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Abstract

We evaluate the ability of Large Language Mod-001
els (LLMs) to discern and express their inter-002
nal knowledge state, a key factor in countering003
factual hallucination and ensuring reliable ap-004
plication of LLMs. We observe a robust self-005
awareness of internal knowledge state in LLMs,006
evidenced by over 85% accuracy in knowledge007
state probing. However, LLMs often fail to008
faithfully express their internal knowledge dur-009
ing generation, leading to factual hallucina-010
tions. We develop an automated hallucination011
annotation tool, DreamCatcher, which merges012
knowledge probing and consistency checking013
methods to rank factual preference data. Using014
knowledge preference as reward, We propose015
a Reinforcement Learning from Knowledge016
Feedback (RLKF) training framework, leverag-017
ing reinforcement learning to enhance the fac-018
tuality and honesty of LLMs. Our experiments019
across multiple models show that RLKF train-020
ing effectively enhances the ability of models to021
utilize their internal knowledge state, boosting022
performance in a variety of knowledge-based023
and honesty-related tasks.024

1 Introduction025

Large Language Models (LLMs), including no-026

table examples such as GPT-3 (Brown et al., 2020),027

LLaMA (Touvron et al. (2023a), Touvron et al.028

(2023b)), and PaLM (Chowdhery et al., 2023),029

have emerged as a transformative tool in diverse030

fields due to their robust capabilities in various031

tasks. However, despite this significant progress032

and success, an inherent challenge continues to per-033

sist: their tendency to "hallucinate", i.e., generate034

content misaligned with actual facts. This issue035

is particularly problematic in critical applications,036

such as clinical or legal scenarios, where the reli-037

ability and accuracy of generated content is vital.038

Therefore, mitigating hallucinations in LLMs is a039

crucial step toward enhancing their practical ap-040

plication scope and improving the overall trust in041

Figure 1: Internal knowledge state categorization of
LLMs, based on the possession of corresponding inter-
nal knowledge and the capacity to express it honestly.

these emerging technologies. 042

Hallucinations of LLMs can be categorized into 043

three types (Zhang et al., 2023b): input conflict, 044

context conflict, and factual conflict. This paper 045

focus on the issue of fact-conflicting hallucination, 046

where LLM produces fluent and seemingly plau- 047

sible content, but conflicts with real-world facts, 048

pose risks of misleading users and compromise the 049

models’ fact-based reasoning. 050

Commonly used hallucination mitigation meth- 051

ods, such as retrieval augmentation generation 052

(RAG), address fact-conflict hallucination of LLM 053

by bringing in external knowledge, but at the cost 054

of introducing a costly and complex retrieval sys- 055

tem. In this paper, we propose to mitigate the fac- 056

tual hallucination problem from the perspective of 057

enhancing the model’s utilization of internal knowl- 058

edge. 059

Previous works (Azaria and Mitchell (2023), 060

Agrawal et al. (2023)) have shown that LLMs have 061

the capability to discern the validity of factual state- 062

ments, supported further by Kadavath et al. (2022) 063

suggesting these models’ capacity to assess their 064

ability in responding to specific questions. Nev- 065
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ertheless, the universality and extent of models’066

self-awareness of their internal knowledge remains067

an open question. In light of this, we conducted ex-068

ploratory experiments to probe the knowledge state069

of various models across different scales, employ-070

ing linear probes to ascertain the accuracy of mod-071

els’ self-awareness regarding their internal knowl-072

edge states. The results revealed that all models073

under analysis demonstrated proficient accuracy in074

recognizing whether they have the internal knowl-075

edge about certain facts.076

However, during generation, such accurate judg-077

ments do not translate into honest output; instead,078

in the absence of specific internal knowledge, mod-079

els often manifest a tendency towards hallucina-080

tions. Therefore, to mitigate factual hallucina-081

tions, it is crucial that models leverage their self-082

awareness of internal knowledge states.083

Leveraging this self-awareness of LLMs, we pro-084

pose a training framework named reinforcement085

learning from knowledge feedback (RLKF) to im-086

prove the factuality and honesty of LLM with rein-087

forcement learning using factual preferences as re-088

ward. Through the hallucination annotation method089

DreamCatcher – a blend of knowledge probing090

and consistency-based judgments – we rank the091

knowledge-based Question-Answering (QA) data092

adhering to a preference hierarchy delineated as:093

factuality > uncertainty > hallucination.094

This factual preference data is then utilised to train095

the reward model which is deployed to optimize096

the Large Language Model via Proximal Policy097

Optimisation (PPO) algorithm.098

The primary contributions of this paper are artic-099

ulated as follows:100

1. We carry out extensive experiments on dif-101

ferent models’ capacity to discern their own102

internal knowledge. The results indicate that103

LLMs are highly adept at discerning their in-104

ternal knowledge, with an impressive accu-105

racy over 85% in most settings with a limited106

amount of data.107

2. We develop and open source DreamCatcher1,108

an automatic hallucination detection tool for109

scoring the degree of hallucination in LLM110

generations. DreamCatcher integrates knowl-111

edge probing methods and consistency judg-112

ments, achieving 81% agreement with human113

annotator.114

1https://anonymous.4open.science/r/dreamcatcher-8503

3. We introduce the Reinforcement Learning 115

from Knowledge Feedback (RLKF) training 116

framework to optimize LLM against the fac- 117

tual preference. The experiment results on 118

multiple knowledge and reasoning tasks indi- 119

cate that RLKF not only enhances the honesty 120

and factuality of LLMs but also improves their 121

general capabilities. 122

2 Problem Setup 123

Hallucination, in the context of Large Language 124

Models, refers to a set of inconsistencies in model 125

generation. The central focus of this paper is explor- 126

ing the fact-conflict hallucination which is defined 127

as the inconsistency between the generated content 128

of the model and the established facts. Although 129

the definition provides a description of the genera- 130

tion results, the causes underlying this phenomenon 131

are multifaceted. 132

In general, LLMs encode factual knowledge into 133

parameters during training and utilize this internal 134

knowledge for generation during inference. How- 135

ever, LLMs do not always honestly express the 136

knowledge in its parameters, which is one of the 137

major causes of fact-conflict hallucination. 138

For a given question that requires factual knowl- 139

edge, the model output can be classified into one 140

of four states, depending on the model’s internal 141

knowledge and its honesty. These states are illus- 142

trated in Figure 1: 143

State 1: The model has relevant internal knowl- 144

edge and expresses it faithfully. 145

State 2: Despite having the relevant internal 146

knowledge, the model fails to express it hon- 147

estly. This discrepancy could be due to various 148

factors such as the decoding strategy (Lee et al., 149

2022; Chuang et al., 2023), hallucination snow- 150

balling (Zhang et al., 2023a), or misalignment is- 151

sues (Schulman, 2023). 152

State 3: The model lacks the necessary internal 153

knowledge but honestly indicates unawareness. 154

State 4: The model lacks the necessary internal 155

knowledge and produces a hallucinated response. 156

Outputs in State 2 and State 4 are both consid- 157

ered forms of hallucination, despite the differing 158

conditions of internal knowledge. 159

In the upper section of Figure 1, the model’s 160

outputs are devoid of hallucinations, honestly mir- 161

roring its internal knowledge. Here, State 1 stands 162

out as the most desirable state, where the model 163

both possesses and faithfully outputs the relevant 164
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(a) Llama2-chat-13B (b) Qwen-chat-14B (c) Ziya-reader-13B

Figure 2: Accuracy of knowledge state probing across different models with different internal representations. The
light-colored area in the figure shows the range of accuracy for ten repetitions of the experiment, and the solid line
shows the mean accuracy. More results shown in A.2

knowledge.165

Many efforts have been deployed to transition166

model toward state 1.167

Retrieval-augmented generation (RAG) attempts168

to bypass the lack of internal knowledge by pro-169

viding knowledge via context, thereby enabling170

the model to transition from State 3/4 to State 1.171

On another front, certain strategies, like those of172

Li et al. (2023b) and Chuang et al. (2023), seek to173

move the model from State 2 to State 1 by interven-174

ing the model’s internal representation or the decod-175

ing process during inference. While these methods176

improve the model’s capacity to express existing177

internal knowledge, they disregard scenarios where178

the model lacks relevant internal knowledge. Also,179

interference at inference time can potentially lead180

to unpredictable effects on other types of tasks.181

Without the introduction of external knowledge,182

the mitigation of the model’s fact-conflict halluci-183

nation correspond to an upward movement of the184

state in Figure 1. In essence, this symbolizes the185

enhancement of the model’s capacity to accurately186

express its internal knowledge state. A critical ques-187

tion, then, is how to discern the internal knowledge188

state of LLMs?189

3 Knowledge State Probing190

This section delves into the complexities of dis-191

cerning a model’s internal knowledge state. It com-192

prises two perspectives. The first, an external per-193

spective, discuss how to determine if a model pos-194

sesses specific knowledge based on the model gen-195

erations; The second perspective, an internal view,196

questions if it is possible to determine whether a197

model possesses specific knowledge by its internal198

activation.199

For the following pilot experiments, we se-200

lect three families of models with different sizes: 201

Llama2-chat(Touvron et al., 2023b) (13B and 7B); 202

Qwen-chat(Bai et al., 2023) (14B and 7B); Ziya- 203

reader(Junqing et al., 2023) (13B). 204

As for data, We randomly select passages 205

from Chinese and English Wikipedia and instruct 206

GPT3.5 to generate a knowledge-related question- 207

answer pair. The answer generated by GPT3.5 208

based on the original Wikipedia is considered as 209

the correct answer. We refer to the QA pairs ob- 210

tained by this method as wiki-QA in this paper. 211

Examples of instructions and corresponding output 212

are shown in Appendix A.1. 213

3.1 External perspective 214

Determining whether a model has specific knowl- 215

edge through its generation is a straightforward 216

way. But it is challenging to accurately assess the 217

model’s knowledge state through a singular gener- 218

ation result, due to the uncertainty of generation 219

caused by sampling (Lee et al., 2022) and different 220

generation tendencies (Chuang et al., 2023). Mul- 221

tiple generation results can more faithfully reflect 222

the knowledge state of the model. 223

In the presence of a correct answer, the consis- 224

tency of the model’s multiple generation with the 225

correct answer is a reliable method for assessing 226

knowledge state. The consistency of model gen- 227

eration with the correct answer can be computed 228

using methods such as unigram overlap and cosine 229

similarity of text representation. 230

However, the correct answer is hard to obtain 231

in many scenarios, in which case self-consistency 232

becomes a critical tool for assessing the validity of 233

the generation. As evidenced by multiple research 234

(Manakul et al. (2023), Agrawal et al. (2023), Hase 235

et al. (2023), Elaraby et al. (2023)), there is a gen- 236
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eral conclusion that higher consistency across mul-237

tiple generations is often indicative of validity of238

the generation. Intuitively, if the model has the239

corresponding knowledge, multiple generation are240

likely to contain consistent facts, resulting in higher241

consistency. Whereas, the contents of the hallucina-242

tions often varies, leading to lower self-consistency.243

We evaluate the self-consistency of a certain gener-244

ation by the average of the cosine similarity repre-245

sentations among other generated answers.246

3.2 Internal perspective247

Previous work (Azaria and Mitchell (2023), Ka-248

davath et al. (2022), Li et al. (2023b)) prove that249

LLMs can discern the factual accuracy of certain250

statements, even when the false statements are self-251

generated. This supports the existence of state 2 in252

Figure 1 where the model has the corresponding253

knowledge but generates incorrect outputs. But254

are LLMs capable of discerning its own state of255

knowledge? The question can be rephrased as fol-256

lows: for a given knowledge-related question, can257

a model discern its capability to output the correct258

answer before the actual generation of an answer?259

The following linear probing experiments on multi-260

ple models implies that the answer is yes.261

We sample questions from the wiki-QA data,262

and LLM generates k = 5 answers for each ques-263

tion separately. We use the consistency method264

described earlier to pre-label the questions. The265

sum of these normalized consistency scores com-266

puted to derive the final score.267

To categorize the questions, straightforward268

thresholds are utilized. The upper threshold is set269

at the 65th percentile score, and the lower at the270

35th percentile score. Under this setup, responses271

with scores exceeding the upper threshold are la-272

beled as correct, while those falling below the lower273

threshold are labeled as incorrect. If all of the k274

generated responses related to a specific question275

are deemed correct, the model is presumed to pos-276

sess the relevant internal knowledge, and thus the277

question is labeled as ’Known’. Conversely, if all k278

responses are incorrect, the model is considered to279

lack the necessary internal knowledge, and hence280

the question is labeled as ’Unknown’.281

A single linear layer classifier (probe) is trained282

on the internal representation corresponding to the283

last token of each question. Its task is to predict the284

corresponding Known/Unknown label.285

For our experiments, we select three types of286

internal representations:287

The attention output, which refers to the output 288

of the dot product attention and before the atten- 289

tion linear layer in the decoder layer. This setup 290

aligns with the probe’s positioning within Li et al. 291

(2023b); The MLP output, i.e., the feed-forward 292

layer’s output within the decoder layer, occurring 293

prior to residual linkage; The hidden states, de- 294

fined as each decoder layer’s output. 295

The results of the internal knowledge probe ex- 296

periment are shown in Figure 2, which presents 297

the accuracy of the trained probes across different 298

models with different internal representation and at 299

different layers. 300

Comparative analysis of the experimental results 301

across models of varying sizes yields consistent 302

observations: 303

1. The linear probes of the internal state accu- 304

rately predict the knowledge representation of the 305

model. The probes’ maximum accuracy surpasses 306

85% in most setups. This suggests that information 307

about whether the model has the corresponding 308

knowledge is linearly encoded in the internal repre- 309

sentation of the model with high accuracy. 310

2. The accuracy of the probes increases rapidly 311

in the early to middle layer, indicating that the 312

model needs some layers of computation before it 313

can determine its own knowledge states. 314

3. Hidden state probes exhibit the highest accu- 315

racy in discerning the knowledge state of the model, 316

sustaining high accuracy from the middle layer to 317

the output layer, which opens up the possibility of 318

utilizing internal knowledge state when generating 319

responses. 320

3.3 DreamCatcher 321

We integrated the above methods of knowledge 322

state probing and consistency judgments to develop 323

an automated hallucination annotation tool, Dream- 324

Catcher. 325

We start by collect the LLMs’ generation for 326

each question in the question set, in our case, 327

the wiki-QA dataset. This process features two 328

modes: normal generation and uncertainty gen- 329

eration. Normal generation is when the prompt 330

contains only the question and model generates k 331

responses, while uncertainty generation refers to 332

where the prompt contains a request for the model 333

to output answers that show uncertainty or lack of 334

knowledge. 335

Subsequently, we assess the degree of halluci- 336

nation of the generated responses using multiple 337

4



scorers using the methods described above. Con-338

cretely, we compute the following scores:339

ss2g = avgij(cos(rGi , rGj ))

sp = probe(rQ)
so2a = count(tokenoverlap)/count(tokenA)
ss2a = cos(rG, rA)

where Q denotes the question, A the correct340

answer, G the generation and r the embedding rep-341

resentation of text.342

ss2g (Similarity to Generation Score): com-343

putes the cosine similarity between the embedding344

of certain generation (Gi) and other generated re-345

sponses (Gj), using the bge-large model (Xiao346

et al., 2023) for text embedding.347

sp (Probe Score): rates the questions by utiliz-348

ing the probes trained in Section 3.2, which are349

intended to discern the model’s knowledge state for350

the corresponding questions.351

so2a (Overlap with Answer Score): calculates352

the ratio of token overlap between the generated353

output and the correct answer (A).354

ss2a (Similarity to Answer Score): computes355

the cosine similarity between the embedding of the356

generated response (G) and the correct answer (A),357

using the bge-large model for text embedding.358

The scores are normalized and summed to pro-359

vide an overall factuality score for each genera-360

tion. The generations are then classified as "cor-361

rect" or "incorrect" based on whether their total362

score is above or below the median score, respec-363

tively. Questions are categorized as "Known",364

"Unknown", or "Mixed" based on whether the re-365

sponses are consistently correct, incorrect, or a366

combination of correct and incorrect across multi-367

ple generations, with "Mixed" being a less frequent368

occurrence.369

The categories correspond to three ranking hier-370

archies as shown in Figure 3: Known (correspond-371

ing to state 1 in Fig.1): factual > uncertainty; Mixed372

(state 2): factual > uncertainty > hallucination; Un-373

known (state 4): uncertainty > hallucination. Here,374

"factual" refers to the generation with the highest375

factuality score, while "hallucination" denotes the376

generation with the lowest score.377

We randomly sampled 200 entries, half Chinese378

and half English, from the DreamCatcher labeled379

data. Then the human annotator annotate the same380

data, without access to the labels of DreamCatcher.381

The consistency between DreamCatcher and hu-382

man annotator is shown in Table 1, with an overall 383

accuracy of 81%. 384

Language Accuracy Precision Recall

All 81% 77% 86%
Chinese 77% 79% 76%
English 86% 76% 98%

Table 1: The consistency between DreamCatcher and
human annotator. For precision and recall, we treat
"correct" as a positive label and "incorrect" as negative.

4 Method 385

From the above knowledge-probing experiments, 386

we discover that LLMs are capable of evaluating 387

their own knowledge states in response to spe- 388

cific knowledge-based questions. This implies that 389

LLMs demonstrate a self-awareness of their knowl- 390

edge state, which does not consistently translate 391

into their generation. 392

Frequently, when faced with questions outside 393

of internal knowledge, LLMs tends to generate 394

hallucinations. Additionally, even with questions 395

within internal knowledge, LLMs may potentially 396

generate incorrect responses due to other influences. 397

One possible explanation could be that LLMs did 398

not learn to generate with respect to the internal 399

knowledge state during model training. Instead, 400

the fine-tuning process often requires the model 401

to generate seemingly reasonable answers to all 402

factual questions. 403

We therefore emphasize on enhancing the 404

model’s utilization of internal knowledge state so 405

that the model can choose to rely on internal knowl- 406

edge to answer or honestly express its lack of rele- 407

vant knowledge.2 408

Consequently, we propose the RLKF (Rein- 409

force Learning from Knowledge Feedback) train- 410

ing framework. This introduces model knowledge 411

state assessments into the reinforcement learning 412

feedback mechanism, enhancing model honesty 413

and factuality. The RLKF training process shares 414

similarities with the standard RLHF (Reinforce 415

Learning from Human Feedback), and can inte- 416

grate smoothly with the existing RLHF framework, 417

but reduces data collection costs by substituting 418

2This intuition could also be used for efficient RAG, en-
abling direct responses when the LLM possesses relevant
internal knowledge, while relying on the retrieval tool in case
of a knowledge gap.
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Figure 3: RLKF training framework

human labeling with automatic knowledge annota-419

tion.420

The RLKF training framework consists of the421

following components, as shown in Figure 3.422

Knowledge state annotation: We annotate fac-423

tual preference data using the DreamCatcher tool.424

Knowledge Feedback Modeling: Having ob-425

tained the factual preference data, we train the re-426

ward model following (Ouyang et al., 2022). The427

language modelling head in reward model is re-428

placed with a linear layer to produce a scalar out-429

put, corresponding to the reward of the generated430

response. In line with (Köpf et al., 2023), an ad-431

ditional regularization parameter is introduced to432

prevents the predicted values from diverging too433

much.434

By initiating the PPO Policy training and the435

reward model training from the same model, we436

can ensure that the reward model can leverage the437

same internal knowledge.438

PPO Optimizing: Based on our factual reward439

model, we optimize the policy, i.e., the initial gen-440

erative model, using the PPO algorithm once again441

following Ouyang et al., 2022. To improve the442

efficiency of model exploration towards honesty,443

we use guidance technique in reinforcement learn-444

ing. Concretely, we concatenate the first few tokens445

of the preferred responses to the input prompts in446

a portion of the training data. The added tokens447

do not participate in the loss calculation, but can448

guide the model to generate desired responses, thus449

improving learning efficiency. 450

The core of the training framework is to establish 451

the factual preference reward mechanism. The rein- 452

forcement learning algorithms in the RLKF frame- 453

work can also be replaced by other optimization 454

algorithms such as DPO (Rafailov et al., 2023), re- 455

ject sampling, etc. We choose PPO to be consistent 456

with the common practice in RLHF training. 457

5 Experiments 458

In the following experiments, We chose three dif- 459

ferent models of varying sizes: llama2-chat (13B 460

and 7B); Qwen-chat (14B and 7B); and Ziya-reader 461

(13B), which is consistent with the choice of mod- 462

els for the knowledge-probing experiments detailed 463

in Section 3. 464

Model Known Unknown Mixed

Qwen-chat-14B 82.7% 87.1% 77.8%
Qwen-chat-7B 65.7% 81.6% 61.1%
Llama2-chat-13B 85.4% 85.4% 60.0%
Llama2-chat-7B 78.9% 89.2% 57.6%
Ziya-reader-13B 93.5% 82.4% 64.5%

Table 2: Accuracy of trained reward model for each
knowledge state category.

5.1 Data collection 465

We used the wiki-QA data collection method same 466

as in Section 3, obtaining about 7,000 QA pairs 467
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Models MMLU WinoGrande ARC BBH GSM8K MATH C-Eval CMMLU Avg

Qwen-chat-14B
before 64.2% 53.8% 76.5% 34.5% 47.3% 18.9% 65.0% 64.1% 53.0%
after 64.5% 59.1% 87.2% 37.3% 49.9% 20.3% 64.6% 66.4% 56.2%

Qwen-chat-7B
before 54.2% 49.6% 63.1% 28.8% 50.0% 12.6% 57.8% 58.1% 46.8%
after 55.3% 52.2% 75.4% 28.1% 50.9% 12.5% 57.5% 56.0% 48.5%

Llama2-chat-13B
before 52.3% 51.9% 72.4% 21.7% 35.2% 3.2% 34.6% 34.5% 38.2%
after 52.8% 54.3% 72.1% 23.4% 35.6% 3.1% 34.3% 34.6% 38.8%

Llama2-chat-7B
before 45.9% 51.5% 59.2% 23.3% 25.9% 1.6% 32.1% 31.6% 33.9%
after 46.2% 52.4% 61.1% 24.4% 23.7% 2.0% 34.0% 32.1% 34.5%

Ziya-reader-13B
before 49.5% 50.8% 64.7% 44.7% 29.3% 4.3% 44.7% 46.1% 41.7%
after 50.3% 51.9% 67.9% 42.6% 33.2% 3.8% 42.6% 45.1% 42.2%

Table 3: Evaluation of RLKF-trained models on various knowledge and reasoning related tasks: MMLU (Hendrycks
et al., 2020), WinoGrande (Sakaguchi et al., 2021), ARC (Chollet, 2019), BBH (Suzgun et al., 2022), GSM8K
(Cobbe et al., 2021), MATH (Hendrycks et al., 2021), C-Eval (Huang et al., 2023), CMMLU(Li et al., 2023a). Tasks
are evaluated by the open-source evaluation tool TLEM (SUSTech, 2023), employing a 0-shot setting with greedy
generation.

each for Chinese and English. To add variety to468

the questions, we have also modified the prompt to469

include multiple choice question types. Since our470

approach relies on the internal knowledge of the471

models and the boundaries of the internal knowl-472

edge are different for each model, we need to per-473

form automatic annotation for each model individ-474

ually. The generated responses are labeled using475

DreamCatcher to obtain factual preference data.476

The statistics of the factual preference data are477

shown in Table 7.478

5.2 RLKF Training479

We train the reward model using the factual prefer-480

ence data in Table 7. To maintain the generaliza-481

tion of the RM, we include same amount of general482

purpose data as the wiki-QA data in the training.483

Accuracy of the trained RM on factual preference484

data test set are shown in Table 2. Interestingly, the485

reward model is able to quickly achieve high ac-486

curacy for both known/unknown categories during487

training, suggesting that reward model may utilize488

the internal knowledge state of the initial model to489

determine whether the uncertainty response should490

be preferred.491

Using the trained reward model, the RL process492

optimizes policy model using the PPO algorithm,493

where policy model is initialized from the same494

base model as reward model. The detailed training495

settings and hyper-parameters are described in A.4.496

We conduct an evaluation of the trained model,497

focusing on its factuality and truthfulness. A com-498

parative analysis of the models is performed be-499

tween pre- and post- RLKF training on various500

tasks related to knowledge and reasoning as shown501

Models TruthfulQA

Qwen-chat-14B
before 43.7%
after 49.1%

Qwen-chat-7B
before 49.1%
after 50.3%

Llama2-chat-13B
before 21.5%
after 20.9%

Llama2-chat-7B
before 27.5%
after 28.3%

Ziya-reader-13B
before 34.8%
after 37.9%

Table 4: Evaluation of RLKF-trained models on Truth-
fulQA, again using TLEM (SUSTech, 2023), employing
a 0-shot setting with greedy generation.

in Table 3. The RLKF-trained models demon- 502

strate improvements on the majority of the bench- 503

marks. While RLHF typically results in a reduction 504

of benchmark performance, termed as ’alignment 505

tax’ (Askell et al., 2021), RLKF avoids this de- 506

cline specifically on knowledge-related tasks, and 507

even lead to improvements. Note that our training 508

methodology does not employ any benchmark data, 509

and the overall volume of training data utilized is 510

small. 511

Regarding the truthfulness of trained models, we 512

evaluated their performance using the widely recog- 513

nized TruthfulQA task. Notably, all models, with 514

the exception of llama2-chat-13B, show increase 515

in honesty, as shown in Table 4. 516
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6 Related Work517

Hallucination in large language models (LLMs)518

has been the focal point of research, spanning its519

causes, detection, and mitigation. Our work relates520

to all three aspects.521

Causes of hallucination: Studies have linked522

LLM hallucination to various causes. McKenna523

et al. (2023) ascribes it to memorization of train-524

ing data, indicating a direct correlation between525

the training data and the resultant hallucination.526

Other works such as Schulman (2023) pinpoint527

improper model fine-tuning as contributive, and528

Perez et al. (2022) argues that RLHF induce model529

"sycophancy" which in turn degrades honesty.530

Other studies link hallucinations to the genera-531

tion process. For example, Lee et al. (2022) sug-532

gests that sampling-induced randomness could be533

responsible. One perspective provided by Chuang534

et al. (2023) proposes that "lower-level" prior layer535

information might overshadow factual information536

from subsequent layers. Furthermore, some works537

relate hallucinations to the overconfidence of LLMs538

(Ren et al., 2023).539

Hallucination detecting: In terms of detecting540

hallucination, the consistency of multiple genera-541

tions has been recognized as an effective indicator.542

SelfCheckGPT (Manakul et al., 2023) capitalizes543

on the consistent nature of internal knowledge-544

based generations compared to the variable na-545

ture of hallucination, propose several consistency546

checks to identify hallucinations. The idea is547

echoed by Agrawal et al. (2023), who suggest eval-548

uating the generation consistency of generated ref-549

erences to spot hallucination. Similarly, Elaraby550

et al. (2023) proposes a metric involving the cal-551

culation of sentence-level entailment between re-552

sponse pairs as a measure of hallucination.553

Employing large language models (LLMs) to554

recognize their own hallucinations has been sug-555

gested in Saunders et al. (2022), suggesting that556

discrimination is more accurate than generation for557

LLMs (G-D gap). This notion is furthered by Ka-558

davath et al. (2022) and Agrawal et al. (2023) by559

directly prompting LLMs to assess the validity of560

their own output.561

Another approach examines the factualness of562

statements by analyzing the model’s internal rep-563

resentation. Studies Li et al. (2023b) and Burns564

et al. (2022) identify a "factualness" direction in565

the model’s internal representation, with Li et al.566

(2023b) showcasing a high accuracy attention head567

through linear probing, and Burns et al. (2022) lo- 568

cating factualness direction through consistency of 569

facts. Additionally, Kadavath et al. (2022) trains 570

the model to predict the probability that it knows. 571

Base on these works, we shifts focus onto the 572

model’s self-evaluation of knowledge state. 573

Hallucination mitigation: The common ap- 574

proach of hallucination mitigation involves enhanc- 575

ing the model with additional information. Elaraby 576

et al. (2023) propose the use of larger models to 577

provide additional information when hallucinations 578

is detected. 579

Some research efforts focus on the optimization 580

of decoding strategies to address hallucinations. 581

Chuang et al. (2023) suggests that contrastive de- 582

coding can augment the factualness of model gen- 583

eration. Li et al. (2023b) enhances factualness by 584

adjusting the output of attention heads along the 585

direction of factualness during inference. Our work 586

seeks to optimizes the utilization of the model’s 587

internal knowledge state, in line with the direction 588

proposed by Schulman (2023) leveraging reinforce- 589

ment learning to tackle hallucinations. 590

7 Conclusion 591

In our research, we thoroughly explore the capa- 592

bility of large language models (LLMs) to dis- 593

cern and express their internal knowledge, a key 594

factor in mitigating factual hallucinations and en- 595

suring reliable applications. Our research, mani- 596

fested through a series of knowledge probing ex- 597

periments, identifies the model’s self-awareness of 598

its knowledge state. We released the open-source 599

tool DreamCatcher which scores and annotates the 600

degree of hallucination in the LLM’s response to 601

knowledge-oriented question and rank responses 602

based on their factuality. 603

We further validated our findings through the 604

Reinforcement Learning from Knowledge Feed- 605

back (RLKF) training framework. Utilizing Dream- 606

Catcher to annotate factual preference data, we 607

train a reward model and leveraging reinforcement 608

learning to enhances LLM’s factuality and truth- 609

fulness. Our results indicate RLKF’s effectiveness 610

in improving the model’s utilization of its inter- 611

nal knowledge state, enhancing its performance in 612

various knowledge and honesty related tasks. We 613

posit that RLKF is a promising solution to address 614

LLM’s hallucination issues and, combined with 615

RLHF, offers significant potential for enhancing 616

the model’s overall capabilities. 617
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8 Limitations618

Data limitation: Our Reinforcement Learning from619

Knowledge Feedback (RLKF) training relies on620

a relatively limited quantity and variety of data621

used. The factual question-answer data employed622

in our experiments predominantly resulted from623

using GPT3.5 to generate question-answer pairs624

from Wikipedia passages. Although this approach625

guarantees high factual precision and includes an626

extensive range of long-tail facts, it restricts diver-627

sity in writing style.628

Given the time and cost considerations associ-629

ated with the use of GPT api, the volume of data630

was also somewhat restricted. To enhance RLKF631

training, prospective research might contemplate632

compiling more intricate factual question-answer633

data that reflect real-world conditions.634

Integration of Alternative Optimization Tech-635

niques: The essence of the RLKF framework lies in636

optimizing for factual preferences. After acquiring637

factual preference data, we opted for the Proxi-638

mal Policy Optimization (PPO) method for opti-639

mization, given its demonstrated efficacy within640

the existing Reinforcement Learning from Human641

Feedback (RLHF) framework.642

However, various other potential optimization643

methods exist, including reject sampling, DPO,644

mixed data supervised fine-tuning, among others.645

We anticipate future research will creatively in-646

corporate factual preference data into their respec-647

tive training frameworks, contributing to a com-648

prehensive understanding of the LLM illusion phe-649

nomenon.650
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A Appendix829

A.1 Example of wiki-QA Instruction830

A.2 More probing results831

(a) Llama2-chat-7B (b) Qwen-chat-7B

Figure 4: Accuracy of knowledge state probing in 7B models. The light-colored area in the figure shows the range
of accuracy for ten repetitions of the experiment, and the solid line shows the mean accuracy.
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Instruction template:
Based on the following Wikipedia article snippet, ask a knowledge-based
question and provide a corresponding answer.
Article snippet:
{Wikipedia passage}
Requirements:
1. there is a unique correct answer to the question, and the answer can be found
in the given article fragment.
2. the question can be answered independently of the article fragment, i.e. the
answer to the question cannot depend on contextual information, e.g. a question
about a character in a literature needs to specify the work to which the character
belongs, and a question such as "What is the article about?" cannot be asked.
3. Provide the question, answer, and category (e.g., literature, physics,
etc.) at the same time, and reply in the following format: {"ques-
tion":question,"answer":answer,"type":category}.
If you are unable to ask a question that meets the above requirements, you can
simply reply "Unable to ask".
Reply:
Wikipedia passage:
House Arrest (1996 film) House Arrest is a 1996 American comedy film directed
by Harry Winer, written by Michael Hitchcock, and starring Jamie Lee Curtis,
Kevin Pollak, Jennifer Tilly, Christopher McDonald, Wallace Shawn, and Ray
Walston with supporting roles done by Kyle Howard, Amy Sakasitz, Mooky
Arizona, Russel Harper, and an up-and-coming Jennifer Love Hewitt. It tells
the story of two children who trap their parents in their basement upon their
plans for a separation as the other children they know get involved by trapping
their respective problem parents as well. The film was released on August 14,
1996 and went on to gross just over $7 million at the box office. The film was
panned by critics. The film was shot at various locations in the U.S. states of
California and Ohio. Monrovia, California was the location for several exterior
house scenes while most interior shots were done at the CBS/Radford lot in
Studio City, California. The story was set in Defiance, Ohio, although another
town, Chagrin Falls, Ohio, actually doubled for it.
GPT3.5 response:
{"question":"Who directed the film House Arrest?","answer":"Harry
Winer","type":"film"}

Table 5: Example of instruction and corresponding GPT3.5 output of English wiki-QA.
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Instruction template:
根据下面的维基百科文章片段，提出一个简短的知识型问题并给出对应
回答，要求这个问题存在唯一正确答案，并且答案可以在给出的文章片
段中找到。
文章片段：
{Wikipedia passage}
问题需要在脱离文章片段的情况下仍能够被回答，例如针对文学作品中
人物提问需要指明所属的作品，以免引起歧义。问题的回答不能依赖于
上下文的信息，不能提出类似“这篇文章的内容是什么？”的问题。
同时给出问题，回答和问题分类（比如文学类或物理类等），按如下格
式回复：{"question":问题,"answer":回答,"type":分类}。如果无法提出满
足上述要求的问题，可以直接回复“无法提问”。
回复：
Wikipedia passage:
M25
M25，也称为IC 4725，是一个由恒星组成，在南天人马座的疏散星
团。Philippe Loys de Chéseaux在1745年对这个星团进行了第一次有记录
的观测，查尔斯·梅西耶1764年将它收录进他的星云天体清单[6]。这个
星团位于模糊的特征附近，因此有一条暗带通过中心附近[3]。
M25距离地球大约2,000光年，年龄约为6,760万岁[2]。这个星团在空
间的维度大约是13光年，估计质量是1,937 M，其中大约24%是星际物
质[4]。星团成员中的人马座U是一颗分类为造父变星的变星[7]，还有两
颗红巨星，且其中一颗是联星系统[8]。
GPT3.5 response:
{"question":"M25是位于哪个星座的疏散星团？","answer":"南天人马
座","type":"天文学"}

Table 6: Example of instruction and corresponding GPT3.5 output of Chinese wiki-QA.
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A.3 Statistics of factual preference data832

Model Total Known Unknown Mixed

Qwen-chat-14B 12799 49% 43% 8%
Qwen-chat-7B 7201 52% 40% 8%
Llama2-chat-13B 6600 48% 44% 8%
Llama2-chat-7B 6680 45% 45% 10%
Ziya-reader-13B 12558 49% 41% 10%

Table 7: Statistics of factual preference data and percent-
age of each knowledge state category used for reward
modeling. The Llama2 models use English-only wiki-
QA data, Qwen-chat-7B uses Chinese-only data, and
Qwen-chat-14B and Ziya-reader-13B use a mixture of
English and Chinese data.

A.4 RLKF Training details833

We use the AdamW optimizer, with β1 = 0.9,834

β2 = 0.99, eps = 1e − 5 for all models. The835

learning rate for reward model training is 5e − 6836

with 1% warmup and linear decay scheduler. The837

batch size is 16 for 13/14B models and 64 for 7B838

models. We train the reward model for 1 epoch.839

For PPO training, we use learning rate of 1e − 6840

with cosine scheduler. The batch size is 32 for841

13/14B models and 64 for 7B models. We set the842

KL penalty to 0 for all models.843

A.5 More Observation844

We observe that, some of the responses to the845

unknown questions are indicating uncertainty in846

RLHF-trained models, but there is also a signif-847

icant percentage of responses that are hallucina-848

tions. This indicates an increase in model honesty849

achieved through RLHF, but there is still room for850

improvement.851
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