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Abstract

We study a fundamental question of domain generalization: given a family of
domains (i.e., data distributions), how many randomly sampled domains do we
need to collect data from in order to learn a model that performs reasonably well
on every seen and unseen domain in the family? We model this problem in the PAC
framework and introduce a new combinatorial measure, which we call the domain
shattering dimension. We show that this dimension characterizes the domain sam-
ple complexity. Furthermore, we establish a tight quantitative relationship between
the domain shattering dimension and the classic VC dimension, demonstrating that
every hypothesis class that is learnable in the standard PAC setting is also learnable
in our setting.

1 Introduction

The ability to generalize across domains is an important component of human intelligence and
a crucial milestone in the development of increasingly powerful artificial intelligence. It is not
surprising that an experienced driver in one country can reasonably, albeit imperfectly, drive in
another country even without further training. It is also not surprising that a skilled chess player can
outperform an average person on a totally different board game. An expert doctor who has studied a
disease using data from a few large hospitals can potentially provide reasonable treatment for patients
in a geographically remote and biologically different population that does not have access to those
large hospitals and has not been the subject of prior study. Such domain generalization abilities are
empowered by the capability of the learner (i.e., the driver, chess player, or doctor) to distill and
master universal laws (about driving, game playing, or medical treatment) that hold even on unseen
domains, while separating them from idiosyncratic patterns that are domain-specific.

In this work, we study the theoretical foundations of domain generalization with a focus on capturing
this ability of learning “universal laws” while not overfitting to the “idiosyncratic patterns”. Consider
a family G of domains, where every domain D is a distribution on examples (x, y) each consisting of
an instance x ∈ X and a binary label y ∈ {0, 1}. On a specific domain D, there may be a hypothesis
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(i.e., classifier) h : X → {0, 1} with low classification error errD(h), say, below 0.01:

errD(h) := Pr(x,y)∼D[y ̸= h(x)] ≤ 0.01.

However, the strong performance of this hypothesis may rely on patterns specific to the current domain
and may fail to transfer to other domains D′ ∈ G. For the purpose of domain generalization, we
would instead prefer a different hypothesis h⋆ that achieves reasonably low—though not necessarily
minimal—error across all domains D ∈ G. Specifically, for a mild but meaningful error threshold,
say 0.3, we assume

max
D∈G

errD(h
⋆) ≤ 0.3. (1)

Motivated by this, we model the underlying “universal laws” by assuming the existence of such a
universally good hypothesis h∗ ∈ H that satisfies Equation (1). We make no further assumptions on
the structure of the domains in G or on the relationships among them.

In our domain generalization task, a learner has data access to a limited number of domains
D1, . . . ,Dk sampled i.i.d. from a meta-distribution P over domain space G. Using this limited
data access, the learner’s goal is to output a model h : X → {0, 1} that achieves reasonably good
performance on new, unseen domains drawn from P without any additional training. Concretely, for
performance threshold and error parameter τ, γ ∈ [0, 1], the learner’s goal is to output h : X → {0, 1}
such that

PrD∼P [errD(h) ≤ τ ] ≥ 1− γ.

In this work, we aim to answer the following quantitative question:

How many domains does the learner need to see to achieve domain generalization?

The answer to this question, which we call the domain sample complexity, is analogous to the notion
of sample complexity in classic learning theory. Sample complexity is defined as the number of
data points needed to learn a good model on a single domain, whereas our notion of domain sample
complexity measures the number of domains the learner needs to collect data from in order to
generalize to unseen domains. Thus, domain sample complexity can be viewed as a higher-level
meta-variant of the notion of sample complexity.

Characterizing the sample complexity of various learning tasks is a central question in learning
theory. For example, the celebrated VC theory characterizes the sample complexity of classic PAC
learning [Valiant, 1984] using the VC dimension [Vapnik and Chervonenkis, 1971], a combinatorial
complexity measure of the hypothesis class H. The goal of our work is to characterize the domain
sample complexity, which depends not only on the complexity of the hypothesis class H, but also on
the interaction between H and the domain family G. For example, even if H is itself very complex,
the domain sample complexity can still be very small if the domains in G are very similar. Even when
both H and G are complex, the domain sample complexity can still be small if their complexities are
concentrated on disjoint subsets of the input space X . For instance, suppose all hypotheses h ∈ H
are identical on a subset X1 ⊆ X , and G only contains domains D satisfying PrD[x ∈ X1] = 1. In
this case H can be complex outside of X1 and G can be complex inside X1, but the domain sample
complexity is always zero: on every fixed domain D ∈ G, all hypotheses h ∈ H achieve the same
error. Finding a combinatorial quantity that tightly characterizes the domain sample complexity
requires accurately capturing this interaction between H and G.3

1.1 Our Contributions

We model the domain generalization problem in the PAC framework and introduce a new combinato-
rial measure, the domain shattering dimension (Definition 4.1), for a hypothesis class H with respect
to a family G of domains.

For each hypothesis h, we define the function err·(h) : G → R that maps each domain to the error of
h on that domain, thereby inducing a new function class. A natural idea is to analyze the fat-shattering
dimension [Kearns and Schapire, 1994] of this class. This turns out to overestimate the domain
sample complexity. For a target error threshold τ (e.g. τ = 0.3), the domain sample complexity can

3A similar situation that requires capturing the interaction between a pair of hypothesis classes occurs in the
study of comparative learning (hybrid of realizable and agnostic learning) [Hu and Peale, 2023, Hu et al., 2022].
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be very small (e.g. when errD(h) ≤ τ is achieved by every h ∈ H on every domain D ∈ G), but the
size of a shattered set can be large at a different threshold τ ′, causing the fat-shattering dimension to
be large as well.

To address this, we propose a new dimension by modifying the fat-shattering dimension: instead
of allowing different thresholds across shattered domains, we require a uniform and fixed threshold
across all of them. We show that the resulting domain shattering dimension gives both upper
(Theorem 4.1) and lower (Theorem 4.3) bounds on the domain sample complexity, and these bounds
match up to a poly-logarithmic factor. We obtain the upper bound by a min-max variant of the
empirical risk minimization (ERM) algorithm. To analyze the domain sample complexity achieved
by the min-max ERM algorithm, we establish a uniform convergence bound (Lemma 4.2) for partial
concept classes based on a generalized Sauer-Shelah-Perles lemma by Alon et al. [2022], which may
be of independent interest. Our algorithm and upper bound can be directly applied to other learning
tasks beyond binary classification, such as multi-class classification and regression (Remark 4.2).

The next question we address in this paper is the relationship between domain generalization
learnability and standard PAC learnability. It is well known that PAC learnability is characterized
by the VC dimension. We compare our domain shattering dimension with the VC dimension and
show that, for a hypothesis class H with VC dimension d and a margin α, the domain shattering
dimension is always upper bounded by O(d log(1/α)) (Theorem 5.2). Moreover, we construct a
hypothesis class with VC dimension d and a domain family G for which the domain shattering
dimension is Ω(d log(1/α)) (Theorem 5.1). This establishes a tight relationship between the two
measures and demonstrates that standard PAC learnability implies domain generalization learnability,
but the domain sample complexity can be much smaller than the sample complexity for PAC learning.

Finally, we relate our work to the literature on domain adaptation. In domain adaptation, the goal is to
generalize from a source distribution to a related target distribution, under the assumption that the two
are sufficiently similar. This similarity is often quantified using measures such as the H-divergence
introduced in Ben-David et al. [2010]. We show that if all domains in G are similar to each other under
a metric based on a modified version of the H-divergence, then the domain shattering dimension is 1.
Moreover, when the hypothesis class admits a finite cover under this metric, the domain shattering
dimension can be upper bounded by the covering number (Theorem 6.1). These results illustrate
the potential of our domain shattering dimension as a general notion for characterizing domain
generalization without explicitly modeling how domains are related.

1.2 Related Work

There is a vast literature on domain generalization and related learning paradigms such as meta-
learning, zero-shot learning, domain adaptation, out of distribution generalization, transfer learning,
invariant risk minimization, and multi-task learning. The excellent survey of domain generalization of
Wang et al. [2022] provides a helpful taxonomy of many of these paradigms and explores theoretical
underpinnings of domain adaptation and domain generalization. Zhou et al. [2022] organizes a
plethora of works by (1) application area; (2) method; and (3) learning paradigm, and provides
pointers to many datasets commonly used for domain generalization.

Our work is distinguished from prior theoretical work in that simultaneously (1) we make only the
minimalist assumption of the existence of a universally good hypothesis h∗ ∈ H, (e.g., one satisfying
Equation (1)), with no further requirements regarding how different domains in G are related, making
our model very general; and (2) we obtain provable results for the strong learning objective of
requiring the output model h to achieve a reasonably low error simultaneously on essentially all
domains (including the unobserved ones), rather than achieving low error in expectation over choice
of domain. Achieving low error simultaneously on all domains can be substantially different from
achieving low average error when τ is not very close to zero. For example, an average error of 0.25
could arise if the hypothesis incurs zero error on 3/4 of the domains but makes completely incorrect
predictions (error 1) on the remaining 1/4 of the domains. Finally, we explicitly focus on the question
of domain sample complexity – the total number of domains that need to be sampled in order to
generalize well to a random new domain. This is different from the common notions of sample
complexity and query complexity, and this lens yielded the key concept of the domain shattering
dimension.
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2 Preliminaries

We include the definition of partial concepts that will be very useful in our analysis. A partial concept
is a function f : Z → {0, 1,⊥} that assigns each individual z in an input space Z a binary label (0 or
1), or the “unknown” label, denoted by ⊥. A total concept f : Z → {0, 1} assigns a binary label (0
or 1) to each individual z ∈ Z without using the “unknown” label ⊥. Throughout the paper, for a
positive integer n, we use [n] to denote the set {1, . . . , n}.
Definition 2.1 (VC dimension of partial concept classes [Vapnik and Chervonenkis, 1971, Alon et al.,
2022]). Let F be a class of partial concepts f : Z → {0, 1,⊥} on an arbitrary input space Z. We
say a subset S ⊆ Z is shattered by F if for every subset E ⊆ S, there exists fE ∈ F such that

fE(s) = 0 for every s ∈ E,

fE(s) = 1 for every s ∈ S \ E.

The VC dimension of F (denoted VCdim(F)) is the size of the largest shattered set S ⊆ Z.

Clearly, the classical VC dimension, defined for total concept classes, is a special case of the VC
dimension for partial concept classes.

3 Problem Setup for Domain Generalization

Given input space X and label space Y = {0, 1}, a domain (or data distribution) D is a distribution
over X × Y . We consider a family G of domains D. For any hypothesis/predictor h : X → Y , we
define the error rate of h under domain D as

errD(h) := P(x,y)∼D (y ̸= h(x)) .

We consider an underlying meta distribution P over the domains D ∈ G. Given a threshold τ , for any
hypothesis h and a threshold τ , we define the domain error of h with respect to τ as

ErP,τ (h) := PD∼P (errD(h) > τ) ,

which quantifies the probability mass of the domains where h incurs error greater than τ . It follows
immediately that ErP,τ (h) is monotonically decreasing in τ .

As in the standard PAC learning setting, we are given a hypothesis class H and aim to output a
hypothesis that performs well compared to the best hypothesis in H.
Definition 3.1 (Optimal domain error bound and optimal hypothesis). Given a hypothesis class H,
domain class G, and a distribution P over G, the optimal domain error bound is defined as

τ⋆P,H = min{τ |∃h ∈ H,ErP,τ (h) = 0} ,

and the optimal hypothesis h⋆ is defined as one hypothesis h achieving ErP,τ⋆
P,H

(h) = 0.

This definition ensures that there exists a hypothesis h⋆ in H that achieves an error rate below
threshold τ⋆P,H on every domain sampled from P , and τ⋆P,H represents the smallest such achievable
threshold. Thus, τ⋆P,H serves as a benchmark for our learning problem and any threshold τ ≥ τ⋆P,H
is achievable. We assume that τ⋆P,H is reasonably small–if τ⋆P,H = 0.5, then no hypothesis in H can
perform well across the domains–though we do not assume it is zero.

Then given a hypothesis class H and a threshold τ , a learner A access to a set of i.i.d. sampled
domains G = {D1,D2, . . . ,Dn}, and i.i.d. data Si collected from each domain Di, with the goal of
outputting a hypothesis h := A({S1, . . . , Sn}) that achieves error rate of at most τ under almost every
domain. This can be formalized into the following learnability problem for domain generalization,
where we focus on the domain sample complexity: the number n of observed domains needed to
achieve domain generalization.
Definition 3.2 ((τ, α, γ, δ)-domain learnability). For any τ, α, γ, δ ∈ (0, 1), we say (H,G) is
(τ, α, γ, δ)-learnable if there exists finite integers n and m for which there exists an algorithm
A such that for any distribution P over G with optimal error bound τ⋆P,H ≤ τ − α, with probability
at least 1− δ over G ∼ Pn and Si ∼ Dm

i for all Di ∈ G,

ErP,τ (A({S1, . . . , Sn})) ≤ γ .

The domain sample complexity is the smallest integer n satisfying the above constraint.
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4 Characterizing Domain Sample Complexity Using Domain Shattering
Dimension

To characterize the domain sample complexity, we introduce the following combinatorial measure
inspired by the fat-shattering dimension [Kearns and Schapire, 1994].
Definition 4.1 (Domain shattering dimension). Let G be a set of domains. We say a subset S ⊆ G is
α-shattered by H at τ if for all E ⊆ S, there exists a hypothesis hE ∈ H satisfying

errD(hE) < τ − α for every D ∈ E,

errD(hE) > τ for every D ∈ S \ E.

The domain shattering dimension of H, denoted by Gdim(H,G, τ, α), is defined to be the maximum
size of set S that can be α-shattered by H at τ .

Monotonicity of domain shattering dimension. It follows directly from the definition that for any
τ, α, τ ′, α′, if τ ′ ≥ τ and τ ′ − α′ ≤ τ − α, we have Gdim(H,G, τ ′, α′) ≤ Gdim(H,G, τ, α).

4.1 Upper Bound

We show an upper bound on the domain sample complexity using the domain shattering dimension in
Theorem 4.1 below. We prove this upper bound using the following natural min-max variant of the
empirical risk minimization (ERM) algorithm. In the next subsection (Section 4.2), we will prove a
lower bound that matches our upper bound up to a polylogarithmic factor.

Min-Max ERM Algorithm. Given a set of i.i.d. sampled domains G = {D1,D2, . . . ,Dn}, we
assume access to approximate error rates for any hypothesis h ∈ H on each domain. Specifically, for
some ε > 0, for every domain D ∈ G and hypothesis h ∈ H, we can access an estimate êrrD(h) of
the true error errD(h) such that

|êrrD(h)− errD(h)| < ε for all D ∈ G and h ∈ H. (2)

By standard uniform convergence guarantees, with success probability at least 1− δ, these estimates
can be obtained as the empirical error on O((VCdim(H) + log(n/δ))/ε2) i.i.d. data points from
each domain’s distribution. Given access to êrrD(h), we return the min-max predictor

ĥ = argmin
h∈H

max
D∈G

êrrD(h) . (3)

The following theorem upper bounds ErP,τ (ĥ) in terms of the domain shattering dimension and the
number of training domains. This implies a domain sample complexity upper bound.
Theorem 4.1. Let H be a class of hypotheses h : X → {0, 1} and let G be a family of domains
D each being a distribution over X × {0, 1}. Define d := Gdim(H,G, τ, α) for τ, α ∈ [0, 1]. For
every ε, δ ∈ (0, 1/2), for every domain distribution P over G satisfying τ⋆P,H ≤ τ − α − 2ε, with
probability at least 1− δ over a sample G of n i.i.d. domains drawn from P , when given access to
êrrD(h) for all D ∈ G and h ∈ H satisfying (2), the min-max predictor ĥ in (3) satisfies

ErP,τ (ĥ) ≤ O

(
d log2 n+ log(1/δ)

n

)
.

Theorem 4.1 guarantees good accuracy of ĥ on new, unseen domains drawn from P . To prove this
result, we start by analyzing the performance of ĥ on the training domains in G. By the assumption
of Theorem 4.1, there exists h⋆ ∈ H such that errD(h⋆) ≤ τ − α− 2ε for every D ∈ G. Now by (2)
and (3), we have

errD(ĥ) < êrrD(ĥ) + ε ≤ êrrD(h
⋆) + ε < errD(h

⋆) + 2ε ≤ τ − α for every D ∈ G. (4)

This ensures that ĥ achieves low error on every training domain D ∈ G. To prove Theorem 4.1, we
need to show that ĥ achieves low error on new domains drawn from P . Specifically, for some

γ = O

(
d log2 n+ log(1/δ)

n

)
,
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our goal is to show that with probability at least 1− δ, the ĥ returned by min-max ERM satisfies

Pr
D∼P

[errD(ĥ) > τ ] ≤ γ. (5)

To prove the guarantee (5) for D ∼ P from the guarantee (4) for D ∈ G, we establish a uniform
convergence bound over all h ∈ H.

One natural idea for establishing a desired uniform convergence bound is by applying existing results
about the fat-shattering dimension Kearns and Schapire [1994], which is similar to our domain
shattering dimension. However, this idea falls short for our purpose because 1) the fat-shattering
dimension is defined as a maximum over all thresholds τ , and 2) prior results from the fat-shattering
dimension incur a constant-factor blow-up in the margin α. We instead use results about partial
concept classes from Alon et al. [2022]. Specifically, for each h ∈ H, we construct a partial concept
fh : G 7→ {0, 1,⊥} by letting

fh(D) =


1 if errD(h) > τ,

0 if errD(h) < τ − α,

⊥ o.w.

This allows us to construct a new partial concept class F = {fh|h ∈ H}. Our assumption in
Theorem 4.1 that the domain shattering dimension of H is d ensures that the VC dimension of F is d
(see Definitions 2.1 and 4.1). Now (4) can be equivalently written as

fĥ(D) = 0 for every D ∈ G,

and similarly, our goal (5) is equivalent to

Pr
D∼P

[fĥ(D) = 1] ≤ γ.

Thus, to prove Theorem 4.1, it suffices to establish the following uniform convergence bound:

Pr
G∼Pn

[∃f ∈ F s.t. PrD∼P [f(D) = 1] > γ and ∀D ∈ G, f(D) = 0] ≤ δ.

We formally state this uniform convergence bound in the following general lemma:4

Lemma 4.2 (Uniform convergence for partial concepts). Let F be a class of partial concepts
f : Z → {0, 1,⊥} on an arbitrary input space Z. Assume that F has VC dimension d. For every
n ∈ Z>0 and δ ∈ (0, 1/2), there exists

γ = O

(
d log2 n+ log(1/δ)

n

)
(6)

such that for every distribution P over Z, for n i.i.d. data points z1, . . . , zn drawn from P ,

Pr
z1,...,zn

[∃f ∈ F s.t. Prz∼P [f(z) = 1] > γ and ∀i ∈ [n], f(zi) = 0] ≤ δ. (7)

We establish this uniform convergence bound using a standard symmetrization trick combined with
a generalized Sauer-Shelah-Perles lemma for partial concept classes (Theorem B.1) by Alon et al.
[2022]. We defer the full proof of Lemma 4.2 to Appendix B.1.
Remark 4.1 (Choice of the threshold τ ). It is important to note that while our upper bound depends
on the choice of τ and α, the algorithm itself does not. Let us fix the relationship τ⋆P,H = τ − α− 2ε.
As we increase τ and α at the same rate–i.e., relax the target error threshold τ–the value of
Gdim(H,G, τ, α) decreases monotonically. This means that a larger proportion of domains can
meet the relaxed threshold τ . Therefore, the choice of τ captures a trade-off between the strictness of
the generalization goal and the fraction of domains that are able to satisfy it.
Remark 4.2 (Beyond binary classification). We emphasize that neither the algorithm nor the analysis
relies on binary labels, and both can be directly applied to other learning tasks such as multi-class
classification and regression.

4We remark that a key message from the work of Alon et al. [2022] is that uniform convergence and the
ERM algorithm both fail for learning partial concepts. This, however, does not contradict our Lemma 4.2.
Roughly speaking, the uniform convergence needed in the setting of Alon et al. [2022] requires replacing
Prz∼P [f(z) = 1] in (7) with Prz∼P [f(z) = 1 or ⊥]. This stronger form of uniform convergence does not
hold.
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Remark 4.3 (Standard ERM fails). Note that standard ERM, which selects a hypothesis minimizing
the empirical error over the entire pool of training data, may fail in our setting. Consider a toy
example with two hypotheses: one incurs an error of 0.3 on every domain, while the other achieves 0
error on half of the domains and 0.5 on the other half. Standard ERM would choose the latter, despite
its poor worst-case performance across domains.

4.2 Lower Bound

We prove a lower bound (Theorem 4.3) showing that the error upper bound in Theorem 4.1 is
essentially information-theoretically optimal up to an O(log2 n) factor. It would be ideal to show
that the error bound is instance-wise optimal: for every fixed choice of H,G and parameters τ, α, ε, δ,
the error bound in Theorem 4.1 cannot be improved even if one uses a learning algorithm specifically
designed for those fixed choices. However, this perfect instance-wise optimality does not hold for
the following trivial reason. For every domain D ∈ G, let DX denote the marginal distribution of
x ∈ X where (x, y) ∼ D. Consider a fixed choice of G and suppose that the marginal distributions
DX for D ∈ G are supported on disjoint subsets of X . In this case, the learner can simply always
output the hypothesis h⋆ that simultaneously minimizes the error on every domain D ∈ G. This
solves our domain generalization task without observing any training domains drawn from P . The
domain sample complexity is zero, but the domain shattering dimension can be very large, implying
that our upper bound Theorem 4.1 is far from optimal in this setting.

We thus make a slight compromise in the level of instance-wise optimality. We still consider arbitrary
fixed choices of H and G. However, in our learning task, the domains do not solely come from
G, but instead come from a mildly extended family G′. Importantly, for some domains D in the
extended family G′, their marginal distributions DX will be supported on overlapping subsets of X .
In this case, we are able to prove a domain sample complexity lower bound (Theorem 4.3) that nearly
matches our upper bound (Theorem 4.1).

Concretly, we assume that there exists a distribution D0 of data points (x, y) ∈ X × {0, 1} such
that errD0(h) = 0 for every h ∈ H.5 Let d be the domain shattering dimension of H on G, and let
D1, . . . ,Dd ∈ G be d domains shattered by H. For every i = 1, . . . , d, we define a new domain D′

i
as follows:

D′
i = (1− λ)D0 + λ(¬Di). (8)

Here, λ ∈ [0, 1] is a fixed parameter, and ¬Di is obtained by flipping the labels in D. That is, ¬Di is
the distribution of (x,¬y) for (x, y) ∼ Di. Equation (8) defines D′

i as a mixture of D0 and ¬Di.

We define G′ to be G ∪ {D0,D′
1, . . . ,D′

d}. We view G′ as a mild extension of G. In particular, as
we show in Theorem 4.3 below, H has the same domain shattering dimension on G′ as on G for an
appropriate choice of λ. Moreover, in Theorem 4.3 we show a domain sample complexity lower
bound on G′ that nearly matches our upper bound in Theorem 4.1.
Theorem 4.3 (Lower bound). Consider an arbitrary class H of hypotheses h : X → {0, 1} and an
arbitrary family G of domains D (i.e. distributions over X×{0, 1}). Assume that Gdim(H,G, τ, α) =
d for some τ, α ∈ R and d ∈ Z>0, where 0 ≤ α < τ ≤ 1/2. Let D0 be a distribution of
(x, y) ∈ X × {0, 1} satisfying errD0

(h) = 0 for every h ∈ H. Let D1, . . . ,Dd ∈ G be d domains
shattered by H, and define G′ = G ∪ {D0,D′

1, . . . ,D′
d} as in (8) for

λ =
τ − α

1− τ
∈ (0, 1]. (9)

Then Gdim(H,G′, τ, α) = d. Moreover, for some γ > 0, δ ∈ (0, 1/4), n ∈ Z>0, and an error
threshold τ ′ < τ − 1−τ

1−α ·α ∈ (τ −α, τ ], suppose there is an algorithm A with the following property
on every distribution P over G′ satisfying τ⋆P,H < τ − α: it takes n domains drawn i.i.d. from P as

input, and with probability at least 1− δ, outputs a hypothesis ĥ such that

ErP,τ ′(ĥ) ≤ γ.

Then

γ = Ω

(
min

{
1,

d+ log(1/δ)

n

})
. (10)

5We view this as a mild assumption. Note that D0 does not need to be a member of G. This assumption is
satisfied as long as there is an input point x0 ∈ X receiving the same label h(x0) = b ∈ {0, 1} for all h ∈ H,
in which case we choose D0 as the degenerate distribution supported on the single point (x0, b).
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We remark that the lower bound in Theorem 4.3 is for a lower (i.e., more challenging) error threshold
τ ′ instead of the original error threshold τ in the definition of the domain shattering dimension.
Nonetheless, the lower threshold τ ′ is always allowed to be above the optimal error τ⋆P,H (i.e.
τ ′ > τ − α > τ⋆P,H).

We defer the proof of Theorem 4.3 to Appendix B.2.

5 Relationship between Domain Shattering Dimension and VC Dimension

In this section, we study the relationship between the VC dimension and the domain shattering
dimension of a hypothesis class H. It is easy to see that the domain shattering dimension can be
much smaller than the VC dimension when the domains in G are similar—in the extreme case where
G contains only a single domain, the domain shattering dimension cannot be more than one. We thus
focus on the other direction: can the domain shattering dimension of a hypothesis class exceed its
VC dimension? How much larger can it be?

We give an accurate answer to this question in Theorems 5.1 and 5.2 below: for an error margin
α (see Definition 4.1), the domain shattering dimension can be as large as Ω(d log(1/α)), which
is also the largest possible (up to a constant factor). Therefore, the domain shattering dimension
can be arbitrarily larger than the VC dimension as α approaches zero, but for any fixed α > 0, the
domain shattering dimension is upper bounded linearly by the VC dimension. This implies that a
PAC learnable hypothesis class is also learnable for our domain generalization task in Definition 3.2.
Theorem 5.1. For every positive integer d, there exists a hypothesis class H with VCdim(H) = d
satisfying the following property. For any α ∈ (0, 1/12), there exist k = Ω(d log(1/α)) domains
D1, . . . ,Dk such that

Gdim(H, {D1, . . . ,Dk}, 0.3, α) = k.

Theorem 5.2. Let H be an arbitrary hypothesis class with VC dimension d. For any set G of domains,
any threshold τ ∈ R, and any margin α ∈ (0, 1/2),

Gdim(H,G, τ, α) = O(d log(1/α)). (11)

We defer the proofs of these two theorems to Appendices B.3 and B.4. Our proof of Theorem 5.2
uses a dimension reduction argument combined with the standard Sauer-Shelah-Perles lemma, which
is inspired by the proof of a classic covering number upper bound in terms of the VC dimension [see
e.g. Vershynin, 2018, Theorem 8.3.18].

6 Connection to Domain Adaptation

In the domain adaptation literature, a common setting assumes that the training data are drawn from a
source distribution, while the test data come from a different but related target distribution. When
the source and target distributions are sufficiently similar, a model trained on the source data can
generalize well to the target distribution. To quantify this similarity, various notions have been
proposed, such as the H-divergence [Ben-David et al., 2010] and the propensity scoring function
class [Kim et al., 2022].

Our work makes no assumptions about the inter-domain structure, except that the optimal domain
error bound τ⋆P,H is reasonably small. We then upper bound the domain generalization error using the
domain shattering dimension. In this section, we show that when the covering number of the domain
space G w.r.t. the H-divergence is small, the domain shattering dimension is also small. In fact, we
show a stronger result (Theorem 6.1) for a refined variant of the H-divergence. This illustrates that
our domain shattering dimension can capture the similarity between domains without requiring an
explicit model of their relationships.

Inspired by the H-divergence introduced by Ben-David et al. [2010], where

dH(D,D′) := sup
h∈H

|errD(h)− errD′(h)| ,

we define a refined notion of divergence. Given H, τ , the (H, τ)-divergence between two domains
D,D′ is

dH,τ (D,D′) := sup
h∈H:min{errD(h),errD′ (h))}≤τ

|errD(h)− errD′(h)| .

8



Note that dH,τ (D,D′) ≤ dH(D,D′) as we only take supremum over a subset of hypotheses {h ∈
H : min{errD(h), errD′(h))} ≤ τ}. Given domain space G, we say G′ is an α-cover of G w.r.t. dH,τ

if for every D ∈ G, there exists D′ ∈ G′ such that dH,τ (D,D′) ≤ α. Any α-cover G′ w.r.t. dH is also
an α-cover w.r.t. dH,τ .

Theorem 6.1. For every hypothesis class H, domain space G and τ, α ∈ (0, 1), let G′ be an α
2 -cover

of G w.r.t. dH,τ . We have Gdim(H,G, τ, α) ≤ |G′|.

Proof of Theorem 6.1. For every D′ ∈ G′, define G(D′) := {D ∈ G : dH,τ (D,D′) ≤ α
2 }. Since G′

is an α
2 -cover, the union of G(D′) over D′ ∈ G′ is G.

Fix an arbitrary D′ ∈ G′ and let D1,D2 be two domains in G(D′). We show that D1,D2 cannot be
α-shattered at τ . In particular, we show that for every h ∈ H, the two conditions errD1

(h) < τ − α
and errD2

(h) > τ cannot hold simultaneously. Indeed, if errD1
(h) < τ − α, then we have

errD′(h) ≤ errD1(h) +
α

2
< τ − α

2
,

and consequently,
errD2

(h) ≤ errD′(h) +
α

2
< τ.

Therefore, errD2
(h) > τ cannot hold.

We have now shown that every subset of domains that is α-shattered at τ contains at most one domain
from each G(D′) for D′ ∈ G′. Thus the domain shattering dimension Gdim(H,G, τ, α) does not
exceed |G′|.

When all the domains are similar, the cover size is 1, then sampling one domain is sufficient. Below
are two examples of domain spaces with cover size 1.

Example 6.1 (Small H-divergences). For any domain space G, if for every pair of distributions
D,D′ ∈ G, dH(D,D′) ≤ α. Then the α-cover size of G is 1.

Example 6.2 (Smooth Distributions). Given a marginal data distribution µ and a labeling function
p⋆, we define Dµ,p⋆ as the distribution over labeled data where features are drawn from µ and
labels are assigned according to p⋆. For a parameter γ ∈ (0, 1), a labeling function p⋆, and a base
marginal distribution µ0, define the smooth domain space as

Gp⋆,µ0,γ =

{
Dµ,p⋆

∣∣∣∣ µ(x)

µ0(x)
∈ [γ, 1

γ ], ∀x ∈ supp(µ0)

}
.

For domain space Gp⋆,µ0,γ , we can find a
(

1
γ2 − 1

)
τ -cover of size 1.

For any two distributions Dµ1,p⋆ ,Dµ2,p⋆ ∈ Gp⋆,µ0,γ , it holds that µ1(x)
µ2(x)

∈ [γ2, 1
γ2 ] for all x ∈

supp(µ0). Consequently, for any hypothesis h, we have

γ2 · errDµ2,p⋆
(h) ≤ errDµ1,p⋆

(h) ≤ 1

γ2
· errDµ2,p⋆

(h).

Therefore, by the definition of the (H, τ)-divergence, it follows that

dH,τ (Dµ1,p⋆ ,Dµ2,p⋆) ≤
(

1

γ2
− 1

)
τ.

Hence, for domain space Gp⋆,µ0,γ , we can find a
(

1
γ2 − 1

)
τ -cover of size 1.

7 Discussion and Limitations

This work was inspired by the very real and widely acknowledged problem of transferring research
from well-funded flagship medical research institutions to essentially all communities, even those
with no direct access to these facilities, "from preeminent bench to geographically remote bedside"
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(Deng et al. [2020]). Our succinct characterization and algorithm close some facets of this central
question, while opening others.

How to compute the shattering dimension. As discussed in Remark 4.1, the choice of τ reflects a
trade-off between the strictness of the generalization goal and the fraction of domains that can satisfy
it, as captured by Gdim(H,G, τ, α). However, choosing an appropriate τ depends on understanding
the value of Gdim(H,G, τ, α), which–like the VC dimension–is generally difficult to compute.
Developing tools or approximation techniques to estimate Gdim is an important direction for future
work.

Choice of hypothesis class H. We focus on the setting where a hypothesis class H is given and
assumed to contain a reasonably good hypothesis that generalizes across all domains. However, in
practice, one may have access to a collection of candidate classes. How should we select the best
class–one that contains a reasonably good hypothesis but is not overly complex–for generalization?
This question relates to structured ERM in the learning theory literature and presents an interesting
open direction.

Gap between upper and lower bounds. Although we show that the domain shattering dimension
provides both upper and lower bounds on the domain sample complexity, a small gap remains. Our
upper bound guarantees that O(Gdim(H,G, τ, α)) sampled domains are sufficient to learn a predictor
with error at most τ on most domains, while the lower bound shows that Ω(Gdim(H,G, τ, α))
domains are necessary to achieve an error threshold τ ′ ∈ (τ − α, τ). Additionally, the lower bound
does not apply to all domain families G; in some cases, the construction requires augmenting G with
a few extra domains. It would be of moderate interest to close this gap.

Unlabeled data from some unseen groups. In this work, we assume no information is available
from unobserved domains. However, in real-world applications such as healthcare, labeled data can
be expensive—particularly in rural regions where diagnostic tools may be limited—while unlabeled
data are often cheaper and more accessible. This brings us full circle to the motivating scenario in
the original paper on domain generalization Blanchard et al. [2011], what is there termed automatic
gating of flow cytometry data. In this problem, each patient yields a patient-specific distribution (i.e.
domain) of d-vectors of attributes of cells. The label might capture whether or not the given cell is a
lymphocyte. Our work strengthens the results of Blanchard et al. [2011] by obtaining generalization
to all unseen patients, and not just in expectation over unseen patients. This inspiring scenario, in
which unlabled data are plentiful, raises the following question: If we permit the (fixed) learned
hypothesis to be modified based on unlabeled samples from the test domain, can we beat our lower
bound and get away with training on fewer than Gdim(H,G, τ, α) domains, while maintaining the
learning objective of performing well on every unseen domain?
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provided all the assumptions and complete proofs (some are in the ap-
pendix).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments. All results are carefully proven and
do not require experiments to establish correctness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a theoretical paper. All results are carefully proven and do not require
experiments to establish correctness.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a theoretical paper. All results are carefully proven and do not require
experiments to establish correctness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theoretical paper. All results are carefully proven and do not require
experiments to establish correctness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This is a theoretical paper. All results are carefully proven and do not require
experiments to establish correctness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully read and comply with the NeurIPS code of ethics. This
work is theoretical and we do not foresee harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We note that our work is theoretical. We do not foresee any societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work is entirely theoretical; we do not release new data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used LLMs for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Deferred Related Work

Many previous theoretical works on domain generalization make explicit assumptions on how
domains are related. Blanchard et al. [2011] formulated the problem and approached it using kernel
methods. They and Muandet et al. [2013] differ from our work in assuming similarity among the
various domains (possibly after a learned transformation); moreover, they achieve low error only
in expectation over the choice of test domain. More recently, Mohri et al. [2019] assumes that the
learner has access to a family of training domains, and the test domains are a family of mixtures
(i.e., convex combinations) of the training domains. The coefficients of the convex combinations
are assumed to be in a restricted range. The works of Shao et al. [2022], Montasser et al. [2024]
assume that the domains are related by transformations. These works [Mohri et al., 2019, Shao
et al., 2022, Montasser et al., 2024] all use a min-max objective similar to our work. Ben-David
et al. [2010] studies learning with a source (training) domain and a target (test) domain with the
assumption that the each hypothesis h ∈ H has similar overall average on the two domains (they
define H-divergence as the largest gap between the two averages). Kim et al. [2022] assume that the
ratios of the probability density between domains (i.e. propensity scores) are bounded and come from
a restricted family. Schölkopf et al. [2012], Zhang et al. [2015], Gong et al. [2016] formulate the
problem from a causal perspective and make corresponding causal assumptions.

Inspired by causal reasoning, and seeking to eliminate spurious correlations, Arjovsky et al. [2019]
introduced Invariant Risk Minimization, in which the different domains correspond to training data
collected in different environments which “could represent different measuring circumstances loca-
tions, times, experimental conditions” and so on. Invariant Risk Minimization seeks a representation
mapping for instances, under which the optimal classifier is identical for all environments. Deng
et al. [2020], whose setting and assumptions exactly match ours, also seeks a representation approach,
specifically, via adversarial learning using techniques developed in Madras et al. [2018]; their algo-
rithmic results have provable guarantees for unseen domains only when the observed domains form a
cover with respect to H-divergence for the set of possible domains.

The work of Garg et al. [2021] studies domain generalization with the goal of minimizing the average
error across domains, which is equivalent to the error on the single large domain defined as the
mixture of all the domains in the problem. This makes their learning task similar to the standard PAC
learning with the additional advantage that the training data is grouped by domain. This advantage
allows them to show computationally efficient learning algorithms for specific learning problems that
do not have known efficient algorithms in the standard PAC learning setting.

Alon et al. [2024] study a related meta-learning problem, where instead of outputting a single
hypothesis h, their learner outputs a hypothesis class which can be used later to learn a good
hypothesis on a new task (analogous to a new domain) given additional data from that task. They
focus on the realizable setting with performance measured using the average accuracy over random
new tasks. A large body of work studies meta-learning for linear regression and related problems
under the assumption that the underlying parameters of different tasks can be represented in a shared
low-dimensional subspace [Maurer et al., 2016, Kong et al., 2020, Tripuraneni et al., 2020, 2021, Du
et al., 2021, Collins et al., 2021, Thekumparampil et al., 2021, Duchi et al., 2022, Aliakbarpour et al.,
2024].

There is a large body of recent and earlier work on multi-distribution learning [Larsen et al., 2024,
Zhang et al., 2024, Peng, 2024, Awasthi et al., 2023, Haghtalab et al., 2022, Chen et al., 2018, Nguyen
and Zakynthinou, 2018, Blum et al., 2017]. This problem is closely related to ours in that they also
do not impose structural assumptions on the domains, and they also consider the min-max objective.
However, their goal is to learn a hypothesis that performs well on the observed domains, so their focus
lies in the total number of data points required for learning (i.e., the sample or query complexity).
In contrast, we aim to generalize to unobserved domains and focus on the number of domains the
learner needs to observe–the domain sample complexity.

B Deferred Proofs

B.1 Proof of Lemma 4.2

Lemma 4.2 (Uniform convergence for partial concepts). Let F be a class of partial concepts
f : Z → {0, 1,⊥} on an arbitrary input space Z. Assume that F has VC dimension d. For every
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n ∈ Z>0 and δ ∈ (0, 1/2), there exists

γ = O

(
d log2 n+ log(1/δ)

n

)
(6)

such that for every distribution P over Z, for n i.i.d. data points z1, . . . , zn drawn from P ,

Pr
z1,...,zn

[∃f ∈ F s.t. Prz∼P [f(z) = 1] > γ and ∀i ∈ [n], f(zi) = 0] ≤ δ. (7)

We will use the following result.
Theorem B.1 (Quasipolynomial Sauer-Shelah-Perles Lemma for Disambiguations of Partial Concepts
[Alon et al., 2022]). Let F be a class of partial concepts f : Z → {0, 1,⊥} defined on an arbitrary
domain Z with VC dimension d. Let S be a subset of Z with size |S| = n > 1. Then there exists a
class F of total concepts f : S → {0, 1} with size

|F| = nO(d logn)

that satisfies the following. For every f ∈ F , there exists f ∈ F such that for every s ∈ S with
f(s) ∈ {0, 1}, it holds that f(s) = f(s).

Proof of Lemma 4.2. We apply the symmetrization trick. Specifically, we independently draw another
n data points z′1, . . . , z

′
n i.i.d. from P . By the multiplicative Chernoff bound, assuming n > C/γ for

a sufficiently large absolute constant C > 0 (which can be guaranteed by the choice of γ in (6)), for a
fixed f ∈ F satisfying Prz∼P [f(z) = 1] > γ, with probability at least 1/2 we have

|{i ∈ [n] : f(z′i) = 1}| > γn/2.

Therefore, to show (7), it suffices to show that

Pr
z1,...,zn;z′

1,...,z
′
n

[∃f ∈ F s.t. |{i ∈ [n] : f(z′i) = 1}| > γn/2 and ∀i ∈ [n], f(zi) = 0] ≤ δ/2. (12)

The 2n data points z1, . . . , zn, z
′
1, . . . , z

′
n can be sampled equivalently as follows. We first draw

2n i.i.d. data points r1, . . . , r2n from P , choose n data points from them uniformly at random
without replacement as z1, . . . , zn, and define the remaining n data points as z′1, . . . , z

′
n. We define

r := (r1, . . . , r2n), z := (z1, . . . , zn), z
′ := (z′1, . . . , z

′
n).

For a fixed r, by Theorem B.1, there exists a class F of total concepts f : {r1, . . . , r2n} → {0, 1}
with

|F| ≤ (2n)O(d log(2n)) (13)

satisfying the following property: for every f ∈ F , there exists f ∈ F such that for every i ∈ [2n]
with f(ri) ∈ {0, 1}, it holds that f(ri) = f(ri). Therefore, to show (12), it suffices to show that for
every fixed choice of r, we can bound the following conditional probability given r:

Prz,z′ [∃f ∈ F s.t. |{i ∈ [n] : f(z′i) = 1}| > γn/2 and ∀i ∈ [n], f(zi) = 0 | r] ≤ δ/2,

where the probability is over the random partitioning of r into z and z′. By the union bound, it
suffices to show that for every f ∈ F ,

Prz,z′ [|{i ∈ [n] : f(z′i) = 1}| > γn/2 and ∀i ∈ [n], f(zi) = 0 | r] ≤ δ/(2|F|).

Note that |{i ∈ [n] : f(z′i) = 1}| > γn/2 implies that among the 2n data points r1, . . . , r2n, more
than γ/4 fraction of the data points ri satisfy f(ri) = 1. Conditioned on r satisfying this property,
since z1, . . . , zn are chosen randomly without replacement from r1, . . . , r2n, the probability that all
the n data points z1, . . . , zn satisfy f(zi) = 0 is at most (1− γ/4)n. Therefore, it suffices to prove
that

(1− γ/4)n ≤ δ/(2|F|).
This holds when

γ ≥ C

n
log(|F|/δ)

for a sufficiently large absolute constant C > 0. By (13), the above inequality can be achieved by a
choice of γ satisfying (6).
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B.2 Proof of Theorem 4.3

Theorem 4.3 (Lower bound). Consider an arbitrary class H of hypotheses h : X → {0, 1} and an
arbitrary family G of domains D (i.e. distributions over X×{0, 1}). Assume that Gdim(H,G, τ, α) =
d for some τ, α ∈ R and d ∈ Z>0, where 0 ≤ α < τ ≤ 1/2. Let D0 be a distribution of
(x, y) ∈ X × {0, 1} satisfying errD0

(h) = 0 for every h ∈ H. Let D1, . . . ,Dd ∈ G be d domains
shattered by H, and define G′ = G ∪ {D0,D′

1, . . . ,D′
d} as in (8) for

λ =
τ − α

1− τ
∈ (0, 1]. (9)

Then Gdim(H,G′, τ, α) = d. Moreover, for some γ > 0, δ ∈ (0, 1/4), n ∈ Z>0, and an error
threshold τ ′ < τ − 1−τ

1−α ·α ∈ (τ −α, τ ], suppose there is an algorithm A with the following property
on every distribution P over G′ satisfying τ⋆P,H < τ − α: it takes n domains drawn i.i.d. from P as

input, and with probability at least 1− δ, outputs a hypothesis ĥ such that

ErP,τ ′(ĥ) ≤ γ.

Then

γ = Ω

(
min

{
1,

d+ log(1/δ)

n

})
. (10)

Claim B.2. In the setting of Theorem 4.3, for every i = 1, . . . , d, and every hypothesis h : X →
{0, 1}, we have

errD′
i
(h) ≥ λ (1− errDi

(h)), (14)

max{errD′
i
(h), errDi

(h)} ≥ λ

1 + λ
= τ − 1− τ

1− α
· α > τ ′. (15)

Moreover, the inequality (14) becomes an equality when h ∈ H.

Proof. By (8), for any hypothesis h, we have

errD′
i
(h) = (1− λ)errD0

(h) + λ(1− errDi
(h)).

Inequality (14) follows immediately from the trivial fact that errD0(h) ≥ 0. When h ∈ H, we have
errD0(h) = 0, so (14) becomes an equality.

It remains to prove (15). Suppose errDi(h) <
λ

1+λ . By (14),

errD′
i
(h) ≥ λ

(
1− λ

1 + λ

)
=

λ

1 + λ
.

This proves the first inequality in (15). The equality in (15) follows from the definition of λ in (9).
The last inequality in (15) is our assumption about τ ′ in Theorem 4.3.

Proof of Theorem 4.3. We first prove that Gdim(H,G′, τ, α) = d. By Claim B.2, for any Di and the
corresponding D′

i in (8), the errors of any hypothesis h ∈ H on Di and D′
i are related as follows:

errDi
(h) = 1− errD′

i
(h)/λ.

Therefore,

errD′
i
(h) < τ − α =⇒ errDi

(h) > 1− (τ − α)/λ = τ,

errD′
i
(h) > τ =⇒ errDi

(h) < 1− τ/λ ≤ 1− (τ − α)/λ− α = τ − α, (16)

where we used the definition of λ in (9). Consider any set S ⊆ G′ shattered by H. Clearly D0 cannot
appear in S because errD0(h) = 0 for every h ∈ H. By (16), Di and D′

i cannot both belong to S,
and replacing D′

i with Di in S still leads to a shattered set. We can thus change S into a shattered
subset of G without changing its size. This implies that the domain shattering dimension of H on G′

does not exceed its domain shattering dimension on G. The reverse direction is trivial, so the two
domain shattering dimensions are both equal to d.
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Now we prove the lower bound (10) on γ. We can assume without loss of generality that γ < 1/8,
because otherwise we already have γ = Ω(1) as needed to establish the theorem. For every bit string
b ∈ {0, 1}d, we define domains D0, . . . ,Dd as follows:

D0 = D0,

Di =

{
Di, if bi = 0,

D′
i, if bi = 1,

for i = 1, . . . , d. (17)

We define Pb to be the distribution that puts 1 − 4γ probability mass on D0, and distributes the
remaining 4γ probability mass uniformly on D1, . . . ,Dd.

We first show that τ⋆Pb,H < τ − α. Since D1, . . . ,Dd are shattered by H, there exists a hypothsis
hb ∈ H such that for every i = 1, . . . , d,

errDi
(hb) < τ − α, if bi = 0,

errDi
(hb) > τ, if bi = 1.

When errDi
(hb) > τ , by Claim B.2,

errD′
i
(hb) < λ(1− τ) =

τ − α

1− τ
· (1− τ) = τ − α .

Therefore, errDi
(hb) < τ − α for every i = 0, 1, . . . , d. This completes the proof of our claim that

τ⋆Pb,H < τ − α.

Now let us consider the following process. We first draw b uniformly at random from {0, 1}d, and
then draw n i.i.d. domains from Pb to form a training set G. Let ĥ be the output of algorithm A given
G as input. With probability at least 1− δ, the output ĥ satisfies

Pr
D∼Pb

[errD(ĥ) > τ ′] ≤ γ. (18)

Let m be the number of domains among D1, . . . ,Dd that do not appear in the training set S. By
Claim B.2, conditioned on m, with probability at least 1/2, at least m/2 of these domains Di satisfy

errDi
(ĥ) > τ ′.

That is, with probability at least 1/2,

Pr
D∼Pb

[errD(ĥ) > τ ′] ≥ (m/2) · (4γ/d) = (2m/d) · γ.

Therefore, conditioned on m > d/2, with probability at least 1/2, (18) does not hold. Since (18)
holds with probability at least 1− δ, we have

Pr[m > d/2] ≤ 2δ,

or equivalently,
Pr[d−m < d/2] ≤ 2δ. (19)

The nonnegative random variable d−m is the number of domains among D1, . . . ,Dd that do appear
in the training set S. Since the training set S is formed by n i.i.d. examples drawn from Pb which
puts 4γ total probability mass on D1, . . . ,Dd, we have E[d−m] ≤ 4γn. By Markov’s inequality,

Pr[d−m ≤ 8γn] ≥ 1/2. (20)

Combining (19) and (20) with our assumption that δ < 1/4, we have

8γn ≥ d/2,

which implies that γ ≥ d/(16n). Moreover, with probability (1− 4γ)n, the training set S contains
no domains among D1, . . . ,Dd, giving d−m = 0. Therefore, by (19),

2δ ≥ Pr[d−m < d/2] ≥ Pr[d−m = 0] = (1− 4γ)n.

This implies that γ ≥ Ω(log(1/δ)/n). In summary,

γ ≥ max

{
d

16n
,Ω

(
log(1/δ)

n

)}
= Ω

(
d+ log(1/δ)

n

)
.
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B.3 Proof of Theorem 5.1

Theorem 5.1. For every positive integer d, there exists a hypothesis class H with VCdim(H) = d
satisfying the following property. For any α ∈ (0, 1/12), there exist k = Ω(d log(1/α)) domains
D1, . . . ,Dk such that

Gdim(H, {D1, . . . ,Dk}, 0.3, α) = k.

We need the following helper lemma.
Lemma B.3. For an odd positive integer m, on domain X = {0, 1, . . . ,m}, consider the hypothesis
class H = {h1, . . . , hm} where hi(x) = I[x ≥ i] for every i = 1, . . . ,m and x ∈ X . There exists a
distribution D of (x, y) ∈ X × {0, 1} such that

errD(hi) =

{
0.3− 1

4m , if i is odd;
0.3 + 1

4m , if i is even.

Proof. We construct the distribution D of (x, y) as follows. With probability 1/2, we choose x = 0.
With the remaining probability 1/2, we choose x uniformly at random from 1, . . . ,m. That is,
Pr[x = i] = 1/(2m) for every i = 1, . . . ,m. Conditioned on x = 0, we draw y ∈ {0, 1} such that
Pr[y = 1|x = 0] = 0.1. Conditioned on x ̸= 0, we choose y = 1 (deterministically) if x is odd, and
y = 0 if x is even.

For odd i ∈ {1, . . . ,m}, we have

errD(hi) =
1

2
· 0.1 + 1

2m

m∑
x=1

I[hi(x) ̸= I[x is odd]]

= 0.05 +
1

2m

m∑
x=1

(I[x < i and x is odd] + I[x ≥ i and x is even])

= 0.05 +
1

2m

(
i− 1

2
+

m− i

2

)
= 0.3− 1

4m
.

Similarly, for even i ∈ {1, . . . ,m}, we have

errD(hi) = 0.05 +
1

2m

m∑
x=1

(I[x < i and x is odd] + I[x ≥ i and x is even])

= 0.05 +
1

2m

(
i

2
+

m− i+ 1

2

)
= 0.3 +

1

4m
.

Proof of Theorem 5.1. We first prove the theorem in the special case where d = 1. On domain
X := Z≥0 = {0, 1, . . .}, consider the hypothesis class H = {h1, h2, . . .}, where hi(x) = I[x ≥ i]
for every i = 1, 2, . . . and x ∈ X . Clearly, VCdim(H) = 1.

Let k be the largest integer satisfying 2k+2 + 4 < 1/α. By our assumption that α ∈ (0, 1/12), we
have k = Ω(log(1/α)). Our goal is to construct k distributions D1, . . . ,Dk that are shattered by
h1, . . . , hK for K = 2k. Let E1, . . . , EK be all the K subsets of {1, . . . , k}. For every j = 1, . . . , k,
we will construct Dj such that for every i = 1, . . . ,K,

errDj
(hi) < 0.3− α, if j ∈ Ei;

errDj (hi) > 0.3, if j /∈ Ei. (21)

This ensures that D1, . . . ,Dk are shattered by h1, . . . , hK , as needed to prove the lemma.

It remains to show the construction of Dj for every j = 1, . . . , k. It will become convenient to choose
E1 to be the whole set E1 = {1, . . . , k}. This ensures that j ∈ E1 for every j = 1, . . . , k. For a fixed
j, we partition {1, . . . ,K} into consecutive non-empty blocks S1, . . . , Sm for some m ≤ K. Each
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block Sℓ has the form Sℓ = {xℓ−1 + 1, xℓ−1 + 2, . . . , xℓ}, where 0 = x0 < x1 < · · · < xm = K.
We define these blocks S1, . . . , Sm so that

j ∈ Ei for every odd ℓ ∈ {1, . . . ,m} and every i ∈ Sℓ;
j /∈ Ei for every even ℓ ∈ {1, . . . ,m} and every i ∈ Sℓ. (22)

If m is odd, we define X ′ = {x0, x1, . . . , xm}. If m is even, we define X ′ = {x0, x1, . . . , xm,K +
1}. By Lemma B.3, there exists a distribution Dj over X ′ × {0, 1} such that

errDj
(hxℓ

) ≤ 0.3− 1

4(m+ 1)
< 0.3− α for odd ℓ ∈ {1, . . . ,m},

errDj
(hxℓ

) ≥ 0.3 +
1

4(m+ 1)
> 0.3 for even ℓ ∈ {1, . . . ,m}, (23)

where we used 4(m + 1) ≤ 4(K + 1) = 2k+2 + 4 < 1/α. Recall that for each ℓ = 1, . . . ,m, the
largest element in block Sℓ is xℓ, so for every i ∈ Sℓ,

hi(x) = hxℓ
(x) for every x ∈ X ′.

Therefore, (23) implies

errDj
(hi) < 0.3− α for every odd ℓ ∈ {1, . . . ,m} and every i ∈ Sℓ;

errDj
(hi) > 0.3 for every even ℓ ∈ {1, . . . ,m} and every i ∈ Sℓ. (24)

Combining (22) and (24) proves (21).

Finally, we prove the theorem for a general positive integer d. On input space X ′ := [d]×X , we
construct a hypothesis class H′ using our hypothesis class H above as follows:

H′ := {h : X ′ → {0, 1}|∃h1, . . . , hd ∈ H s.t. h′(i, x) = hi(x) for every (i, x) ∈ X ′}.
This construction ensures that VCdim(H′) = d ·VCdim(H) = d. By our analysis above, there exist
k = Ω(log(1/α)) domains D1, . . . ,Dk on X that are shattered by H. Now for every i ∈ [d] and
j ∈ [k], we define Di,j to be the distribution of (i, x) ∈ X ′ with x ∼ Dj . These kd = Ω(d log(1/α))
domains (Di,j)i∈[d],j∈[k] are shattered by H′, completing the proof.

B.4 Proof of Theorem 5.2

Theorem 5.2. Let H be an arbitrary hypothesis class with VC dimension d. For any set G of domains,
any threshold τ ∈ R, and any margin α ∈ (0, 1/2),

Gdim(H,G, τ, α) = O(d log(1/α)). (11)

We will use the following classic result:
Theorem B.4 (Sauer-Shelah-Perles Lemma [Sauer, 1972, Shelah, 1972]). Let F be a class of
concepts f : Z → {0, 1} defined on an arbitrary domain Z with VC dimension d. Let S be a subset
of Z with size |S| = n ≥ d. Then

|FS | ≤ (en/d)d,

where FS is the restriction of F to the subset S ⊆ Z.

Proof of Theorem 5.2. Let D1, . . . ,Dk ∈ G be k domains shattered by H. By the definition of
shattering, there exist K = 2k hypotheses h1, . . . , hK ∈ H with the following property: for every
pair of hypotheses hj1 , hj2 with 1 ≤ j1 < j2 ≤ K, there exists i ∈ {1, . . . , k} such that

|errDi
(hj1)− errDi

(hj2)| > α. (25)

Let us consider a fixed domain Di for an arbitrary i = 1, . . . , k. We show that for some m =
O(α−2k), there exists a dataset Si consisting of m points (x1, y1), . . . , (xm, ym) such that

|errDi
(hj)− errSi

(hj)| < α/2 for every j = 1, . . . ,K, (26)

where errSi
(hj) is the empirical error on Si:

errSi
(hj) =

1

m

m∑
ℓ=1

I[yℓ ̸= hj(xℓ)].
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That is, Si is a representative dataset for distribution Di in terms of measuring the error of the
K shattering hypotheses. We prove the existence of Si by the probabilistic method. For i.i.d.
points (x1, y1), . . . , (xm, ym) drawn from Di, by the Chernoff bound, for a fixed j, (26) holds with
probability at least 1 − 1/(2K) as long as m ≥ Cα−2k for a sufficiently large absolute constant
C > 0. By the union bound over j = 1, . . . ,K, with probability at least 1/2, the m data points
satisfy (26), proving the existence of Si.

We have now proved that for every i = 1, . . . , k, there exists a size-m dataset Si satisfying (26),
where m = O(α−2k). Combining this with (25), we know that for any pair of hypotheses hj1 , hj2
with 1 ≤ j1 < j2 ≤ K, there exists i ∈ {1, . . . , k} such that

errSi(hj1) ̸= errSi(hj2).

This implies that hj1(x) ̸= hj2(x) for some (x, y) ∈ Si ⊆ (S1 ∪ · · · ∪ Sk). By Theorem B.4, for

n := |S1 ∪ · · · ∪ Sk| ≤ mk = O(α−2k2), (27)

it holds that
2k ≤ (2 + en/d)d. (28)

Plugging (27) into (28) and taking the logarithm of both sides, we get

k/d ≤ O(log(1/α) + log(2 + k/d)).

This implies k/d = O(log(1/α)), proving (11).
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