et al., 2022; Jiao et al., 2023;
Yu et al., 2023; Feng et al., 2023)(please refer to Appendix
A for detailed related works).

In 3D molecular representation learning, two core tech-
niques are prevalently adopted: (i) Encoder-only model.
The latent representations output by the encoder are directly
used for learning both pre-training tasks and downstream
tasks. (ii) Coordinate denoising objective. This objective
introduces random noise to atom coordinates, and the model
is trained to reconstruct the original coordinates. For sim-
plicity, we refer to the framework adopting encoder-only
model and coordinate denoising objective as EnCD. Ap-
proaches following EnCD framework have demonstrated
significant efficacy in various 3D molecular understanding
tasks and have achieved state-of-the-art performance in cer-
tain benchmarks (Luo et al., 2022; Zhou et al., 2023; Yu
et al., 2023). However, there are two inherent problems
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preventing better performance of EnCD:

• The encoder-only model struggles to address the incon-
sistency between pre-training and downstream objec-
tives. Downstream molecular understanding tasks typ-
ically require global information, whereas the pre-training
of EnCD focuses on local coordinate information (van
Tilborg et al., 2022; Zhang et al., 2023). This leads to
poor transferability of the features learned by the encoder.

• The coordinate denoising may lead to unstable training
and introduce unrealistic noise into the model. In 3D
molecular representation learning, coordinates serve two
roles simultaneously. One role, analogous to the words
in texts, represents the content being reconstructed. The
other role, analogous to word positions in texts, should
remain stable to let the model know which atom is being
reconstructed. The twisted optimization caused by these
two roles during coordinate denoising makes model train-
ing and convergence challenging. Additionally, as many
previous works have pointed out (Wang et al., 2022a; Feng
et al., 2023), denoising objective may cause the model to
learn unreliable noisy distributions, thereby impacting its
performance.

To address these two issues, we introduce a novel approach
named MOL-AE (Molecular Auto-Encoder), which incor-
porates two key designs: (i) To mitigate the inconsistency of
the encoder-only model arising from objectives, we propose
using an auto-encoder model for pre-training and discard
decoder for downstream tasks, since we observe that such
inconsistency has a more severe impact on deeper layers
(Section 3.1). (ii) To tackle the issues associated with co-
ordinate denoising, we propose a novel objective termed
the 3D Cloze Test (Figure 1). Instead of disrupting both
roles of the coordinates simultaneously, the objective pro-
vides additional positional encoding (PE) during disrupting
coordinates to enable the model to discern atom identities,
thus achieving stable training. At the same time, the objec-
tive uses dropping instead of adding noise for disruption,
enabling the model to focus only on remaining noise-free
substructures.

Extensive experimental results demonstrate that MOL-AE
consistently outperforms various molecular representation
learning methods across a diverse set of molecular under-
standing tasks.

Our contributions are summarized as follows:

• We provide an analysis of two inherent problems present
in the mainstream frameworks currently used for 3D
molecular representation learning and prove the necessity
of the auto-encoder architecture and positional encoding
in atoms. These problems lack a systematic formulation
and analysis in previous works.

• We introduce a straightforward yet powerful model,
named MOL-AE, to solve the two problems. MOL-AE
employs an auto-encoder architecture as the backbone
model and leverages the novel 3D Cloze Test objective.

• Extensive experimental results demonstrate that MOL-
AE achieves state-of-the-art performance on a standard
molecular benchmark, including various molecular classi-
fication and molecular regression tasks.

2. Preliminaries
In this section, we will clarify the problem formulation of
3D molecular representation learning, and introduce the
most widely-used coordinate denoising method.

2.1. Problem Formulation

A 3D molecule M can be seen as a set of n atoms, i.e.,
M = {ai}ni=1. Each atom ai further consists of its type
ti ∈ N and coordinate ci ∈ R3. We denote the type and
coordinates of all the atoms in M as T ∈ Nn×1 and C ∈
Rn×3, respectively.

Briefly, the goal of 3D molecular representation learning is
to train a parameterized encoder qϕ to map a molecule to an
informative latent representation Z ∈ Rn×d for downstream
tasks, where d is the dimension of the latent space. Formally,
the objective of 3D molecular representation learning can
be expressed as a Kullback–Leibler divergence (KL) term:

KL (qϕ(Z|M)∥p(Z|M))

where p(Z|M) is the real optimal distribution, which char-
acterizes the latent space we desire. However, as p(Z|M)
is usually unknown, we introduce a parameterized decoder
pθ and use the following formula 1 as the actual objective:

EZ∼qϕ(Z|M) log pθ(M|Z)

This objective is a classical auto-encoder objective.

2.2. Coordinate Denoising

In 3D molecular representation learning, the goal of co-
ordinate denoising is to learn the structural knowledge of
3D molecules while avoiding falling into trivial solutions.
Specifically, as the dimension of the latent space is signifi-
cantly larger than that of the coordinate space, i.e., 3 ≪ d,
the classical auto-encoder objective may lead to simple iden-
tity mappings for both qϕ and pθ. In practice, a denoising
variant of the objective is used to avoid such trivial solutions.

EZ∼qϕ(Z|C+E) log pθ(C|Z) (1)

1The formula can be derived from the standard ELBO by omit-
ting the KL term.
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where E ∈ Rn×3 is the noise acting on coordinates. No-
tably, as only partial coordinates are noised, some rows of
E contain random noises, while the remaining rows consist
of zero vectors. Here, since denoising is only applied to co-
ordinates, we replace M in the auto-encoder objective with
the corresponding C without loss of generality. Currently, a
prevalent choice is using a Transformer encoder as qϕ and
an SE(3) equivariant head containing simple Multi-Layer
Perceptron (MLP) as pθ (Luo et al., 2022; Zhou et al., 2023;
Yu et al., 2023; Jiao et al., 2023).

Two points are worth noting here. First, many related works
employ pair-wise distance reconstruction as the training ob-
jective, but since this is equivalent to reconstructing SE(3)-
invariant coordinates (Satorras et al., 2021), we then ex-
clusively focus on coordinate reconstruction. Second, for
models employing an extremely simple decoder, although
their mathematical objective aligns with that of an auto-
encoder, we do not conventionally categorize them as adopt-
ing an auto-encoder structure. Since the reconstruction loss
directly impacts the latent representation in these cases,
we still name these models as encoder-only methods, e.g.,
BERT (Devlin et al., 2018) and Uni-Mol (Zhou et al., 2023).

3. Analysis of EnCD Framework
In this section, we will discuss two inherent problems
faced by the framework EnCD (Encoder-only model with
Coordinate Denoising objective), which is the current best
practice in 3D molecular representation learning and has
been utilized in a series of previous works (Luo et al., 2022;
Zhou et al., 2023; Yu et al., 2023).

Specifically, (i) encoder-only models cannot handle the in-
consistency between pre-training and downstream objec-
tives and (ii) the twisted denoising objective leads to unsta-
ble training. Both of them make EnCD cannot fully exploit
the potential of 3D molecule pre-training.

Here, we employ Uni-Mol (Zhou et al., 2023) and
Transformer-M (Luo et al., 2022), two representative EnCD
methods, along with four widely used molecular property
prediction datasets, i.e., BACE, BBBP, HIV, and MUV, to
empirically verify these two problems. We will report the re-
sults of Uni-Mol here and present the results of Transformer-
M in Appendix C, as the conclusions drawn from both meth-
ods are consistent. For more dataset details, please refer to
Appendix D.

3.1. Inconsistencies between Objectives

We will demonstrate the inconsistency between the pre-
training objective and the downstream objective in encoder-
only molecular representation learning models. Specifically,
this inconsistency becomes apparent when the model fails
to improve its performance on downstream tasks as its capa-
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Figure 2. In vanilla Uni-Mol, there are inconsistencies in the mod-
eling capabilities for pre-training and downstream tasks.

bilities increase during pre-training.

Following Tenney et al. (2019), we design a layer-wise
probing experiment to verify this inconsistency. We first fix
the Uni-Mol model and then extract the features from the
L-th layer, where L ∈ {1, · · · , 15}. Subsequently, we feed
the features to an extra prediction head and fine-tune this
head with pre-training and downstream tasks, respectively.
For pre-training tasks, we use the SE(3)-equivariant heads
(Zhou et al., 2023) with the same configuration as the extra
prediction heads. For downstream tasks, the extra prediction
heads are two-layer MLPs.

As shown in Figure 2a, when using features from the deeper
Uni-Mol layer, we can reconstruct 3D molecules, i.e., pre-
training task, more accurately. However, as observed from
Figure 2b, the performance of most downstream tasks does
not improve consistently. In general, the features from the
deepest layer do not achieve the best performance and inter-
mediate layer representations often perform better in most
cases. Combining the results, we can conclude that fea-
tures from deeper layers of encoder-only models exhibit
greater performance in pre-training tasks, but this ca-
pability does not consistently translate into downstream
tasks.

Similar phenomena have also been discovered in encoder-
only pre-training models for natural language, e.g., BERT
and RoBERTa (Devlin et al., 2018; Ethayarajh, 2019; Cai
et al., 2020). For example, Tenney et al. (2019) demonstrate
that different types of linguistic information are hierarchi-
cally represented from shallower to deeper layers of BERT.
Both experimental results and related literature motivate us
to avoid using a simple encoder-only architecture for 3D
molecular representation learning.

3.2. Twisted Optimization of Content and Identifier in
Coordinate Denoising

In this section, we will demonstrate that due to the coupling
of Content and Identifier, the coordinate denoising objective
for 3D molecular representation learning is actually twisted.

Specifically, there are two types of information, i.e., Content
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(b) Uni-Mol-PE

Figure 3. Under different disruption intensities, the impact of in-
troducing PE as an additional Identifier to vanilla Uni-Mol

and Identifier, that play crucial roles in reconstruction-based
objectives, e.g., Masked Language Modeling (MLM) for
language representation learning and Coordinate Denoising
(CD) for 3D molecular representation learning. Both of
them are used as the inputs of the objectives, each serving
distinct purposes:

• Content: For reconstruction-based objectives, Content
refers to the information that needs to be reconstructed. It
should be corrupted in some form so that the model can
reconstruct it in order to learn meaningful knowledge.

• Identifier: For reconstruction-based objectives, Identifier
is the anchor for the model to be aware of which part of
Content needs to be reconstructed. It should be stable and
remain uncorrupted.

Here, we use the widely adopted MLM as an example to
further elucidate the roles of these two types of information.
Specifically, MLM randomly masks partial tokens within
a sentence and requires models to reconstruct the masked
tokens. Positional encoding is applied to masked tokens
as well, helping models accurately reconstruct these tokens
by outlining their relationships with unmasked tokens. For
MLM objective, the masked tokens are the disrupted Con-
tent and the positional encoding assigned to masked tokens
serves as the Identifier. By utilizing these two types of infor-
mation, MLM efficiently learns linguistic knowledge from
natural language, becoming the standard objective for many
pre-trained language models (Devlin et al., 2018; Liu et al.,
2019b).

On the contrary, due to the coupling between Content and
Identifier, there exists an inherent conflict for the CD ob-
jective. Specifically, when applying the CD objective, the
coordinates of partial atoms, serving as the Content, need to
be disrupted by adding random noise. However, these coor-
dinates also serve as the Identifier to describe the relation-
ships between the disrupted atoms and the remaining atoms.
As previously discussed, they should not be disrupted. The
multiple roles of atom coordinates lead to inherent conflicts
within the CD, making it a twisted training objective.

We design experiments to further analyze the twisted op-
timization issue during the coordinate denoising training
process. We augment the original Uni-Mol model by adding
positional encoding (PE) to each atom to provide stable
Identifier. Here, the positions of different atoms are deter-
mined by the atom order in the SMILES2, and this approach
is referred to as Uni-Mol-PE. As shown in Figure 3, com-
pared to the original Uni-Mol, the Uni-Mol-PE exhibits
lower reconstruction errors, smaller loss fluctuations, and
better convergence during training. This indicates that in-
troducing stable Identifier can indeed help the model
distinguish between different atoms to reconstruct the
structural information better. Additionally, we can observe
that as the disruption intensity increased, Uni-Mol becomes
increasingly challenging to train stably. However, with the
addition of PE, even in cases of significant disruption (inten-
sity = 5Å), the model is able to converge stably. But, when
evaluating on downstream tasks, we do not observe con-
sistent performance improvement with this straightforward
method (Appendix B). We analyse this phenomenon and
therefore propose our 3D Cloze Test objective in Section
4.2, which not only promotes pre-training stability but also
consistently improves performance on downstream tasks.

4. 3D Molecular Representation Learning
With MOL-AE

In this section, we will detail our 3D molecular represen-
tation learning model MOL-AE. As shown in Figure 4, a
3D molecule contains two types of information: the 3D
structure and the atom type. Since atom type modeling
is a well-defined problem and can be easily achieved by
atomic MLM objective (Xia et al., 2022; Wang et al., 2019),
thus, we mainly focus on how to model 3D structure and
efficiently address the aforehead mentioned problems in
EnCD.

In particular, MOL-AE encompasses two fundamental de-
signs: the utilization of an auto-encoder model structure
and the incorporation of the 3D Cloze Test objective for
model optimization. We will elaborate on our 3D-aware
auto-encoder model in Section 4.1, introduce the design of
our 3D Cloze Test objective in Section 4.2, and ultimately
outline the pre-training and fine-tuning process for MOL-
AE in Section 4.3.

4.1. 3D Information Awared Auto-Encoder

EnCD approaches have typically employed a straightfor-
ward SE(3) head to instantiate decoder pθ. However, as
illustrated in Section 3.1, an excessively simple decoder can
lead to a substantial influence of the pre-training objective

2For example, in SMILES C=O, the oxygen atom is the second
atom, thus its position is 2.
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Figure 4. The overall framework of MOL-AE.

on the latent representation, thereby impacting its transfer-
ability to downstream tasks. Therefore, in MOL-AE, both
the pθ and qθ utilize the Transformer architecture (Vaswani
et al., 2017) as the backbone. This choice is motivated by
the Transformer has demonstrated great efficacy in captur-
ing 3D information, as highlighted in recent studies (Luo
et al., 2022; Yu et al., 2023; Zhou et al., 2023).

Transformer Block. Transformer comprises a series of
Transformer blocks, each block contains a multi-head self-
attention layer and a feed-forward layer. Denote Xl =
[xl

1,x
l
2, · · · ,xl

n]
⊤ ∈ Rn×d as the input for the l-th block,

each xl
i is the l-th representation of ai. For any input Xl,

the Xl+1 is generated as follows:

Ql,h = XlWl,h
Q ,Kl,h = XlWl,h

K ,Vl,h = XlWl,h
V

Attentionh(Xl) = softmax

(
Ql,h(Kl,h)⊤√

d

)
Vl,h

X̃l = LN(Xl +

H∑
h=1

Attentionh(Xl)Wl,h
O )

Xl+1 = LN(X̃l +GELU(X̃lWl
1)W

l
2)

where Wl,h
Q , Wl,h

K , Wl,h
V , Wl,h

O , Wl
1 and Wl

2 are learnable
parameters, H is the number of attention heads, and LN is
layer normalization (Ba et al., 2016) operation.

3D Aware Pair-Wise Feature. The vanilla Transformer
cannot model 3D information, since the coordinates are
continuous and invariant under global rotation and trans-
lation. Thus, we follow existing approaches (Luo et al.,
2022) to encode the Euclidean distance between atom pairs
as additional pair-wise features. To be specific, we use the
Gaussian Basis Kernel function (Scholkopf et al., 1997)
to map the distance between ai and aj , to a pair feature
bij = [bij1 , b

ij
2 , · · · , b

ij
H ]. We denote the pair feature of the

l-th Transformer layer as bij,l, and set bij,0 = bij . To cap-
ture better pair-wise relationship, we update bij,l+1 along
with the forward process of Transformer:

bij,l+1
h = bij,lh +Ql,h(Kl,h)⊤

And then we incorporate the edge feature into the vanilla
Transformer attention function to enable 3D modeling:

Attentionh(Xl) = softmax
(

Ql,h(Kl,h)⊤√
d

+ bij,l−1
h

)
Vl,h

Encoder and Decoder in MOL-AE. The encoder qϕ com-
prise Lenc layers of Transformer blocks. After processing
through this encoder, the 3D coordinates information C is
effectively encoded into XLenc

, thus we directly set the la-
tent representation Z = XLenc

. Our decoder pθ consists of
Ldec layers of Transformer blocks. Please refer to Section
6.3 for empirical study and further discussion about decoder
depth. And since 3D structure has already been encoded
into Z, we initialize the input pair features of the decoder to
be all zeros.

4.2. Objective of 3D Cloze Test

With the auto-encoder model structure, 3D Cloze Test ob-
jective can be formalized as follows:

EZ∼qϕ(Z|D(C)) log pθ(C|I(Z),PE([1, 2, · · · , n])) (2)

For each 3d coordinate matrix C, we first drop a random
portion of atoms and corresponding coordinates in drop
module D. And then encode remaining substructures with
the transformer-based encoder qϕ. Because we drop some
atoms in the encoder input, we use an insertion operation I
to insert the embedding of [MASK] token as the represen-
tation of dropped atoms into the encoder output Z. Then,
we add PE on the expanded latent representation I(Z) and
use decoder pθ to map them back to 3D coordinates and
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calculate the reconstruction loss. Compared to the coordi-
nate denoising objective (Equation 1), the 3D Cloze Test
objective introduces two key operations: adding PE to the
decoder and dropping atoms.

Adding PE to the Decoder. As demonstrated in Section
3.2, we successfully addressed the twisted optimization and
promoted stable optimization by introducing additional PE
to the encoder input as an Identifier. However, PE serves
not only as the Identifier but also introduces order informa-
tion from SMILES to the model, which could potentially
introduce harmful bias. Therefore, mitigating this potential
bias when introducing the Identifier is crucial. In the auto-
encoder framework, we notice that the encoder and decoder
have distinct roles: the encoder learns a representation of
the molecule, while the decoder reconstructs the correct
molecular structure. Therefore, a simple method to achieve
the aforementioned goal is to add PE only to the decoder,
meaning we only add PE to the decoder input I(Z). This en-
sures that the model can better distinguish between different
atoms, reconstruct molecular structural information more ef-
fectively, and guarantee that the positional information bias
does not affect the high-quality molecular representations
learned by the encoder.

Dropping Atoms. As described in many previous
works (Wang et al., 2022a; Feng et al., 2023), denoising
objective may cause the model to learn unreliable noisy
distributions, thus we disrupt the coordinates by dropping
a portion of atoms. Specifically, for the input coordinates
C ∈ Rn×3, we first randomly remove k rows, resulting in
D(C) ∈ R(n−k)×3. Subsequently, we utilize an encoder qϕ
to obtain its latent representation Z ∈ R(n−k)×d.

4.3. Pre-training and Fine-tuning

Pre-training. Since the 3D coordinates are invariant under
global rotation and translation, we apply a SE(3)-equivariant
head(Zhou et al., 2023) to the output representation of the
decoder to calculate the final coordinate reconstruction loss.
Previous studies have indicated that, although reconstructing
SE(3)-equivariant coordinates and reconstructing pairwise
distances are theoretically equivalent, using both in exper-
iments can achieve better results. Therefore, we instruct
MOL-AE to simultaneously reconstruct coordinates and
pairwise distances to effectively model 3D structure. Ad-
ditionally, since the atom type can significantly influence
molecular properties, we randomly mask some atom types
and use a classification head to let MOL-AE predict the
ground truth atom types. Following Uni-Mol (Zhou et al.,
2023), we introduce a special [CLS] atom to represent the
entire molecule, with the coordinates of [CLS] is the center
of all atoms.

Fine-tuning. We ignore the decoder and only utilize the
encoder for downstream molecular property prediction tasks.
During fine-tuning, we refrain from dropping any atoms. We
directly add a simple MLP-based task-specific head on the
latent representation of [CLS], and adopt full-parameter
fine-tuning strategy.

5. Discussion
In this section, we clarify the significance of MOL-AE
through further discussion about four core questions.

Q1: Encoder-only models are widely used for representa-
tion learning in NLP (e.g., BERT). Why don’t they face
the inconsistency issues described in Section 3.1?

The main difference lies in the fact that in NLP, words are
highly semantic and information-dense; even a single word
can convey rich meanings. In contrast, the 3D coordinates
in molecules are information-sparse, and the coordinates
of an individual atom are meaningless. Therefore, the pre-
training objective of reconstructing words in NLP aligns
more closely with downstream tasks, as both involve under-
standing abstract semantics. This alignment is not present
in the reconstruction of 3D coordinates.

Q2: Is the Identifier defined in Section 3.2 truly neces-
sary for denoising-based objectives? For instance, CNN-
based or GNN-based auto-encoders may not require
positional encoding as the Identifier.

It is essential to emphasize that the Identifier defined in Sec-
tion 3.2 is an abstract concept, representing any information
that can identify the object being reconstructed. We use
NLP as an example simply because PE in NLP serves as a
well-defined Identifier. When employing CNN-based mod-
els for pixel reconstruction, the Identifier is instantiated as
the relative spatial relationships between pixels. Similarly,
for GNN-based models reconstructing node attributes, the
Identifier is instantiated as the topological structure that can
identify specific nodes.

Q3: Can we use atom types or 2D graph structure infor-
mation to play the role of Identifier in 3D coordinates?

Indeed, we can use other molecule-related information as
the Identifier. For instance, we have omitted the model-
ing of atom types T in the preceding text to simplify the
formulation, if we consider it, Equation 1 can be rewritten
as:

EZ∼qϕ(Z|C+E,T) log pθ(C|Z) (3)

It seems that T could serve as the Identifier for disrupted
coordinates. However, it is crucial to note that this Identifier
becomes ineffective when two atoms have the same type but
are not actually equivalent. Similarly, the strategy of using
2D information as the Identifier fails when two atoms are
equivalent in 2D structure but not in 3D structure.
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Table 1. The overall results on 9 molecule classification datasets. We report ROC-AUC score (higher is better) under scaffold splitting.
The best results are bold. The second-best results are underlined.

Datasets BACE↑ BBBP↑ Tox21↑ SIDER↑ HIV↑ MUV↑ PCBA↑ ClinTox↑ ToxCast↑ Mean↑
# Molecules 1531 2039 7831 1427 41127 93087 437929 1478 8575 -

D-MPNN 80.9 71.0 75.9 57.0 77.1 78.6 86.2 90.6 65.5 75.87
Attentive FP 78.4 64.3 76.1 60.6 75.7 76.6 80.1 84.7 63.7 73.36
N-GramRF 77.9 69.7 74.3 66.8 75.7 76.9 - 77.5 - -

PretrainGNN 84.5 72.6 78.1 62.7 79.9 81.3 86.0 72.6 65.7 75.93
GROVER 82.6 70.0 74.3 64.8 62.5 62.5 76.5 81.2 65.4 71.09

GraphMVP 81.2 72.4 75.9 63.9 77.0 77.7 - 79.1 63.1 -
MolCLR 82.4 72.2 75.0 58.9 78.1 79.6 - 91.2 69.2 -

MoleBLEND 83.7 73.0 77.8 64.9 79.0 77.2 - 87.6 66.1 -
Uni-Mol 83.2 71.5 78.9 57.7 78.6 72.6 88.1 84.1 69.1 75.98

MOL-AE 84.1 72.0 80.0 67.0 80.6 81.6 88.9 87.8 69.6 79.04

Table 2. The overall results on 6 molecule regression datasets. We report Mean Absolute Error (MAE) on QM9, QM8, QM7 tasks and
Root Mean Square Error (RMSE) on ESOL, FreeSolv, Lipo tasks under scaffold splitting. The best results are bold. The second-best
results are underlined. Lower is better on all metrics.

Datasets QM9↓ QM8↓ QM7↓ ESOL↓ FreeSolv↓ Lipo↓
# Molecules 133885 21789 6830 1129 642 4200

# Tasks 3 12 1 1 1 1

D-MPNN 0.0081 0.0190 103.5 1.050 2.082 0.683
Attentive FP 0.0081 0.0179 72.0 0.877 2.073 0.721
N-GramRF 0.0104 0.0236 92.8 1.074 2.688 0.812

PretrainGNN 0.0092 0.0200 113.2 1.100 2.764 0.739
GROVER 0.0099 0.0218 94.5 0.983 2.176 0.817

GraphMVP - - - 1.029 - 0.681
MolCLR - 0.0178 66.8 1.271 2.594 0.691

MoleBLEND - - - 0.831 1.910 0.638
Uni-Mol 0.0054 0.0160 58.9 0.844 1.879 0.610

MOL-AE 0.0053 0.0161 53.8 0.830 1.448 0.607

Moreover, previous works have not attempted to analyze
the challenges of 3D coordinate modeling from the perspec-
tive of twisted optimization between Identifier and Content.
Even when attempting to introduce other information along-
side 3D modeling, they often overlook this aspect. As a
result, a common practice in related work is to perturb 2D,
3D, and atom type information simultaneously (Zhou et al.,
2023; Yu et al., 2023), thus failing to satisfy the low-noise
requirements of the Identifier. The perspective we provide
and the simple yet effective approach we adopt can offer
new insights into 3D molecular pre-training.

Q4: What is the relationship between MOL-AE and
MAE in vision (He et al., 2022)?

Although MOL-AE employs a similar design to MAE, ap-
plying the mask-based paradigm to 3D molecules is not
straightforward. Due to significant differences between
image and 3D molecular data, current 3D molecular pre-
training models are dominated by CD. This has led to two
important consensuses: (i) the intensity of disruption should
not be too strong, and (ii) biased sequential order informa-
tion should not be introduced. These factors have made

it unlikely for mask-based models similar to MAE to be
considered in 3D molecular representation learning. How-
ever, we have taken a groundbreaking step by successfully
applying the mask-based paradigm to 3D molecular repre-
sentation learning. Not only have we achieved performance
significantly better than CD-based models, but we have
also provided compelling evidence to understand why the
seemingly contradictory mask-based paradigm works.

6. Experiments
6.1. Settings

Datasets. For pre-training, we use the large-scale molec-
ular dataset provided by Zhou et al. (2023), which con-
tains 19M molecules and 209M conformations generated by
ETKGD(Riniker & Landrum, 2015) and Merck Molecular
Force Field (Halgren, 1996). Each molecule contains ran-
domly generated 11 conformations in this dataset. For fine-
tuning, we adopt the most widely used benchmark Molecu-
leNet (Wu et al., 2018), including 9 classification datasets
and 6 regression datasets and the data split is the same as
Zhou et al. (2023) (cf. Appendix D for more details).

7



MOL-AE: Auto-Encoder Based Molecular Representation Learning With 3D Cloze Test Objective

Table 3. Decoder capacity. Using an overly shallow decoder can
harm the model’s performance.

Ldec Tox21 ↑ HIV ↑ QM7↓ FreeSolv↓

0 74.2 74.1 68.1 2.20
1 77.7 77.5 58.6 1.92
2 78.7 78.5 59.9 1.78
3 77.9 78.2 58.6 1.83
4 78.1 78.3 56.8 1.74
5 78.9 79.4 55.3 1.72
8 79.5 78.1 57.1 1.79
11 78.8 77.1 55.4 1.71

Baselines. We use multiple supervised and pre-training
methods as our baselines, including supervised and pre-
training baselines. D-MPNN (Yang et al., 2019) and Atten-
tiveFP (Xiong et al., 2019) are supervised GNNs methods.
N-gram (Liu et al., 2019a), PretrainGNN (Hu et al., 2019),
GROVER (Rong et al., 2020), GraphMVP (Liu et al., 2021),
MolCLR (Wang et al., 2022b), MoleBLEND (Yu et al.,
2023), Uni-Mol (Zhou et al., 2023) are pretraining methods.
N-gram embeds the nodes in the graph and assembles them
in short walks as the graph representation and Random For-
est are used as predictors for downstream tasks. Uni-Mol is
the recent SOTA on MoleculeNet benchmark.

Implementation Details. We employ Transformer block
of hidden size 512, attention heads 64. We set the number
of Transformer layers as 15 for encoder, 5 for decoder. For
pre-training, We set the drop ratio=0.15 in drop module
D. We use data without hydrogen atoms in pre-training
for computational efficiency. We implement positional en-
coding with sinusoidal PE (Vaswani et al., 2017), and the
position of an atom is determined by its order of appearance
in SMILES. For downstream evaluation, we only adopt the
pre-trained encoder and follow the same fine-tuning pro-
tocol of Uni-Mol. For a fair comparison, we evaluate the
performance of the official hydrogen-free checkpoint of Uni-
Mol, which uses the same pre-training dataset as MOL-AE.
(cf. Appendix E for more details about hyper-parameter
configuration.)

6.2. Main Results

Results on Molecular Classification. We present the
molecular property classification performance of MOL-AE
on 9 widely used tasks. For detailed hyperparameters used
in different tasks, please refer to Appendix E. ROC-AUC is
employed as the evaluation metric, and the comprehensive
results are summarized in Table 1. MOL-AE demonstrates
state-of-the-art performance on 6 out of 9 datasets. More-
over, it outperforms Uni-Mol on all tasks. On the largest
three datasets, HIV, MUV, and PCBA, MOL-AE exhibits a
significant improvement compared to other baselines. Over-
all, we establish a substantial lead over all other baselines
in terms of the average ROC-AUC across all datasets, un-

Table 4. Sequential order information in PE. Introducing PE
in encoder will potentially harm the capacity for 3D molecular
understanding.

Order PEEnc PEDec Tox21 ↑ HIV ↑ QM7↓ FreeSolv↓

SMILES ✓ ✓ 78.2 78.4 57.3 2.12
SMILES ✓ 78.9 79.4 55.3 1.72
Random ✓ ✓ 77.9 76.9 63.2 2.03
Random ✓ 78.3 79.2 56.7 1.64
No PE 77.6 76.5 58.2 1.89

derscoring the effectiveness of MOL-AE.

Results on Molecular Regression. Next, we assess the
performance of MOL-AE across 19 molecular regression
tasks. Our evaluation employs Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) as the metrics, and
the comprehensive results across 6 datasets are presented in
Table 2. In cases where datasets include multiple tasks, we
compute the mean MAE across all tasks; additional details
can be found in Appendix E and D. MOL-AE and achieves
the best performance on 5 out of 6 datasets, demonstrating
MOL-AE is powerful for molecular regression tasks.

6.3. Ablation Study

Impact of the Decoder Capacity. First, we explore the
effectiveness of using an auto-encoder instead of an encoder-
only model. The main difference between these two kinds
of model is the capacity of the decoder. Consequently, we
investigate how changing the decoder depth affects the per-
formance of MOL-AE. The results are presented in Table
3. We observe a notable decrease in performance when
the decoder is too shallow (Ldec ≤ 3). This confirms our
earlier observations in Section 3, where we noted the incon-
sistency between pre-training and downstream tasks, with
this inconsistency having a smaller impact on middle lay-
ers. Additionally, we conduct probing experiments same as
Section 3.1 to more intuitively demonstrate that AE outper-
forms the encoder-only model in molecular understanding
tasks, the results are shown in Appendix F.

Impact of Order Information Contained in PE. Since
PE can not only serve as the Identifier but also introduces
order information to the model. We investigate how in-
troducing order information might affect the model’s per-
formance. As shown in Table 4, SMILES means the atom
positions are determined by the order of appearance in the
SMILES, while Random represents positions determined
by a random function. We can find that, compared to the
Random approach, utilizing the order from SMILES is more
advantageous for modeling the 3D molecular structure. Ad-
ditionally, the model tends to be more training stable when
using PE generated from SMILES (CF. Appendix G for the
implementation of random PE and the training process with
different PE).
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Table 5. Disruption methods. Using dropping to disrupt coordi-
nates could achieve better performance.

Method Tox21 ↑ HIV ↑ QM7↓ FreeSolv↓

MOL-AE-noise 0.5Å 78.6 79.5 56.8 1.70
MOL-AE-noise 1Å 79.5 79.9 56.6 1.68
MOL-AE-noise 3Å 78.9 79.7 57.2 1.71
MOL-AE-noise 5Å 78.8 79.8 56.8 1.65

MOL-AE 80.0 80.6 53.8 1.45

However, directly incorporating such information into the
encoder might also introduce biases unrelated to the molec-
ular properties. For example, atoms close in SMILES may
not necessarily be close in 3D structure, and a molecule
can have multiple valid SMILES. Therefore, we also ob-
serve a performance decrease when PE, incorporating order
information, is added to the input of the encoder.

Impact of Adding PE in Decoder. Firstly, in Table 4,
we can observe that introducing PE only in the decoder ef-
fectively enhances the performance on downstream tasks.
Additionally, in Figure 10 of Appendix H, we illustrate
the influence of adding PE on the stability of the training
process. We observe that with the addition of PE as an undis-
turbed Identifier, MOL-AE exhibits significantly improved
training convergence and stability. We further experiment
with introducing PE at intermediate layers within the model
to validate the rationale behind solely incorporating PE in
the decoder (cf. Appendix I for detailed results).

Impact of Different Disruption Methods and Intensity.
Based on MOL-AE, we implement a variant named MOL-
AE-noise. The only difference between them lies in the
strategy used to disrupt input coordinates. MOL-AE em-
ploys the dropping strategy, while MOL-AE-noise intro-
duces random noise with the intensity of (0.5Å, 1Å, 3Å,
5Å). As shown in Table 5, we observe that MOL-AE con-
sistently outperforms MOL-AE-noise. This indicates the
effectiveness of using the drop method for disrupting data,
allowing the model to focus solely on modeling realistic
fragments. We also provide further analysis of influence of
different drop ratios in Appendix J, and we find that perfor-
mance of MOL-AE does not decrease even with high drop
ratio (60%).

7. Conclusion
In this paper, we address two common challenges in 3D
molecular modeling and provided empirical analyses. To
tackle these challenges, we introduced MOL-AE, which
leverages an auto-encoder to mitigate potential inconsisten-
cies between pre-training and downstream tasks. Addition-
ally, by carefully discussing the properties of the Content
and Identifier roles, we proposed a new objective, the 3D
Cloze Test, to train the model for better molecular under-
standing. Extensive experiments demonstrated the superior

performance of MOL-AE in 3D molecular understanding.

Acknowledgements
We would like to thank Qiying Yu from AIR and Zequn
Liu from PKU for their insightful discussions on the project.
We also thank other members from AIR for their valuable
feedback given during the internal seminar. This work is
supported by the National Science and Technology Major
Project (2022ZD0117502), the National Natural Science
Foundation of China (62276002 and 62376133), and the
PharMolix Inc.

Impact Statement
Our work can help the AI4Science field better understand
and develop robust molecular representation learning mod-
els. With the increasing application of molecular representa-
tion learning models in various scenarios, designing a more
powerful molecular representation learning model has be-
come a crucial aspect driving progress in the field. This
work reveals the shortcomings of existing models through
analysis and provides insights for designing better molecu-
lar representation learning models, which holds significant
practical implications. However, we also acknowledge that
this work inherits the potential negative impacts of exist-
ing molecular pre-training models, such as the possibility
of being used to design and manufacture molecules with
biological hazards.

References
Adelusi, T. I., Oyedele, A.-Q. K., Boyenle, I. D., Ogun-

lana, A. T., Adeyemi, R. O., Ukachi, C. D., Idris, M. O.,
Olaoba, O. T., Adedotun, I. O., Kolawole, O. E., et al.
Molecular modeling in drug discovery. Informatics in
Medicine Unlocked, 29:100880, 2022.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Cai, X., Huang, J., Bian, Y., and Church, K. Isotropy in the
contextual embedding space: Clusters and manifolds. In
International Conference on Learning Representations,
2020.

Chithrananda, S., Grand, G., and Ramsundar, B. Chemberta:
large-scale self-supervised pretraining for molecular prop-
erty prediction. arXiv preprint arXiv:2010.09885, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Ethayarajh, K. How contextual are contextualized word

9



MOL-AE: Auto-Encoder Based Molecular Representation Learning With 3D Cloze Test Objective

representations? comparing the geometry of bert, elmo,
and gpt-2 embeddings. arXiv preprint arXiv:1909.00512,
2019.

Fang, X., Liu, L., Lei, J., He, D., Zhang, S., Zhou, J., Wang,
F., Wu, H., and Wang, H. Geometry-enhanced molecular
representation learning for property prediction. Nature
Machine Intelligence, 4(2):127–134, 2022a.

Fang, Y., Zhang, Q., Yang, H., Zhuang, X., Deng, S., Zhang,
W., Qin, M., Chen, Z., Fan, X., and Chen, H. Molecular
contrastive learning with chemical element knowledge
graph. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 36, pp. 3968–3976, 2022b.

Feng, S., Ni, Y., Lan, Y., Ma, Z.-M., and Ma, W.-Y. Frac-
tional denoising for 3d molecular pre-training. In Interna-
tional Conference on Machine Learning, pp. 9938–9961.
PMLR, 2023.
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A. Related Work
Early approaches to molecular representation learning predominantly focused on 1D SMILES (Wang et al., 2019;
Chithrananda et al., 2020; Guo et al., 2021; Honda et al., 2019) and 2D graphs (Li et al., 2021; Lu et al., 2021; Fang
et al., 2022b; Xia et al., 2022). Recently, there has been a growing interest in 3D molecular data, which could provide
a more comprehensive reflection of physical properties, including information not captured by 1D and 2D data, such as
conformation details.

Recent developments in 3D modeling involve self-supervised learning directly from unlabeled 3D data to learn informative
features (Liu et al., 2022a; Stärk et al., 2022; Zhou et al., 2023; Yu et al., 2023; Feng et al., 2023).

Regarding model structure, most 3D molecular representation learning has used encoder-only methods, which include
Transformer-based encoders and GNN-based encoders. For Transformer-based models, a common approach is to encode the
relative positions of atoms as attention bias to enable the model to understand 3D information (Zhou et al., 2023; Yu et al.,
2023; Luo et al., 2022). For GNN-based encoder models, a prevalent method involves treating relative atom information as
edge features and utilizing message passing (Gilmer et al., 2017) for representation learning (Feng et al., 2023).

Regarding pre-training objectives, the primary methods include geometry prediction and coordinate denoising. In the case
of geometry prediction, models are trained to predict intrinsic geometric properties of molecules, such as bond lengths,
bond angles (Fang et al., 2022a), shortest paths (Luo et al., 2022; Yu et al., 2023), node types (Zhou et al., 2023), and
more. For coordinate denoising, the approach involves introducing random noise to the input coordinates, and then training
the model to denoise them using an SE(3) head to recover the original coordinates (Luo et al., 2022; Yu et al., 2023).
Additionally, coordinate denoising is often combined with distance reconstruction (Zhou et al., 2023) to achieve enhanced
model performance.

B. Performance of Uni-Mol with PE on Downstream Tasks
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Figure 5. Impact of introducing PE as additional Identifier to vanilla Uni-Mol.

We modify the original Uni-Mol model by adding positional encoding to the representation of each atom to assist the model
in better distinguishing between different atoms. And this approach is referred to as Uni-Mol-PE. As shown in Figure
5(a), compared to the original Uni-Mol model, the Uni-Mol-PE model exhibits lower reconstruction errors, smaller loss
fluctuations, and better convergence during pre-training. This indicates that introducing positional encoding can indeed help
the model distinguish between different atoms to reconstruct the corrupted structural information and compensate for the
disrupted original identifier.

However, when comparing the performance of the Uni-Mol model and the Uni-Mol-PE model on different downstream tasks
(shown in Figure 5(b)), we find that the Uni-Mol-PE model exhibits a decrease in performance compared to the Uni-Mol
model on several downstream tasks. This indicates that directly incorporating the atomic order information contained in the
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SMILES into the model may not always be advantageous for the model in molecular representation learning. This is because
the atomic order information contained in the SMILES may be biased, and providing a predefined order for different atoms,
similar to NLP models, may not necessarily be helpful in learning a good molecular representation.

C. Analysis of Transformer-M
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Figure 6. Transformer-M also faces inconsistency problem and twisted optimization problem.

We perform the same analytic experiments as Section 3 on another widely used EnCD 3D molecular pre-training model,
Transformer-M (Luo et al., 2022). The observed phenomena closely resemble those of Uni-Mol. The results are shown in
Figure 6.

• Transformer-M also struggles with the impact of inconsistency (same as Uni-Mol in Section 3.1). Since
Transformer-M only provides source codes for fine-tuning on QM9 dataset, we conduct reconstruction probing
on QM9 (Figure 6.a) and downstream performance probing on three representative downstream tasks of QM9 (Fig-
ure 6.b, the metric is Mean Absolute Error, lower is better). The results indicate that deeper representations in
Transformer-M excel at reconstruction but exhibit progressively poorer downstream performance, indicating the same
inconsistency problem within Transformer-M. Therefore, directly fine-tuning the entire model on downstream tasks
with an encoder-only model may affect performance.

• Transformer-M also faces the issue of twisted optimization (same as Uni-Mol in Section 3.2). Similar to Uni-Mol,
Transformer-M also treats the noisy atomic structural information as identifiers for different atoms, leading to difficulty
in distinguishing different atoms after noise addition, thus causing higher reconstruction loss. To address this issue,
we introduce sequential position encoding determined by the order of atoms in SMILES for the Transformer-M
model, referred to as Transformer-M-PE. The comparison reveals that Transformer-M-PE exhibits significantly lower
reconstruction loss compared to the Transformer-M model (Figure 6.c).

It’s worth noting that Transformer-M utilizes a completely different pre-training dataset and fine-tuning protocol from
Uni-Mol, thus can strongly confirm the universality of the observed two phenomena in EnCD models.
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D. Datasets
Pre-training Datasets We use the dataset provided by Zhou et al. (2023), which contains 19M molecules and 209M
conformations generated by ETKGD (Riniker & Landrum, 2015) and Merck Molecular Force Field (Halgren, 1996). During
the pre-training process, to ensure training efficiency, we remove all hydrogen atoms in the pre-training dataset.

Fine-tuning Datasets We conduct experiments on the MoleculeNet(Wu et al., 2018) benchmark in the molecular property
prediction task. MoleculeNet serves as a widely recognized benchmark in the field of molecular property prediction. Here,
we offer the statistics and basic information of the MoleculeNet benchmark datasets in Table 6.

Table 6. Summary information of the MoleculeNet benchmark datasets.

Dataset Tasks Task type Molecules (train/valid/test) Describe

QM7 1 Regression 5,464/685/681 Electronic properties
QM8 12 Regression 17,428/2,179/2,179 Excited state properties
QM9 3 Regression 107,108/13,388/13,388 Energetic, electronic and thermodynamic properties
ESOL 1 Regression 902/113/113 Water solubility

FreeSolv 1 Regression 513/64/64 Hydrogen free energy
Lipo 1 Regression 3,360/420/420 Octanol/water distribution ratio, coefficient

BACE 1 Classification 1,210/151/151 Binding results of human BACE-1 inhibitors
BBBP 1 Classification 1,631/204/204 Blood-brain barrier penetration

ClinTox 2 Multi-label classification 1,182/148/148 Clinical trial toxicity and FDA approval status
Tox21 12 Multi-label classification 6,264/783/783 Qualitative toxicity measurements

ToxCast 617 Multi-label classification 6,860/858/858 Toxicology data based on in vitro screening
SIDER 27 Multi-label classification 1,141/143/143 Adverse drug reactions to the 27 systemic organs

HIV 1 Classification 32,901/4,113/4,113 The ability to suppress HIV replication
MUV 17 Multi-label classification 74,469/9,309/9,309 A subset of PubChem BioAssay
PCBA 128 Multi-label classification 350,343/43,793/43,793 Bioactivities data generated by high-throughput screening

Evaluation protocol of QM9. QM9 contains several quantum mechanical properties of different quantitative ranges, and
we select homo, lumo and gap of similar quantitative range, following the setup of the previous work (Zhou et al., 2023).
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E. Hyper-Parameter Configuration
We implement MOL-AE using 15 stacked Transformer layers in encoder and 5 stacked Transformer layers in decoder, each
with 64 attention heads. The model dimension and feedforward dimension of each Transformer layer are 512 and 2048. The
total number of MOL-AE’s parameters is 48M. We use Adam (Kingma & Ba, 2014) and polynomial learning rate scheduler
to train MOL-AE and set the learning rate 1e-4, weight decay 1e-4, warmup step 10K. The total training step is 1M and
each batch has 128 samples at maximum. We train MOL-AE on a single NVIDIA A100 GPU for about 2 days.

For more pre-training hyper-parameters, please refer to Table 7.

Table 7. MOL-AE hyper-parameters for pre-training.
Hyper-parameters Value

Learning rate 1e-4
LR scheduler polynomial decay

Warmup updates 10K
Max updates 1M

Batch size 128
Distance loss function and its weight Smooth L1, 10.0

Coordinate loss function and its weight Smooth L1, 5.0
Atom loss function and its weight Cross entropy, 1.0

FFN dropout 0.1
Attention dropout 0.1

Embedding dropout 0.1
Num of encoder layers 15

Num of encoder attention heads 64
Encoder embedding dim 512

Encoder FFN dim 2048
Num of decoder layers 5

Num of decoder attention heads 64
Decoder embedding dim 512

Decoder FFN dim 2048
Adam (β1, β2) (0.9,0.99)

Drop ratio 0.15
Vocabulary size (atom types) 30

Activation function GELU

In different downstream task, we use different hyper-parameters. For detailed fine-tuning hyper-parameters, please refer to
Table 8.

Table 8. MOL-AE hyper-parameters for fine-tuning.
Tasks Epochs Batch size Learning rate Warmup Ratio Dropout Pooler-dropout

BACE 20 64 1e-4 0.36 0.1 0.2
BBBP 40 128 4e-4 0.18 0.1 0.1
TOX21 80 128 1e-4 0.06 0.1 0.1
SIDER 40 32 5e-4 0.5 0.1 0

HIV 5 256 5e-5 0.1 0.1 0.2
MUV 20 128 2e-5 0.3 0.1 0.1
PCBA 20 128 1e-4 0.06 0.1 0.1

ClinTox 80 256 5e-5 0.25 0.1 0.7
ToxCast 160 64 1e-4 0.06 0.1 0.2

QM9 40 128 1e-4 0.06 0.1 0
QM8 120 32 1e-4 0.02 0 0
QM7 200 32 3e-4 0.06 0.1 0.1
ESOL 200 256 5e-4 0.06 0.1 0.4

FreeSolv 160 64 8e-5 0.1 0.1 0.4
Lipo 100 64 1e-4 0.24 0.1 0.1
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F. More Strict Validation of The Capability of Auto-Encoder
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Figure 7. Probing experiments on MOL-AE.
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(b) Downstream task probing.

Figure 8. Probing experiments on MOL-AE-noise.

Here, we conduct more straightforward experiments to better demonstrate that using the AE model can effectively escape
from the negative impacts caused by inconsistency problem. Specifically, we carry out the two probing experiments and
one fine-tuning experiment on MOL-AE and MOL-AE-noise. MOL-AE-noise is a small variant of MOL-AE. The only
difference between them lies in the strategy used to disrupt input coordinates. MOL-AE employs the dropping strategy,
while MOL-AE-noise introduces random noise. Both MOL-AE and MOL-AE-noise contain 15 encoder layers and 5
decoder layers.

F.1. Probing Experiments on MOL-AE

Similar to layer-wise probing in section 3.1, we conduct the same two probing experiments on MOL-AE (fix the whole
model and only finetune task head). Due to the absence of representations for dropped atoms in MOL-AE’s encoder, we
probe representations solely from layer 16 to layer 20. The reconstruction loss is shown in Figure 7(a), and the downstream
performance is detailed in Figure 7(b). It’s shown that in MOL-AE, as the layer depth increases, the corresponding
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representations performs better in reconstructing coordinates (pre-training task) but worse in downstream tasks. This
underscores the necessity of adopting the AE structure and omitting the decoder in downstream tasks.

F.2. Probing Experiments on MOL-AE-noise

In MOL-AE-noise, since all atoms in the encoder have valid representations, we can conduct the same layer-wise probing
on representations from layers 1-20. The reconstruction loss is presented in Figure 8(a), and the downstream performance is
detailed in Figure 8(b). The results indicate that since MOL-AE-noise introduces Identifier in the decoder, there is a clearer
division of labor between its encoder and decoder. Specifically, compared to Uni-Mol (Figure 2), the reconstruction loss of
the last five layers in MOL-AE-noise decreases more rapidly and the generalization to downstream tasks of each encoder
layer in the MOL-AE-noise is more stable. This indicates that pre-training with an AE structure and abandoning the decoder
in downstream tasks is more advantageous for the model to escape from the negative impacts caused by inconsistency.

F.3. Fine-tuning Experiments on MOL-AE

Table 9. Performance comparison of MOL-AE and MOL-AE-full on downstream tasks.
Method Tox21↑ HIV↑ QM7↓ FreeSolv↓

MOL-AE 80.0 80.6 53.8 1.45
MOL-AE-full 79.1 78.9 56.2 1.67

We also examine the impact of fine-tuning only the encoder of MOL-AE versus fine-tuning both the encoder and decoder of
MOL-AE (MOL-AE-full) on downstream task, as shown in Table 9. It can be observed that despite MOL-AE-full having
more learnable parameters, its performance consistently lags behind MOL-AE on downstream tasks, indicating the necessity
of using an AE model for pre-training and removing the decoder in downstream tasks.

G. Order Information Contained in PE
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Figure 9. Training process of MOL-AE when different PE is adopted.

To generate a PE determined by a random function, we first choose a threshold, max len, to ensure that the number of atoms in
each molecule does not exceed max len. Then, before the model training begins, we use np.random.permutation(max len) to
instantiate a random mapping function fidx : [1,max len] 7→ [1,max len]. This random mapping is fixed once instantiated.
During training, if an atom has a position i in the SMILES, then its random PE is PE(fidx(i)). As shown in Figure 9, when
using Random PE, the model training exhibits larger fluctuations, and the final reconstruction loss is higher.
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H. Impact of Adding PE in Decoder
We train a new Mol-AE model without PE in decoder (Mol-AE w/o PE) and compare the training curve of Mol-AE w/o PE
and that of Mol-AE. We can find that the addition of PE in decoder will significantly improve the reconstruction ability of
the model and further improve the convergence in the pre-training process, as shown in Figure 10.
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Figure 10. When PE is added to MOL-AE, the training convergence and stability are significantly improved.

I. Ablation Study on Adding PE to Different Layers

Table 10. Ablation study on adding PE to different layers.
Data Layer 0 Layer 5 Layer 10 Layer 15 Layer 16 Layer 17 Layer 18 Layer 19 Layer 20

Tox21 ↑ 78.2 77.9 77.4 78.9 78.6 78.9 77.6 77.1 77.3
HIV ↑ 78.4 78.1 77.6 79.4 79.3 79.7 78.6 79.1 78.3
QM7 ↓ 57.2 58.1 59.4 55.3 55.4 56.9 57.7 57.4 57.8

FreeSolve ↓ 2.11 2.13 2.15 1.72 1.69 1.77 1.73 1.76 1.84

We conduct an ablation study to evaluate which layer benefits more from the addition of PE. Specifically, in the AE model
consisting of 15 encoder layers and 5 decoder layers, we individually attempt to add PE to the outputs of different layers
of the model (where layer=0 indicates that PE is added to the input of the entire model) and report the performance of
fine-tuning encoder on downstream tasks. The results are presented in Table 10. We observe two interesting phenomena:

• If PE is incorporated into the encoder, the performance consistently becomes worse in downstream tasks. Moreover,
the closer PE is incorporated to the latent representations, the more pronounced performance degradation. This could
be attributed to the sequential order bias contained in PE would have a greater negative impact when PE is too close to
the latent representations in encoder.

• If PE is added to the decoder, there is no significant change in downstream performance when the layer where PE is
added is relatively close to the latent representations (e.g., Layer 16, 17).

However, for simplification, when we attempt to add PE in the decoder, we directly incorporate PE into the latent
representations, as many Seq2Seq models typically incorporate PE directly into the decoder’s input (Raffel et al., 2020;
Lewis et al., 2019), which is similar to our approach of adding PE to the latent representation.

J. Impact of Drop Ratio
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Here, we evaluate how different drop ratio would affect the model’s performance. The results are show in Table 11. We
can observe that even with a drop ratio of 60% (which is really high for molecules), the performance of MOL-AE does
not obviously decrease (still better than Uni-Mol). However, when drop ratio=0.6, under the Transformer architecture, the
floating-point operations performed is approximately only 22% compared to when the dropratio=0.15 (0.42/0.852). Such
acceleration suggests that MOL-AE may hold great potential for large molecule modeling.

Table 11. The impact of drop ratio on downstream performance.
Dataset Drop 7% Drop 15% Drop 30% Drop 45% Drop 60% Drop 75% Drop 90% Uni-Mol

Tox21↑ 79.2 80.0 80.0 79.4 79.2 78.2 75.3 78.9
HIV↑ 79.6 80.6 79.1 79.0 80.1 78.3 76.3 78.6
QM7↓ 53.6 53.8 52.8 55.3 56.0 60.7 67.2 58.9

FreeSolv↓ 1.49 1.45 1.47 1.61 1.66 2.02 2.31 1.88

K. Details of SE(3)-equivariant head
The SE(3)-equivariant head in Mol-AE refers to the coordinate prediction head that is equivariant under transformations
in SE(3) group, such as 3D translations and rotations, which are essential for 3D spatial tasks. We use the same SE(3)-
equivariant head from Uni-Mol (Zhou et al., 2023). The head can be formulated as follows:

x̂i = xi +

n∑
j=1

(xi − xj) cij
n

, cij = ReLU
((
qL
ij − q0

ij

)
U
)
W ,

Here, xi is the i-th atom’s coordinates in the input molecule, and qL
ij is the Pair-Wise Feature between i-th atom and j-th

atom at the L-th layer. U ∈ RH×H and W ∈ RH×1 are the projection matrices.
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