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ABSTRACT

Diffusion-based language models (DLMs) have emerged as compelling alterna-
tives to sequential autoregressive generation, offering the promise of parallel de-
coding. Yet existing discrete diffusion models require hundreds of refinement
steps for high-quality text, undermining the efficiency gains of parallelism. We in-
troduce the Consistent Diffusion Language Model (CDLM), a new family of gen-
erative models that brings the benefits of consistency training—enforcing agree-
ment across noise levels to enable one- or few-step generation—to the discrete
domain. Our approach leverages an exact closed-form formulation of discrete
posteriors, providing a rigorous analogue to the missing probability-flow ODE in
discrete space. This yields a multi-path consistency objective that, as we show,
unifies and generalizes popular diffusion, consistency, and distillation methods in
a single view. To ensure stability at scale, we introduce a set of principled design
choices that prevent training pathologies like mode collapse. On conditional and
unconditional text-generation benchmarks, CDLM establishes new state of the art
as a single-stage model, consistently outperforming both base and distilled DLMs
across sampling budgets. These results position CDLM as a new paradigm for
efficient, scalable, and high-fidelity discrete generative modeling.
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Figure 1: Illustrative toy example on 2D moons under discrete diffusion. The continuous moons
data are quantized into tokens and modeled as a language-like sequence. Standard diffusion lan-
guage model (top) only forms a sharp structure after 10+ denoising steps, while CDLM (bottom)
not only yields clear samples within 2-3 steps, but also continues to improve with larger budgets.

1 INTRODUCTION

Diffusion models have emerged as a dominant paradigm in generative modeling, achieving state-of-
the-art results in image, audio, and video generation (Yang et al.,|2023). Their appeal lies in a simple
principle of iterative refinement: data are gradually corrupted into noise and then reconstructed step
by step, with each denoising step refining the sample toward the data distribution. This iterative
view has proven both scalable and versatile across continuous domains.

Recently, the diffusion paradigm has extended to language, where its promise lies not just in qual-
ity but perhaps moreso in efficiency (Austin et al., 2021a). Unlike autoregressive (AR) models
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that are constrained to sequentially decode token-by-token, diffusion language models can generate
and refine multiple tokens in parallel, suggesting a path toward sublinear-time text generation and
flexible, controllable synthesis (Li et al.| [2022). Among them, masked diffusion language models
(MDLMs), where corruption is defined by masking tokens, have shown strong empirical results,
even rivaling autoregressive baselines more recently (Sahoo et al., 2024; |Shi et al.} 2024; Nie et al.}
2025a). However, the potential of MDLMs remains largely untapped in practice, since high-quality
generation typically requires hundreds of refinement steps, which erodes the computational gains of
parallelism. Speeding up these models has become a central open challenge for discrete diffusion.

In continuous domains, transformative acceleration techniques like consistency models (Song et al.,
2023)) and progressive distillation (Salimans & Ho} 2022) have helped meet the promise of diffusion
by enabling effective few- or even one-step generation. These approaches critically rely on the
existence of a probability flow ordinary differential equation (PF-ODE), which defines a unique,
deterministic trajectory from any noisy point x; back to the data x(. In discrete space, however, no
such ODE exists, meaning there is no single path that ties all noise levels together. This absence has
so far prevented discrete diffusion models from benefiting from similar acceleration frameworks.

In this paper, we introduce a new principle for discrete generative modeling: multi-path consistency.
Rather than searching for a non-existent unique trajectory, we effectively embrace the multiplicity of
possible denoising paths in discrete space. Specifically, any two noise levels s < ¢ can be connected
by an exact posterior bridge, which we show is available in closed form for common corruptions
including masking. These bridges define a rich family of stochastic paths, from a single direct jump
to a chain of many small steps, all of which ultimately reconstruct the same clean data. Our central
insight is that by training a model to be consistent across these paths, we can learn a predictor whose
output is invariant to the denoising path taken. And when long paths (many small steps) and short
paths (few large steps) are trained to yield the same prediction, we can choose to benefit from the
more efficient, shorter path. Few-step generation emerges as a “consequence” of path-equivalence
enforced through multi-path consistency.

Building on this principle, we propose the Consistent Diffusion Language Model (CDLM), a new
family of discrete generative models that turns few-step efficiency into a training-time property.
CDLM trains a time-conditional predictor fy (¢, t) by enforcing agreement across pairs (x;, t) and
(x5, s), where x is sampled from the exact posterior bridge g(xs | @+, o). In effect, the model is
asked to make its prediction at the noisier state o, consistent with its prediction at the cleaner state
x,. This consistency enforces an implicit decomposition of the denoising task: predicting from
is equivalent to first “hopping” to x; via the true bridge, and then solving the simpler denoising step
from x, toward xo. By enforcing this consistency across many such bridges and step sizes, CDLM
acquires the ability to traverse different routes from corrupted to clean inputs, learning not only
gradual multi-step refinements but also direct, long-range transitions. This property allows CDLM
to generate high-quality outputs in just a handful of steps, while still improving the generation
with more steps rather than saturating. We compare our models with base models that are trained
from scratch within a single stage including MDLM (Sahoo et al.| (2024)) and DUO (Sahoo et al.
(2025))) , as well as distilled models that performs an additionally dedicated stage of distillation on
the base models, including SDTT (Deschenaux & Gulcehre| (2025)) and DUO+DCD (Sahoo et al.
(2025)). As shown in Figure [2] Table [I] and [3| our model delivers strong empirical results that
consistently outperformed state-of-the-art base and distilled diffusion models at the same scale for
text generation, regardless of sampling steps, precision and conditions.

Our contributions are threefold:

1. A new principle for discrete generative modeling. We introduce multi-path consistency and
show how to enforce it using exact posterior bridges as a powerful substitute for the absent
PF-ODE trajectory, providing a rigorous and general foundation for efficient and effective
discrete generation.

2. A unified and robust training framework. We present a single, self-contained objective
for training a new class of consistency Diffusion Language Models to be invariant across
denoising paths. We further develop novel connections with popular generative modeling
techniques, showing that standard diffusion, consistency, and distillation-like behaviors
emerge as special cases of CDLM. We complement it with a suite of practical techniques
that ensure stable and scalable training.
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Figure 2: Perplexity (entropy) vs. sampling steps with 64-bit sampler for unconditional generation.
Base models are without edges and hatches, while distilled models are indicated by shadow hatched
bars F2. We use Red for MDLM based models, Blue for DUO based models, and for our
CDLM based models. We pick the best two models for each family, while including more details on
Section@ For base CDLM model, we chose CDLM-PPLOptimized, a variant trained to achieve
much better perplexity with slightly lower entropy, which outperforms all other base models for all
sampling steps, and also beats distilled models under a majority of the steps while maintaining a
similar entropy. Likewise, our distilled CDLM further delivers best performance among distilled
models with similar diversity. Note that DUO+DCD with greedy sampler has a significantly lower
entropy (3.9) which often indicates poor sampling diversity and a biased perplexity.

3. State-of-the-art text generation. On standard conditional and unconditional text generation
benchmarks, CDLM, as a single stage model, establishes new SOTA across varied sampling
budgets regardless of the sampling precision, outperforming both base DLMs as well as
distilled DLMs that are optimized at a second stage specifically for generation perplexity.
A distilled version of CDLM is further introduced to achieve even better generation while
maintaining the diversity. Together the models also achieve a 16-32x speedup for 32 and
64-bit sampling comparing with autoregressive baseline.

CDLM reframes discrete diffusion as training a path-independent denoiser. By enforcing consis-
tency across many stochastic bridges, the model learns to map corrupted inputs to clean text in a
manner that is efficient and robust, and scalable. This unifies diffusion and consistency perspectives,
and establishes multi-path consistency as a new paradigm for discrete generative modeling.

2 PROBLEM SETUP

We ground our framework in the standard formalism of discrete diffusion (Austin et al., [2021a),
which defines a forward-time corruption process that gradually transforms data into noise, together
with a parameterized reverse process that reconstructs data from noise. In discrete domains such
as text, states are sequences of categorical variables. Let £y € X be a sequence of one-hot tokens
over a vocabulary V. The forward process, characterized by the marginal of noisy «; conditioned
on clean input @, is a non-homogeneous Markov chain with transition matrices Q; € RIVIXIVI

t
q(x¢ | ®o) = Cat(zy; zoQ14), With Qiy = H Qs, D
s=1

where Cat(x; p) denotes a categorical distribution with probability vector p. Each Q; is row-
stochastic to conserve probability mass. Additionally, rows of ;.; must converge to a known
stationary distribution over time, ensuring that ¢(x;) approaches a tractable prior over time. Using
(-, -) for Euclidean inner product and ® for elementwise product, the exact posterior at time ¢ — 1
can also be written in closed form:

q(xs | 21 1,20)q(i1 | T0) — Cat (%1; Q] © Q1.1 ) @
q(z: | xo) (®oQ1:t, xt)

A particularly important instance for language is masked (or absorbing-state) diffusion, where the

stationary distribution places all probability on a special [MASK] token. Not only is masking found

to be the most effective corruption (Austin et al.|[2021aj;|Sahoo et al.| [2024;|Shi et al.|, 2024} |Nie et al.,

2025al), but it also allows helps simplify the closed-form marginals and posteriors. Masked diffusion

language models exploit this to parameterize x directly, enabling efficient, parallel sampling.

Q(fvtq | th,CBo) =
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Continuous diffusion and a natural notion of consistency. In continuous domains, a standard
construction of the forward process is often expressed as a stochastic differential equation (SDE):

dmt = g(t) dwtv te [Oa 1]a g ~ Pdata; L1 ~ T, (3)

where w; is a Wiener process, g(t) > 0 is a noise schedule, and 7 is a tractable stationary prior
(commonly Gaussian). The reverse generative process can be formulated either as a reverse-time
SDE or, equivalently, as the probability-flow ODE (PF-ODE):

W Blat), et = ~6(0)0(0) Ve, lospi(w,), @
where F(x;,t) is the deterministic drift vector field whose trajectories have the same marginals as
the forward SDE, o(t) parameterizes the forward variance, and V, log p:(x:) denotes the score
function. Intuitively, F' “denoises” x; toward x as ¢ decreases from 1 to 0. This deterministic
PF-ODE offers a single, unique trajectory that guides samples from noise to data. The PF-ODE thus
ties all noise levels together, and one can enforce consistency along the path by matching predictions
for all points on that path. This notion of single-path consistency has been found promising to
developing powerful models for few-step generation in continuous domain (Song et al.; 2023}, [Song
& Dhariwall, 2024), although they remain practically challenging to train (Geng et al., 2025).

The need for a new consistency formulation in discrete space. In discrete diffusion, different
corruption levels do not lie on a unique trajectory. There is no equivalent of a PF-ODE, and hence
no canonical map x; — xs. This absence has been the primary obstacle to developing a princi-
pled consistency framework for discrete data. Our work introduces a conceptual shift: instead of
searching for a non-existent deterministic path, we leverage the rich web of stochastic paths. Our
key observation is that the discrete diffusion framework (Austin et al., 2021a)) already provides an
analytic family of such paths connecting any two noise levels, which is a powerful yet overlooked
property of these diffusion processes. CDLM replaces the missing PF-ODE with these exact poste-
rior bridges and enforces multi-path consistency: predictions must agree across many valid routes,
making short routes and long routes equivalent in expectation.

3 METHOD

We present CDLM as a new discrete generative modeling framework built on the principle of “multi-
path consistency”. At a high level, CDLM trains a single time-conditional predictor to produce path-
independent denoising predictions: a short path with few macro-steps from a highly corrupted input
to clean output must agree with the composition of a long path with many micro-steps. The efficient
few-step behavior then emerges as a training-time property.

3.1 LEARNING A PATH-INDEPENDENT DENOISER

Definition 1 (Posterior Bridge Operator). For any two timesteps 0 < s < t < 1, the posterior
bridge operator, Bs. 4, is a stochastic map defined by the exact posterior distribution of the diffusion
process:

T ~ Bs(—t(' ‘ .’Bt,ﬁco) = Q(xs ‘ mt,mo)- )

This operator takes a noisy state x; and the true clean state xo and returns a sample x ¢ from the
intermediate noise level.

The standard one-step posterior g(x:—1 | ¢, o) (see equation [2) is well-studied, but our consis-
tency objective requires a bridge between any pair of times 0 < s < ¢ < 1. The result below gives
the exact discrete posterior in closed form.

Lemma 1 (General Posterior Bridge). For any 0 < s < t, the analytic posterior bridge is given by:

(mOQI:S) © (Q;r—i-l:tmt) >
<930Q1:t7 $t> '

Furthermore, these bridges compose transitively, obeying a semigroup property: for any u < s < t,
traversing the bridge fromt — s and then s — u is equivalent to traversing the direct bridge from
t — u.

a(@s | @, @0) = Cat (a: ®)
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Using the bridge operator, we can define what it means for a denoising function to be consistent
across different paths. We seek to learn a function fp (¢, t) that predicts the clean data x( from any
noisy input. A perfectly consistent function would be invariant to taking an intermediate “hop” via
the posterior bridge.

Definition 2 (Multi-path Consistency Operator). Let g : X x [0,1] — AVl be a time-conditional
predictor. The multi-path consistency operator, Cs, transforms this function as follows:

[Csetg] (:Bh t; :BO) = E:):SNBSHtHwt,wU) [g(msy 5)] . @)
This operator returns the expected prediction of g at time s, after transitioning from time t via the
posterior bridge.

The ideal denoising function would be a fixed point of this operator for all possible timesteps.

Definition 3 (Global Multi-path Consistency). A function f* is globally multi-path-consistent if for
all 0 < s <t <1, itis afixed point of the consistency operator:

f*(wtv t) = I:Cs%tf*] (mta ta iBo), (8)
with the boundary condition f*(xg,0) = x.

This condition formalizes path-invariance: predicting from x; directly is equivalent to first transi-
tioning to any intermediate state xs and predicting from there. A model satisfying this property can
denoise from any noise level to the clean data with perfect self-consistency, making the number of
intermediate steps irrelevant.

Training. We train a model fy to satisfy the global consistency property by minimizing the dis-
crepancy between the two sides of Eq.[|over a random selection of timesteps and data. For a chosen
step size § =t — s, the CDLM objective is:

Lepm(0) = Ei sz, [w(t,0) - D (fo(ze,t) || f5(s,9))] 9)

Here, f; denotes a target network whose parameters 6 are a variant of ¢ (e.g., a slow-moving expo-
nential average) to stabilize training. The term DD is a divergence measure between the two output
distributions and w(t, d) is a positive weighting function. Enforcing local consistency across edges
also implies global path-independence, which we formalize in Appendix.

Sampling. A trained CDLM is a time-conditional denoiser, analogous to a standard MDLM,
which allows it to leverage existing sampling. We use ancestral sampling, where given a sequence
x, we first predict its clean version &y = fy(x+,t) and then use the posterior bridge q(xs | T+, o)
to sample the next state x; (Austin et al.| [2021a} [Sahoo et al., 2024). Note that CDLM’s novelty
lies not in devising new samplers, but in training a model that remains robust under any schedule of
steps, although compatibility with existing samplers helps with fair comparison and adoption.

3.2 DESIGN INSIGHTS FOR STABLE AND SCALABLE TRAINING

While the default CDLM objective in Eq. [ suffices for simple settings, such as the 2D moons
data in Fig. [T} the multipath consistency objective is self-referential, creating an optimization land-
scape where it takes very long to converge or even convergence degenerate solutions. In particular,
naive optimization could lead to mode collapse, where the outputs become overly repetitive and
deterministic to trivially satisfy consistency, or uniform drift, where predictions degrade towards
uninformative distributions that are easy to ‘match’. We introduce three principled design choices
that stabilize training and scale CDLM effectively.

Step size as a multi-task curriculum. In CDLM, the step size § = ¢ — s determines how far
we “jump” along a denoising route. Through linearity of expectation, we can view CDLM training
as multi—task learning over step sizes: each ¢ specifies a distinct path—equivalence constraint. This
perspective makes two design questions explicit: (i) which step sizes should be practiced (the step
size scheduler p(9)), and (ii) how to weight them (the weighting scheduler w(J)). We sample &
within a practical range (e.g., 1/8-3/8), which directly targets the few-step regime where efficiency
gains matter most. Moreover, we select w(d) = % to help with path length normalization, to make
each unit of “time” on the corruption axis contribute equally, regardless of whether it is traversed in
many short hops or a few long jumps. In practice this choice prevents the training signal from being
dominated by easy, local constraints while still supplying dense supervision where it is most stable.
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A diffusion anchor via max-step scheduler. The self-referential nature of the CDLM loss can be
stabilized by grounding it with the true data distribution. We mix in a small fraction of “max-step”
tasks where § = t (so s = 0). The corresponding loss

1
Linat (0) = (1 = Fms) Lepim(0) + Foms Bz, [; D(fo(z,t) || xo)] (10)

recovers the standard diffusion objective as a regularizer. In practice, a small £y € [0.1,0.4] suf-
fices to ground learning and discourage low—entropy “shortcut” solutions. Moreover, we find this
regularization is most critical in the early stages of training and its weight can be annealed over time.

Optimization Asymmetry and Choice of Divergence. To prevent the model from collapsing by
perfectly matching its own (potentially flawed) predictions, we introduce an optimization asym-
metry. This is implemented using a stop-gradient on the target network, whose parameters are a
slow-moving exponential average (EMA) of the online model (Grill et al., 2020). Furthermore, to
balance the mode-seeking and mode-covering tendencies of forward and reverse KL-divergence,
which can exacerbate collapse and drift respectively, we use the symmetric and bounded Jensen-
Shannon Divergence, which provides more stable gradient signal when training from scratch.

3.3 A UNIFYING VIEW OF DISCRETE GENERATIVE MODELING

The multi-path consistency principle not only enables efficient generation but also provides a gen-
eral lens through which to understand and connect a range of modern generative models. We now
show that the canonical objectives for masked diffusion, consistency models, and other acceleration
techniques emerge as specific instantiations of the CDLM framework.

Masked Diffusion Models (Sahoo et al.,2024) as the max-step specialization. CDLM reduces
to standard MDLM training by exclusively using the maximum possible step size, § = ¢, which sets
the prior step to s = 0, and collapses the target in CDLM objective to the boundary f(xg,0) =
xg. With the diffusion weight w(t) = —a}/(1 — o¢) = 1/t = 1/6 (for a linear schedule) and
KL-divergence (or equivalently cross-entropy) as distance, Eq. [0] reduces to the standard masked-
diffusion NELBO.

Consistency Models (Song et al., 2023) as the small-step limit with single-path consistency.
In the small step-size limit, 6 — 0, the objective in Eq. [9] concentrates on enforcing local self-
consistency across adjacent steps. While continuous Consistency Models rely on a one-step ODE
solver to couple adjacent points, CDLM uses the exact posterior bridge, providing a rigorous and
native foundation for local consistency training in discrete space.

Progressive Distillation (Salimans & Ho, 2022) and Shortcut Models (Frans et al.,[2025) via the
bridge semigroup. The bootstrap principle underlying both Progressive Distillation and Shortcut
Models, that one large step should equal two smaller steps, emerges directly from the semigroup
property of the posterior bridge (Lemmal[l). Let 75 f be the consistency operator. The fixed-point
condition f = Ty f and the composition rule 755 = T5 o T together imply that consistency over
a step size J begets consistency over 2§. Training with a geometric curriculum on § thus naturally
implements the logarithmic stage progression of PD without an external teacher. Conditioning fy
on ¢ further recovers the core mechanism of Shortcut Models.

Discrete distillation as approximate bridge implementations. CDLM is a single-stage training
principle that keeps supervision in discrete space via the analytic bridge g(xs | ¢, o). Recent two-
stage distillation methods share the goal of few-step generation but realize the bridge approximately.
Self-Distillation Through Time (SDTT) (Deschenaux & Gulcehrel 2025) constructs adjacent targets
by teacher rollouts: starting from x;, a learned teacher applies a few small steps to produce an
approximate neighbor &;_g, effectively using preacher(€1—s | ;) in place of the analytic q(x;—s |
&y, o), and repeats this in progressive stages. Duo with Discrete Consistency Distillation (DCD)
(Sahoo et al., |2025) exploits “diffusion duality” by sharing Gaussian noise across two times and
mapping continuous states to the discrete domain via argmax. Concretely, if € is shared, x, =
argmax((1 — s)xg + se€) and ¢, = argmax((1 — t)xo + t €) form a deterministic adjacent pair;
doubling the step per round yields a geometric schedule. This realizes an algorithmic bridge (PF-
ODE path — argmax projection) rather than the exact posterior.
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4 EXPERIMENTS
4.1 RELATED BASELINES FOR TEXT GENERATION

We compare our models with MDLM (Sahoo et al.[(2024))), SDTT (Deschenaux & Gulcehre|(2025)),
and DUO (including DUO-DCD)(Sahoo et al.| (2025)), which are currently the best models at their
scale in terms of generation quality. We will briefly introduce the models we are comparing against
here, and leave an additional overview of other less related works in the Appendix section [A.T]
MDLM is a text based diffusion models with masked distribution as prior and is trained with the
NELBO loss. For uniform prior models, DUO improves upon the original Uniform Diffusion Lan-
guage Models (UDLM, |Schiff et al.|(2024)) by leveraging a connection to continuous Gaussian dis-
tribution through an argmax operation. DUO further distilled their base model with by applying the
argmax operator over continuous consistency distillation, namely DUO-DCD and they found using
a greedy sampler further improves the sampling metrics. Likewise, SDTT also performs distilla-
tion based on MDLM, yet they formulate the distillation process as self-distillation with multistep
sampling as the target.

Conceptually, there appears a distinct classification of these models, with one being recognized as
the base model which is trained with the same objective, while the other belongs to distilled model
which relies on the base model as teacher and requires single or multiple steps of teacher roll-outs
for better generation quality across different sampling steps. Same as MDLM and DUO, our CDLM
is trained only with consistency loss from scratch and thus can serve as a base model, while SDTT
and DUO-DCD used a completely different distillation-only loss which places themselves into the
second category.

4.2 EXPERIMENTAL SETUP

We present two models trained with masked source distribution with 110M parameters, namely
CDLM (Masked CDLM) and CDLM-PPLOptimized. Both models are trained within a single stage
for 150K steps using Algorithm [2[ with multischeduler objective from Equation and CDLM-
PPLOptimized is a CDLM variant that gives much better generative perplexity with a slightly sacri-
ficed entropy. We compare our models with both categories for unconditional @.3.]and conditional
4.3.2| generations.

For CDLM we set our step size schedulers A to be a random scheduler in [%, g] with k,,,s for
Max-Step Scheduler set to 0.4. For CDLM-PPLOptimized, we use the same setting as CDLM for
the first 100K steps, then gradually shrinking the max range of Ar to %, as well as shrinking x,,, s
to 0.2. For stabilized training (Sahoo et al| (2025); |Schiff et al.| (2024); Song et al. (2023)), we
use Exponential Moving Average (A = 0.999) for # during CDLM training, and changed to a hard

update for every 10k steps starting starting at 100k steps for CDLM-PPLOptimized.

Consistent with our models, we train all of the compared models with 110M parameters for 150K
steps and a batch size of 2048 using OpenWebTextGokaslan & Cohen|(2019). MDLM was trained
with NELBO objective for 150K steps, and SDTT undergoes a pretraining stage of 100K steps using
MDLM’s objective before shifting to distillation with 2 teacher updates per step for SOK steps. For
DUO, similar to|Sahoo et al.|(2025) we always use half of the steps for curriculum learning and half
of the steps for continual finetuning. DUO + DCD leverages the DUO trained with 100K steps and
then uses an additional 50K steps for distillation with updating teacher and doubling the delta for
every 10K rounds.

4.3 RESULTS AND ANALYSIS

4.3.1 UNCONDITIONAL GENERATION

We present results for unconditional generation with 1024 tokens in Figure [2]and Table [I| for 64-bit
sampling and Table [3] for 32-bit sampling. Each model generates 32 samples for PPL evaluation
under gpt2-large. Our CDLM model outperforms MDLM for all of the sampling steps, re-
gardless of the sampling precision. Compared to DUO, CDLM produces much lower PPLs through
step 16 to 1024 under both 32 and 64-bit sampling, while maintaining a similar entropy as DUO
under 64-bit sampler. Moreover, comparing to distilled models which are generally better in PPL
with lower entropy as a result of distillation, CDLM-PPLOptimized is trained without the distilla-
tion stage but still outperforms multistage models like SDTT and DUO-DCD with both ancestral
and greedy samplers for most of the sampling steps, while keeping the same entropy level. Note
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Model Pretrain  Distill Sampling steps with FP64 Sampling
Steps Steps 4 8 16 32 64 128 256 512 1024

Comparison with Base Models (Trained from Scratch)

AR 75K 0 N/A N/A N/A N/A N/A N/A N/A N/A 40.2 (5.6)
MDLM 150k 0 1654.5(5.8)  682.7(5.9) 297.1(5.6) 186.9(5.8) 124.4 (5.6) 129.2(5.8)  100.5(5.7) 114.0(5.6)  97.7(5.6)
DUO 150k 0 514.4 (5.6) 177.3(5.6)  123.2(5.4) 97.7(5.4) 85.1(5.4) 83.4(5.5) 89.4(5.5) 91.2(5.5) 85.4(5.6)
Ours: CDLM 150k 0 649.4 (5.5) 2469 (5.6) 1256 (5.4) 86.5 (5.6) 67.7(5.6) 66.0 (5.5) 55.4(5.5) 58.4(5.4) 53.4(5.5)
Ours: CDLM-PPLOptimized 150k 0 331.2(5.0) 132.1(5.2) 71.6(5.3) 48.7(5.3) 40.1(5.3) 38.1(5.2) 325(5.3) 335(5.2) 33.8(54)
Comparison with Distilled Models
MDLM - SDTT 100k 50k 369.6 (5.3) 134.0 (5.3) 76.0 (5.4) 51.4(5.6) 40.1(5.3) 36.2(5.4) 32.5(5.3) 33.8(5.1) 31.2(54)
DUO +DCD 100k 50k 408.3 (5.6) 166.9 (5.6)  118.2(5.4) 91.8(5.5) 80.2(5.5) 794 (5.5) 719 (5.6) 85.8 (5.6) 75.6 (5.5)
DUO + DCD (greedy) 100k 50k 118.4 (3.9)" 109.2 (5.1) 798 (5.1) 70.5(5.2) 65.5(5.4) 64.3(5.3) 62.6 (5.2) 67.3(5.3) 58.5(5.1)
Ours: CDLM + SDTT 100k 50k 242.1(5.2) 105.0 (5.3) 57.5(5.1) 47.0 (5.5) 35.3(5.3) 30.3 (5.2) 25.8(5.3) 28.1 (49"  271(5.2)

Table 1: Generative perplexity (with entropy in parentheses) across different models, training setups,
and FP64 sampling steps. We use ancestral sampler for all models except DUO + DCD (greedy),
which uses greedy sampler described as in . Results with best PPLs are bolded and second best
are underlined. * denotes the entropy is lower than 5 which we found empirically yield repetitive
characters. Consistent with MDLM, our AR baseline is trained with half of the steps to ensure the
number of total seen tokens are the same during training.

Model OpenWebText Lambada Wikitext103 PTB
8 Step 64Step 512 Step 8 Step 64Step 512 Step 8 Step 64Step 512 Step 8 Step 64 Step 512 Step

MDLM 459/60.9 4047611 397/61.1 723/576 629/57.7 61.7/579 448/619 39.6/622 39.0/622 2482/50.5 220.0/507  2158/50.6

SDTT 340/624 30.8/62.5 30.3/62.5 51.9/593 46.4/59.3 45.7159.5 33.6/63.5 30.5/63.7 30.1/63.7 141.4/523 12547524 124.0/52.3

Ours: CDLM-PPLOptimized ~ 31.6/62.8  28.6/629  27.9/631 434/60.1 388/60.1 385/60.3 30.0/642 273/644 269/645 122.1/532 107.5/53.3  106.8/533
1 3 2/19.2

DUO-DCD (Greedy) ).2/26 32.7/266  32.0/26. 27.9/31.2  312/593  21.6/31.0 449/323  359/325 34.1/322  62.1/19.5 507193 1

Table 2: Conditional Generation results for across different datasets. Perplexity | / BLEU2 1 results
with FP64 sampling using the ancestral sampler are reported. We choose the best performing models
from unconditional generation for our comparison. Results for DUO-DCD with greedy sampler are
grayed out as it produces nearly random sentences that do not preserve the input conditions, which
reults in very low BLEU scores.

that although DUO-DCD with greedy samplers returns the lower PPL for at low sampling steps, it
actually also suffers from significantly lower entropy which indicates mode collapsing that produces
repetitive characters which could also hack the metrics. We also distilled CDLM using SDTT objec-
tive, which gives a model outperforming the original SDTT throughout step 4 to 1024 under both 32
and 64-bit sampling. Overall, CDLM-PPLOptimized achieves the best balance between generative
PPL and entropy. Speedwise, CDLM-PPLOptimized is able to achieve a 64x-128x speedup com-
pred to MDLM. Comparing with the AR model, CDLM—PPLOptimized was able to achieve similar
performance with between step 32 and 64, thus offering a 16-32x speedup in terms of Number of
Function Evaluations (NFE).

4.3.2 CONDITIONAL GENERATION

We also evaluate our model on conditional generation across four popular datasets including three
out-of-distribution sets: OWT (Gokaslan & Cohen|(2019)), Lambada (Paperno et al.|(2016)), Wiki-
text2 (Merity et al.[{(2016)), and PTB (Marcus et al.|(1993))). We randomly sample 32 sentences with
1024 tokens from each dataset, purturning 50% of the tokens with the model’s prior distribution, and
serve them as conditions given to the model to recover the original sentences. We use the original
unperturbed sentences as reference, with PPL evaluating the fluency of the final generated sentence
as well as BLEU assessing if the model is able to conditionally generate sentences plausible as
the reference sentences. In additional to token-space similarity, we also use MAUVE (Pillutla et al.
(2021)) to evaluate the embedding space distribution matching, although this metric is over saturated
for our task so we put it into Table {f] in Appendix. Table 2] outlines the comparison of our CDLM
versus SDTT and DUO. Given its uniform distribution formulation which allows tokens to transit
into any other tokens during sampling, DUO is not good as preserving the conditions and often yield
very low BLEU score and generate sentences that completely differs from the given condition, so
therefore we grey it out. Again, CDLM-PPLOptimized consistenctly outperforms SDTT in terms of
generation perplexity and BLEU score, demonstrating its advantage in generating plausible, consis-
tent and fluent sentences under given conditions.

4.4  ABLATIONS AND INSIGHTS

We conduct ablation studies to show the effectiveness of
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Choice of distance metric We illustrate the reason behind the use of JS-divergence as the distance
metric for CDLM training. The mode-seeking forward KL objective results in a sharp drop in en-
tropy after certain steps, and the samples show repetitive characters despite have better perplexities.
The mode-covering backward KL objective, on the other hand, results in very high entropy as well
as very high perplexities. DUO-DCD and SDTT do not suffer from the KL issues mostly because
they already have a very strong teacher model that avoids model collapsing and uniform drift, while
our model suffers as we are training from scratch. For more details please see Table[7)in Appendix.

Max-step scheduler and diffusion regularizer We empirically found that incorporating max-
step scheduler helps with balancing the generation quality and diversity. We observe that without
using the max-step scheduler, our model is quickly optimized towards mode-collapsing, producing
repetitive words with very low entropy as well as low but biased perplexity. With increasing weights
for diffusion regularizer, we observe that both PPL and Entropy increases across all steps, indicating
diffusion regularizer as balancer between diversity and quality. More details in Table[6]in Appendix.

Choice of step size scheduler Other than the max-step scheduler serving as diffusion regularizer,
we also use a separate scheduler for ¢ and ¢ for the CDLM training. Note that training without any
sampler other than diffusion regularizer reduces our model to MDLM. We experimented with four
schedulers: random, linear increasing, and linear decreasing. Model trained with linear increasing
scheduler got exposed to small § at the beginning and bigger ones towards the end, making the later
checkpoints better at generation with more steps. Likewise, models trained with linear decreasing
scheduler tends to do better generation with few-steps. For more details, see Table [5]in Appendix.

5 DISCUSSION AND CONCLUSION

We introduced the Consistent Diffusion Language Model (CDLM), a new framework for discrete
generative modeling built on the principle of multi-path consistency. By supervising with exact
posterior bridges, CDLM trains a path-independent denoiser that achieves few-step efficiency as a
training-time property rather than a post-hoc acceleration. The result is a single-stage model that
advances the state of scalable, high-fidelity text generation.

Synergies with Complementary Advances. While CDLM illustrates strong algorithmic effi-
ciency, measured in sampling steps, diffusion LMs still incur high wall-clock latency per step than
optimized autoregressive decoders. This remains a key deployment challenge. Crucially, CDLM
is architecture- and sampler-agnostic, and can directly benefit from advances such as KV-caching,
optimized kernels, and faster sampling schemes. Recent works demonstrating over 10x speedups
in diffusion inference (Ma et al., [2025a; [Wu et al.| [2025} [Liu et al., 2025a) suggests that CDLM’s
efficiency gains can be amplified through such engineering advances.

The Design Space of Multi-Path Consistency. CDLM should be understood not as a fixed algo-
rithm, but as a flexible framework with a rich set of design choices. Our implementation explores
one principled configuration, yet many alternatives remain, including adaptive step schedules, al-
ternative weighting schemes, or different divergence metrics. The rapid evolution of continuous
consistency models (Song & Dhariwal, 2024} |Geng et al., 2025)) through similar refinements sug-
gests that CDLM is a promising starting point with significant potential for further gains.

A Foundation for Future Models. An important implication of CDLM is its role as a stronger
base model for the next generation of discrete generative methods. Many leading acceleration tech-
niques, such as distillation, build on pre-trained base models. We show that CDLM outperforms
MDLM as such a foundation, and it can serve as a promising replacement for large-scale pretraining
or post-training mechanisms with downstream benefits (Nie et al., |2025b). More broadly, the for-
mulation is not tied to language alone. Any domain involving discrete structures, such as biological
sequence or program synthesis, can benefit from this framework.

In reframing discrete diffusion as the training of a path-independent denoiser, CDLM bridges the
gap between the acceleration playbooks of continuous diffusion and the realities of discrete data.
We hope this work not only advances the frontier of few-step discrete generation, but also lays the
foundation for models that are fast, principled, and broadly applicable.
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A APPENDIX

A.1 RELATED WORK

Discrete Diffusion/Flow Models |Austin et al.| (2021b); |[Lou et al.| (2024) introduced diffusion
models for discrete data, followed by MDLM (Sahoo et al.| (2024)) showing initial success on text
modeling. Our work is based on MDLM, a masked diffusion language model trained on NELBO
objective that is simplified as a time-weighted cross-entropy loss. Discrete Flow Matching (Gat
et al.|(2024)) formulates text generation under flow-matching perspective optimizing for the learned
marginal velocity field, yielding a similar training objective as MDLM under the masked prior.
Beside masked prior distribution, UDLM (Schiff et al.| (2024)) and DUO (Sahoo et al.| (2025)) in-
troduced and improved the uniform prior diffusion models, unlocking better generation quality by
leveraging the unique advantage of uniform transition kernel, which includes guided training and
sampling, as well as discretization of continuous Gaussian distribution respectively. CDLM shares
commonalities with these models in that they all require single stage training with a unified objec-
tive, yet CDLM delivers better generation quality through our formulation of discrete consistency
training.

Improving few step generation for diffusion models. Currently there are two main fields of
accelerating diffusion language model, where one focuses on training-free acceleration including
the use of KV Cache (Ma et al.| (2025bja)); |L1u et al.| (2025b)), as well as alternative sampling and
decoding strategies (Chen et al.| (2025)); Huang et al.| (2025); Ben-Hamu et al.| (2025)); (Gwak et al.
(2025)). The other field focuses on training based approach that relies mainly on distillation from a
pretrained model. For instance, DUO w. DCD (Sahoo et al.[|(2025))) operates on a pretrained DUO
model, and applies consistency loss with z; and x; sampled from discretized Gaussian Path. SDTT
(Deschenaux & Gulcehre| (2025))) operates on a pretrained MDLM model, requiring multiple steps
of teacher rollouts as the training target. We have also shown in Section that both DUO and
SDTT falls within a special case of CDLM which empirically shows better generation quality.

Consistency model family Consistency models (Song et al.| (2023))) were first proposed for image
generation in continuous domain, with later works (Song & Dhariwal| (2024)); (Geng et al.| (2025))
improving the training in terms of simplicity as well as performance. DUO successfully adopts
consistency distillation to become better at few-step generation through connecting uniform discrete
diffusion with continuous gaussian distribution. Additionally, CDLM extends this concept to allow
training from scratch with non-uniform diffusion models.

A.2 ALGORITHM

Algorithm 1 Consistent Discrete Denoising Diffusion Training (CD3T)

Require: Dataset D, initial model weights 6, weighting function w(t), step size scheduler A;.7,
EMA scheduler A

Ensure: Trained model parameters ¢

1: Initialize: 0 < 6y, 60 < 0

2: for each §; ~ A1.r do

3: Sample timestep ¢t ~ p(t)
Compute s < t — J; where s ~ p(s | t,0;)
Sample data point g ~ D
Sample forward process: x; ~ q(x; | o) = Cat(xs; £oQ1:¢)

Qs y1::0T0 Qs )

B z0Qix,
Compute consistency loss: £(6,0) = w(t,8;) - D(fo(xe,t), f5(xs, s))

9: Update 0: 6 < 0 — nVyL(0,0)
10 Update 0: 6 <— X0+ (1 — \)0
11: end for
12: return 6

Sample intermediate state: s ~ q(xs | ¢, o) = Cat | xs;

® R0 se

12
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Algorithm 2 Masked Consistent Diffusion Language Model

Require: Dataset D, initial model weights 0y, step size scheduler A;.7, EMA scheduler A
Ensure: Trained model parameters 6

1: Initialize: 6 < 6,

2: for each A; in A1.7 do

3: Sample timestep ¢ ~ U{[A, 1]}
4: Compute s <t — Ay
5: Sample sequence o = (z}, ..., z&) ~ D where zf € V
6: Sample corrupted sequence: x; ~ q(x: | o)
1—t ifk=x)
where ¢(zi =k | z}) = { t if k = [MASK]
0 otherwise
7: Sample intermediate state: s ~ (x5 | T, )

1 if z! # [MASK] and k = x!

== ifx} = [MASK] and k = )

h if z; = [MASK] and k = [MASK]
0 otherwise

8: Compute consistency loss: £(0) = A% - Dysp (fo(xe) || f5(x5))

9: Update parameters: 6 < 0 — nVyL(0)

10: Update 6: 6 < M + (1 — \)f

11: end for

12: return 0

where ¢(z! = k | i, x}) =

A.3 THEORY

Lemma 1 (General Posterior Bridge). For any 0 < s < t, the analytic posterior bridge is given by:

(wOles) © (Q;rJrl:twt) )
(oQ1:t, ) '

Furthermore, these bridges compose transitively, obeying a semigroup property: for any u < s < t,
traversing the bridge from t — s and then s — u is equivalent to traversing the direct bridge from
t — u.

q(xs | Ty, o) = Cat(a:s; (11)

Proof. We seek to derive the probability vector for the categorical distribution q(x | x4, o).

1. Application of Bayes’ Rule. From the definition of conditional probability, we have:

q(xs | s, o) g(x5 | 0)
q(z¢ | o)

q(@s | @i, @) =

2. Markov Property. The forward process is a Markov chain, meaning the state at time ¢ depends
only on the state at time s (for s < t), not on earlier states like «y. Therefore, the likelihood term
simplifies:

q(xs | s, o) = gy | )

This gives us the proportional relationship:
qzs | @, 20) o g1 | ®5) g5 | 20)

3. Vector Formulation. We now express the terms on the right-hand side using their categorical
probability vectors. Let p(-) denote the probability vector of a distribution.

* The prior probability of x is given by the forward marginal: p(x, | o) = o Q1.s.

* The likelihood of x; given x, is determined by the transitions from s to t. The probability
vector is p(x; | @) = @, Qi 1r-

13
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The expression q(x; | 5) g(xs | To) gives the joint probability ¢(xs, s | xo). To find the prob-
ability vector for ¢(xs | T+, o), we consider the probability of a specific one-hot vector outcome
for 5. This is proportional to the probability of that outcome under the prior, multiplied by the
probability of observing x; given that outcome. In vector form, this product corresponds to an
element-wise (Hadamard) product of the prior probability vector and the likelihood vector.

The likelihood vector, representing p(x; | s = v;) for all possible states v;, is given by Q. ., @:.
Thus, the unnormalized probability vector for x is:

punnormalized(azs | T, 330) = (wOQl:s) © (Q;—l:twt)

4. Normalization. The normalizing constant is the marginal probability of the evidence, ¢(x; |
@p). For the specific observed outcome ;, this probability is (xoQ1.+, ;). Dividing the unnor-
malized vector by this scalar gives the final probability vector, completing the proof for the main
formula.

5. Semigroup Property. The transitive composition follows from the law of total probability and
the Markov property:

q(xu | wt7$0) = ZQ(iL’uyws | fEt;wO)

Ts

= q(@y | T, @1, m0) q(s | T4, T0)
T

= Zq(wu | wsva)Q(wS | wtamo)
T

Substituting the bridge formula (Eq. [TT) for each term and simplifying demonstrates that the compo-
sition holds, relying on the associativity of the transition matrices (Qyt+1.sQs+1:t = Quy1:¢). O

The following result formalizes the intuition that enforcing local consistency provides a foundation
for achieving global path-independence.

Lemma 2 (From Local to Global Consistency). Ler D(-,-) be a distance metric that satisfies the
triangle inequality (i.e., a norm). For a time grid 1 = 75 > --- > 19 = 0, if the expected local
consistency error for any one-step transition is uniformly bounded by ¢,

Eopa,, D (f(a:Tk,Tk), Ew%lwq(_‘%,mo)f(a,-ml,Tk_l)) <e forallke{l,..., K},

then the global error between any two points T,, and T on the grid is linearly bounded by:

Emmmr}( ]D) (f(mTKvTK)v ]EmeN‘J(‘\w-ero)f(me7Tm)) S (K - m)5~

Proof. The proof proceeds by a recursive application of the triangle inequality, leveraging the con-
vexity of norms and the law of total expectation. For clarity, let f;, = f(x.,,7%) and denote the
conditional expectation operator as E;;[-] = Ex_ ~q(|e,. z)[-]. The semigroup property of the

bridge (Lemmal[T)) implies that the expectation of the target can be written as a telescoping condi-
tional expectation:

Ea., ~g(|@r wo)[fm] = Ex -1k © Ex 2k -1 00 Epmi1[fm]-
LetE(k,m) = Eaox., []D) (fk, Em|k[fm])} be the expected global error from step k to m. We wish
to bound £(K, m).
We establish a recursive bound. Consider the error from step & to m:
D (fi, Emiilfm]) =D (fr Ex—1ji[Emjp—1[fm]])
<D (fr, Boe1plfe-1]) + D (Be—1jplfe-1], B 1k [Emjp—1[fm]])  (Triangle Inequality)
<D (frr Ex—1j6lfe-1]) + Ex—1jk [D (fo-1, Emjp—1[fm])] (Jensen’s Inequality)

The second step uses the fact that a norm DD is a convex function, so for a random variable X,
D(E[X]) < E[D(X)]. Here, we apply it to the outer expectation .

14
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Now, we take the expectation E, -, over the entire inequality:
E(k,m) <Egpa., (D (fi, Bx—1x[fr—-1])] + Eao 2., [Er—1j [D (fe—1, Empp—10fm])]]
<e+Eaz, | [D(fi-1,Emip—1lfm])]
=e+&Kk—-1,m)

We have established the recursive relationship £(k,m) < e + £(k — 1,m). By unrolling this
relationship from £ = K down to m + 1:

E(K,m)<e+ &K —-1,m)
<e+ (e +EK —2,m))

A

< (K —m)e+E&(m,m)
Since £(m, m) = E[D(fm, Epjm[fm])] = E[D(fm, fm)] = 0, the final bound is:
E(K,m) < (K —m)e.
This concludes the proof. O

A.4 EXPERIMENTS

Model Pretrain  Distill Sampling steps with FP32 Sampling
Steps Steps 4 8 16 32 64 128 256 512 1024
Comparison with Base Models (Trained from Scratch)

AR 75K 0 N/A N/A N/A N/A N/A N/A N/A N/A 39.9(5.4)
MDLM 150k 0 1655.2 (5.9) 651.8(5.9) 2552(5.8) 162.3(5.6) 92.1(5.6) 78.6(54) 575(55) 51.1(53) 424 (54)
DUO 150k 0 532.4(5.6) 199.6 (5.6) 127.3(5.7) 96.1 (5.4) 79.1(5.5) 82.4(5.5) 78.2(5.4) 73.9(5.5) 74.8 (5.5)
Ours: CDLM 150k 0 661.1 (5.6) 220.8 (5.4) 118.3 (5.6) 726(5.6)  563(54) 549(54) 352(53) 293(5.3) 257(52)
Ours: CDLM - OptimalPPL 150k 0 337.1(5.2) 117.6 (5.1) 68.1(5.2) 42.4(53) 351(52) 24749 23.6(53) 212(50) 17.1(5.2)

Comparison with Distilled Models

MDLM + SDTT 150k 100k 50k 351.3(5.3) 132.5(5.5) 65.7(5.2) 44.5(5.0) 343(53)  299(5.0) 243(50) 212(50) 208(4.9"
DUO + DCD 100k 50k 417.0 (5.4) 172.0 (5.5) 125.4 (5.6) 96.2 (5.6) 81.7(55) 855(55) 741(57) T723(54) 74.1(5.3)
DUO + DCD (greedy) 100k 50k 127.2 (4.6)" 111.0 4.8)" 86.6 (5.0) 72.6 (5.3) 625(53) 598(52) 672(54) 614(52) 62.7(5.2)
Ours: CDLM + SDTT 100k 50k 2359 (5.1 94.3(5.3) 52.1(5.2) 35.6 (5.0) 29.0(52) 26049 21.2(50) 181(51) 157 (4.6)"

Table 3: Perplexity (with entropy in parentheses) across different models, training setups, and FP32
sampling steps. Best results are bolded, second-best are underlined. * denotes entropy < 5, which
empirically led to repetitive characters.

Model OpenWebText Lambada ‘Wikitext103 PTB

8Step 64Step 512Step 8Step 64Step S512Step 8Step  64Step 512Step  8Step 64 Step 512 Step
MDLM 0.90 0.94 0.96 0.99 0.99 0.98 0.94 0.96 0.97 0.11 0.12 0.10
SDTT 0.96 0.96 0.98 0.99 0.99 0.99 0.98 0.99 0.96 0.07 0.08 0.07
Ours: CDLM - OptimalPPL 0.99 0.97 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.02 0.07 0.07

Table 4: MAUVE 7 scores with ancestral sampler across datasets. Given MAUVE is a distribution
based metrics and with 50% of unperturbed tokens as the condition, the models perform similarly
under this saturated metric.

Model 8 64 1024

CDLM w. random scheduler 110.6/53  32.8/53 19.7/52
CDLM w. staged increasing scheduler ~ 160.8/5.2  45.1/53  253/52
CDLM w. linear increasing scheduler 117.6/5.5 379754 179749
CDLM w. linear decreasing scheduler 112.3/5.1 32.1/52 205/52

Table 5: FP32 Sampling under different scheduling strategies.

Model 8 64 1024

CDLM w. no max-step scheduler 16.7/3.2 7.1/34 57128
CDLM w. 0.4 for max-step scheduler ~ 110.6/5.3  32.8/5.3 19.7/5.2
CDLM w. 1.0 for max-step scheduler ~ 274.0/5.5  75.1/5.5 384/53

Table 6: FP32 Sampling under different max-step scheduler/diffusion regularizer weights.

15



Under review as a conference paper at ICLR 2026

Model 8 64 1024
CDLM w. JS divergence 110.6/53  32.8/53 19.7/5.2
CDLM w. Forward KL 8e4/6.9 8e4/6.9 Te4/6.8

CDLM w. Backward KL 753/4.6 64.0/44 442/43

Table 7: FP32 Sampling under different divergence objectives.

A.5 QUALITATIVE EXAMPLES

We present qualitative results of generated texts for different models under different sampling steps.

Step 4:

MDLM:

<lendoftext|>abad in Texas Cordalo. Gold Day\n \nThere weren
very many test there of a citizen in or recognition a Zina which
directly would they need for over 49 little of LRM, American
valhouettes would thinkBut there are other sinister were trying
said 5560 July Saints shipped outed, came out and something
(afterne 73 LA, EEAN) was and and really a louder cagebl hundred
drove Greensboro four pissed, sacked away the same or of the
earlier Sony and large feasible, statement later made it Jjust
didn’t come out impoverished means toave.be joiningTexas,
besidesasca curator book is nearly a subscriber and daily

editor within and outside LSUs. Dbe to making another alum soon
longtime never in the been its preferred basketball and ever
was:bill speaker of Louisianas industry, one of its most poorly
conductedacted jobs in the , toosa state of becoming.Ste blocsed
across same guy on the Tuesday night naive and about Lockntaking
alerted to Ruff. (Also Second does writing the finddesigne (line
truncated to 1000 characters)

DUO+DCD:

" \" would slip or top out 90 means how much these parts comes
face . what’s not even more or much far a pretty far way make
the times be manufactd or far tried far ago much much go pretty
well or’and_belso the more side rather other than much in almost
Franks sake. \" or sversely, look in Archre at least or much
the more of work much noJaAP .\" not not about it to writrtita
or rather far/and the fact holds she possibly farohott\" or or
not look at \"the different kinds here far and mosteand that
somewhat much now better or more power of the User work or Jjust
much more structures, or much its noWrtnik .\" farll we can
seem the interest of the Thomas specifically not whom clearedch
so far. Its not or nobody’t look or to handle it not he doesnt
stop formerierra Err he looks.\"::and’and \$ or or not rather
now to pay much more much at=g-- OUT onhis basics,’ print and

or \"Yes,’one of’’_to know out there\" not remained a+ twisted
or business lot of what Richard would (line truncated to 1000
characters)

SDTT:

by the same. There is people they can do, that loos a more
In-between much than the has since the after of radio which used
to be an area, \n more low than the pros among a are basketball,
baseball and the, and what of today did they try for more,

but prior to family and college the researchers knew) that the
one that would really be a concerted effort, certainly in the
country is there and. that in Their recent New Media almost no,
assessedIn Ginn,, in March, an, Ferris brothers found. everything
from their baby toddlers, did not look good. There was enough
still for twice. they published a review in which mentioned
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the risk. and, in the form "The Harris’ his still 'm risk was
diminished most The lost lingers following the.il number were\n
vers. It, they told me the part that they were now prized was the

stiffz type making Ferrier do. But they wrote out the awesome
Adam Kruger in the factory and, when we talked to, it the, he
were in the studio and they put him many out. The second D (line
truncated to 1000 characters)

CDLM:

<|endoftext|> had to live on, murder. The hostages had one row
and the two row of the other. (The hostage, by Kraft Foods, was

46\n \n with three armed men men in a uniform by policeutives

and certain pop artists, Racist pres Banell the song Deltal\n
\nsterling heightened the attack aladderem, said they had\n \n ,
had other hostages thrown as they circled. Yet the Independent\n
\nnews , and the the raid’s days, is much more than when there
were\n the possibilities for the same subject. The Dec said KERS
could said, if\nthen AERS did not food New Whorig on board the
rear of the Blacks, only so on if the\n \nimmigrants were Indians
and the, had most of the Blacks Blacks not be French. Yet the
KERS then asked KERS to claim that kicking a ball for\n \nthe
comedy not in the right thing. The Good of the Brain, the K and
Bola Four of the NRL., on the night of the Opening Cere the the
Challenge Games, the Mr. Roberto, who players argued over farmers
and pacified movement farmers the the late 70s (line truncated to
1000 characters)

Step 64:

MDLM:

<|endoftext|>, the next thing they saw\n \n was a male scream that
the victim wanted to kick something, \" Quinn said. At that point,
he got up and started screaming.\"\n \nPolice soon pursued the cab
into the bar.\n \n \"They picked up the suspect and left. They
walked to the bathroom and they came to some dried blood coming
from the victim’s mouth and they located [the suspect inside the
bar],\" Quinn said. \"They’re not taking a victim’s DNA because
obviously, they don’t know if the male victim had a knife or
both.\"\n \nThe addition was found closed and \"several items that
were initially used in the attack, Quinn\n \nSmith said.\n \nThe
man still lives near Longleston in Sonoma Monday night and Tuesday
March 23.\n \nMcNeil told KING-TV in Southern California, where

he met UT A&M student there on Saturday night after al\n \ncar
accident there.\n \nThe arrest warrant was processed Tuesday,

and police hadn’t given much a negative Ephesian police report.
\"They remain positive.\"\n \n \"It’s (line truncated to 1000
characters)

DUO+DCD:

<|endoftext|> of Posture-17. Remember amateur domestic monitored
product registration stands at 73, and a number of matches have
been canceled.\n \nCivil -rights groups have taken part in

the struggle against Amnesty and defend the Constitution, the
official Global Times reported.\n \nNortino prison executives

face questions about arrest\n \nChristian Numel, who have been
charged over a July 2012 incident remains behind bars in the
Shenyang Dalian-chu jail until Liu in November, the son-in-law

of Hui, chief of several members including Prince John Roman’s
condense Panda conglomerate. Numel was acquitted on statements
made during a Aug. 16 interview by Yong Kushu, a Chinese state
radio website.\n \nThe spate of border arrests has signalled the
intent of broadening of human rights in China.\n \nThe computers
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that were captured looking anti-government could be easily labeled
as spies by legal experts that they were illegal, and hundreds of
names of senior Chinese security officials were (line truncated to
1000 characters)

SDTT:

<|]endoftext|> the same thing too. She also was inspiredShe threw
together a group of local kids. When a lot of kids like Kyle came
in to introduce herself to us, it kind of made her realize that
she genuinely wanted to go out and be involved in some way. He
was a model type of kid (that’s just her imagination: that’s what
Los Angeles was for her home). During her time in St. Louis,

she had already been in some pretty fine little church churches.
She was one of those sort of people that I got to surround myself
with.\n Yeah, it was an extremely exciting experience. It was
enough money for you to be behind the camera.\n After that, we did
the improv concert, and I didn’t want to go and was excited. I
was nervous. I was flying around and expecting it to sound like
it was this kind of a simulator, a real character. And it was
really difficult as a child. All the cameras are on the stage,
and I told my director, "I not have to screw it up. I just have
to do it." Anybody on my money, I Jjust wCDLM:

<|endoftext|> largest union, JPMorgan Chase-DHS Bank, decided

to resign earlier this week when the UK voted to liberalise the
EU, threatening to pull the country from the customs union.\n
\nThe MEP has warned that one of the best ways to leave EU is

to leave the Greek exit, which is backed by groups such as the
social-democratic Democracy Alliance, which is a member of the
Remain campaign. He warned of further \"political or social
risk\" unions being back in the European Union, when a coalition
of government removed the backing of its politicians and staff
members from its membership.\n \nEarlier this week, the MEP had
been resigning from the EU after being alerted to questions over
some of his newspaper articles.\n \nThe Dublin-born MEP told a
joint news conference in France morning that he was not following
the decision to liberalise the EU and use it to prevent the UK
from abandoning membership. This would apparently result in a
period of turbulence on the prospects of leaving (line truncated
to 1000 characters)

Step 512:

MDLM:

<|]endoftext|> him when [Singh was about to the] Supreme Court,
and said, I hit every benches. He took a box of 10. Then he
grabbed one and said, Okay, we’re going to be OK now.\n \nToward
the evening, Ahmadi, the second baseman of the 66, thrown Ram down
onto a small concrete ground before spread his wings and clearing
the deck for the ceremony.\n \nThe people near the lockers
realised immediately that Deepak Ohera, another then policeman,
in the eighth over of the sixth innings, had pushed Ram sprayed
himself to the ground and fell.\n \nThey ran and chased away all
those that did not know what had happened. Dahla, who had enough
power and pace to drive every one and one of the Indians home
from college the next day, was killed.\n \n \"They killed me,\"

he remembers. \"It is sad. I remember it for a minute. Now, I
feel a little more having my family and just going to work hard
and play. I have never felt that.\n \nGusmen table top scoring\n

\nOnly 30-year-old 39-year-old Ali Ganes (line truncated to 1000
characters)
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DUO+DCD:

"<|endoftext|> after a year and a million days, Sarafaz is about
to do the movie, \"Jenna,\" who faces the streets of Virginia.\n
\nChristine Nakabub meig: Judith Kharfatabi did actually see

the tape at first, but it was pulled from the November 4 of the
initially [main show] screening, now for November 3 because it’s
really hard to make \"Pappers Out\" to review, like, November

14. 1It’s \"Noh and Tam\" —-- \"It’s a Link-in Land.\" And, so I
consider it even tougher, four months to make. It’s dissimilar
to when I talked with Lois Jordan when she was done. I said,
\"Here’s exorcism.\" She said, \"Well, first, Ms. Out, it was
inside. What does it take to do these sagas in those daysyou’ll
get your choice. I’'m visiting now with Fox, so it’s just kind

of certain I knew she’s Lady Gaga. So I'm expecting, it’s not
Tammy Jenna. It’s that, indeed. He’s on board, \"computer in
the middle of the street,\" at 86 10th Street. I did Apo Hammer
today, on November 15, and this is a great time be (line truncated
to 1000 characters)

SDTT:

<|endoftext|> off the floor. The two didn’t happen because we
were rested.\n "My son came back and came off to the floor on the
opening day out of UCLA, and while I played, I still had my skin
covered up from it. It was a long, tough opportunity to go to
play by a great team, but I was kind of a little bit exposed to
some of the things that we put him ready to go."\n In the end, I
liked that performance against UCLA. He was able to have a very
positive positive going through some of the injuries that I’ve had
to deal with. He went on to have an ankle and ended up leaving
the game and actually went down to play. He was very lively, and
we got the win.\n "I’'ve gotten a really good relationship with a
lot of my teammates, with the leadership guys in the locker room.
With the defense guys, with other guys in the locker room, he was
able to play."\n And that worked. Check out the highlights from
the season to come.\n "We haven’t recovered from the line or our
run or anything like that. It was fr

CDLM:

<|endoftext |> the EU as the primary focus of civil society, and is
fully respected in the EUs role in shaping the global economy.\n
\nSo not only is the impact of Polish economy and investment in
Poland having on the political and external context of the EU and
its investment in many of the European countries, but the reality
is the political and external context of the EU is a critical
economic partner. That is why the EU will continue to continue to
thoroughly compete with the rest of Europe.\n \nThe EU has one of
the worlds largest trading partners for one of the worlds biggest
markets and trans-Atlantic European integration. Though the EU
continues to strengthen its position on the EUs global economy,
it continues to overcome the challenges that Europeans face

from the EU, and its financial commitment through its financial
reporting and economic practices.\n \nFrance is one of the largest
investments in the EU. In addition to building the international
economy to be able to (line truncated to 1000 characters)
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