N?: A Unified Python Package and Test Bench for
Nearest Neighbor-Based Matrix Completion

Caleb Chin* Aashish Khubchandani Harshvardhan Maskara
Cornell University Cornell University Cornell University
Kyuseong Choi Jacob Feitelberg Albert Gong Manit Paul

Cornell University ~ Columbia University =~ Cornell University ~ University of Pennsylvania

Tathagata Sadhukhan Anish Agarwal Raaz Dwivedi
Cornell University Columbia University Cornell University
Abstract

Nearest neighbor (NN) methods have re-emerged as competitive tools for matrix
completion, offering strong empirical performance and recent theoretical guar-
antees, including entry-wise error bounds, confidence intervals, and minimax
optimality. Despite their simplicity, recent work has shown that NN approaches are
robust to a range of missingness patterns and effective across diverse applications.
This paper introduces N2, a unified Python package and testbed that consolidates a
broad class of NN-based methods through a modular, extensible interface. Built
for both researchers and practitioners, N? supports rapid experimentation and
benchmarking. Using this framework, we introduce a new NN variant that achieves
state-of-the-art results in several settings. We also release a benchmark suite of
real-world datasets—from healthcare and recommender systems to causal inference
and LLM evaluation—designed to stress-test matrix completion methods beyond
synthetic scenarios. Our experiments demonstrate that while classical methods
excel on idealized data, NN-based techniques consistently outperform them in
real-world settings.

1 Introduction

Nearest neighbor methods are a class of non-parametric algorithms widely used for regression,
classification and pattern recognition. Due to their scalability and success under models with minimal
assumptions, nearest neighbor methods have recently been adopted for practical fields such as matrix
completion and counterfactual inference in panel data settings. Matrix completion is a well-established
field that supplies practitioners with many tools to recover underlying matrices using partial or even
noisy observations [HMLZ15} Chal5, KMO10]], with recommendation systems [KBV09, Rec11]] as
an important use-case. Panel data counterfactual inference aims at learning the treatment effect of
policies across time [Bai09, [BN21,/ABD™21]]. One important example is individualized healthcare
predictions [KSS™19]. Nearest neighbor methods were recently recognized as effective in providing
granular inference guarantees for both matrix completion and counterfactual inference when either the
missingness or the policy treatment are not completely random and confounded [MCT9, [DTT™22a,
ADSS23]).

Despite nearest neighbor methods popularity, there is no unified package that lets a user easily switch
between different kinds of nearest neighbor algorithms for matrix completion and counterfactual

*ctc92 @cornell.edu

Al for Tabular Data workshop at EurIPS 2025.

inference. In this paper, we present a packageE] to unify several nearest neighbor methods under a
single interface, so users can easily choose the method that suits their data the best.

1.1 Our contributions
Overall, our contributions in this paper are summarized below:

1. We provide a unified, easy to implement nearest neighbor library that contains a breadth of
nearest neighbor algorithms for matrix completion problems.

2. We present a unified framework for nearest neighbor algorithms that facilitates extending to
new variants.

3. We demonstrate our library’s wide applicability through several real-world data sets in a
new test bench called N2-Bench.

Existing software for matrix completion and nearest neighbors Scikit-Learn [PVG™11], a
popular Python package for machine learning tools, implements a simple k-nearest neighbor algorithm
for imputing missing values in a feature matrix. However, their implementation is designed for the
feature matrix setting. So, neighbors are only defined across samples (row-wise). Additionally, they
do not provide any implementation for more advanced nearest neighbor algorithms, nor does their
package allow for easy extendability like our proposed package.

2 Nearest Neighbors for Matrix Completion

We now introduce the mathematical model for matrix completion:
for i€ [N],te[T]:

Z' L Xl(lﬂf),,Xn(’L,t) ~ lffi,t lf Ai,t = 1,
“* 7] unknown if A,,=0.

ey

In other words, for matrix entries where A;, = 1, we observe n measurements Z; ; that takes
value X, ; realized from distribution x; .. Whenn = 1, i.e., Z; ; = X1 (¢,1), we refer to @) as the
scalar matrix completion model; scalar matrix completion is the most common problem posed in
the literature [CR12, RecI1l[KBV09, [HMLZ15|[Chal5| DTT*22a, IDTT*22bl[ADSS23||, where the
goal is to learn the mean of the underlying distributions {6; s = [@dy; () }icn),ecr)- When there
are more than one observed measurements per entry, i.e., Z; s = [X1(i,1), ..., X, (i,t)] forn > 2,
we refer to (I)) as the distributional matrix completion problem, the goal being the recovery of the
distributions as a whole. We refer the readers to App.[A]for a detailed discussion on the structural
assumptions imposed on the model (T).

3 NZ? Package and Interface

We now present our unified Python package, N2, for nearest neighbor algorithms for matrix com-
pletion. In particular, we provide a class structure which abstracts the estimation procedure utilized
in each different nearest neighbor method and is facilitated by DISTANCE and AVERAGE modules
described in more detail in App.[C| On top of that, our library enables easy extension to other nearest
neighbors algorithms and other data types on top of scalars and distributions. For example, as long as
a distance and average notion are well defined, our library can be easily applied to a matrix of images
or text strings.

Interface. The core functionality of N2 is based on two abstract classes: EstimationMethod and
DataType. The details of these classes can be found in App.[B] To use our library, a user simply
has to instantiate a composite class NearestNeighborImputer with their EstimationMethod
and DataType of choice. We provide constructor functions to automatically create popular
NearestNeighborImputer classes such as a two-sided nearest neighbor estimator with the scalar
data type. From a design pattern point of view, this is known as a Composite design pattern [GHIV93|

https://anonymous.4open.science/r/NearestNeighbors-DAF3

https://anonymous.4open.science/r/NearestNeighbors-DAF3

pg. 163]. We use this design pattern so that anyone looking to customize the estimation procedure
can do so for any kind of data type simultaneously. Similarly, with the exception of doubly robust
estimators, each estimation procedure works out of the box with any data type that implements the
DataType abstract class. The Doubly robust estimation method does not work out of the box with
distributions because a subtraction operation is not well defined in the distribution space.

Finally, the user simply needs to input (i) a data matrix, (ii) a mask matrix which specifies which
values are missing, and (iii) the row and column to impute. Thus, a user can test out different
estimation procedures by changing just one line of code. Separately from the core functionality,
we have also implemented several cross-validation classes detailed in App. [D] which take in a
NearestNeighborImputer class and find the best hyperparameters to use (e.g., distance thresholds
and weights).

4 N2-Bench and Results

In this section, we evaluate several nearest neighbor algorithms provided by our library, N2, on
real-world data. As part of our package, we include data loaders which automatically download the
necessary datasets and format them for evaluation. These datasets and loaders comprise our proposed
benchmark for nearest neighbor matrix completion algorithms, N2-Bench. We also test several
existing popular matrix completion techniques [HMLZ135!Chal5]. For details on our experimental
setup, computing hardware, and boxplot generation, see App. [E]

4.1 Personalized healthcare: HeartSteps

The HeartSteps V1 study (HeartSteps study for short) is a clinical trial designed to measure the
efficacy of the HeartSteps mobile application for encouraging non-sedentary activity [KSS™19]. The
HeartSteps V1 data and its subsequent extensions have been widely used for benchmarking a variety
of tasks including counterfactual inference of treatment effect [DTT"22al, ICFC™24], reinforcement
learning for intervention selection [LGKM20]], and micro-randomized trial design [QWC™22]|. In the
HeartSteps study, N = 37 participants were under a 6-week period micro-randomized trial, where
they were provided with a mobile application and an activity tracker. Participants independently
received a notification with probability p = 0.6 for 5 pre-determined decision points per day for 40
days (I" = 200). We denote observed entries Z; ; as the mean participant step count for one hour
after a notification was sent and unobserved entries as the unknown step count for decision points
where no notification was sent. Our task is to estimate the counterfactual outcomes: the participant’s
step count should they have received a different treatment (notification or no notification) than they
did at specific time points during the study.

Results & Discussion. We benchmark the performance of the matrix completion methods by
measuring absolute error on held-out observed step counts across 10 participants in the last 50
decision points. We use the remaining data to find nearest neighbor hyperparameters using cross-
validation. To benchmark distributional nearest neighbors methods (KernelNN and W>;NN) against
the scalar methods, we first set each entry to have the number of samples n = 60, where each sample
is the 1 minute step count before imputation. Then, we take the mean of the imputed empirical
distribution as the estimate.

In Fig.[I(a), we compare the absolute error of the imputed values across the nearest neighbor and
baseline methods. The scalar nearest neighbor methods far out-perform USVT and are on par with
Softlmpute. The two distributional nearest neighbor methods far outperform all methods operating in
the scalar setting; it suggests that matching by distributions collect more homogeneous neighbors,
thereby decreases the bias of the method, compared to matching only the first moments as done in
most scalar matrix nearest neighbor methods.

In Fig.[T]panel (b), we show an example of an imputed entry in the distributional nearest neighbors
setting. In this case, the ground truth distribution is bimodal, as the participant was largely sedentary
(0 steps) with small amounts of activity. While both KernelNN and W,;NN capture the sedentary
behavior of the participant, KernelNN is able to recover the bimodality of the original distribution
whereas WoNN cannot.

7! Ground truth
KernelNN
WoNN

!
i
|
3- i
206~
2- 504~
1- 0.2 - i
0-0 i I-I.-‘--I'-_r_ll T
0 00 25 50 75

USVT Soft Col- Row- DR- TS- Auto- AW-Kernel-Wo-
Impute NN NN NN NN NN NN NN NN Step count

Proportion

Absolute error

(a) Absolute error of mean step count prediction (b) KernelNN vs. W>NN

Figure 1: HeartSteps: estimating step count under scalar and distributional matrix completion
settings. Panel (a) shows the absolute error of predicted step count of the nearest neighbor methods
against matrix completion baselines (Softimpute, USVT). Panel (b) shows an example of an imputed
entry in the distributional matrix completion setting.

4.2 Movie recommendations: MovieLens

The MovieLens 1M dataset [HK15]] contains

1 million ratings (1-5 stars) from 6,040 users

on 3,952 movies. Collaborative filtering on 4 -
MovieLens has long been a benchmark for
matrix-completion methods: neighborhood-
based algorithms [SKKRO1], latent-factor mod-
els [KBV09], and, more recently, nearest neigh-
bors interpreted as blind regression under a la-
tent—variable model [LSSY19]]. These assist
practitioners in data-driven recommendation sys-
tems, since more accurate rating imputation
directly drives better personalized suggestions
and user engagement. This is a standard scalar 0

matrix completion problem with N = 6,040 VY mpute NN NN NN NN NN NN
and T' = 3,952. Each rating is an integer in

{1,...,5}. The dataset has a very high per-

centage of missing values: 95.53% missing. Figure 2: MovieLens: Estimation error for a
Our task is to estimate unobserved ratings us- random subsample of size 500. For experimental
ing various matrix completion algorithms. We settings and discussion see Sec.[d.2]

benchmark the performance of nearest neigh-

bors against matrix factorization by measuring absolute error on held-out ratings. See App. for
additional details on the dataset.

Absolute error
[\
]

Results & Discussion. We fit the nearest neighbor methods using a random sample of size 100
from the first 80% of the dataset to choose nearest neighbor hyperparameters via cross-validation.We
then test the method on a random subsample of size 500 from the last 20% of the dataset. As observed
in Fig. [2] all nearest neighbor methods have a lower average error than USVT and a much lower
standard deviation of errors, with CoINN, RowNN, DRNN, and AutoNN performing the best out of
the nearest neighbor methods. SoftImpute performs on par with the nearest neighbor methods. Note
that the nearest neighbor methods perform well even while only being trained on a tiny subset of the
data of size 100 out of the 1 million ratings available.

5 Conclusion

In this paper, we present a unified framework, Python library (N?), and test bench (IN?-Bench) for
nearest neighbor-based matrix completion algorithms. We demonstrate how our library supports a
diverse set of datasets spanning patient-level healthcare causal inference (HeartSteps) and recommen-

dation systems (MovieLens). Our framework and library facilitates researchers and practitioners to
try NN methods on novel datasets as well as extend the package with more complex methods.

In future work, we plan on speeding up the runtime of N2, particularly for commonly used settings
such as scalars-valued matrices. We also plan on adding support for distributed datasets too large
to fit into memory. Finally, we plan on extending the library to other nearest neighbor algorithms,
such as approximate nearest neighbors methods and ones that use linear regression instead of simple
averaging.

References

[ABD*21] Susan Athey, Mohsen Bayati, Nikolay Doudchenko, Guido Imbens, and Khashayar
Khosravi. Matrix completion methods for causal panel data models. Journal of the
American Statistical Association, 116(536):1716-1730, 2021.

[ADH10] Alberto Abadie, Alexis Diamond, and Jens Hainmueller. Synthetic control methods for
comparative case studies: Estimating the effect of california’s tobacco control program.
Journal of the American statistical Association, 105(490):493-505, 2010.

[ADSS23] Anish Agarwal, Munther Dahleh, Devavrat Shah, and Dennis Shen. Causal matrix
completion. In The Thirty Sixth Annual Conference on Learning Theory, pages 3821—
3826. PMLR, 2023.

[AI22] Susan Athey and Guido W Imbens. Design-based analysis in difference-in-differences
settings with staggered adoption. Journal of Econometrics, 226(1):62-79, 2022.

[Bai09] Jushan Bai. Panel data models with interactive fixed effects. Econometrica, 77(4):1229—
1279, 2009.

[BBBK11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for
hyper-parameter optimization. Advances in neural information processing systems, 24,
2011.

[BGKL17] Jérémie Bigot, Ratil Gouet, Thierry Klein, and Alfredo Lépez. Geodesic PCA in the
Wasserstein space by convex PCA. Annales de I’ Institut Henri Poincaré, Probabilités et
Statistiques, 53(1):1 — 26, 2017.

[Big20] Bigot, Jérémie. Statistical data analysis in the wasserstein space*. ESAIM: ProcS,
68:1-19, 2020.

[BN21] Jushan Bai and Serena Ng. Matrix completion, counterfactuals, and factor analysis of
missing data. Journal of the American Statistical Association, 116(536):1746-1763,
2021.

[BYC13] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. In
International conference on machine learning, pages 115-123. PMLR, 2013.

[CAD20] Samuel Cohen, Michael Arbel, and Marc Peter Deisenroth. Estimating barycenters of
measures in high dimensions. arXiv preprint arXiv:2007.07105, 2020.

[CFC*24] Kyuseong Choi, Jacob Feitelberg, Caleb Chin, Anish Agarwal, and Raaz Dwivedi.
Learning counterfactual distributions via kernel nearest neighbors. arXiv preprint
arXiv:2410.13381, 2024.

[Chal5] Sourav Chatterjee. Matrix estimation by Universal Singular Value Thresholding. The
Annals of Statistics, 43(1):177 — 214, 2015.

[CR12] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimiza-
tion. Communications of the ACM, 55(6):111-119, 2012.

[DTT*22a] Raaz Dwivedi, Katherine Tian, Sabina Tomkins, Predrag Klasnja, Susan Murphy, and
Devavrat Shah. Counterfactual inference for sequential experiments. arXiv preprint
arXiv:2202.06891, 2022.

[DTT*22b] Raaz Dwivedi, Katherine Tian, Sabina Tomkins, Predrag Klasnja, Susan Murphy, and
Devavrat Shah. Doubly robust nearest neighbors in factor models. arXiv preprint
arXiv:2211.14297, 2022.

[DZCM22] Raaz Dwivedi, Kelly Zhang, Prasidh Chhabaria, and Susan Murphy. Deep dive into
personalization. Working paper, 2022.

[FCAD24] Jacob Feitelberg, Kyuseong Choi, Anish Agarwal, and Raaz Dwivedi. Distributional
matrix completion via nearest neighbors in the wasserstein space. arXiv preprint
arXiv:2410.13112, 2024.

[GHC™25] Jadon Geathers, Yann Hicke, Colleen Chan, Niroop Rajashekar, Justin Sewell, Susannah
Cornes, Rene Kizilcec, and Dennis Shung. Benchmarking generative ai for scoring
medical student interviews in objective structured clinical examinations (osces). arXiv
preprint arXiv:2501.13957, 2025.

[GHIV93] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Abstraction and reuse of object-oriented design. In ECOOP’93—Object-Oriented
Programming: 7th European Conference Kaiserslautern, Germany, July 26-30, 1993
Proceedings 7, pages 406-431. Springer, 1993.

[HBB*20] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt. Measuring massive multitask language understanding. arXiv
preprint arXiv:2009.03300, 2020.

[HK15] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.
ACM Trans. Interact. Intell. Syst., 5(4), December 2015.

[HMLZ15] Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion
and low-rank svd via fast alternating least squares. The Journal of Machine Learning
Research, 16(1):3367-3402, 2015.

[HunO7] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90-95, 2007.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30-37, 2009.

[KMO10] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion
from a few entries. IEEE transactions on information theory, 56(6):2980-2998, 2010.

[KSST19] Predrag Klasnja, Shawna Smith, Nicholas J Seewald, Andy Lee, Kelly Hall, Brook
Luers, Eric B Hekler, and Susan A Murphy. Efficacy of contextually tailored suggestions
for physical activity: a micro-randomized optimization trial of heartsteps. Annals of
Behavioral Medicine, 53(6):573-582, 2019.

[LGKM20] Peng Liao, Kristjan Greenewald, Predrag Klasnja, and Susan Murphy. Personalized
heartsteps: A reinforcement learning algorithm for optimizing physical activity. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 4(1), March 2020.

[LR19] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume
793. John Wiley & Sons, 2019.

[LSSY19] Yihua Li, Devavrat Shah, Dogyoon Song, and Christina Lee Yu. Nearest neighbors
for matrix estimation interpreted as blind regression for latent variable model. /EEE
Transactions on Information Theory, 66(3):1760-1784, 2019.

[MC19] Wei Ma and George H Chen. Missing not at random in matrix completion: The effec-
tiveness of estimating missingness probabilities under a low nuclear norm assumption.
Advances in neural information processing systems, 32, 2019.

[MFS™17] Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schélkopf,
et al. Kernel mean embedding of distributions: A review and beyond. Foundations and
Trends® in Machine Learning, 10(1-2):1-141, 2017.

[OW23] Orzechowski and Walker. The Tax Burden on Tobacco, 1970-2019 | Data | Cen-
ters for Disease Control and Prevention — data.cdc.gov. https://data.cdc.gov/
api/views/7nwe-3aj9/rows.csv7accessType=DOWNLOAD, 2023. [Accessed 16-
05-2025].

https://data.cdc.gov/api/views/7nwe-3aj9/rows.csv?accessType=DOWNLOAD
https://data.cdc.gov/api/views/7nwe-3aj9/rows.csv?accessType=DOWNLOAD

[PVGT11]

[PXW24]

[QWC*22]

[Recl1]

[SKKRO1]

[SPD24]

[SPD25]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

Felipe Maia Polo, Ronald Xu, Lucas Weber, Mirian Silva, Onkar Bhardwaj, Leshem
Choshen, Allysson Flavio Melo de Oliveira, Yuekai Sun, and Mikhail Yurochkin.
Efficient multi-prompt evaluation of llms. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Tianchen Qian, Ashley E Walton, Linda M Collins, Predrag Klasnja, Stephanie T Lanza,
Inbal Nahum-Shani, Mashfiqui Rabbi, Michael A Russell, Maureen A Walton, Hyesun
Yoo, et al. The microrandomized trial for developing digital interventions: Experimental
design and data analysis considerations. Psychological methods, 27(5):874, 2022.

Benjamin Recht. A simpler approach to matrix completion. Journal of Machine
Learning Research, 12(12), 2011.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collabo-
rative filtering recommendation algorithms. In Proceedings of the 10th International
Conference on World Wide Web, WWW °01, page 285-295, New York, NY, USA, 2001.
Association for Computing Machinery.

Tathagata Sadhukhan, Manit Paul, and Raaz Dwivedi. On adaptivity and minimax
optimality of two-sided nearest neighbors. arXiv preprint arXiv:2411.12965, 2024.

Tathagata Sadhukhan, Manit Paul, and Raaz Dwivedi. Adaptively-weighted nearest
neighbors for matrix completion. arXiv preprint arXiv:2505.09612, 2025.

A Structural assumptions

Provable guarantees of nearest neighbors in matrix settings (I) can be shown when structural
assumptions are imposed on the distributions ; ; and the missingness A; ;. We collect existing
results from [LSSY19, [DTT22bl ICFCt24| FCAD24, [SPD24, [SPD23]]. Given data with missing
observations from @ the practitioner is interested in learning information of the distributions, e.g.,
mean of the distributions {6, ; = [zdp; .(x)}.

The first assumption specifies the factor structure on the mean; that is, there exists latent factors
u;, vy that collectively characterize the signal of each entry (i, ¢) of the matrix [LSSY19, DTT"22al
ADSS23| ICEC*24| [FCAD24]. Such a factor model is analogous to the low rank assumptions
commonly imposed in matrix completion [CR12]. The second assumption specifies how the missing
pattern A; ; was generated; for instance missing completely at random (MCAR) assumes that A; ;
are independent to all other randomness present in the model () and that all entries have positive
probability of being observed.

A.1 Factor model

For the scalar matrix completion problem, i.e., @) with n = 1, the main goal is to learn (or
impute) the mean of the underlying distribution 6; ; for any missing entries [LSSYT19, DTT"22b,
DTT22al [ADSS23|,[SPD24!, [SPD25]|. The majority of this literature assumes (i) an additive noise
model y1;; = 6;+ + €;+ for centered i.i.d. sub-Gaussian noise ¢ and (ii) mean factor model, i.e.,
0i+ = f(u;,v;) for some latent factors u;, v, and real valued function f.

For the distributional matrix completion problem (i.e., (T) with n > 1) the main goal is to learn the
underlying distribution itself [CEC™ 24| [FCAD24]; a factor model is imposed on the distribution as a
whole. For instance, a factor model is assumed on the kernel mean embedding of distributions; that
is, there exist latent factors u; and v; and an operator g such that [k(z, -)dp; +(z) = g(u;, ve).

A.2 Missingness pattern

For both the scalar and distributional matrix completion problem (IJ), the missing pattern (i.e., how
the missingness A; ; was generated) can be categorized into three classes using the taxonomy of
[LR19]: missing-completely-at-random (MCAR), missing-at-random (MAR) and missing-not-at-
random (MNAR). MCAR assumes that the missingness A; ; is exogenous (independently generated
from all the randomness in the model) and i.i.d. with propensity P(4;; = 1) = p > 0 for all
(i,t). MAR is a more challenging scenario compared to MCAR as missingness is not exogenous,
but its randomness depends on the observations. Further, propensities p; ; may differ for entries
(i,t) but positivity still holds, i.e., min;e(n],¢e[) Pi,t > 0. An important instance for MAR is the
adaptive randomized policies [DZCM?22||. The MNAR setup is the most challenging as it assumes
the missingness depends on the unobserved latent confounders, while positivity may also be violated,
i.e., min;c(n tei) Pi,e = 0. The staggered adoption pattern, where a unit remains treated once a
unit is treated at some adoption time, is a popular example of MNAR, mainly because positivity is
violated. See [ABD™ 21} [AT22]] for more details on staggered adoption.

We briefly outline the structural assumptions existing nearest neighbor methods were shown to work
with provable guarantees; for all the existing methods, factor models (with slightly different details;
compare the mean factorization [LSSYT9] and the distribution factorization [CFC ™24, [FCAD24])
are all commonly assumed.

* (Scalar matrix completion) The vanilla versions of nearest neighbors (RowNN) in [LSSY 19|
DTT"22al| are shown to work for MCAR and MAR setup; the latter shows that simple
nearest neighbors can provably impute the mean when the missingness is fully adaptive
across all users and history. The variants of vanilla nearest neighbors DRNN [DTT™22b] is
proven to work under MCAR, while TSNN [SPD24] is proven to work under unobserved
confounding, i.e., MNAR.

» (Distributional matrix completion) The KerneINN [CFC*™24] is shown to recover the un-
derlying distribution under MNAR, whereas WoNN [FCAD?24] is shown to work under
MCAR.

B Class Structure Details

The core functionality of N2 is based on two abstract classes: EstimationMethod and DataType.

EstimationMethod classes contain the logic to impute a missing entry such as how to use calculated
distances. We separate this from the DataType abstraction because several estimation methods can
be used for multiple data types. For example, RowRowEstimator implements the RowNN procedure
for any data type given to it, such as scalars or distributions.

DataType classes implement a distance and average function for any kind of data type. For scalars we
use squared distance and simple averaging. For distributions, we implement two metrics, Wasserstein
(W2NN) and kernel maximum mean discrepancy (MMD, KernelNN). This abstract class allows for
our package to extend to any data types beyond the ones we tested. For instance, a practitioner can
easily add a DataType for text strings which uses vector embeddings to find distances and averages
between between strings without needing to rewrite any of the estimation procedure.

C Nearest neighbor algorithms

C.1 Unified framework

We introduce two general modules (namely DISTANCE and AVERAGE) from which the variants of
nearest neighbors are constructed. We introduce several shorthands used in the modules. Denote the
collection of measurements, missingness, and weights:
2= {Zjs}jemuery A= {Aishiemisern
and W= {wj,s}je(n) ser)-

Let ¢(z,2") be a metric between z,z’ € X for some space X. Further define $(Z;,, Z; s) as a
data-dependent distance between any two observed entries (4, ¢) and (7, s) of the matrix (. The two
modules can now be defined:

(i) DISTANCE(®, Z, .A): Additional input is the data-dependent distance between entries of
matrix @ and output is the collection of row-wise and column-wise distance of matrix:

row . Duspt AisAGsP(Zis; Zjs)

P = and
/ Zs;ﬁt Ai,sAj,s
il i > i AtAssD(Zje, Zj.s)
b 2izi AjtAjs ’
(ii) AVERAGE(p, W, Z, A): Additional input are the weights W, metric ¢ and output is the

optimizer

o= argmin g w;,sAjs0(T, Zj,s)-
reX .
JE[N],s€[T]

The DISTANCE module calculates the row-wise and column-wise distance of the matrix, by taking the
average of the observed entry-wise distance @(+, -). The AVERAGE module calculates the weighted
average of observed measurements, where the notion of average depends on the metric ¢ and the
space X on which the metric ¢ is defined. Notably, the weights VV in the AVERAGE module encodes
the entry information of the estimand.

Remark 1 The vanilla row-wise nearest neighbors [LSSYI9] that targets the mean 0;; =
J xdpi¢(z) of entry (i,t) is recovered by first applying DISTANCE with §(Z; s, Zjr s) =
(Zj s — Zjr s)? applying AVERAGE with the non-smooth weight w; s = =1(pi%" <m) - 1(p§ COI <0),
and using the metric ¢(x,y) = (x — y)?. Note that the non-smooth weight satisfies wj ¢ =
1(pi%" < m1), whereas wj s = 0 for s # t; by defining the nearest neighbor set Ny, := {j €
[N]: pi5" < m}, the AVERAGE module output can be rewritten as argmin,, cg ZjeNt,,,l Aji(x—

Zj,,) = |Nt7711|71 ZjeN“H Zj,t~

10

C.2 Ecxisting methods

We present existing variants of nearest neighbors using the two modules introduced App. all the
methods presented here are recovered by sequentially applying DISTANCE and AVERAGE with the
appropriate specification of @, ¢ and W.

For simple notation, we introduce a shorthand for the non-continuous weight

row

wj(‘?;t) (1, m2) == 1(PS" < m) - 1(pS% < ma).

All methods except AWNN and our newly proposed AutoNN, have binary weights i.e., w; s € {0,1}.
AutoNN, detailed in App. uses weights to carefully pool together the benefits of TSNN and
DRNN. AWNN [SPD25] improves upon RowNN by adaptively choosing the weights which optimally
balances the bias-variance tradeoff of RowNN as follows

(wf(i,t),...,wf\,(at)) =)
argmin 2log(2N)5% > vi+ Y opAripi R
(V1 mon) €8 KelN] kEIN]

where 52 is the estimated error and Ay is a simplex in RV see [SPD23] for details of . Tab.
contains a concise summary of the existing nearest neighbor variants; see App. [C] for a detailed
exposition for each methods.

Table 1: Variants of nearest neighbors for matrix completion.

Type Method P(x,y) o(z,y) Wj,s

n=1 RowNN [LSSY19] (Alg.]l) (x —y)? (z —y)? (P <y, pSo < 0)
CoINN [LSSY19] (Alg.[1) (z—y) (x—y)® LAY < 0,08 <o)
TSNN [SPD24] (Alg. 2] (z —y)? (@=9)> LS <, ps < 1)
AWNN [SPD23] (Alg.[5) (z —y)? (z —y)? wi(i,t) - 1(p% < 0)
DRNN [DTT*22b] (Alg.[3) RowNN + ColNN — TSNN
AutoNN (App.[C77) «-DRNN + (1 —«) - TSNN

—2

n>1 KerneINN [CEC*24] (Alg. MMD, (z,y) MMDj(z,y) 1(pi% <1, p<) < 0)

W>NN [ECAD24] (Alg-@ Wi (z,y) W3 (z,y) L(pi" < m,pso <0)

Under the distributional matrix completion setting (n > 1 in (I)), the methods KerneINN and W,>NN
in Tab. take u, v € X as square integrable probability measures, and ¢(u,) as either the squared
maximum mean discrepency (i.e. MMDi(,u, v), see [MES™17]]) or squared Wasserstein metric (i.e.,
Wo (s, v), see [Big20]). Further, the entry-wise distance @(z, y) in this case is either the unbiased

2

U-statistics estimator MMDy (Z; ¢, Z;) for MM Di(ﬂi,h wj.s) (see [MES™17]) or the quantile based
estimator Wy(Z;, ¢, Z;) for Wa(pi 1, 145.5) (see [Big20]).

The nearest neighbor methods introduced in Tab.[I]are elaborated in this section. We present two
versions of each method; the first version explicitly constructs neighborhoods instead of subtly

embedding them in the weights W of the AVERAGE module, and the second version specifies how
each methods can be recovered by applying the two modules, DISTANCE and AVERAGE, sequentially.

C.3 Vanilla nearest neighbors
We elaborate on the discussion in Rem. |I{and provide here a detailed algorithm based on the explicit

construction of neighborhoods, which is essentially equivalent to RowNN in Tab. [l The inputs are
measurements Z, missingness A, the target index (¢, t), and the radius 7.

11

[N

N

Step 1: (Distance between rows) Calculate the distance between row i and any row j € [N]\ {i}
by averaging the squared Euclidean distance across overlapping columns:

o Yot AisAjs(Zis — Z5.5)?
" Dt AisAjs
Step 2: (Construct neighborhood) Construct a neighborhood of radius 7 within the ¢th column using
the distances {p; ; : j # i}
Ny = {j € [N]\ {i} : pij < n}

Step 3: (Average across observed neighbors) Take the average of measurements within the neigh-
borhood:

é\t’ Z A tZ t-
e \Nf,nljeNt e

In practice, the input 1 for RowNN should be optimized via cross-validation; we refer the reader to
App. [D|for a detailed implementation.

We specify the exact implementation of the two modules DISTANCE, AVERAGE to recover RowNN:

Algorithm 1: RowNN for scalar nearest neighbor
Input: Z, A, n, (i,t)
Initialize entry-wise metric §(Z;,s, Z;1 o) < (Zj,s — Zjr.+)* and metric ¢(z, y) + (v — y)?
Initialize hyper-parameter 1 < (11, 0)
Calculate row-wise metric {pj°" : j # z} <— DISTANCE(p, Z, .A)
row)

Initialize weight w;, s <= 1(p;%" < 11, Py P <
Calculate average 6; ; < AVERAGE(p, W, Z, A)

return 6; ;

The discussion for RowNN here can be identically made for CoINN as well.

C.4 Two-sided and doubly-robust nearest neighbors

We elaborate on the variants of the vanilla nearest neighbors algorithm TSNN and DRNN in Tab.
we first elaborate on an equivalent version of each of the methods which explicitly constructs
neighborhoods.

In the following three step procedure, DRNN and TSNN differs in the last averaging step: the inputs
are the measurements Z, missingness .4, the target index (4, t), and the radii n = (11, 12).

Step 1: (Distance between rows) Calculate the distance between row i and any row j € [N]\ {¢}
and the distance between column ¢ and any column s € [T\ {¢}:

o D at AisAjs(Zis — Zj.s)? and gl i i A AGs(Zie — Z;,5)?
" Dt AisAjs i Ajt s

Step 2: (Construct neighborhood) Construct a row-wise and column-wise neighborhood of radius 7,
and 7 respectively,

N = {j € [N]\ {i} : 9% <} and N :={se[T]\{t}:p{%) <n}

Step 3: (Average across observed neighbors) Take the average of measurements within the neigh-
borhood; the first and the second averaging correspond to DRNN and TSNN respectively:

Z]EN‘OW ,SENS AJ tA; éAJ S(Zjs+ Zis _Zjvs)

ADR . _

Oity = 5 1A A and
eN§°,W1,s€N$?},2 7,641,415, s

~rg ZjeNgf);,"l,seNg?}m Aj,st,s

ei,t,n =

- A
deN;?;vl,seNgf;m J,s

12

[N T

N

-

w N

IS

]

Next, we specity the exact implemention of the two modules DISTANCE and AVERAGE to recover
TSNN and DRNN:

Algorithm 2: TSNN for scalar matrix completion

Input: Z, A, n, (i,t)

Initialize entry-wise metric §(Z;,s, Z;1 o) < (Zj,s — Zjr.)* and metric o(z, y) + (z — y)?
Initialize tuning parameter 1 < (11, 72)

Calculate row-wise and column-wise metric {pif’}” 1j# i}, {p?osl 1 s #£ t} <+ DISTANCE(p, Z, A)
Initialize weight w;,s + 1(p5%" < m1, p<4 < 12)

Calculate average 0; ; + AVERAGE(p, W, Z, A)

return 0; ,

For DRNN algorithm below, we consider Z and A to be N x T sized matrices, so that their transpose
is well defined. Then note that ColNN is simply applying Alg. [T]with transposed observation matrices.

Algorithm 3: DRNN for scalar matrix completion

Input: Z, A, n, (i,t)

Initialize RowNN <— Alg. (1| with inputs (Z, A, n, (i,t)) and n < (n1,0)
Initialize CoINN <— Alg.|1{with input (27 AT |, (i,t)) and 5 < (n1,0)
Initialize TSNN < Alg. 2 with inputs (Z, A, 7, (¢,t)) and n < (1,72)
Calculate 6; s + RowNN + CoINN — TSNN

return 6; ;

C.5 Distributional nearest neighbors

Unlike the scalar nearest neighbor methods, distributional nearest neighbors necessitate a distribu-
tional notion of distance between rows and columns of matrix and a distributional analog of averaging.
[CECT24] and [FCAD24|| use maximum mean discrepency (in short MMD) of kernel mean em-
beddings [MFS™17] and Wasserstein metric (in short Wy) [Big20] respectively both for defining
the distance between rows / columns and for averaging. The corresponding barycenters of MMD
and Wy [CAD20, BGKL17| are used for averaging, and so the methods are coined kernel nearest
neighbors (in short KernelNN) and Wasserstein nearest neighbors (in short W,NN) respectively.

We elaborate on a vanilla version three step procedure of KernelNN, W,NN that explicitly constructs
neighborhoods. The input are measurements Z, missingness .4, the target index (i, ¢) and the radius

m,

Step 1: (Distance between rows) Calculate the distance between row i and any row j € [N] \ {i}
by averaging the estimator of distribution metric o:

—2 ~
MMD . 2575,5 Az’,sAj,sMMDk(Zi,Sa Zj,s) Zs;ﬁt Ai,sAj,swg(Zi,sa Zj,s)

= and p;.N]? =

pia
" 2ot AisAjs 2opr AisAjs

Step 2: (Construct neighborhood) Construct a neighborhood of radius 7 within the ¢th column using
the distances {p; ; : j # i}:

NYY® = {j € IN]\ {i} : " <} and NY%2 o= {j € [N]\ {i} : p7 <)

Step 3: (Average across observed neighbors) Set uft =nt ZZ”:l 0 x,(i,t) as the empirical measure
of the multiple measurements Z; ;. Take the barycenter within the neighborhood:

~ 1 ~Wa .
/L?{'t“f'nD = TN Z Aj’t/ijz’t and,u;/j/m := argmin Z W%(u,uft).

| t, : - NJMMD ® . w.
Tl jeNim jEEN;?

For further details on the Wy and MMD algorithms see [[FCAD24]] and [CFC™24]), respectively.

13

A B W N =

<

Algorithm 4: Vanilla (row-wise) distributional nearest neighbor
Input: Z, A, k,n, (i,t)

2 ~
Initialize entry—wise metric @(Z]”S, Zj/,sl) — MMDk(Zj’S, Zj/ysl) or Wg(ijs, Zj’,s/)
Initialize metric p(x, y) < MMDZ (x, y) or W3(z,)
Initialize tuning parameter 1 < (71,0

Calculate row-wise metric {pi%" : j # i} < DISTANCE($, Z, A)

oW

Initialize weight w; s < 1(pi%" < n1, pS% < n2)
Calculate average [i;,+ < AVERAGE(p, W, Z, A)

return [i; ¢

C.6 Adaptively weighted nearest neighbors

We elaborate on the adaptive variant of the vanilla nearest neighbor algorithm AWNN as mentioned
in App.[C.2]and Tab.[I] The input are measurements Z, and missingness .A. Note that there is no
need for radius parameter and hence no CV.

Step 1: (Distance between rows and initial noise variance estimate) Calculate an estimate for noise
variance and then the distance between any pair of distinct rows i, j € [N] by averaging the
squared Euclidean distance across overlapping columns:

e AisAis(Zis — Zs)? X sevixir) AisZis o iseinixr] Ais(Zis — 2)?
Pij = , L , and 0° <«
Zs;ét Ai-,sAJQs Zj,se[N]x[T] Aj,s Zj,se[N]x[T] Aj,s

Step 2: (Construct weights) For all rows and columns (i,t) € [N] x [T], evaluate w(**) =

(w1, ,wn,), the weights that optimally minimizes the following loss involving an

estimate of the noise variance &2,

; . 2 ~(i,8) 1|2 . ~
w = arg ming..) | 2log(2m/8)a || |3 + Z Wy 1 Air P i | 3)
i/ €[N]
where @) = (@14, , Wy,) is a non-negative vector that satisfy >_7_, @y Ay, = 1.

Step 3: (Weighted average) Take the weighted average of measurements:

0 = Z Wy ¢ Ay 1 X t, V(i t) € [N] x [T]
i/ €[N]

Step 4: (Fixed point iteration over noise variance) Obtain new estimate of noise variance and stop if
difference between old and new &2 is small.

) N2

~2

e Y ()
Zie[N],tE[T] Ay i€[N],te[T])

No cross-validation in AWNN The optimization problem in (3) can be solved exactly in linear time
(worst case complexity) using convex optimization [SPD25]]. AWNN doesn’t rely on radius parameter
n. Not only it automatically assigns neighbors to (i,t)*" entry during its weight calculation(non-
neighbors get zero weight), but also takes into account the distance of the neighbors from the (i,)"
entry. The closer neighors get higher weights and vice - versa.

We further specify the exact implementation of the two modules DISTANCE, AVERAGE to recover
AWNN:

14

—

»~

w

IS

n

=)

Algorithm 5: AWNN for scalar nearest neighbor
Input: Z, A, (i,t)
Initialize entry-wise metric §(Z;,s, Z;1 o) < (Zj,s — Zj1.+)* and metric ¢(z,y) + (v — y)

2
Initialize noise - variance estimate o> < Variance ({Zi,t}“. He[N]x [T])

Calculate row-wise metric {p}}" : j # i} < DISTANCE(, Z, A)

Initialize weight {w1,¢, ..., Wn¢} < arg ming .+ [2 log(2m/8)5>||@w " |3 + >iren] fﬁi/’tAi,’tﬁilyi]
Calculate average 0; ; + AVERAGE(p, W, Z, A)

return 6; ;

C.7 New variant: Auto nearest neighbors

TSNN is a generalization of RowNN and ColNN by setting one of the tuning parameters to zero (see
Tab.[I), whereas the idea underlying DRNN is fundamentally different from that of TSNN; DRNN
debiases a naive combination of RowNN and ColNN whereas TSNN simply boosts the number of
measurements averaged upon, thereby gaining from lower variance. So we simply interpolate the two
methods for some hyper-parameter o € [0, 1]; see Tab.|1| Notably the hyper-parameter 7 for both
DRNN and TSNN are identical when interpolated.

Suppose ft;; = ;¢ + €, in where ¢; ; are centered i.i.d. sub-Gaussian distributions across ¢
and ¢t. When o is large in magnitude, TSNN denoises the estimate by averaging over more samples,
hence providing a superior performance compared to DRNN in a noisy scenario. When ¢ is small
so that bias of nearest neighbor is more prominent, DRNN effectively debiases the estimate so as to
provide a superior performance compared to TSNN. The linear interpolator AutoNN automatically
adjusts to the underlying noise level and debiases or denoises accordingly; such property is critical
when applying nearest neighbors to real world data set where the noise level is unknown. We refer to
Fig. 3| for visual evidence.

9-3 - € DRNN: 77082 ¢ @ DRNN: 705
M : 3
e, @ TSNN: 770 1 ‘., @ TSNN: 7O
RS Y AutoNN: 77073 27 - *e. ¥ AutoNN: 7054
5 o, = 4
5 e B ~ ‘e,
., .
o 27t St ° Y .
2 O E N .
5 N : = 92- NN .
z ' 2 ~ .
2 S z
Z ¥ Z s ‘.
< »’ < o o
5 ~ S
2 % N
» L AR
R
278 - 3
T T T T T T T T
24 25 26 27 24 25 26 o7
Columns (T) # Columns (T)

Figure 3: Synthetic data experiments. The data on the left has high signal-to-noise ratio, whereas
the data on the right has low signal-to-noise ratio. See App.[E.I|for details on the data generating
process. Each point corresponds to the mean absolute error + 1 standard error across 30 trials.

D Cross-Validation

For each nearest neighbor method, we use cross-validation to optimize hyperparameters including
distance thresholds and weights, depending on which nearest neighbor algorithm is chosen. Specif-
ically, for each experiment, we choose a subset of the training test to optimize hyperparameters
by masking those matrix cells and then estimating the masked values. We utilize the HyperOpt
library [BYC13|] to optimize (possibly multiple) hyperparamters using the Tree of Parzen Estimator
[BBBK11], a Bayesian optimization method. Our package supports both regular distance thresholds
and percentile-based thresholds, which adapt to the distances calculated within the specific dataset.

15

e Fahan L el e o e T b T
-?:.- l:_!' .i'l aioiger SRt B Tt Ty '-"::-:'-,"a'_.'. g
= .|.|2'= JPUL T o A e DR =

"" ':l'lllll-llln'll "".'.'I'.I.I-:l-"." wrTm] |"::_- 1"l
| E ety e Ftrr e b R R
.-'?"-:'..r'l.- '|I-'I'.|":II :,I."'l':'.""-f'. S A i'.':.-l-.l.-l"l- .'-."'"'
30{ LA i K b

B g e e DA e e et
0 25 50 75 100 125 150 175
Decision point

Figure 4: HeartSteps V1 data notification pattern. The dark blue entries indicate that the app sent
a notification to a sedentary participant—the entry has value A; ; = 1. The white entries indicate that
the participant was available but did not receive a notification or they were active immediately prior
to the decision point. The light blue entries indicate the participant was unavailable. We assign the
value A, ; = 0 for all the white and light blue entries.

E Case Study Details

The boxplots are generated using matplotlib’s [HunQ7]] standard boxplot function. The box shows
the first, second, and third quartiles. The bottom line shows the first quartile minus the 1.5 the
interquartile range. The top line shows the third quartile plus 1.5x the interquartile range. All
experiments are run on standard computing hardware (MacBook Pro with an M2 Pro CPU with 32
GB of RAM).

E.1 Synthetic data generation

Generate Z;;, = X;; ~ N(0; 4,0), i.e., scalar matrix completion setting, with a linear factor
structure 0; ; = u;v¢. Row latent factors u; € R* are i.i.d. generated across ¢ = 1, ..., N, where each
entry of u; follow a uniform distribution with support [—0.5, 0.5]; column latent factors v; € R* are
generated in an identical manner. The missingness is MCAR with propensity p; ; = 0.5 for all ¢ and
t. Further, the size of column and rows are identical N = T'. For the left panel in Fig.[3] the noise
level is set as o = 0.001 and for the right panel o = 1.

E.2 HeartSteps V1

The mobile application was designed to send notifications to users at various times during the day
to encourage anti-sedentary activity such as stretching or walking. Participants could be marked as
unavailable during decision points if they were in transit or snoozed their notifications, so notifications
were only sent randomly if a participant was available and were never sent if they were unavailable.
To process the data in the framework of (T), we let matrix entry Z; ; be the average one hour
step count for participant ¢ and decision point ¢ when a notification is sent (i.e. A4;; = 1) and
unknown when a notification is not sent (i.e. A;; = 0). The treatment assignment pattern is
represented as the 37 x 200 matrix visualized in Fig. l] We use the dataset downloaded from
https://github.com/klasnja/HeartStepsV1 (CC-BY-4.0 License).

E.3 MovieLens

We load MovieLens via a custom MovieLensDataLoader that (i) downloads and caches the
ml-1m.zip archive, (ii) reads ratings.dat into a user x movie pivot table, and (iii) constructs
the binary mask where observed entries correspond to rated user—movie pairs. The data matrix is
Z € {1,...,5}6040x3952 and mask matrix is A € {0,1}5040%3952_ The data can be downloaded
fromhttps://grouplens.org/datasets/movielens/1m/. See https://files.grouplens,
org/datasets/movielens/ml-1m-README. txt| for the usage license.

16

https://github.com/klasnja/HeartStepsV1
https://grouplens.org/datasets/movielens/1m/
https://files.grouplens.org/datasets/movielens/ml-1m-README.txt
https://files.grouplens.org/datasets/movielens/ml-1m-README.txt

Prop. 99 (1989)

150

=]

.8

2 125 1

g

=

@

3 100 - .
S A\ it
£ \ v
3 75 4 :_\\\,\\,\
?o SwWNN
© 50

| e o e e e

1970 1980 1990 2000
Year

(a) Synthetic controls for California in post-intervention period

80-T

1ihians

USVTSoft Col- Row- DR- TS- Auto-AW- SC
ImputeNN NN NN NN NN NN

Absolute error
IS o
S 3

]]

DO
[es}
1

(b) Absolute error on control states

Figure 5: Nearest neighbor methods generate high-fidelity synthetic controls in counterfactual
inference for panel data.

E.4 Proposition 99

Next we consider a panel data setting, where our goal is to estimate the effect of the California
Tobacco Tax and Health Protection Act of 1988 (a.k.a. Proposition 99) on annual state-level cigarette
consumptionﬂ By definition, the counterfactual cigarette consumption in California—had Proposition
99 never been enacted—is not observed. [ADH10] introduce the notion of a “synthetic control” to
serve as a proxy for this unobserved value based on “neighboring” control states that never instituted
a tobacco tax. These states are not close in a geographical sense, but rather close due to similarities
in other covariateﬂ We take a different approach and use only the observed cigarette consumption
levels from the control states, of which there are 38 in total. Thus, we frame our problem as a
scalar matrix completion problem with N = 39 and 7' = 31 (see (I)). The last row in the matrix
corresponds to the state of California.

Results & Discussion. For each method, we use a 64-16-20 train-validation-test split and use cross
validation to fit any hyperparameters. Fig.[3]plots the various synthetic controls for California (left)
and absolute error of each method on the 38 control states, for which we do observe the no-treatment
values (right). From Fig.[5(a), we see that nearest neighbor methods, in particular TSNN and RowNN,
are roughly on par with the gold-standard synthetic control method of [ADH10]] (“SC”) for estimating
California’s counterfactual cigarette consumption in the post-intervention period (after 1989). This is
despite the fact that the nearest neighbor methods rely on less information for the estimation task.
From Fig. Ekb), we see that all nearest neighbor methods, with the exception of ColNN, achieve

’measured as per capita cigarette sales in packs
*GDP per capita, beer consumption, percent aged 15-24, and cigarette retail prices

17

similar error levels as the synthetic control baseline. RowNN achieves even lower error levels. See
supplementary experiment details in App.

Data comes primarily from the Tax Burden on Tobacco compiled by Orzechowski and Walker [OW23]]
(ODC-By License). Using synthetic control methods, Abadie et al. construct a weighted combination
of control states that closely resembles California’s pre-1988 characteristics and cigarette consumption
patterns. The optimal weights produce a synthetic California primarily composed of Colorado (0.164),
Connecticut (0.069), Montana (0.199), Nevada (0.234), and Utah (0.334), with all other states
receiving zero weight. The treatment effect is estimated as the difference between actual California
per-capita cigarette sales and those of synthetic California after Proposition 99’s implementation. By
2000, this analysis revealed that annual per-capita cigarette sales in California were approximately
26 packs lower than what they would have been without Proposition 99, representing about a 25%
reduction in cigarette consumption. To validate these findings, the authors conducted placebo tests by
applying the same methodology to states not implementing tobacco control programs, confirming
that California’s reduction was unusually large and statistically significant (p = 0.026).

Proposition 99, the California Tobacco Tax and Health Protection Act of 1988, dataset spans from
1970 to 2000, providing 19 years of pre-intervention data before Proposition 99 was implemented
in 1988 and 12 years of post-intervention data. It provides annual state-level cigarette consumption
measured as per capita cigarette sales in packs based on tax revenue data. This data serves as a
real data benchmark for many of the variants of synthetic controls [ABD21]]. We use the CDC
dataset for the Nearest Neighbors methods and only use the target variable (i.e., cigarette consumption
measured in packs per capita), and the dataset from SyntheticControlMethods libraryE] for the SC
baseline, since it relies on additional covariates.

E.S PromptEval
E.6 Efficient LLM evaluation: PromptEval

The rapid advancement of LLMs have placed them at the center of many modern machine learning
systems, from chatbots to aids in medical education [GHC™23].. In practice, system architects want
to strike the right balance of real-world performance and cost, but navigating this Pareto frontier is a
daunting task. 2024 alone saw at least 10 new models from Anthropic, Google, Meta, and OpenAl,
not even counting the multitude of open-source fine-tuned models built on top of these. On specific
tasks, smaller, fine-tuned models may even outperform the latest frontier models, in addition to being
more cost effective.

We investigate how matrix completion, specifically nearest neighbor methods, can alleviate some of
these burdens. We use the PromptEval dataset [PXW 24, which evaluates 15 open-source language
models (ranging in size from 3B to 70B parameters) and 100 different prompting techniques across
the 57 tasks of the MMLU benchmark [HBB™20]. In practice, the performance of a model depends—
sometimes dramatically—on the precise input prompt. This suggests that we need to consider the
performance of a model across a wide range of prompts, rather than any one prompt in particular.
Thus, we model this problem as a distributional matrix completion problem with N = 15, T' = 57,
and n = 100. Given one of 57 tasks, we aim to accurately characterize the performance of each
model without resorting to exhaustive evaluation. Nearest neighbors leverage commonalities across
models and tasks to estimate the performance distribution of each entry, which was otherwise not
considered in [PXW™24]); previous literature achieves efficient evaluation per model and task in
isolation without leveraging any across model / task information.

Results & Discussion. We randomly include each entry in the matrix independently with probability
p € {0.3,0.5,0.7} and impute the missing entries using the KernelNN and W,NN methods of Tab.
For each method, we consider both the the row-wise and column-wise variants. Fig. [6{a) reports the
mean Kolmogorov-Smirnov (KS) distance between the imputed and ground-truth distributions across
the entries in the test set for varying missingness values. As expected, estimation error decreases as p
increases. Fig.[6b) visualizes the imputed distributions using row-wise KerneINN and column-wise
W,NN (at p = 0.7) for a select entry, along with the ground-truth distribution. Even with 30% of
matrix entries missing, distributional NN methods are able to recover the underlying distribution.

Shttps://github.com/OscarEngelbrektson/SyntheticControlMethods/tree/master (Apache-
2.0 License)

18

https://github.com/OscarEngelbrektson/SyntheticControlMethods/tree/master

Ground

$09- 0.4 - i Lol
% ‘ KernelNN (col) i ;‘re‘i:;lNN
= 08 So @® KernelNN (row) H - (col)
= 0.8 - So Y W2NN (col) 0.3 - W,NN
2 N~ TSl A WoNN (row) g)
T~ S

g oSO ~ b=
= 0.7 - ., ~ S)
g +- _____ te, P ~ 0.2 -
U.J .-..._ﬂ,.. ~3 \\ 8 .
z el Ss3 &
S 0.6 - v Treess
& ¢ - 0.1-
Q Te.
g - .
s 0.5 4

T T T

0.3 0.5 0.7 0.00 0.25 0.50 0.75 1.00
Propensity (p) Score

(a) Mean KS distance between estimated
and ground-truth distributions

(b) KernelNN vs. W>NN

Figure 6: Distributional nearest neighbor methods enable efficient LLM evaluation on MMLU.
We estimate LLM score distributions across all models and tasks given only a limited number of
model-task evaluations, determined by the propensity p. See App. [E-6for a detailed discussion.

19

	Introduction
	Our contributions

	Nearest Neighbors for Matrix Completion
	N2 Package and Interface
	N2-Bench and Results
	Personalized healthcare: HeartSteps
	Movie recommendations: MovieLens

	Conclusion
	Structural assumptions
	Factor model
	Missingness pattern

	Class Structure Details
	Nearest neighbor algorithms
	Unified framework
	Existing methods
	Vanilla nearest neighbors
	Two-sided and doubly-robust nearest neighbors
	Distributional nearest neighbors
	Adaptively weighted nearest neighbors
	New variant: Auto nearest neighbors

	Cross-Validation
	Case Study Details
	Synthetic data generation
	HeartSteps V1
	MovieLens
	Proposition 99
	PromptEval
	Efficient LLM evaluation: PromptEval

