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ABSTRACT

The neural collapse (NC) phenomenon describes an underlying geometric symme-
try for deep neural networks, where both deeply learned features and classifiers
converge to a simplex equiangular tight frame. It has been shown that both cross-
entropy loss and mean square error can provably lead to NC. We remove NC’s key
assumption on the feature dimension and the number of classes, and then present a
generalized neural collapse (GNC) hypothesis that effectively subsumes the origi-
nal NC. Inspired by how NC characterizes the training target of neural networks,
we decouple GNC into two objectives: minimal intra-class variability and maximal
inter-class separability. We then use hyperspherical uniformity (which character-
izes the degree of uniformity on the unit hypersphere) as a unified framework to
quantify these two objectives. Finally, we propose a general objective – hyperspher-
ical uniformity gap (HUG), which is defined by the difference between inter-class
and intra-class hyperspherical uniformity. HUG not only provably converges to
GNC, but also decouples GNC into two separate objectives. Unlike cross-entropy
loss that couples intra-class compactness and inter-class separability, HUG enjoys
more flexibility and serves as a good alternative loss function. Empirical results
show that HUG works well in terms of generalization and robustness.

1 INTRODUCTION

Recent years have witnessed the great success of deep representation learning in a variety of applica-
tions ranging from computer vision [37], natural language processing [16] to game playing [55, 64].
Despite such a success, how deep representations can generalize to unseen scenarios and when they
might fail remain a black box. Deep representations are typically learned by a multi-layer network
with cross-entropy (CE) loss optimized by stochastic gradient descent. In this simple setup, [86] has
shown that zero loss can be achieved even with arbitrary label assignment. After continuing to train
the neural network past zero loss with CE, [60] discovers an intriguing phenomenon called neural
collapse (NC). NC can be summarized as the following characteristics:

• Intra-class variability collapse: Intra-class variability of last-layer features collapses to zero,
indicating that all the features of the same class concentrate to their intra-class feature mean.

• Convergence to simplex ETF: After being centered at their global mean, the class-means are
both linearly separable and maximally distant on a hypersphere. Formally, the class-means form a
simplex equiangular tight frame (ETF) which is a symmetric structure defined by a set of maximally
distant and pair-wise equiangular points on a hypersphere.

• Convergence to self-duality: The linear classifiers, which live in the dual vector space to that of
the class-means, converge to their corresponding class-mean and also form a simplex ETF.

• Nearest decision rule: The linear classifiers behave like nearest class-mean classifiers.

The NC phenomenon suggests two general principles for deeply learned features and classifiers:
minimal intra-class compactness of features (i.e., features of the same class collapse to a single
point), and maximal inter-class separability of classifiers / feature mean (i.e., classifiers of different
classes have maximal angular margins). While these two principles are largely independent, popular
loss functions such as CE and square error (MSE) completely couple these two principles together.
Since there is no trivial way for CE and MSE to decouple these two principles, we identify a novel
quantity – hyperspherical uniformity gap (HUG), which not only characterizes intra-class feature
compactness and inter-class classifier separability as a whole, but also fully decouples these two
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principles. The decoupling enables HUG to separately model intra-class compactness and inter-class
separability, making it highly flexible. More importantly, HUG can be directly optimized and used to
train neural networks, serving as an alternative loss function in place of CE and MSE for classification.
HUG is formulated as the difference between inter-class and intra-class hyperspherical uniformity.
Hyperspherical uniformity [48] quantifies the uniformity of a set of vectors on a hypersphere and
is used to capture how diverse these vectors are on a hypersphere. Thanks to the flexibility of
HUG, we are able to use many different formulations to characterize hyperspherical uniformity,
including (but not limited to) minimum hyperspherical energy (MHE) [45], maximum hyperspherical
separation (MHS) [48] and maximum gram determinant (MGD) [48]. Different formulations yield
different interpretation and optimization difficulty (e.g., HUG with MHE is easy to optimize, HUG
with MGD has interesting connection to geometric volume), thus leading to different performance.

Similar to CE loss, HUG also provably leads to NC under the setting of unconstrained features [53].
Going beyond NC, we hypothesize a generalized NC (GNC) with hyperspherical uniformity, which
extends the original NC to the scenario where there is no constraint for the number of classes and the
feature dimension. NC requires the feature dimension no smaller than the number of classes while
GNC no longer requires this. We further prove that HUG also leads to GNC at its objective minimum.

Another motivation behind HUG comes from the classic Fisher discriminant analysis (FDA) [19]
where the basic idea is to find a projection matrix T that maximizes between-class variance and
minimizes within-class variance. What if we directly optimize the input data (without any projection)
rather than optimizing the linear projection in FDA? We make a simple derivation below:

Projection FDA: max
T∈Rd×r

tr
((

T⊤SwT
)−1

T⊤SbT

)
Data FDA: max

x1,··· ,xn∈Sd−1
tr (Sb)− tr (Sw)

where the between-class scatter matrix is Sw=
∑C

i=1

∑
j∈Ac

(xj−µi)(xj−µi)
⊤, the within-class

scatter matrix is Sb=
∑C

i=1 ni(µi− µ̄)(µi− µ̄)⊤, ni is the number of samples in the i-th class, n
is the total number of samples, µi=n−1

i

∑
j∈Ac

xj is the i-th class-mean, and µ̄=n−1
∑n

j=1 xj

is the global mean. By considering class-balanced data on the unit hypersphere, optimizing data
FDA is equivalent to simultaneously maximizing tr(Sb) and minimizing tr(Sw). Maximizing tr(Sb)
encourages inter-class separability and is a necessary condition for hyperspherical uniformity.1
Minimizing tr(Sw) encourages intra-class feature collapse, reducing intra-class variability. Therefore,
HUG can be viewed a generalized FDA criterion for learning maximally discriminative features.

However, one may ask the following questions: Why is HUG useful if we already have the FDA
criterion? Could we simply optimize data FDA? In fact, the FDA criterion has many degenerate
solutions. For example, we consider a scenario of 10-class balanced data where all features from the
first 5 classes collapse to the north pole on the unit hypersphere and features from the rest 5 classes
collapse to the south pole on the unit hypersphere. In this case, tr(Sw) is already minimized since it
achieves the minimum zero. tr(Sb) also achieves its maximum n at the same time. In contrast, HUG
naturally generalizes FDA without having these degenerate solutions and serves as a more reliable
criterion for training neural networks. We summarize our contributions below:

• We decouple the NC phenomenon into two separate learning objectives: maximal inter-class sepa-
rability (i.e., maximally distant class feature mean and classifiers on the hypersphere) and minimal
intra-class variability (i.e., intra-class features collapse to a single point on the hypersphere).

• Based on the two principled objectives induced by NC, we hypothesize the generalized NC which
generalizes NC by dropping the constraint on the feature dimension and the number of classes.

• We identify a general quantity called hyperspherical uniformity gap, which well characterizes both
inter-class separability and intra-class variability. Different from the widely used CE loss, HUG
naturally decouples both principles and thus enjoys better modeling flexibility.

• Under the HUG framework, we consider three different choices for characterizing hyperspherical
uniformity: minimum hyperspherical energy, maximum hyperspherical separation and maximum
Gram determinant. HUG provides a unified framework for using different characterizations of
hyperspherical uniformity to design new loss functions.

1We first obtain the upper bound n of tr(Sb) from tr(Sb)=
∑C

i=1 ni∥µi− µ̄∥2F ≤
∑C

i=1 ni∥µi∥·∥µ̄∥≤n.
Because a set of vectors {µi}ni=1 achieving hyperspherical uniformity has Eµ1,··· ,µn{∥µ̄∥} → 0 (as n grows
larger) [20]. Then we have that tr(Sb) attains n. Therefore, vectors achieving hyperspherical uniformity are one
of its maximizers. tr(Sw) can simultaneously attain its minimum if intra-class features collapse to a single point.
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2 ON GENERALIZING AND DECOUPLING NEURAL COLLAPSE

NC describes an intriguing phenomenon for the distribution of last-layer features and classifiers in
overly-trained neural networks, where both features and classifiers converge to ETF. However, ETF
can only exist when the feature dimension d and the number of classes C satisfy d≥C−1. This
is not always true for deep neural networks. For example, neural networks for face recognition are
usually trained by classifying large number of classes (e.g., more than 85K classes in [23]), and
the feature dimension (e.g., 512 in SphereFace [43]) is usually much smaller than the number of
classes. In general, when the number of classes is already large, it is prohibitive to use a larger feature
dimension. Thus a question arises: what will happen in this case if a neural network is fully trained?

(a) 2D feature with 3 classes (b) 2D feature with 10 classes
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Figure 1: 2D learned feature visualization on MNIST. The features
are inherently 2-dimensional and are plotted without visualization
tools. (a) Case 1: d=2, C=3; (b) Case 2: d=2, C=10.

Motivated by this question, we conduct a simple
experiment to simulate the case of d≥C−1 and
the case of d<C−1. Specifically, we train a con-
volutional neural network (CNN) on MNIST with
feature dimension 2. For the case of d≥C−1, we
use only 3 classes (digit 0,1,2) as the training set.
For the case of d<C−1, we use all 10 classes as
the training set. We visualize the learned features
of both cases in Figure 1. The results verify the
case of d≥C−1 indeed approaches to NC, and
ETF does not exist in the case of d<C−1. Inter-
estingly, one can observe that learned features in both cases approach to the configuration of equally
spaced frames on the hypersphere. To accommodate the case of d<C−1, we extend NC to the
generalized NC by hypothesizing that last-layer inter-class features and classifiers converge to equally
spaced points on the hypersphere, which can be characterized by hyperspherical uniformity.

Generalized Neural Collapse (GNC)
We define the feature global mean as µG=Avei,cxi,c where xi,c∈Rd is the last-layer feature
of the i-th sample in the c-th class, the feature class-mean as µc=Aveixi,c for different classes
c∈{1, · · · , C}, the feature within-class covariance as ΣW =Avei,c(xi,c−µc)(xi,c−µc)

⊤ and
the feature between-class covariance as ΣB=Avec(µc−µG)(µc−µG)

⊤. GNC states that

• (1) Intra-class variability collapse: Intra-class variability of last-layer features collapse to
zero, indicating that all the features of the same class converge to their intra-class feature mean.
Formally, GNC has that Σ†

BΣW →0 where † denotes the Moore-Penrose pseudoinverse.
• (2) Convergence to hyperspherical uniformity: After being centered at their global mean, the

class-means are both linearly separable and maximally distant on a hypersphere. Formally, the
class-means converge to equally spaced points on a hypersphere, i.e.,∑

c̸=c′

K(µ̂c, µ̂c′) → min
µ̂1,··· ,µ̂C

∑
c ̸=c′

K(µ̂c, µ̂c′), ∥µc − µG∥ − ∥µc′ − µG∥ → 0, ∀c ̸= c′ (1)

where µ̂i=∥µi−µG∥−1(µi−µG) and K(·, ·) is a kernel function that models pairwise inter-
action. Typically, we consider Riesz s-kernel Ks(µ̂c, µ̂c′)=sign(s) ·∥µ̂c− µ̂c′∥−s or logarith-
mic kernel Klog(µ̂c, µ̂c′)=log ∥µ̂c− µ̂c′∥−1. For example, the Riesz s-kernel with s=d−2
is a variational characterization of hyperspherical uniformity (e.g., hyperspherical energy [45])
using Newtonian potentials. In the case of d=3, s=1, the Riesz kernel is called Coulomb
potential and the problem of finding minimal coulomb energy is called Thomson problem [70].

• (3) Convergence to self-duality: The linear classifiers, which live in the dual vector space to
that of the class-means, converge to their corresponding class-means, leading to hyperspherical
uniformity. Formally, GNC has that ∥wc∥−1wc− µ̂c→0 where wc∈Rd is the c-th classifier.

• (4) Nearest decision rule: The learned linear classifiers behave like the nearest class-mean
classifiers. Formally, GNC has that argmaxc⟨wc,x⟩+bc→argminc ∥x−µc∥.

In contrast to NC, GNC further considers the case of d<C−1 and hypothesizes that both feature
class-means and classifiers converge to hyperspherically uniform point configuration that minimizes
some form of pairwise potentials. Similar to how NC connects tight frame theory [74] to deep
learning, our GNC hypothesis connects potential theory [3] to deep learning, which may shed new
light on understanding it. We show in Theorem 1 that GNC reduces to NC in the case of d≥C−1.
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Theorem 1 (Regular Simplex Optimum for GNC) Let f : (0, 4] → R be a convex and decreasing
function defined at v=0 by limv→0+ f(v). If 2≤C≤d+1, then we have that the vertices of regular
(C−1)-simplices inscribed in Sd−1 with centers at the origin (equivalent to simplex ETF) minimize
the hyperspherical energy

∑
c̸=c′ K(µ̂c, µ̂c′) on the unit hypersphere Sd−1 (d ≥ 3) with the kernel

as K(µ̂c, µ̂c′)=f(∥µ̂c− µ̂c′∥2). If f is strictly convex and strictly decreasing, then these are the
only energy minimizing C-point configurations. Thus GNC reduces to NC when d≥C−1.

v1
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v3 -v3

-v2

-v1

v1

v2
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v4

(a) Regular simplex (b) Cross-polytope

Figure 2: Geometric illustration in R3 of (a) regu-
lar simplex optimum (equivalent to simplex ETF
in NC) and (b) cross-polytope optimum in GNC.

We note that Theorem 2 guarantees the simplex ETF as the
minimizer of a general family of hyperspherical energies (as
long as f is convex and decreasing). This suggests that there
are many possible kernel functions K(·, ·) in GNC that can
effectively generalize NC. The case of d<C−1 is where GNC
really gets interesting but complicated. Other than the regular
simplex case, we also highlight a special uniformity case of
2d=C. In this case, we can prove in Theorem 2 that GNC(2)
converges to the vertices of a cross-polytope as hyperspherical
energy gets minimized. As the number of classes gets infinitely
large, we show in Theorem 3 that GNC(2) leads to a point configuration that is uniformly distributed
on Sd−1. Additionally, we show a simple yet interesting result in Proposition 1 that the last-layer
classifiers are already initialized to be uniformly distributed on the hypersphere in practice.

Theorem 2 (Cross-polytope Optimum for GNC) If C=2d, then the vertices of the cross-polytope
are the minimizer of the hyperspherical energy in GNC(2).

The cross-polytope optimum for GNC(2) is in fact quite intuitive, because it corresponds to the
Cartesian coordinate system (up to a rotation). For example, the vertices of the unit cross-polytope
in R3 are (±1, 0, 0), (0,±1, 0), (0, 0,±1). These 6 vectors minimize the hyperspherical energy on
S2. We illustrate both the regular simplex and cross-polytope cases in Figure 2. For the other
cases of d<C−1, there exists generally no simple and universal point structure that minimizes
the hyperspherical energy, as heavily studied in [12, 27, 38, 63]. For the point configurations that
asymptotically minimize the hyperspherical energy as C grows larger, Theorem 3 can guarantee that
these configurations asymptotically converge to a uniform distribution on the hypersphere.

Theorem 3 (Asymptotic Convergence to Hyperspherical Uniformity) Consider a sequence of
point configurations {µ̂C

1 , · · · , µ̂C
C}∞C=2 that asymptotically minimizes the hyperspherical energy on

Sd−1 as C → ∞, then {µ̂C
1 , · · · , µ̂C

C}∞C=2 is uniformly distributed on the hypersphere Sd−1.

Proposition 1 (Minimum Energy Initialization) With zero-mean Gaussian initialization (e.g., [22,
28]), the C last-layer classifiers of neural networks are initialized as a uniform distribution on the hy-
persphere. The expected initial energy is C(C−1)

∫
Sd−1

∫
Sd−1 ∥µ̂c− µ̂c′∥−2dσd−1(µ̂c)dσd−1(µ̂c′).

With Proposition 1, one can expect that the hyperspherical energy of the last-layer classifiers will
first increase and then decrease to a lower value than the initial energy. To validate the effectiveness
of our GNC hypothesis, we conduct a few experiments to show how both class feature means and
classifiers converge to hyperspherical uniformity (i.e., minimizing the hyperspherical energy), and
how intra-class feature variability collapses to almost zero. We start with an intuitive understanding
about GNC from Figure 1. The results are directly produced by the learned features without any
visualization tool (such as t-SNE [73]), so the feature distribution can reflect the underlying one
learned by neural networks. We observe that GNC is attained in both d<C−1 and d≥C−1, while
NC is violated in d<C−1 since the learned feature class-means can no longer form a simplex ETF.
To see whether the same conclusion holds for higher feature dimensions, we also train two CNNs on
CIFAR-100 with feature dimension as 64 and 128, respectively. The results are given in Figure 3.

Figure 3 shows that GNC captures well the underlying convergence of the neural network training.
Figure 3(a,c) shows that the hyperspherical energy of feature class-means and classifiers converge to a
small value, verifying the correctness of GNC(2) and GNC(3) which indicate both feature class-means
and classifiers converge to hyperspherical uniformity. More interestingly, in the MNIST experiment,
we can compute the exact minimal energy on S1: 2 in the case of d=2, C=3 (1/3 for average
energy) and ≈82.5 in the case of d=2, C=10 (≈0.917 for average energy). The final average
energy in Figure 3(a) matches our theoretical minimum well. From Figure 3(c), we observe that the
classifier energy stays close to its minimum at the very beginning, which matches our Proposition 1
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(c) Inter-class separability on CIFAR-100
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(d) Intra-class variability on CIFAR-100
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Figure 3: Training dynamics of hyperspherical energy (which captures inter-class separability) and hyperspherical reverse-energy (which captures
intra-class variability). (a,b) MNIST with d=2, C=10 and d=2, C=3. (c,d) CIFAR-100 with d=64, C=100 and d=128, C=100.

that vectors initialized with zero-mean Gaussian are uniformly distributed over the hypersphere
(this phenomenon becomes more obvious in higher dimensions). To evaluate the intra-class feature
variability, we consider a hyperspherical reverse-energy Er=

∑
i ̸=j∈Ac

∥x̂i− x̂j∥ where x̂i =
xi

∥xi∥
and Ac denotes the sample index set of the c-th class. The smaller this reverse-energy gets, the less
intra-class variability it implies. Figure 3(b,d) shows that the intra-class feature variability approaches
to zero, as GNC(1) suggests. Details and more empirical results on GNC are in given Appendix A.

Now we discuss how to decouple the GNC hypothesis and how such a decoupling can enable us to
design new objectives to train neural networks. GNC(1) and GNC(2) suggest to minimize intra-class
feature variability and maximize inter-class feature separability, respectively. GNC(3) and GNC(4)
are natural consequences if GNC(1) and GNC(2) hold. It has long been discovered in [42, 68, 82]
that last-layer classifiers serve as proxies to represent the corresponding class of features, and they
are also an approximation to the feature class-means. GNC(3) indicates the classifiers converge to
hyperspherical uniformity, which, together with GNC(1), implies GNC(4).

Until now, it has been clear that GNC really boils down to two decoupled objectives: maximize
inter-class separability and minimize intra-class variability, which again echos the goal of FDA.
The problem reduces to how to effectively characterize these two objectives while being decoupled
for flexibility (unlike CE or MSE). In the next section, we propose to address this problem by
characterizing both objectives with a unified quantity - hyperspherical uniformity.

3 HYPERSPHERICAL UNIFORMITY GAP

3.1 GENERAL FRAMEWORK

As GNC(2) suggests, the inter-class separability is well captured by hyperspherical uniformity
of feature class-means, so it is natural to directly use it as a learning target. On the other hand,
GNC(1) does not suggest any easy-to-use quantity to characterize intra-class variability. We note
that minimizing intra-class variability is actully equivalent to encouraging features of the same class
to concentrate on a single point, which is the opposite of hyperspherical uniformity. Therefore, we
can unify both intra-class variability and inter-class separability with a single characterization of
hyperspherical uniformity. We propose to maximize the hyperspherical uniformity gap:

max
{x̂j}nj=1

LHUG := α · HU
(
{µ̂c}Cc=1

)︸ ︷︷ ︸
Tb: Inter-class Hyperspherical Uniformity

−β ·
C∑

c=1

HU
(
{x̂i}i∈Ac

)︸ ︷︷ ︸
Tw : Intra-class Hyperspherical Uniformity

(2)

where α, β are hyperparameters, µ̂c=
µc

∥µc∥ is the feature class-mean projected on the unit hyper-
sphere, µc=

∑
c∈Ac

xc is the feature class-mean, xi is the last-layer feature of the i-th sample and
Ac denotes the sample index set of the c-th class. HU({vi}mi=1) denotes some measure of hyper-
spherical uniformity for vectors {v1, · · · ,vm}. Eq. 2 is the general objective for HUG. Without loss
of generality, we assume that the larger it gets, the stronger hyperspherical uniformity we have. We
mostly focus on supervised learning with parameteric class proxies2 where the CE loss is widely
used as a de facto choice, although HUG can be used in much broader settings as discussed later. In
the HUG framework, there is no longer a clear notion of classifiers (unlike the CE loss), but we still
can utilize class proxies (i.e., a generalized concept of classifiers) to facilitate the optimization.

We observe that Eq. 2 directly optimizes the feature class-means for inter-class separability, but they
are intractable to compute during training (we need to compute them in every iteration). Therefore
it is nontrivial to optimize the original HUG for training neural networks. A naive solution is to

2Parametric class proxies are a set of parameters used to represent a group of samples in the same class.
Therefore, these proxies store the information about a class. Last-layer classifiers are a typical example.
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approximate feature class-mean with a few mini-batches such that the gradients of Tb can be still
back-propagated to the last-layer features. However, it may take many mini-batches in order to obtain
a sufficiently accurate class-mean, and the approximation gets much more difficult with large number
of classes. To address this, we employ parametric class proxies to act as representatives of intra-class
features and optimize them instead of feature class-means. We thus modify the HUG objective as

max
{x̂j}nj=1,{ŵc}Cc=1

LP-HUG := α · HU
(
{ŵc}Cc=1

)︸ ︷︷ ︸
Inter-class Hyperspherical Uniformity

−β ·
C∑

c=1

HU
(
{x̂i}i∈Ac , ŵc

)︸ ︷︷ ︸
Intra-class Hyperspherical Uniformity

(3)

where ŵc∈Sd−1 is the parametric proxy for the c-th class. The intra-class hyperspherical uniformity
term connects the class proxies with features by minimizing their joint hyperspherical uniformity,
guiding features to move towards their corresponding class proxy. When training a neural network, the
objective function in Eq. 3 will optimize network weights and proxies together. There are alternative
ways to design the HUG loss from Eq. 2 for different learning scenarios, as discussed in Appendix C.

Learnable proxies. We can view the class proxy µ̂i as learnable parameters and update them with
stochastic gradients, similarly to the parameters of neural networks. In fact, learnable proxies play a
role similar to the last-layer classifiers in the CE loss, improving the optimization by aggregating
intra-class features. The major difference between learnable proxies and moving-averaged proxies is
the way we update them. As GNC(3) implies, class proxies in HUG can also be used as classifiers.

Static proxies. Eq. 3 is decoupled into maximal inter-class separability and minimal intra-class
variability. These two objects are independent and do not affect each other. We can thus optimize
them independently. This suggests a even simpler way to assign class proxies – initializing class
proxies with prespecified points that have attained hyperspherical uniformity, and fixing them in the
training. There are two simple ways to obtain these class proxies: (1) minimizing their hyperspherical
energy beforehand; (2) using zero-mean Gaussian to initialize the class proxies (Proposition 1). After
initialization, class proxies will stay fixed and the features are optimized towards their class proxies.

Partially learnable proxies. After the class proxies are initialized using the static way above, we
can increase its flexibility by learning an orthogonal matrix for the class proxies to find a suitable
orientation for them. Specifically, we can learn this orthogonal matrix using methods in [47].

3.2 VARIATIONAL CHARACTERIZATION OF HYPERSPHERICAL UNIFORMITY

While there exist many ways to measure hyperspherical uniformity, we seek variational characteriza-
tion due to simplicity. As examples, we consider minimum hyperspherical energy [45] that is inspired
by Thomson problem [66, 70] and minimizes the potential energy, maximum hyperspherical separa-
tion [48] that is inspired by Tammes problem [69] and maximizes the smallest pairwise distance, and
maximum gram determinant [48] that is defined by the volume of the formed parallelotope.

Minimum hyperspherical energy. MHE seeks to find an equilibrium state with minimum potential
energy that distributes n electrons on a unit hypersphere as evenly as possible. Hyperspherical unifor-
mity is characterized by minimizing the hyperspherical energy for n vectors Vn={v1, · · · ,vn∈Rd}:

min
{v̂1,··· ,v̂n∈Sd−1}

{
Es(V̂n) :=

n∑
i=1

n∑
j=1,j ̸=i

Ks(v̂i, v̂j)

}
, Ks(v̂i, v̂j) =

{
∥v̂i − v̂j∥−s, s > 0
−∥v̂i − v̂j∥−s, s < 0

, (4)

where v̂i :=
vi

∥vi∥ is the i-th vector projected onto the unit hypersphere. With HU(V̂ )=−Es(V̂ ), we
apply MHE to HUG and formulate the new objective as follows (sb=2, sw=−1):

min
{x̂j}nj=1,{ŵc}Cc=1

LMHE-HUG := α · Esb

(
{ŵc}Cc=1

)
− β ·

C∑
c=1

Esw

(
{x̂i}i∈Ac , ŵc

)
(5)

which can already be used as to train neural networks. The intra-class variability term in Eq. 5 can be
relaxed to a upper bound such that we can instead minimize a simple upper bound of LMHE-HUG:

L′
MHE-HUG := α ·

∑
c̸=c′

∥ŵc − ŵc′∥−2 + β′ ·
∑
c

∑
i∈Ac

∥x̂i − ŵc∥ ≥ LMHE-HUG (6)

which is much more efficient to compute in practice and thus can serve as a relaxed HUG objective.
Moreover, LMHE-HUG and L′

MHE-HUG share the same minimizer. Detailed derivation is in Appendix H.

Maximum hyperspherical separation. MHS uses a maximum geodesic separation principle by
maximizing the separation distance ϑ(V̂n) (i.e., the smallest pairwise distance in Vn={v1, · · · ,vn∈
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Rd}): maxV̂ {ϑ(V̂n) := mini̸=j ∥v̂i − v̂j∥}. Because ϑ(V̂n) is another variational definition, we
cannot naively set HU(·) = ϑ(·). We define ϑ−1(V̂n) :=maxi ̸=j ∥v̂i− v̂j∥ and HUG becomes

max
{x̂j}nj=1,{ŵc}Cc=1

LMHS-HUG := α · ϑ
(
{ŵc}Cc=1

)
− β ·

C∑
c=1

ϑ−1({x̂i}i∈Ac , ŵc

)
, (7)

which, by replacing intra-class variability with its surrogate, results in a more efficient form:

L′
MHS-HUG := α ·min

c̸=c′
∥ŵc − ŵc′∥ − β ·

∑
c

max
i∈Ac

∥x̂i − ŵc∥ (8)

which is a max-min optimization with a simple nearest neighbor problem inside. We note that
LMHS-HUG and L′

MHS-HUG share the same maximizer. Detailed derivation is given in Appendix H.

Maximum gram determinant. MGD characterizes the uniformity by computing a proxy to the
volume of the parallelotope spanned by the vectors. MGD is defined with kernel gram determinant:

max
{v̂1,··· ,v̂n∈Sd−1}

log det
(
G :=

(
K(v̂i, v̂j)

)n
i,j=1

)
, K(v̂i, v̂j) = exp

(
− ϵ2∥v̂i − v̂j∥2

)
(9)

where we use a Gaussian kernel with parameter ϵ and G(V̂n) is the kernel gram matrix for V̂n=

{v̂1, · · · , v̂n}. With HU(V̂n)=detG(V̂n), minimizing intra-class uniformity cannot be achieved
by minimizing detG(V̂n), since detG(V̂n)=0 only leads to linear dependence. Then we have

max
{x̂j}nj=1,{ŵc}Cc=1

LMGD-HUG := α · log det
(
G({ŵc}Cc=1)

)
+ β′ ·

∑
c

∑
i∈Ac

∥x̂i − ŵc∥ (10)

where we directly use the surrogate loss from Eq. 6 as the intra-class variability term. With MGD,
HUG has interesting geometric interpretation – it encourages the volume spanned by class proxies to
be as large as possible and the volume spanned by intra-class features to be as small as possible.

3.3 THEORETICAL INSIGHTS AND DISCUSSIONS

There are many interesting theoretical questions concerning HUG, and this framework is highly
related to a few topics in mathematics, such as tight frame theory [74], potential theory [39], sphere
packing and covering [3, 18, 25]. The depth and breath of these topics are beyond imagination. In
this section, we focus on discussing some highly related yet intuitive theoretical properties of HUG.

Theorem 4 (Order of Minimum Hyperspherical Energy) If d−1>s>0 or 0>s>−2 and d∈
N, we have that limn→∞{n−2 ·minV̂n

Es(V̂n)}=c(s, d) where c(s, d) is a constant involving s, d.

The result above shows that the leading term of the minimum energy grows of order O(n2) as n→∞.
Theorem 4 generally holds with a wide range of s for the Riesz kernel in hyperspherical energy.
Moreover, the following result shows that MHS is in fact a limiting case of MHE as s→∞.

Proposition 2 (MHS is a Limiting Case of MHE) Let n ∈ N, n ≥ 2 be fixed and (Sd−1, L2) be a
compact metric space. We have that lims→∞(minV̂n⊂Sd−1 Es(V̂n))

1
s = (maxV̂n⊂Sd−1 ϑ(V̂n))

−1.

Proposition 3 The HUG objectives in both Eq. 5 and Eq. 6 converge to simplex ETF when 2 ≤ C ≤
d+ 1, converge to cross-polytope when C = 2d and asymptotically converge to GNC as C → ∞.

Proposition 3 shows that HUG not only decouples GNC but also provably converges to GNC. Since
GNC indicates that the CE loss eventually approaches to the maximizer of HUG, we now look into
how the CE loss implicitly maximizes the HUG objective in a coupled way.

Proposition 4 The CE loss is LCE=
∑n

i=1 log(1+
∑C

j ̸=yi
exp(⟨wj ,xi⟩−⟨wyi ,xi⟩)) where n is

the number of samples, xi is the i-th sample with label yi and wj is the last-layer linear classifier
for the j-th class. Bias is omitted for simplicity. LCE is bounded by (ρ=C−1)
n∑

i=1

C∑
j ̸=yi

⟨wj ,xi⟩︸ ︷︷ ︸
Q1 : Coupled IS and IV

− ρ

n∑
i=1

⟨wyi ,xi⟩︸ ︷︷ ︸
Q2: Inter-class Variability

≤ LCE ≤ log
(
1 +

n∑
i=1

C∑
j ̸=yi

exp(⟨wj ,xi⟩)︸ ︷︷ ︸
Q3: Coupled IS and IV

+ ρ

n∑
i=1

exp(−⟨wyi ,xi⟩)︸ ︷︷ ︸
Q4: Inter-class Variability

)
.

We show in Proposition 4 that CE inherently optimizes two independent criterion: intra-class
variability (IV) and inter-class separability (IS). With normalized classifiers and features, we can see
that Q1 and Q3 have similar minimum where xi=wyi and wi,∀i attain hyperspherical uniformity.

7
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We show that CE is lower bounded by the gap of inter-class and intra-class hyperspherical uniformity:

LCE ≥
n∑

i=1

log

C∑
c=1

exp(ρ2

n∑
j=1

ljc⟨xi,xj⟩)− ρ3

n∑
i=1

∥∥∥∥∥ 1

n

n∑
i=1

licxi

∥∥∥∥∥
2

︸ ︷︷ ︸
Inter-class Hyperspherical Uniformity

− ρ1

n∑
i=1

∑
j∈Ayi

⟨xi,xj⟩

︸ ︷︷ ︸
Intra-class Hyperspherical Uniformity

(11)

where ρ1, ρ2, ρ3 are constants and lic is the softmax confidence of xi for the c-th class (Appendix L).
This result [4] implies that minimizing CE effectively minimizes HUG. [50] proves that the minimizer
of the normalized CE loss converges to hyperspherical uniformity. We rewrite their results below:

Theorem 5 (CE Asymptotically Converges to HUG’s Maximizer) Considering unconstrained
features of C classes (each class has the same number of samples), with features and classifiers
normalized on some hypersphere, we have that, for the minimizer of the CE loss, classifiers converge
weakly to the uniform measure on Sd−1 as C→∞ and features collapse to their corresponding
classifiers. The minimizer of CE also asymptotically converges to the maximizer of HUG.

Theorem 5 shows that the minimizer of the CE loss with unconstrained features [53] asymptotically
converges to the maximizer of HUG (i.e., GNC). Till now, we show that HUG shares the same
optimum with CE (with hyperspherical normalization), while being more flexible for decoupling
inter-class feature separability and intra-class feature variability. Therefore, we argue that HUG can
be an excellent alternative for the widely used CE loss in classification problems.

HUG maximizes mutual information. We can view HUG as a way to maximize mutual informa-
tion I(X;Y )=H(X)−H(X|Y ), where X denotes the feature space and Y is the label space.
Maximizing H(X) implies that the feature should be uniform over the space. Minimizing H(X|Y )
means that the feature from the same class should be concentrated. This is nicely connected to HUG.

The role of feature and class proxy norm. Both NC and GNC do not take the norm of feature and
class proxy into consideration. HUG also assume both feature and class proxy norm are projected onto
some hypersphere. Although dropping these norms usually improves generalizability [8, 9, 14, 43, 76],
training neural networks with standard CE loss still yields different class proxy norms and feature
norms. We hypothesize that this is due to the underlying difference among training data distribution
of different classes. One empirical evidence to support this is that average feature norm of different
classes is consistent across training under different random seeds (e.g., average feature norm for digit
1 on MNIST stays the smallest in different run). [36, 46, 52] empirically show that feature norm
corresponds to the quality of the sample, which can also viewed as a proxy to sample uncertainty.
[56] theoretically shows that the norm of neuron weights (e.g., classifier) matters for its Rademacher
complexity. As a trivial solution to minimize the CE loss, increasing the classifier norm (if the feature
is correctly classified) can easily decrease the CE loss to zero for this sample, which is mostly caused
by the softmax function. Taking both feature and class proxy norm into account greatly complicates
the analysis (e.g., it results in weighted hyperspherical energy where the potentials between vectors
are weighted) and seem to yield little benefit for now. We defer this issue to future investigation.

HUG as a general framework for designing loss functions. HUG can be viewed as an inherently
decoupled way of designing new loss functions. As long as we design a measure of hyperspherical
uniformity, then HUG enables us to effortlessly turn it into a loss function for neural networks.

4 EXPERIMENTS AND RESULTS

Our experiments aims to demonstrate the empirical effectiveness of HUG, so we focus on the fair
comparison to the popular CE loss under the same setting. Experimental details are in Appendix N.

4.1 EXPLORATORY EXPERIMENTS AND ABLATION STUDY

Method CIFAR-10 CIFAR-100

CE Loss 5.45 24.90
MHE-HUG 5.03 23.50
MHS-HUG 5.09 24.38
MGD-HUG 5.38 24.59

Table 1: Testing error (%) of HUG vari-
ants on CIFAR-10 and CIFAR-100.

Different HUG variants. We compare different HUG variants and the
CE loss on CIFAR-10 and CIFAR-100 with ResNet-18 [29]. Specif-
ically, we use Eq. 6, Eq. 6 and Eq. 10 for MHE-HUG, MHS-HUG
and MGD-HUG, respectively. The results are given in Table 1. We
can observe that all HUG variants outperform the CE loss. Among
all, MHE-HUG achieves the best testing accuracy with considerable
improvement over the CE loss. We note that all HUG variants are
used without the CE loss. The performance gain of HUG are actually quite significant, since the CE
loss is currently a default choice for classification problems and serves as a very strong baseline.
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Method CIFAR-10 CIFAR-100

CE Loss 5.45 24.90
Fully learnable 5.03 23.50
Static (random) 5.19 24.23
Static (optimized) 5.12 24.02
Partially learnable 5.08 23.89

Table 2: Testing error (%) of different proxy
update methods on CIFAR-10 and CIFAR-100.

Different methods to update proxies. We also evaluate how
different proxy update methods will affect the classification per-
formance. We use the same setting as Table 1. For all the proxy
update methods, we apply them to MHE-HUG (Eq. 6) under the
same setting. The results are given Table 2. We can observe
that all the propose proxy update methods work reasonably well.
More interestingly, static proxies work surprisingly well and out-
perform the CE loss even when all the class proxies are randomly
initialized and then fixed throughout the training. The reason the static proxies work for MHE-HUG
is due to Proposition 1. This result is significant since we no longer have to train class proxies in
HUG (unlike CE). When trained with large number of classes, it is GPU-memory costly for learning
class proxies, which is also known as one of the bottlenecks for face recognition [1]. HUG could be a
promising solution to this problem.

(a) CE Loss (b) HUG: Both losses (c) HUG: Intra-class Variability (d) HUG: Inter-class Separability

Figure 4: Loss landscape visualization. (b,c,d) show L′
MHE-HUG, Tb and Tw , respectively.

Loss landscape and convergence.
We perturb neuron weights (refer to
[40]) to visualize the loss landscape
of HUG and CE in Figure 4. We
use MHE in HUG here. The results
show that HUG yields much flatter
local minima than the CE loss in general, implying that HUG has potentially stronger generaliza-
tion [34, 57]. We show more visualizations and convergence dynamics in Appendix O.

Method ResNet-18 VGG-16 DenseNet-121

CE Loss 5.45 / 24.90 5.28 / 22.99 5.04 / 21.47
HUG 5.03 / 23.50 5.19 / 22.77 4.85 / 21.30

Table 3: Testing error (%) with different architectures.

Learning with different architectures. We evaluate HUG
with different network architectures such as VGG-16 [65],
ResNet-18 [29] and DenseNet-121 [31]. Results in Table 3
(Left number: CIFAR-10, right number: CIFAR-100) show
that HUG is agnostic to different network architectures and outperforms the CE loss in every case.
Although HUG works well on its own, any other methods that improve CE can also work with HUG.

4.2 GENERALIZATION AND ROBUSTNESS UNDER DIFFERENT LEARNING SCENARIOS

CIFAR-100 CIFAR-10
IR 0.2 0.1 0.02 0.01 0.2 0.1 0.02 0.01

CE 66.74 62.31 48.79 43.82 90.29 87.85 79.17 74.11
HUG 67.83 63.33 50.48 45.63 90.41 88.20 79.88 75.14

Table 4: Testing accuracy (%) of long-tailed recognition.

Long-tailed recognition. We consider the task of
long-tailed recognition, where the data from differ-
ent classes are imbalanced. The settings generally
follow [6], and the dataset gets more imbalanced if
the imbalance ratio (IR) gets smaller. The potential
of HUG in imbalanced classification is evident, as the inter-class separability in the HUG is explicitly
modeled and can be easily controlled. Experimental results in Table 4 show that HUG can consistently
outperform the CE loss in the challenging long-tailed setting under different imbalanced ratio.

CIFAR-100 CIFAR-10
Memory size 200 500 2000 200 500 2000

ER + CE 22.14 31.02 43.54 49.07 61.58 76.89
ER + HUG 23.52 31.92 43.92 53.74 62.67 77.21

Table 5: Final testing accuracy (%) of continual learning.

Continual learning. We demonstrate the potential of
HUG in the class-continual learning setting, where the
training data is not sampled i.i.d. but comes in class by
class. Since training data is highly biased, hyperspher-
ical uniformity among class proxies is crucial. Due to
the decoupled nature of HUG, we can easily increase the importance of inter-class separability, unlike
CE. We use a simple continual learning method – ER [62] where the CE loss with memory is used.
We replace it with HUG. Table 5 shows HUG consistently improves ER under different memory size.

Method Clean l∞=2/255 l∞=4/255 l∞=8/255

CE Loss 5.45 / 24.90 7.94 / 2.12 0.61 / 0 0 / 0

HUG 5.03 / 23.50 15.24 / 5.26 3.45 / 1.24 1.76 / 0.44

Table 6: Testing accuracy (%) under adversarial attacks.

Adversarial robustness. We further test HUG’s ad-
versarial robustness. In our experiments, we consider
the classical white-box PGD attack [51] on ResNet-
18. The PGD attack iteration is set as 100 and the
attack strength level is set as 2/255, 4/255, 8/255 in
l∞ norm. All networks are naturally training with either HUG or CE loss. Results in Table 6
demonstrate that HUG yields consistently stronger adversarial robustness than the CE loss.

Task MRPC SST-2 WNLI

CE Loss 84.8 91.6 33.8
HUG 85.8 91.8 34.0

Table 7: NLP testing accuracy (%)

NLP tasks. As an exploration, we evaluate HUG on some simple NLP
classification tasks. Our experiments follow the same settings as [32] and
finetune the BERT model [15] in these tasks. Table 7 shows that HUG
yields better generalizability than CE, demonstrating its potential for NLP.
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5 RELATED WORK AND CONCLUDING REMARKS

We start by generalizing and decoupling the NC phenomenon, obtaining two basic principles for loss
functions. Based on these principles, we identify a quantity hyperspherical uniformity gap, which
not only decouples NC but also provides a general framework for designing loss functions. We
demonstrate a few simple HUG variants that outperform the CE loss in terms of generalization and
adversarial robustness. There is a large body of excellent work in NC that is related to HUG, such as
[26, 33, 71, 89]. [88] extends the study of NC to more practical loss functions (e.g., focal loss and
losses with label smoothing). Different from existing work in hyperspherical uniformity [41, 45, 48]
and generic diversity (decorrelation) [2, 7, 11, 54, 77, 83], HUG works as a new learning target (used
without CE) rather than acting as a regularizer for the CE loss (used together with CE). Following the
spirit of [32], we demonstrate the effectiveness and potential of HUG as a valid substitute for CE.

2D subspace

Simplex ETF (NC)
d=3, C=4

3D space

Hyperspherical Uniformity (GNC)
d=2, C=4

Figure 5: Geometric connection be-
tween GNC and [87].

Relevant theoretical results. [87] has discussed NC under the case
of d<C−1, and shown that the global solution in this case yields
the best rand-d approximation of the simplex ETF. Along with [87],
GNC gives a more profound characterization of the convergence of
class-means. We show a special case of d=2, C=4. It is easy to
see that hyperspherical uniformity in this case forms four vectors with
adjacency ones being perpendicular. This is also the case captured by
the best rank-2 approximation (i.e., a 2-dimensional hyperplane with
simplex ETF projected onto it). Figure 5 gives a geometric interpretation
for the connection between [87] and GNC. [3] provides an in-depth
introduction and comprehensive theoretical analysis for the energy
minimization problem, which significantly benefits this work.

Connection to contrastive learning. The goal of contrastive learning [8, 10, 24, 30, 72, 78, 85]
is to learn discriminative features through instance-wise discrimination and contrast. Despite the
lack of class labels, [78] discovers that contrastive learning performs sample-wise alignment and
sample-wise uniformity, sharing a similar high-level spirit to intra-class variability and inter-class
separability. [35] adapts contrastive learning to the supervised settings where labeled samples are
available, which also shares conceptual similarity to our framework and settings.

Related work on (deep) metric learning. Metric learning also adopts similar idea where similar
samples are pulled together and dissimilar ones are pushed away. HUG has intrinsic connections to a
number of loss functions in metric learning [4, 17, 21, 24, 58, 59, 61, 67, 68, 79, 79–81, 84].

6 BROADER IMPACT AND FUTURE WORK

Our work reveals the underlying principle – hyperspherical uniformity gap, for classification loss
function, especially in the context of deep learning. We provide a simple yet effective framework for
designing decoupled classification loss functions. Rather than previous objective functions that are
coupled and treated as a black-box, our loss function has clear physical interpretation and is fully
decoupled for different functionalities. These characteristics may help neural networks to identify
intrinsic structures hidden in data and true causes for classifying images. HUG may have broader
applications in interpretable machine learning and fairness / bias problems.

Our work is by no means perfect, and there are many aspects that require future investigation. For
example, the implicit data mining in CE [49] is missing in the current HUG design, current HUG
losses are more sensitive to hyperparameters than CE (the flexibility of decoupling also comes at a
price), current HUG losses could be more unstable to train (more difficult to converge) than CE, and
it requires more large-scale experiments to fully validate the superiority of current HUG losses. We
hope that our work can serve as a good starting point to rethink classification losses in deep learning.
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A EMPIRICAL RESULTS ON GENERALIZED NEURAL COLLAPSE

A.1 DETAILED METRIC DEFINITION

We consider four metrics: average classifier energy (ACE), average class-mean energy (ACME),
average feature reverse-energy (AFRE) and average feature-mean reverse-energy (AFMRE) in the
paper. Their definitions are given below:

EACE =
1

C(C − 1)

∑
i ̸=j

∥ŵi − ŵj∥−2 (12)

EACME =
1

C(C − 1)

∑
i̸=j

∥µ̂i − µ̂j∥−2 (13)

EAFRE =
1

C

C∑
c=1

1

|Ac| · (|Ac| − 1)

∑
i ̸=j∈Ac

∥x̂i − x̂j∥ (14)

EAFMRE =
1

C

C∑
c=1

1

|Ac|
∑
i∈Ac

∥x̂i − µ̂c∥ (15)

where |Ac| denotes the cardinality of the set Ac, µ̂c is the normalized feature mean of the c-th class
and ŵc denotes the normalized class proxy of the c-th class.

A.2 EMPIRICAL RESULTS OF GNC ON IMAGENET

We find that the GNC hypothesis remains valid and informative even under the scenario of large
number of classes (we use the 1000-class ImageNet-2012 dataset [13] here). Experimental results
with ResNet-18 [29] (feature dimension as 512) are given in Figure 6. Experimental results with
ResNet-50 [29] (feature dimension as 2048) are given in Figure 7.
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Figure 6: Training dynamics of hyperspherical energy (which captures inter-class separability) and hyperspherical reverse-energy (which
captures intra-class variability). ImageNet-2012 [13] with ResNet-18 [29] (d=512, C=1000).
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Figure 7: Training dynamics of hyperspherical energy (which captures inter-class separability) and hyperspherical reverse-energy (which
captures intra-class variability). ImageNet-2012 [13] with ResNet-50 [29] (d=2048, C=1000).
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B 2D MNIST FEATURE VISUALIZATION

We also visualize the 2D MNIST feature in Figure 8, Figure 9 and Figure 10, which is done by
directly setting the output feature dimension as 2. Different color denotes different class and black
arrow denotes the class proxy. We compare the difference between the CE loss and the HUG-MHE
loss (with either independently optimized proxies or fully learnable proxies). Specifically, for the
HUG-MHE loss with independently optimized proxies, we use the following form:

max
{x̂j}nj=1,{ŵc}Cc=1

LP-HUG := α · HU
(
{ŵc}Cc=1

)︸ ︷︷ ︸
Inter-class Hyperspherical Uniformity

−β ·
C∑

c=1

HU
(
{x̂i}i∈Ac , SG(ŵc)

)︸ ︷︷ ︸
Intra-class Hyperspherical Uniformity

(16)

where we stop the gradient for the class proxies in the intra-class hyperspherical uniformity term.
Form the results, we observe that the our HUG losses generally learns better representations than the
CE loss, and moreover, HUG learns more aligned class proxy and class feature-mean than CE.
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Figure 8: 2D MNIST feature visualization for the CE loss at 1,5,10,15,20 epochs (top left - top right - middle left - middle right -bottom).
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Figure 9: 2D MNIST feature visualization for the HUG loss (randomly initialized and then optimized proxies) at 1,5,10,15,20 epochs (top left -
top right - middle left - middle right -bottom).
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Figure 10: 2D MNIST feature visualization for the HUG loss (fully learnable proxies) at 1,5,10,15,20 epochs (top left - top right - middle left -
middle right -bottom).
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C OTHER VARIANTS IN THE HUG FRAMEWORK

There are plenty of interesting and useful instantiations for the loss function under the HUG frame-
work. In this section, we discuss a few highly relevant and natural ones.

C.1 PROXY-FREE HUG

We have the following general HUG objective function:

max
{x̂j}n

j=1

LHUG := α · HU
(
{µ̂c}Cc=1

)︸ ︷︷ ︸
Tb: Inter-class Hyperspherical Uniformity

−β ·
C∑

c=1

HU
(
{x̂i}i∈Ac

)︸ ︷︷ ︸
Tw : Intra-class Hyperspherical Uniformity

(17)

where we can have many possible instantiations. Other than the proxy-based form proposed in the
main paper, we can also have a proxy-free version:

max
{x̂j}n

j=1

LPF-HUG := α · HU
(
{x̂i∈Ac

}Cc=1

)︸ ︷︷ ︸
Inter-class Hyperspherical Uniformity

−β ·
C∑

c=1

HU
(
{x̂i}i∈Ac

)︸ ︷︷ ︸
Intra-class Hyperspherical Uniformity

(18)

where {x̂i∈Ac
}Cc=1 denotes a set of vectors that consist of one random sample per class. This is

essentially to replace the class proxy with a random sample from this class. The proxy-free HUG loss
can be used in the scenario where extremely large amount of classes exist and storing class proxies
can be very expensive, or in the scenario of self-supervised contrastive learning where each instance
and its augmentations are viewed as one class. A MHE-based instantiation of Eq. 18 is given by

min
{x̂j}n

j=1

LMHE-PF-HUG := α · Esb

(
{x̂i∈Ac}Cc=1

)
− β ·

C∑
c=1

Esw

(
{x̂i}i∈Ac

)
(19)

which can be similarly relaxed to

L′
MHE-PF-HUG = α ·

∑
c ̸=c′

∥x̂i∈Ac
− x̂j∈Ac′∥

−2 + β′ ·
∑
c

∑
i∈Ac,j∈Ac,i̸=j

∥x̂i − x̂j∥ (20)

where x̂i∈Ac
denotes a randomly selected sample from the c-th class. The first term in Eq. 20 can

also be viewed as a scalable stochastic approximation to the first term in the following loss function:

L′′
MHE-PF-HUG = α ·

∑
i∈Ac,j∈Ac′ ,c ̸=c′

∥x̂i − x̂j∥−2 + β′ ·
∑
c

∑
i∈Ac,j∈Ac,i̸=j

∥x̂i − x̂j∥ (21)

which is typically optimized by stochastic gradients (samples come as a mini batch) in practice.

C.2 COUPLED HUG

One advantage of HUG is that it decouples intra-class variability and inter-class separability. However,
coupling may also bring some benefits (e.g., robustness on hyperparameters, stability in training). To
this end, we also propose a coupled loss function using the HUG framework:

max
{x̂j}nj=1

LPF-HUG := α·
n∑

i=1

HU
(
{ŵc}Cc=1,c ̸=yi , x̂i

)
︸ ︷︷ ︸

Coupled Intra-class and Inter-class Hyperspherical Uniformity

−β·
C∑

c=1

HU
(
{x̂i}i∈Ac

)︸ ︷︷ ︸
Intra-class Hyperspherical Uniformity

(22)
which can be turned into a MHE-based instantiation:

L′′
MHE-C-HUG = α ·

n∑
i=1

∑
c̸=yi

∥x̂i − ŵc∥−2 + β′ ·
∑
c

∑
i∈Ac,j∈Ac,i̸=j

∥x̂i − x̂j∥ (23)

where the first term itself couples intra-class and inter-class hyperspherical uniformity. Although the
coupled HUG drops the flexibility that the original HUG framework brings, it may introduce extra
advantages (e.g., training stability).
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C.3 HUG WITHOUT HYPERSPHERICAL NORMALIZATION

While the CE loss does not necessarily require hyperspherical normalization for the proxies and
features (but hyperspherical normalization does improve CE’s generalizability [44, 75]), we also
consider the HUG framework without hyperspherical normalization here. We note that this issue
remains an open challenge and we only aim to provide some simple yet natural designs.

The obvious problem to remove hyperspherical normalization is that HUG has a trivial way to
decrease its loss – simply increasing the magnitude of features and proxies. A naive way to address
this is to introduce magnitude penalty terms for the features and proxies. This results in

max
{xj}n

j=1,{wc}C
c=1

LUN-P-HUG :=α · HU
(
{wc}Cc=1

)︸ ︷︷ ︸
Inter-class Hyperspherical Uniformity

−β ·
C∑

c=1

HU
(
{xi}i∈Ac

,wc

)︸ ︷︷ ︸
Intra-class Hyperspherical Uniformity

− λ1 ·
C∑

c=1

∥wc − s∥2︸ ︷︷ ︸
Soft Magnitude Constraint on Proxies

−λ2 ·
n∑

i=1

∥xi − s∥2︸ ︷︷ ︸
Soft Magnitude Constraint on Features

where s denotes the magnitude hyperparameter.
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D PROOF OF THEOREM 1

We first let V̂C = {v̂1, · · · , v̂C} be an arbitrary vector configuration in Sd−1. Then we will have that

Λ(V̂C) :=

C∑
i=1

C∑
j=1

∥v̂i − v̂j∥2

=

C∑
i=1

C∑
j=1

(2− 2v̂i · v̂j)

=2C2 − 2

∥∥∥∥∥
C∑
i=1

v̂i

∥∥∥∥∥
2

≤2C2

(24)

which holds if and only if
∑C

i=1 v̂i = 0. The vertices of a regular (n− 1)-simplex at the origin well
satisfy this condition. With the properties of the potential function f , we have that

Ef (v̂C) :=

C∑
i=1

∑
j:j ̸=i

f
(
∥v̂i − v̂j∥2

)
≥C(C − 1)f

(
Λ(v̂C)

C(C − 1)

)
≥C(C − 1)f

(
2C

C − 1

) (25)

which holds true if all pairwise distance ∥v̂i − v̂j∥ are equal for i ̸= j and the center of mass is at the
origin (i.e.,

∑C
i=1 v̂i = 0). Therefore, for the vector configuration V̂ ∗

C which contains the vertices of
a regular (C − 1)-simplex inscribed in Sd and centered at the origin, we have that for 2 ≤ C ≤ d+ 1

Ef (V̂
∗
n ) = C(C − 1)f

(
2C

C − 1

)
≤ Ef (V̂C).

(26)

If f is strictly convex and strictly decreasing, then Ef (V̂C) ≥ C(C − 1)f( 2C
C−1 ) holds only when

V̂ ∗
C is a regular (C − 1)-simplex inscribed in Sd−1 and centered at the origin. ■
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E PROOF OF THEOREM 2

This result comes as a natural conclusion from [12] where they prove that any sharp code is a minimal
hyperspherical f -energy N -point configuration for any interaction potential f that is absolutely
monotone on [−1, 1] including all Riesz s-potentials f(t) = 2(t− 2t)−s/2 for s > 0.

Before we move on, we need to introduce the definition of sharp code:

Definition 1 Let V̂N = {v̂1, · · · , v̂N} be a N -point configuration on Sd′
.

• If for every (d′ + 1)-variate polynomial P of degree at most m,∫
Sd′

Pdσd′ =
1

N

N∑
i=1

P (v̂i)

then V̂N is called a spherical m-design.

• If V̂N is a configuration of N distinct points such that the set of inner products between
distinct points in V̂N has cardinality k, then V̂N is called a spherical k-distance set.

• The configuration V̂N is a sharp code if it is both a k-distance set and a spherical (2k − 1)-
design.

The Cohn-Kumar Universal Optimality theorem [12] states that any sharp code is universally optimal.
By universal optimality, we mean that

Definition 2 An N -point configuration V̂N on Sd′
is called universally optimal if

Ef (V̂N ) :=
∑

v̂1,v̂2∈V̂N ,v̂1 ̸=v̂2

f(v̂⊤
1 v̂2) = min

V̂N⊂Sd′
Ef (V̂N )

holds for any absolutely monotone function f : [−1, 1) → R.

Then formally, Cohn-Kuma Universal Optimality Theorem states:

Theorem 6 If V̂N is a sharp code on Sd′
, then V̂N is universally optimal.

Because the vertices of the cross-polytope are a sharp code, then this vertex set (2d′ + 2 points in
total) is universally optimal, which implies that

Ef (ŴN ) = min
ŴN⊂Sd′

Ef (ŴN ) (27)

where ŴN denote the vertex set of the cross-polytope. Then we let s = 2 for the f -energy and
d′ = d− 1, and we prove our theorem. ■
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F PROOF OF THEOREM 3

This theorem is in fact a well-known result (see [3, 27, 38, 63]). This general result is stated as

Theorem 7 If A ⊂ Rp is compact with dimA > 0 and 0 < s < dimA, then

lim
N→∞

εs(A,N)

N2
= Ws(A),

where εs(A,n) := minŴn⊂A Es(Ŵn) and Ws(A) is Wiener constant. Moreover, the equilibrium
measure µs,A on A is unique for the Riesz s-kernel when 0 < s < dimA. Finally, any sequence
{v̂N

1 , · · · , v̂N
N }∞N=2 of asympototically s-energy minimizing N -point configuration on A satisfies

v({v̂N
1 , · · · , v̂N

N }) →weak µs,A, N → ∞

From the theorem above, with s = 2, d− 1 > s, N = C and A = Sd−1, we have that Ws(Sd−1) is a
constant term, and most importantly, we have that these point sequences {µ̂C

1 , · · · , µ̂C
C} asymptoti-

cally minimizes the hyperspherical energy on Sd−1.

Moreover, the same theorem also gives that the leading term of the minimum hyperspherical energy
is of order O(n2) as n → ∞. ■
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G PROOF OF PROPOSITION 1

We show that zero-mean equal-variance Gaussian distributed vectors (after normalized to norm 1) are
uniformly distributed over the unit hypersphere with Theorem 8.

Lemma 1 Let x be a n-dimensional random vector with distribution N (0, 1) and U ∈ Rn×n be an
orthogonal matrix (UU⊤ = U⊤U = I). Then Y = Ux also has the distribution of N (0, 1).

Proof G.1 For any measurable set A ⊂ Rn, we have that

P (Y ∈ A) = P (X ∈ U⊤A)

=

∫
U⊤A

1

(
√
2π)n

e−
1
2 ⟨x,x⟩

=

∫
A

1

(
√
2π)n

e−
1
2 ⟨Ux,Ux⟩

=

∫
A

1

(
√
2π)n

e−
1
2 ⟨x,x⟩

(28)

because of orthogonality of U . Therefore the lemma holds. ■

Theorem 8 The normalized vector of Gaussian variables is uniformly distributed on the sphere.
Formally, let x1, x2, · · · , xn ∼ N (0, 1) and be independent. Then the vector

x =

[
x1

z
,
x2

z
, · · · , xn

z

]
(29)

follows the uniform distribution on Sn−1, where z =
√
x2
1 + x2

2 + · · ·+ x2
n is a normalization factor.

Proof G.2 A random variable has distribution N (0, 1) if it has the density function

f(x) =
1√
2π

e−
1
2x

2

. (30)

A n-dimensional random vector x has distribution N (0, 1) if the components are independent and
have distribution N (0, 1) each. Then the density of x is given by

f(x) =
1

(
√
2π)n

e−
1
2 ⟨x,x⟩. (31)

Then we use Lemma 1 about the orthogonal-invariance of the normal distribution.

Because any rotation is just a multiplication with some orthogonal matrix, we know that normally
distributed random vectors are invariant to rotation. As a result, generating x ∈ Rn with distribution
N(0, 1) and then projecting it onto the hypersphere Sn−1 produces random vectors U = x

∥x∥ that are
uniformly distributed on the hypersphere. Therefore the theorem holds. ■

The above results indicate that as long as class proxies are initialize with zero-mean Gaussian, they
are uniformly distributed over the hypersphere in a probabilistic sense. ■
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H DERIVATION OF HUG SURROGATE FOR MHE AND MHS

The derivation of L′
MHE-HUG is as follows:

LMHE-HUG := α · Esb

(
{ŵc}Cc=1

)
− β ·

C∑
c=1

Esw

(
{x̂i}i∈Ac

, ŵc

)
= α ·

∑
c̸=c′

∥ŵc − ŵc′∥−2 + β ·
∑
c

( ∑
i,j∈Ac,i̸=j

∥x̂i − x̂j∥+ 2 ·
∑
i∈Ac

∥x̂i − ŵc∥
)

= α ·
∑
c̸=c′

∥ŵc − ŵc′∥−2 + β ·
∑
c

( ∑
i,j∈Ac,i̸=j

∥x̂i − ŵc + ŵc − x̂j∥

+ 2 ·
∑
i∈Ac

∥x̂i − ŵc∥
)

≤ α ·
∑
c̸=c′

∥ŵc − ŵc′∥−2 + β ·
∑
c

( ∑
i,j∈Ac,i̸=j

(∥x̂i − ŵc∥+ ∥ŵc − x̂j∥)

+ 2 ·
∑
i∈Ac

∥x̂i − ŵc∥
)

= α ·
∑
c̸=c′

∥ŵc − ŵc′∥−2 + β′ ·
∑
c

∑
i∈Ac

∥x̂i − ŵc∥ =: L′
MHE-HUG

(32)

The derivation of L′
MHS-HUG is as follows:

LMHS-HUG := α · ϑ
(
{ŵc}Cc=1

)
− β ·

C∑
c=1

ϑ
(
{x̂i}i∈Ac

, ŵc

)
= α ·min

c̸=c′
∥ŵc − ŵc′∥ − β ·

∑
c

max
u,v∈{{x̂i}i∈Ac ,ŵc},u̸=v

∥u− v∥

≤ α ·min
c̸=c′

∥ŵc − ŵc′∥ − β ·
∑
c

max
i∈Ac

∥x̂i − ŵc∥ =: L′
MHS-HUG.

(33)

Most importantly,
∑

c maxu,v∈{{x̂i}i∈Ac ,ŵc},u̸=v ∥u − v∥ in LMHS-HUG and L′
MHS-HUG share the

same minimizer (minimum is 0, which happens when intra-class feature collapse to its class proxy).
Therefore, L′

MHS-HUG and LMHS-HUG share the same maximizer, and L′
MHS-HUG can be viewed as a

surrogate loss for LMHS-HUG.
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I PROOF OF PROPOSITION 2

For notational convenience, we first define εs(Sd−1, n) := minV̂n⊂Sd−1 Es(V̂n) and δρn(Sd−1) :=

maxV̂n⊂Sd−1 ϑ(V̂n). We then define that V̂ s
n is a s-energy minimizing n-point configuration on Sd−1

if 0 < s < ∞ (i.e., MHE configuration) and V̂ ∞
n denotes a best-packing configuration on Sd−1 if

s = ∞ (i.e., MHS configuration). Since we are considering s > 0, we only need to discuss the case
of Ks(v̂i, v̂j) = ρ(v̂i, v̂j)

−s. Then we will have the following equation:

εs(Sd−1, n)
1
s = Es(V̂

s
n )

1
s ≥ 1

δρn(V̂ s
n )

≥ 1

δρn(Sd−1)
. (34)

Moreover, we have that

εs(Sd−1, n)
1
s ≤ Es(V̂

∞
n )

1
s

=
1

δρ(V̂ ∞
n )

( ∑
1≤i ̸=j≤N

( δρ(V̂ ∞
n )

ρ(v̂∞
i , v̂∞

j )

)s) 1
s

≤ 1

δρ(V̂ ∞
n )

(
n(n− 1)

) 1
s

(35)

Therefore, we will end up with

lim
s→∞

sup εs(Sd−1, n)
1
s ≤ 1

δρ(V̂ ∞
n )

=
1

δρn(Sd−1)
. (36)

Then we take both Eq. 34 and Eq. 36 into consideration and have that

lim
s→∞

εs(Sd−1, n)
1
s =

1

δρn(Sd−1)
(37)

which concludes the proof. ■
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J PROOF OF PROPOSITION 3

We write down the formulation of the HUG objectives (with MHE):

min
{x̂i}n

i=1,{ŵc}C
c=1

LMHE-HUG := α · Esb

(
{ŵc}Cc=1

)
− β ·

C∑
c=1

Esw

(
{x̂i}i∈Ac , ŵc

)
= α ·

∑
c ̸=c′

∥ŵc − ŵc′∥−2 + β ·
∑
c

( ∑
i,j∈Ac,i̸=j

∥x̂i − x̂j∥

+ 2 ·
∑
i∈Ac

∥x̂i − ŵc∥
)

(38)

min
{x̂i}n

i=1,{ŵc}C
c=1

L′
MHE-HUG = α ·

∑
c̸=c′

∥ŵc − ŵc′∥−2 + β′ ·
∑
c

∑
i∈Ac

∥x̂i − ŵc∥ (39)

For both objectives, we can see that the minimizer of the second term (i.e., the intra-class variability
term) is all intra-class feature collapse to their class proxy and therefore the second term achieves the
global minimum 0.

For the first term of both objectives, the global minimizer can be obtain directly from Theorem 1,
Theorem 2 and Theorem 3. It is easy to see that the global minimizer of the inter-class separability
term and the intra-class variability term does not contradict with each other and can be achieved
simultaneously. ■
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K PROOF OF PROPOSITION 4

n∑
i=1

log(1 +

C∑
j=1̸=yi

exp(⟨wj ,xi⟩ − ⟨wyi ,xi⟩))

≥
n∑

i=1

C∑
j=1 ̸=yi

log(1 + exp(⟨wj ,xi⟩ − ⟨wyi
,xi⟩))

≥
n∑

i=1

C∑
j=1 ̸=yi

(⟨wj ,xi⟩ − ⟨wyi
,xi⟩)

=

n∑
i=1

C∑
j ̸=yi

⟨wj ,xi⟩︸ ︷︷ ︸
Q1: Coupling IS and IV

− (C − 1)

n∑
i=1

⟨wyi
,xi⟩︸ ︷︷ ︸

Q2: Inter-class Variability

(40)

n∑
i=1

log(1 +

C∑
j=1̸=yi

exp(⟨wj ,xi⟩ − ⟨wyi
,xi⟩))

≤ log(1 +

n∑
i=1

C∑
j=1̸=yi

exp(⟨wj ,xi⟩ − ⟨wyi
,xi⟩))

≤ log(1 +

n∑
i=1

C∑
j=1̸=yi

(exp(⟨wj ,xi⟩) + exp(−⟨wyi ,xi⟩)))

= log
(
1 +

n∑
i=1

C∑
j ̸=yi

exp(⟨wj ,xi⟩)︸ ︷︷ ︸
Q3: Coupling IS and IV

+(C − 1)

n∑
i=1

exp(−⟨wyi ,xi⟩)︸ ︷︷ ︸
Q4: Inter-class Variability

)
(41)

■
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L DERIVATION OF CE’S LOWER BOUND

The derivation is actually very simple and this result is originally given by [4]. We find that it naturally
matches the intuition behind HUG. For our paper to be self-contained, we briefly give the simple
derivation below. For the details, please refer to Proposition 1 in [4].

We start by rewriting the CE loss as

LCE = −
n∑

i=1

⟨wyi
,xi⟩+

λn

2

C∑
c=1

⟨wc,wc⟩︸ ︷︷ ︸
Q1(w)

+

n∑
i=1

log

C∑
c=1

exp(⟨wc,xi⟩)−
λn

2

C∑
c=1

⟨wc,wc⟩︸ ︷︷ ︸
Q2(w)

(42)

where λ can be chosen such that both Q1(w) and Q2(w) become convex functions with respect to
w. Taking advantage of the convexity, we can separately set the gradient of Q1(w) and Q2(w) with
respect to w as 0 and compute their minima. Specifically, we end up with

Q1(w) ≥ Q1(w
∗
Q1

) = − 1

2λn

n∑
i=1

∑
j∈Ayi

⟨xi,xj⟩, (43)

Q2(w) ≥ Q2(w
∗
Q2

) =

n∑
i=1

log

C∑
c=1

exp

(
1

λn

n∑
j=1

ljc⟨xi,xj⟩
)
− n

2λ

C∑
c=1

∥∥∥∥∥ 1n
n∑

i=1

licxi

∥∥∥∥∥
2

, (44)

where lic =
exp(⟩wc,wi⟩)∑
j exp(⟨wj ,xi⟩) denotes the softmax confidence. Combining the two lower bounds above,

we can have that

LCE ≥ Q1(w
∗
Q1

) +Q2(w
∗
Q2

)

=

n∑
i=1

log

C∑
c=1

exp

(
1

λn

n∑
j=1

ljc⟨xi,xj⟩
)
− n

2λ

C∑
c=1

∥∥∥∥∥ 1n
n∑

i=1

licxi

∥∥∥∥∥
2

− 1

2λn

n∑
i=1

∑
j∈Ayi

⟨xi,xj⟩

(45)
where the first two terms encourage larger inter-class hyperspherical uniformity, and the last term
promotes smaller intra-class hyperspherical uniformity.
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M PROOF OF THEOREM 5

This theorem follows naturally from the main result in [50]. [50] has proved that the minimizer of a
simplified form of the cross-entropy loss is the simplex ETF when 2 ≤ C ≤ d+ 1 and the minimizer
also asymptotically converges to uniform measure on the hypersphere. More formally, we have

Theorem 9 ([50]) Consider the following variational problem

min
u

Lα(u) :=

n∑
i=1

log

(∑n
j=1 exp(⟨uj ,ui⟩)
exp(⟨ui,ui⟩)

)
s.t. ui ∈ Rd, ∥ui∥ = 1,∀i

(46)

Let µn be the probability measure on Sd generated by a minimizer

µn =
1

n

n∑
i=1

δui
, (47)

then for any α > 0, µn converges weakly to the unform measure on Sd−1 as n → ∞.

From Theorem 3, we know that HUG with specific potential energy also converges to the uniform
measure on Sd−1. Combining the results above, we can conclude that HUG and CE share the same
minimizer. ■
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N EXPERIMENTAL DETAILS

General settings. For MHE-HUG and MHS-HUG, α and β are set as 0.15 and 0.015, respectively.
For MGD-HUG, α and β are set as 0.15 and 0.03, respectively. We train the model for 200 epochs
with 512 batchsize for both the cross-entropy (CE) loss and HUG. We use the stochastic gradient
descent with momentum 0.9 and weight decay 2×10−4. The initial learning rate is set as 0.1 for both
CIFAR-100 and CIFAR-10 and is divided by 10 at 60, 120, 180 epoch. For the general classification
experiments, we use multiple architectures, including ResNet-18, VGG16 and DenseNet121. we use
the simple data augmentation: 4 pixels are padded on each side, and image is randomly cropped.

Long-tailed recognition. We follow LDAM [6] to obtain imbalanced CIFAR-10 and CIFAR-100
datasets with different imbalanced ratio. Following LDAM, we use ResNet-32 as our base network.
The other setting is the same as our general setting.

Continual learning. We follow DER [5] to construct our continual learning experiments. We split
both the CIFAR-10 and CIFAR-100 training set into 5 tasks. Each task has 2 classes and 20 classes
for CIFAR-10 and CIFAR-100, respectively. The training batchsize is set as 64, where there are 32
incoming samples and 32 replayed samples. Different size of memory buffer is also studied.

Adversarial robustness. For the experiments of adversarial robustness, we first obtain the model
trained with CE and HUG. With the information of the attacked model, PGD [51] generates some ad-
versarial examples to mislead the attacked model. The test accuracy in the experiments of adversarial
robustness shows the accuracy of the perturbed samples.

Visualizing loss landscape. We perturb neuron weights to visualize the loss landscape, as proposed
in [40]. For details, we perturb the model weight with 400 interpolation points in two random vectors
around the current model weight minima. The visualization method is also the same as [47].
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O ADDITIONAL EXPERIMENTAL RESULTS

Training convergence. We observe the training convergence of HUG on CIFAR-10 and CIFAR-100.
Both the evaluation accuracy and the training loss, including the overall losses, the intra-class loss and
the inter-class loss, are shown in Figure 11. For both the CIFAR-10 and CIFAR-100, the inter-class
uniformity loss remains relatively small, which is consistent with the empirical finding in [41, 47].
Moreover, we find that the intra-class uniformity loss (i.e., intra-class variability) dominates the
overall loss on CIFAR-100 dataset and it is relatively difficult to optimize when the class number
becomes large.
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Figure 11: HUG’s training loss and testing accuracy (%) on CIFAR-10 (left) and CIFAR-100 (right).

2D loss contour. We also utilize the method in [40] to visualize the 2D loss landscape, which is more
easy to visualize the flatness of the loss landscape. As shown in Figure 12, the 2D loss landscape of
our HUG loss is flatter than the widely used CE loss, showing that HUG yields a flat minima which
may have better generalization ability.

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.394
0.526

0.657

0.789

0.920

1.0
52

1.183

1.
31

5

1.446

1.446

1.578

1.578

1.709

1.709

1.841 1.841

1.841

1.972
1.972

1.972

2.104

2.104

2.235

2.235

2.366

2.366

2.498

2.498

2.629

2.629

2.629

2.761

2.761

2.892

2.892

3.024

3.024
3.155
3.2873.418

3.550
3.681
3.813
3.9444.076

4.207
4.339

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.018

0.
02

40.030

0.036

0.036

0.042

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.026

0.0
34

0.043

0.043

0.043

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

-0.004-0.004

-0.004
-0.004

Figure 12: The 2D Loss Contour of different loss objective. From left to the right: (1). CE loss. (2). HUG overall loss. (3). intra-class loss. (4).
inter-class loss.

The ablation of α and β. In our HUG framework, we introduce two scaling hyperparameters, α
for the inter-class hyperspherical uniformity, β for the intra-class hyperspherical uniformity. We
investigate the effect of the two hyperparameters for the model performance. As shown in Table 8,
HUG is not sensitive to α, as the inter-class hyperspherical uniformity is always easy to optimize.
HUG is also not sensitive to β in a wide range. The ablations are conducted on CIFAR-100. α is set
as 0.15 when we perform ablation on β. β is set as 0.015 when doing ablation on α.

α 0.0003 0.0015 0.015 0.05 0.15 0.5 1.5 5.0

Accuracy 76.31 75.99 76.28 76.16 76.48 76.32 76.1 76.03

β 0.005 0.015 0.05 0.15 0.3 0.5 1.5 5.0

Accuracy 74.15 76.48 76.12 75.87 75.59 75.24 74.81 74.00

Table 8: Effect of hyperparameters α and β.
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