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ABSTRACT

Language guided document editing is a novel task that includes generating a machine
parsable command and a bounding box from an open vocabulary user request. This paper
introduces Doc2Command, a multi-task, multimodal model that unifies the document and
user request into a singular visual modality and utilises a transformer base image encoder-
text decoder to generate the command text. Additionally, it reconceptualises bounding box
detection as a segmentation task and employs a mask transformer operating on the image
encoder. Doc2Command surpasses baseline models in command text generation, demon-
strating significant performance improvements ranging from 2-33% for exact matched
commands. It also improves on the bounding box detection task on existing baselines by
a margin of 12.19-31.65%.

1 INTRODUCTION

In today’s dynamic digital landscape, the pervasive use of digital documents for diverse purposes, rang-
ing from business productivity tasks to customer communication strategies, underscores the indispensability
of efficient document editing tools. Mathur et al. introduced the DocEdit dataset and a novel task aimed
at furthering language guided document editing. The task focuses on generating an executable command
from a linguistic user request to edit a document in accordance with the user’s intent. Given a docu-
ment D and a user request W = [t1, t2, . . . , tl] representing a sequence of n tokens, our objective is to
predict the executable command C. The command format is specified as: ACTION(<Component>,
<Attribute>, <Initial State>, <Final State>, [x, y, h, w]). The taxonomy of
actions includes Add, Delete, Copy, Move, Replace, Split, Merge, and Modify. Arguments follow, de-
tailing document components, attributes, initial and final states, and the Region of Interest (RoI) represented
by the bounding box [x, y, h, w]. Here, (x, y) refers to the top-left coordinate, while h and w denote the
height and width of the bounding box. The task encompasses end-to-end command generation along with
bounding box prediction grounded in the document image.

2 METHODOLOGY

At the outset, Doc2Command strategically position the user request by rendering it on the top of the doc-
ument image. This approach allows for a more flexible integration of language and vision inputs, allowing
both the user request and the document image to be processed jointly via the visual modality. We use a
pre-trained Vision Transformer (ViT) Dosovitskiy et al. (2021) style encoder from Lee et al., that has been
pre-trained with a text decoder on a screenshot parsing and masked document image modelling objective.
. Instead of scaling the input image to a pre-defined resolution, we adjust the scaling factor such that the
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maximum number of fixed-size patches that fit in the sequence length are extracted to mitigate problems
caused by extreme aspect ratios.

The patch embeddings generated by the encoder serve as an input to both the text decoder and the mask
transformer in a multi-task setup. The text decoder is finetuned to generate the command text in the specified
format. Simultaneously, the patch embeddings are also fed into a mask transformer. The mask transformer
is a DETR style decoder Carion et al. (2020) that is fine-tuned using a combination of focal loss and dice
loss. We aim to perform segmentation of the document image into three distinct classes: 1. The region of
Interest, 2. The user request (which had previously been rendered into the document image), and 3. The
remaining document. Learnable class tokens for each of these classes are fed into the mask transformer.
The L2 normalised class embeddings and patch embeddings from the mask transformer are used to generate
masks by computing a scalar dot product. The segmentation mask is used to derive the bounding box during
inference.
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Figure 1: Overview of our proposed system: Doc2Command.

3 RESULTS

We compare our results with various baselines for both command generation (Table 1) and bounding box de-
tection (Table 2). For the command generation task, we greatly outperform existing baselines on recognising
the component, 86.1% vs 40.7% (previous SoTA). This is a good indication of our model’s capabilities of
understanding document structures and layouts. In contrast, we perform similar to existing SoTA on recog-
nising the action: however, it is interesting to note that text-only baselines such as T5 also perform fairly
well on this task since recognising the action is a simpler task. This is helpful in putting into context our
model’s ability to parse document structure and infer text from the visual modality without additional tools
such as OCR. We show great improvements over existing SoTA on the bounding box detection task. We
stand at a Top-1 Acc (Jaccard overlap ≥ 0.5) of 48.69% compared to previous SoTA, 36.50%.

System EM (%) Word Overlap F1 ROUGE-L Action (%) Component (%)
Generator-Extractor 6.6 0.25 0.22 36.7 8.5
GPT2 Radford et al. (2019) 11.6 0.76 0.76 79.7 27.2
BART Lewis et al. (2020) 19.7 0.78 0.76 81.2 29.5
T5 Raffel et al. (2020) 20.4 0.79 0.76 81.4 29.8
BERT2GPT2 7.3 0.37 0.39 45.2 9.2
LayoutLMv3-GPT2 8.7 0.39 0.40 47.6 10.3
CLIPCap Mokady et al. (2021) 8.5 0.25 0.27 44.5 9.34
DiTCap Lewis et al. (2006) 23.6 0.81 0.80 82.5 25.5
Multimodal Transformer Hu et al. (2020) 31.6 0.82 0.83 83.1 32.4
DocEditor Mathur et al. (2023) 37.6 0.87 0.83 87.6 40.7
GPT3.5 Brown et al. (2020) 10.1 0.77 0.77 75.93 73.37
GPT4 OpenAI (2023) 14.3 0.78 0.78 81.57 75.03

Doc2Command 39.6 0.87 0.86 85.0 86.1

Table 1: Results and comparison for the command
generation task

System Top-1 Acc (%)
ReSC-Large Yang et al. (2020) 17.04
Trans VG Deng et al. (2022) 25.34
DocEditor Mathur et al. (2023) 36.50

Doc2Command 48.69

Table 2: Results and comparison for
bounding box recognition.
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A APPENDIX

A.1 MODEL ARCHITECTURE

We use Pix2Struct as our base image encoder and text decoder. Specifically, we use the
google/pix2struct-textcaps-base implementation from HuggingFace.

Mask-Transformer We approach the detection of bounding boxes through the lens of a segmentation task.
Given the bounding boxes for the region of interest, and the rendered user request, we create create ground
truth segmentation maps with three classes: 1. the Region of Interest, 2. rendered user request , and 3. the
remaining document. We utilise a DETR Carion et al. (2020) style transformer as a mask transformer.

We introduce a set of learnable class embeddings C ∈ RK×e, where K represents the number of classes (set
as K = 3 in our model) and e denotes the mask-transformer dimension. Each class embedding undergoes
random initialization and is associated with a single semantic class, serving the purpose of generating the
class mask. These class embeddings are processed concurrently with patch encodings Yi ∈ RN×D through
the mask-transformer.

C, Ym = DI(C0, Yi) (1)
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The mask transformer produces K masks by computing the scalar product between L2-normalized patch
embeddings Ym ∈ RN×e and class embeddings C ∈ RK×e output by the decoder:

Bi = Ym · CT (2)

The collection of class masks is reshaped into a 2D mask Zi ∈ RH/P×W/P×K and bilinearly upsampled
to match the image size, yielding a feature map S ∈ RH×W×K . Subsequently, a softmax operation is
applied along the class dimension, followed by layer normalization, to derive pixel-wise class scores, thereby
forming the final segmentation map. The mask sequences exhibit soft exclusivity, i.e.,

∑K
k=1 Zi,j,k = 1 for

all (i, j) ∈ H ×W .

The mask transformer possesses an embedding dimension of 768, comprising 12 layers and 12 attention
heads within each layer. The linear layer’s dimension is set at 256.

A.2 DATA

We use the DocEdit-PDF dataset released by Mathur et al.. The dataset offers a collection of document
image-user edit request pairs, accompanied by corresponding ground truth edit commands. Each edit re-
quest is associated with an executable command that can be replicated within a real-world document editing
software environment. The dataset encompasses approximately 17,808 scanned PDF documents, featuring
edits conducted on publicly accessible PDF documents. It includes a varied array of edit operations (add,
delete, modify, split, merge, replace, move, and copy) as well as diverse reference types (direct references,
object references, and text references) as provided by users. We encourage readers to refer to Mathur et al.
(2023) for further details about the dataset. We conduct our experiments on the default data split offered in
the official dataset release, where the data is segregated into train, test and val in a 0.8 : 0.2 : 0.1 ratio. All
results are reported on the test set.

A.3 TRAINING AND INFERENCE

Training During training, the text decoder is fine-tuned to generate the command text, while the mask
transformer is fine-tuned for segmentation. The multi-task setup employs a combined weighted loss:

Ltotal = λtext · Ltext + λseg · Lseg (3)

The segmentation loss Lseg is the sum of focal loss Lin et al. (2017) and dice loss Sudre et al. (2017) for the
segmentation maps.

Inference During inference, the segmented area is converted into a bounding box. This is achieved by
considering points within an x% radius of the centroid of the mask (with x = 95). The contours of the
largest contiguous object are then used to determine the coordinates of the bounding box.

A.4 EXPERIMENTAL SET-UP

In our experiments, we employed the Adafactor optimization algorithm with a learning rate of 3× 10−5 and
weight decay set to 1 × 10−5. The training process spanned 30 epochs with a batch size of 1. The input
data was organized into patches of size 16, limiting the maximum number of patches to 1024. The learning
rate was scheduled using the a cosine scheduler with warm-up approach, incorporating a warm-up period
equivalent to 10% of the iterations within each epoch.
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In the process of computing loss, we introduced weighting factors, denoted as λtext = 0.3 and λseg = 1.5.
For segmentation tasks, we employed sigmoid focal loss with parameters α = 0.25 and γ = 2. Furthermore,
the decoder incorporated a dropout rate of 0.1.

A.5 BASELINES

Command Generation Baselines

1. Seq2Seq Text-only baselines Utilizing GPT2 Radford et al. (2019), BART Lewis et al. (2020), and
T5 Raffel et al. (2020), which process only the user text description.

2. Generator-Extractor: Incorporating BERT+DETR Devlin et al. (2019); Carion et al. (2020) with
an autoregressive decoding head for command generation.

3. Transformer Encoder-Decoder (Rothe, Narayan, and Severyn 2020): Combining GPT2 Rad-
ford et al. (2019) decoder with LayoutLMv3 Huang et al. (2022) encoder (LayoutLMv3-GPT2) or
BERT Devlin et al. (2019) encoder (BERT2GPT2).

4. Prefix Encoding Mokady et al. (2021): Using intermediate learned representations from pre-
trained encoders (CLIPRadford et al. (2021) and DiT Lewis et al. (2006)) as a prefix to the GPT2
Radford et al. (2019) decoder network and fine-tuning on downstream tasks.

5. Multimodal Transformer (M4C) Hu et al. (2020): Combining multimodal input from user de-
scription, visual objects, and document text with a text generation decoder instead of the copy
pointer mechanism.

6. DocEditor Mathur et al. (2023): DocEditor is a task specific baseline that utilises a Transformer-
based localization- aware multimodal (textual, spatial, and visual) model. DocEditor decomposes
the document image into OCR document content and object boxes, and along with the user request,
uses the multimodal transformer to generate the command.

7. In context learning with LLMs: We compare our result against GPT3.5 Brown et al. (2020)
and GPT4 OpenAI (2023). We use propt based in context learning for these models, specifically
providing 3 examples of each command type as context to the model.

Bounding Box Detection Baselines

1. ReSC-Large Yang et al. (2020): Method for direct coordinates regression in the RoI bounding
box prediction task.

2. TransVG Deng et al. (2022): Another approach for direct coordinates regression in the RoI bound-
ing box prediction task.

3. DocEditor Mathur et al. (2023): DocEditor encodes the document image by extracting text as
OCR and using object detection to capture visual features. The transformer encoded features are
used in a Gated R-GCN to generate a layout graph aware representation, which is used downstream
to perform bounding box regression.

A.6 LIMITATIONS

1. Handling of Visual Elements: The Doc2Command model demonstrates limitations in efficiently
executing document editing tasks involving visual elements, such as charts and figures. This chal-
lenge stems from the fact that the pretrained backbones are primarily trained on text-dominant
document images, leading to suboptimal performance in localizing components within intricate
figures. An illustrative example of this limitation is presented in Fig.2(f).
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2. Ambiguity in User Requests: The model encounters challenges in resolving ambiguity present in
user requests. Instances where positional references are either ambiguous or not explicitly specified
pose difficulties for the model in accurately interpreting and executing editing commands.

3. Non-End-to-End System: It is essential to clarify that Doc2Command does not claim to be an end-
to-end document editing system. Instead, it introduces a multitask framework specifically tailored
for Region of Interest (RoI) detection and command generation. While excelling in these tasks, the
model does not encompass the complete spectrum of functionalities required for comprehensive
document editing.

4. Limitations in Segmentation: The segmentation process of Doc2Command is subject to certain
limitations. The model relies on generating bounding boxes based on the largest continuous object
in the segmentation mask. However, in scenarios where the actual region of interest comprises
multiple small, patchy masks, the model may struggle to accurately localize the entire region of
interest, resulting in patchy segmentation.

Acknowledging these limitations is imperative for a nuanced understanding of Doc2Command’s capabilities
and areas for potential improvement. Despite these constraints, the model offers a valuable contribution to
the domain of document editing, and further research endeavors can address these limitations for enhanced
performance.

A.7 EXAMPLES

Figure 2 illustrates six instances of our model’s performance on the test set. Subfigures (a), (b), and (c) depict
correctly inferred examples, while (d), (e), and (f) represent incorrectly inferred examples. Each example
within the figure elucidates a distinct capability or limitation of our system.

The instances outlined in Table 3 exhibit six occurrences of commands generated from user requests. Nev-
ertheless, the initial three instances underscore scenarios wherein our model diverges from replicating the
ground truth command. Analysis of these errors is given below. In the initial example, although the gener-
ated command accomplishes the intended document edit, the ground truth command demonstrates greater
efficiency by achieving the same outcome with fewer alterations.The second example shows a delete com-
mand, where it differs in descriptiveness from the ground truth command in the initial and final state. In
the third example, the model incorrectly considers the action as a modification rather than a replacement,
and the state change though expressed differently communicates the intended change by the user. The latter
three examples represent correctly predicted edit commands.

User Request ACTION PARA COMPONENT PARA INITIAL STATE FINAL STATE

Change the date ”December 1, 2000” to December 11, 2020 Predicted REPLACE TEXT December 1, 2000 December, 11, 2000
Ground Truth MODIFY TEXT 1, 2000 11, 2000

Remove all items of ”EXPENSE DRIVERS” in table ”Exhibit 17. Instinet Group Inc. ” Predicted DELETE TEXT present remove, expense drivers..
Ground Truth DELETE TEXT LIST present; items in EXPENSE DRIVERS deleted

change page no 2-32 with roman no ii-xxxii Predicted MODIFY TEXT 2-32 ii-xxxii
Ground Truth REPLACE TEXT numeric roman

Moved ”1. Introduction” from left to mid. Moved page number from mid to left. Predicted MOVE TEXT INTRODUCTION was at left
and page number was at mid

INTRODUCTION is at mid
and page number is at left

Ground Truth MOVE TEXT INTRODUCTION was at left
and page number was at mid

INTRODUCTION is at mid
and page number is at left

Split the last paragraph ” Guide providers should jump on this opportunity—” into
two paragraphs. New paragraph start with ”Guide and search vendors like Yahoo —-”

Predicted SPLIT PARAGRAPH not split split
Ground Truth SPLIT PARAGRAPH not split split

added page no. before the number of the page at the centre of footer of the page. Predicted ADD TEXT 13 page no. 13
Ground Truth ADD TEXT 13 page no. 13

Table 3: Examples of command generation in Doc2Command. Correct command parameters are highlighted
in green, and incorrect command parameters are highlighted in red.
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(a) Bounding Box with high IOU:
capability to read and recognise text
from request in the document.

(b) Bounding Box with high IOU:
capability to recognise elements
such as dates without literal men-
tions.

(c) Bounding Box with high
IOU: While the command asked
to underline ”COMMAND 8”,
Doc2Command was able to seman-
tically identify it with the roman
numeric heading in the document.

(d) Bounding Box with low IOU:
Doc2Command has localized the
request, but is not as specific as the
ground truth in this example.

(e) Bounding Box with low IOU:
Localizes change to the positional
reference here instead of the region
of interest.

(f) Bounding Box with low IOU:
edit request involves ambiguity be-
tween the visual element and its
caption.

Figure 2: Examples of segmentation outputs and bounding boxes. The bright white areas represent segmen-
tation outputs. Green boxes represent ground truth bounding boxes, and red boxes represent the inferred
bounding boxes.
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