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Abstract

As industrial applications are increasingly automated by machine learning models,
enforcing personal data ownership and intellectual property rights requires tracing
training data back to their rightful owners. Membership inference algorithms
approach this problem by using statistical techniques to discern whether a target
sample was included in a model’s training set. However, existing methods only
utilize the unaltered target sample or simple augmentations of the target to compute
statistics. Such a sparse sampling of the model’s behavior carries little information,
leading to poor inference capabilities. In this work, we use adversarial tools to
directly optimize for queries that are discriminative and diverse. Our improvements
achieve significantly more accurate membership inference than existing methods,
especially in offline scenarios and in the low false-positive regime which is critical
in legal settings.

1 Introduction

In an increasingly data-driven world, legislators have begun developing a slew of regulations with
the intention of protecting data ownership. The right-to-be-forgotten written into the strict GDPR
law passed by the European Union has important implications for the operation of ML-as-a-service
(MLaaS) providers [Wilka et al., 2017, Truong et al., 2021]. As one example, Veale et al. [2018]
discuss that machine learning models could legally (in terms of the GDPR) fall into the category of
“personal data”, which equips all parties represented in the data with rights to restrict processing and
to object to their inclusion. However, such rights are vacuous if enforcement agencies are unable to
detect when they are violated. Membership inference algorithms are designed to determine whether
a given data point was present in the training data of a model. Though membership inference is
often presented as a breach of privacy in situations where belonging to a dataset is itself sensitive
information (e.g. a model trained on a group of people with a rare disease), such methods can also be
used as a legal tool against a non-compliant or malicious MLaaS provider.

Because membership inference is a difficult task, the typical setting for existing work is generous to
the attacker and assumes full white-box access to model weights. In the aforementioned legal scenario
this is not a realistic assumption. Organizations have an understandable interest in keeping their
proprietary model weights secret and, short of a legal search warrant, often only provide black-box
querying to their clients [OpenAI, 2020]. Moreover, even if a regulatory agency forcibly obtained
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white-box access via an audit, for example, a malicious provider could adversarially spoof the
reported weights to cover up any violations.

In this paper, we achieve state-of-the-art performance for membership inference in the black-box
setting by using a new adversarial approach. We observe that previous work [Shokri et al., 2017,
Yeom et al., 2018, Salem et al., 2018, Carlini et al., 2022a] improves membership inference attacks
through a variety of creative strategies, but these methods query the targeted model using only
the original target data point or its augmentations. We instead learn canary query vectors that are
maximally discriminative: They separate all models trained with the target data point from all models
trained without it. We show that this strategy reliably results in more precise predictions than the
baseline method for three different datasets, four different model architectures, and even models
trained with differential privacy.

2 Background and Related Work

Homer et al. [2008] originated the idea of membership inference attacks (MIAs) by using aggregated
information about SNPs to isolate a specific genome present in the underlying dataset with high
probability. Such attacks on genomics data are facilitated by small sample sizes and the richness of
information present in each DNA sequence, which for humans can be up to three billion base pairs.
Similarly, the overparametrized regime of deep learning makes it vulnerable to MIAs. Yeom et al.
[2018] designed the first attacks on deep neural networks by leveraging overfitting to the training
data – members exhibit statistically lower loss values than non-members.

Since their inception, improved MIAs have been developed, across different problem settings
and threat models with varying levels of adversarial knowledge. Broadly speaking, MIAs can be
categorized into metric-based approaches and binary classifier approaches [Hu et al., 2021]. The
latter utilizes a variety of calculated statistics to ascertain membership while the former involves
training shadow models and using a neural network to learn the correlation [Shokri et al., 2017,
Truong et al., 2021, Salem et al., 2018].

More specifically, existing metric-based approaches include: correctness [Yeom et al., 2018,
Choquette-Choo et al., 2021, Bentley et al., 2020, Irolla and Châtel, 2019, Sablayrolles et al.,
2019], loss [Yeom et al., 2018, Sablayrolles et al., 2019], confidence [Salem et al., 2018], and entropy
[Song and Mittal, 2021, Salem et al., 2018]. The ability to query such metrics at various points
during training has been shown to further improve membership inference. Liu et al. [2022] devise a
model distillation approach to simulate the loss trajectories during training, and Jagielski et al. [2022]
leverage continual updates to model parameters to get multiple trajectory points.

3 Letting the Canary Fly

In this section, we expound upon the threat model for the type of membership inference we perform.
We then provide additional background on metric-based MIA through likelihood ratio tests, before
describing how to optimize the canary query data point.

3.1 Threat Models

Membership inference is a useful tool in many real-world scenarios. For example, suppose a MLaaS
company trains an image classifier by scraping large amounts of online images and using data
from users/clients to maximize model performance. A client requests that their data be unlearned
from the company’s model – via their right-to-be-forgotten – and wants to test compliance by
determining membership inference of a private image during training. We assume the client also has
the ability to scrape online data points, which may or may not be in the training data of the target
classifier. However, the target model can only be accessed through an API that returns predictions
and confidence scores, hiding weights and intermediate activations.

We formulate two threat models, where the trainer is the company and the attacker is the client as
described above:

Online Threat Model. We assume there exists a public training algorithm T (including the model
architecture) and a universal dataset D. The trainer trains a target model θt on a random subset
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Dt ⊆ D through T . Given a sensitive point (x∗, y∗) ∈ D, the attacker aims to determine whether
(x∗, y∗) ∈ Dt or (x∗, y∗) /∈ Dt. The target model parameters are protected, and the attacker has
limited query access to the target model and its confidence fθt(x)y for any (x, y).

We use the term online to indicate that the attacker can modify their membership inference strategy
as a function of (x∗, y∗). A more conservative threat model is the offline variant, where the attacker
must a priori decide on a fixed strategy to utilize across all sensitive data points. This is more realistic
when the strategy involves training many shadow models, which is computationally expensive.

Offline Threat Model. As above, the trainer trains a target model on Dt ⊆ D with T . However,
now we assume the attacker only has access to an auxiliary dataset Daux ⊆ D to prepare their attack.
The set of sensitive data points Dtest ⊆ D is defined to have the properties Daux ∩ Dtest = ∅ but
Dt ∩Dtest ̸= ∅. Again, the attacker has limited query access to the target model and its confidence
fθt(x)y for any (x, y).

3.2 Optimizing for Canary Success

The framework for our attack comes from the Likelihood Ratio Attack (LiRA) introduced by Carlini
et al. [2022a] – the full details can be found in Appendix A.1. Below, we describe the methodology
for constructing optimized canary queries that significantly enhance the effectiveness of LiRA.

For a target data point (x∗, y∗), its IN shadow models Sin = {θin
1 , ..., θ

in
n}, and its OUT shadow

models Sout = {θout
1 , ..., θout

m }, the attacker’s goal is to find a data point xmal such that IN models and
OUT models have different behaviors (logits/confidence scores/losses). In the simplest case, the
attacker can optimize xmal so that IN shadow models have high losses on xmal and OUT models to
have low losses on xmal. This can be simply achieved by minimizing the following objective:

argmin
xmal∈I

1

n

n∑
i=1

L(xmal, y
∗, θin

i ) +
1

m

m∑
i=1

Lout(xmal, y
∗, θout

i ), (1)

where I is the feasible data point domain, L is the main task loss, and Lout is − log(1− fθ(x)y).

Though in principle an attacker can construct a canary query as described above, in practice the
optimization problem is intractable. Accumulating the loss on all shadow models requires a significant
amount of computational resources, especially for a large number of shadow models or models with
many parameters. Another way to conceptualize the problem at hand, is to think of xmal as the model
parameters and the shadow models as training data points in traditional machine learning. When
framed this way, the number of parameters in our model xmal is much greater than the number of data
points |Sin|+ |Sout|. For CIFAR-10 the number of parameters in xmal is 3× 32× 32 = 3072, but the
largest number of shadow models used in the original LiRA paper is merely 256. Therefore, if we
follow the loss Equation (1), xmal will overfit to shadow models and not be able to generalize to the
target model.

To alleviate the computational burden and the overfitting problem, we make some modifications to
the canary generation process. During optimization, we stochastically sample b IN shadow models
from Sin and b OUT shadow models from Sout for each iteration, where b < min(n,m). This is
equivalent to stochastic mini-batch training for batch size b, which might be able to help the query
generalize better [Geiping et al., 2021]. We find that such a mini-batching strategy does reduce the
required computation, but it does not completely solve the overfitting problem. An attacker can easily
find a xmal with a very low loss on Equation (1), and perfect separation of confidence scores from IN
models and OUT models. However, querying with such a canary xmal results in random confidence
for the holdout shadow models, which indicates that the canary is also not generalizable to the unseen
target model.

To solve this, instead of searching for xmal on the whole feasible data domain, we initialize the
adversarial query with the target image or the target image with a small noise. Meanwhile, we add an
ϵ bound to the perturbation between xmal and x∗. Intuitively, the hope is that xmal and x∗ now share
the same loss basin, which prevents xmal from falling into a random, suboptimal local minimum of
Equation (1). In the offline case, we only use OUT models during the optimization.

Once a suitable canary has been generated, we follow the same metric-based evaluation strategy
described in Carlini et al. [2022b] but replace (x∗, y∗) with (xmal, y

∗).
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Table 1: Main Results on Different Datasets. For three datasets, Canary attacks are effective in
both online and offline scenarios.

Online
CIFAR-10 CIFAR-100 MNIST

AUC TPR@1%FPR AUC TPR@1%FPR AUC TPR@1%FPR
LiRA 74.36 17.84 94.70 53.92 56.28 3.95

Canary 76.25 21.98 94.89 56.83 58.12 5.23
∆ +1.89 +4.14 +0.19 +2.91 +1.84 +1.28

Offline
AUC TPR@1%FPR AUC TPR@1%FPR AUC TPR@1%FPR

LiRA 55.40 9.85 79.59 42.02 50.82 2.66
Canary 61.54 12.60 82.59 44.78 54.61 3.06

∆ +6.14 +2.75 +3.00 +2.76 +3.79 +0.40

4 Experiments

In this section, we first show that the Canary attack can reliably improve LiRA results under
different datasets and different models for both online and offline settings. Further, we investigate the
algorithm thoroughly through a series of ablation studies, which are provided in Appendix A.4 and
Appendix A.5.

4.1 Experimental Setting

We follow the setting of Carlini et al. [2022a] for our main experiment on CIFAR-10 and CIFAR-100
for full comparability. We first train 65 wide ResNets (WRN28-10) [Zagoruyko and Komodakis,
2016] with random even splits of 50000 images to reach 92% and 71% test accuracy for CIFAR-10
and CIFAR-100 respectively. For MNIST, we train 65 8-layer ResNets [He et al., 2016] with random
even splits to reach 97% test accuracy. During the experiments, we report the average metrics over 5
runs with different random seeds. For each run, we randomly select a model as the target model and
remaining 64 models as shadow models, and test on 5000 random samples with 10 queries.

4.2 Canary Attacks Help Membership Inference

We show our main results in Table 1 for three datasets. Canary attacks are effective in both online
and offline scenarios. The improvement of TPR@1%FPR is significant for all datasets. The difference
is especially notable for online CIFAR-10, where we achieve a 4.14% boost over the baseline LiRA
(a relative improvement in TPR of 23%). In the case of online CIFAR-100, where the baseline
already achieves a very high AUC, Canary attacks only provide an extra 0.19% over the baseline.
On average, Canary attacks are most powerful in the more realistic offline scenario. We gain over
3% boost on AUC scores on all datasets and over 2.75% TPR@1%FPR boost for CIFAR-10 and
CIFAR-100.

Overall, the improvement on MNIST is relatively small. We believe this can be attributed to the
lack of diversity for MNIST, which is known to make membership inference more challenging. In
this setting, the difference between the decision boundaries of IN models and OUT models is less
pronounced, so it is more difficult to make diverse and reliable queries. Despite these challenges, we
still see improvement over LiRA in the offline case – the AUC score is close to random (50.82%) for
LiRA here and Canary attacks can improve this to 54.61%.

5 Conclusion

We explore a novel way to enhance membership inference techniques by creating ensembles of
adversarial queries. These adversarial queries are optimized to provide maximally different outcomes
for the model trained with/without the target data sample. We also investigate and discuss strategies
to make the queries trained on the shadow models transferable to the target model. Through a series
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of experiments, we show that Canary attacks reliably enhance both online and offline membership
inference algorithms under three different datasets, four different models, and differential privacy.
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A Appendix

A.1 LiRA Attack

We describe in detail the metric-based Likelihood Ratio Attack (LiRA) introduced by Carlini et al.
[2022a]. In the online threat model, a LiRA attacker first trains N shadow models S = {θ1, ..., θN}
on randomized even splits of the dataset D. For any data point (x, y) ∈ D, it follows that there are
on average N/2 OUT shadow models trained without (x, y) and N/2 IN shadow models trained with
(x, y). This allows the attacker to run membership inference using a joint pool of shadow models,
without having to retrain models for every new trial data point. Given a target point x∗ and its

6

https://openai.com/blog/openai-api/
https://www.sciencedirect.com/science/article/pii/S0167404821002261
https://www.sciencedirect.com/science/article/pii/S0167404821002261
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0083
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0083
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=226
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=226


label y∗, an attacker calculates confidence scores of IN models Sin = {θin
1 , ..., θ

in
n} and OUT models

Sout = {θout
1 , ..., θout

m }. Confidence scores are scaled via

ϕ(fθ(x
∗)y∗) = log(

fθ(x
∗)y∗

1− fθ(x∗)y∗
), (2)

where fθ(x)y denotes the confidence score from the model θ on the point (x, y). This scaling
approximately standardizes the confidence distribution, as the distribution of the unnormalized
confidence scores is often non-Gaussian. After retrieving the scaled scores for IN and OUT models,
the attacker fits them to two separate Gaussian distributions denoted N (µin, σ

2
in) and N (µout, σ

2
out)

respectively. Then, the attacker queries the target model with (x∗, y∗) and computes the scaled
confidence score of the target model conf t = ϕ(fθt(x

∗)y∗). Finally, the probability of (x∗, y∗) being
in the training data of θt is calculated as:

p(conf t | N (µin, σ
2
in))

p(conf t | N (µout, σ2
out))

, (3)

where p(conf | N (µ, σ2)) calculates the probability of conf under N (µ, σ2).

For the offline threat model, the attacker exclusively produces OUT shadow models by training on a
set of randomized datasets fully disjoint from the possible sensitive data. For the sensitive data point
(x∗, y∗), the final score is now calculated as a one-sided hypothesis which yields:

1− p(conf t | N (µout, σ
2
out))

Though assessing membership this way is more challenging, the offline model allows the attacker to
avoid having to train any new models at inference time in response to a new (x∗, y∗) pair – a more
realistic setting if the attacker is a regulatory agency responding to malpractice claims by many users,
for example.

In practice, modern machine learning models are trained with data augmentations. Both the online
and offline methods above can be improved if the attacker generates k augmented target data points
{x1, ..., xk}, performs the above probability test on each of the k augmented samples, and averages
the resulting scores.

A.2 Experimental Setting

We follow the setting of Carlini et al. [2022a] described above for our main experiment on CIFAR-10
and CIFAR-100 for full comparability. We first train 65 wide ResNets (WRN28-10) [Zagoruyko and
Komodakis, 2016] with random even splits of 50000 images to reach 92% and 71% test accuracy for
CIFAR-10 and CIFAR-100 respectively. For MNIST, we train 65 8-layer ResNets [He et al., 2016]
with random even splits to reach 97% test accuracy. During the experiments, we report the average
metrics over 5 runs with different random seeds. For each run, we randomly select a model as the
target model and remaining 64 models as shadow models, and test on 5000 random samples with 10
queries.

For the hyperparameters in the Canary attack, we empirically choose ϵ = 2 for CIFAR-10 & CIFAR-
100 and ϵ = 6 for MNIST, which we will ablate in Appendix A.5. We sample b = 2 shadow models
for each iteration and optimize each query for 40 optimization steps using Adam [Kingma and Ba,
2014] with a learning rate of 0.05. For L and Lout, we choose to directly minimize/maximize the
logits before a softmax on the target label. All experiments in this paper are conducted by one
NVIDIA RTX A4000 with 16GB of GPU memory, which allows us to load all shadow models and
optimize 10 adversarial queries at the same time, but the experiments could be done with a smaller
GPU by optimizing one query at a time or reloading the subsample of models for each iteration.

A.3 Evaluation Metrics

In this paper, we mainly report two metrics: AUC (area under the curve) score of the ROC (receiver
operating characteristic) curve and TPR@1%FPR (true positive rate when false positive rate is 1%).
One can construct the full ROC by shifting the probability threshold of the attack to show the TPR
under each FPR. The AUC measures the average power of the attack. As mentioned in 2 an attacker
might be more interested in TPR with low FPR, so we also specifically report TPR@1%FPR.
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Table 2: Results on Different Models Architecture. Canary attacks are able to consistently
outperform LiRA over different models. The order of the model architectures is sorted in descending
order of the decision boundary reproducibility according to Somepalli et al. [2022]. T@1%F stands
for TPR@1%FPR.

Online
WRN28-10 ResNet-18 VGG ConvMixer

AUC T@1%F AUC T@1%F AUC T@1%F AUC T@1%F
LiRA 74.36 17.84 76.29 17.05 75.94 20.48 75.97 16.58

Canary 76.25 21.98 76.93 19.34 77.63 20.87 76.39 17.05
∆ +1.89 +4.14 +0.64 +2.29 +1.69 +0.39 +0.42 +0.47

Offline
AUC T@1%F AUC T@1%F AUC T@1%F AUC T@1%F

LiRA 55.40 9.85 55.15 6.97 49.96 9.77 54.42 7.96
Canary 61.54 12.60 64.09 11.58 65.55 15.16 62.22 9.93

∆ +6.14 +2.75 +8.94 +4.61 +15.59 +5.39 +7.80 +1.97

A.4 Results on Different Models Architecture

In addition to WRN28-10, we further verify the ability of Canary attacks for three other models
architectures in CIFAR-10: ResNet-18 [He et al., 2016], VGG-16 [Simonyan and Zisserman, 2014],
and ConvMixer [Trockman and Kolter, 2022]. In Table 2, Canary attacks are able to consistently
provide enhancement over different models. The performance of Canary attacks should be related
to the reproducibility of the model architecture. If the model decision boundary is highly repro-
ducible, the shadow models should share similar decision boundaries with the target model, and the
adversarial query trained on the shadow models will be more transferable to the target model. The
order of the model architectures in Table 2 is sorted in descending order of the decision boundary
reproducibility according to Somepalli et al. [2022]. Indeed, we see from Table 2 that models with
higher reproducibility do correlate with more improvement for the online scenario.

A.5 Ablation Experiments

In this section, we provide ablation experiments on several crucial hyperparameters of the discussed
Canary attacks.

Number of shadow models. As described before, the number of shadow models is comparable to
the number of data points in traditional machine learning. We test Canary attacks with 5 different
numbers of shadow models: 4, 8, 16, 32, and 64. We see from Figure 1(a), that using more shadow
models yields a higher true positive rate when the false positive rate is low. Interestingly, as the
number of shadow models initially decreases, the overall performance drops slightly, but such an
effect diminishes after the number of shadow models is greater than 24.

Number of queries. Because of the stochasticity of optimization, different queries can fall into
different minima of Equation (1), returning different sets of confidence scores and thus more ways to
probe the target model. Therefore, it is essential to investigate how the number of queries affects the
membership inference results. We plot the results in Figure 1(b). The ensemble of more adversarial
queries consistently enhances both metrics, which means different queries indeed give different
signals about the target model.

ϵ bound. The choice of ϵ is important, which is highly related to the transferability. As shown in
Figure 1(c), the performance of Canary drops very fast after ϵ = 2. When ϵ = 1 the TPR@1%FPT
is slightly lower than when ϵ = 2, which indicates that the perturbation within ϵ = 1 might be too
small to be effective.

Batch size. In Figure 1(d), we test Canary with different batch sizes. Mini-batch strategy does
improve the performance of Canary attacks. Especially for TPR@1%FPT, the difference is around
2% between the batch size of 21 and 25. Optimizing with a smaller batch size prevents the adversarial
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Figure 1: Hyperparameter Ablation Experiments. We provide ablation experiments on several
crucial hyperparameters: number of shadow models, number of adversarial queries, ϵ bound, and
batch size.

Table 3: Results with Different Objectives. We evaluate Canary attacks on different objectives.
Directly minimizing/maximizing the pre-softmax logits gives the biggest improvement in both the
online and offline settings.

Online Offline
AUC TPR@1%FPR AUC TPR@1%FPR

LiRA 74.36 17.84 55.40 9.85
CE/r. CE 75.55 19.85 56.83 9.22
CE/CE 75.55 19.89 59.23 9.77

CW/r. CW 75.37 19.97 56.57 9.26
CW/CW 75.67 20.99 59.27 11.30

Log. Logits 75.82 20.01 59.16 8.04
Logits 76.25 21.98 61.54 12.60

query from overfitting to the shadow models. Meanwhile, it massively reduces the GPU memory
required for the gradient graph, which is a win-win situation for the attacker.

Choice of Objectives for L and Lout. The choice the target objectives L and Lout is also crucial
to the generalization of Canary attacks. We test six different objectives to create adversarial
queries: 1) CE/reverse CE. 2) CE/CE on a random label other than the true label. 3) CW [Carlini
and Wagner, 2017]/reverse CW. 4) CW/CW on a random label. 5) Directly minimize the scaled
log score/maximize the scaled log score. 6) Directly minimize the pre-softmax logits of the true
label/maximize the pre-softmax logits of the true label. We show the results in Table 3.

During the experiment, for all objectives above, we can easily get very low losses at the end of
the optimization, and create Canary queries that perfectly separate the training shadow models.
Surprisingly, minimizing/maximizing the pre-softmax logits gives us the biggest improvement, even
though it does not explicitly suppress the logits for other labels like other objectives do. Overall, any
other choices can also improve the baseline in the online scenario. However, in the offline scenario,
only CW/CW and pre-softmax logits provide improvements to TPR@1%FPR.
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Table 4: Results under Differential Privacy. In both cases, the norm clipping is 5. Even when
the target model is trained with differential privacy, Canary attacks reliably increase the success of
membership inference.

Online Offline
AUC TPR@1%FPR AUC TPR@1%FPR

LiRA 66.25 9.41 56.12 3.27
Canary 67.17 9.93 59.73 4.41ϵ = ∞

∆ +0.92 +0.52 +3.61 +1.14
LiRA 52.17 1.18 49.93 1.18

Canary 53.18 1.81 51.38 1.14ϵ = 100

∆ +1.01 +0.63 +1.45 -0.04

A.6 Differential Privacy

We now challenge Canary attacks with differential privacy [Abadi et al., 2016]. Differential privacy
is designed to prevent the leak of information about the training data. We evaluate Canary attacks in
two settings. The first setting only uses norm bounding, where the norm bounding C = 5 and ϵ = ∞,
and in another setting, C = 5 and ϵ = 100. In order to follow the convention of practical differential
privacy, we replace Batch Normalization with Group Normalization with G = 16 for ResNet-18.

We see in Table 4 that Canary attacks can provide some limited improvement. Both LiRA and
Canary attacks are notably less effective when a small amount of noise ϵ = 100 is added during
training, which is a very loose bound in practice. However, training with such a powerful defense
makes the test accuracy of the target model decrease from 88% to 44%. Differential privacy is still a
very effective defense for membership inference attacks, but Canary attacks reliably increase the
success chance of membership inference over LiRA.

A.7 Limitations and Future Work

Although Canary attacks perform very well in the above experiments, there are several relevant
limitations. The optimization process for constructing the ensemble of canaries is markedly more
computationally expensive than using data augmentations of the target data point as in Carlini et al.
[2022b]. Furthermore, effective optimization routines for queries could challenging, especially when
considering future applications of this approach to discrete data, like text or tabular data. In principle,
we believe it should be possible to devise a strategy to make adversarial queries transferable that do
not require ϵ-bounds, but so far have found the method detailed in Canary to be the most successful
approach.
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