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Abstract001

Generating high-quality long-text remains chal-002
lenging for Large Language Models (LLMs),003
as conventional supervised fine-tuning fails004
to ensure overall quality due to its teacher-005
forcing nature. Kahneman-Tversky Optimiza-006
tion (KTO), as a model alignment method that007
can holistically optimize generation quality,008
overcomes the need for paired preference data009
required by previous methods. However, it010
still suffers from binary supervision that inad-011
equately reflects varying quality degrees. To012
address this, we propose GRACE-KTO, a semi-013
online framework that transforms KTO’s binary014
signals into dynamically calibrated intra-group015
rewards. Specifically, GRACE-KTO aggre-016
gates responses to identical queries into groups,017
computes rank-sum scores across multiple lin-018
guistic quality dimensions, and applies group-019
wise and global normalization to adaptively re-020
distribute sample importance. We adopt a semi-021
online training strategy to reduce costly online022
sampling while outperforming offline variants.023
By leveraging query generation with seed data,024
we minimize labeled data dependency, using025
the model’s own knowledge to enhance its long-026
text generation capabilities. Additionally, we027
extend the context window to 32k tokens us-028
ing YaRN during inference, enabling the model029
to generate longer texts while maintaining per-030
plexities. Experiments demonstrate GRACE-031
KTO’s superiority over vanilla KTO on both032
automatic metrics and LLM-as-a-Judge evalua-033
tions, advancing long-text generation through034
group-wise adaptive calibration.035

1 Introduction036

Ensuring high-quality long-text generation remains037

a formidable challenge for Large Language Mod-038

els (LLMs). While long-context LLMs have made039

remarkable progress in understanding lengthy texts040

with context lengths reaching 1M tokens or more041

(GLM et al., 2024; Yang et al., 2025), long-text gen-042

eration presents a distinct and more complex task.043
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This task demands that models produce content sig- 044

nificantly longer than the input text. Even power- 045

ful open-source models like Qwen2.5-72B-Instruct 046

(Yang et al., 2024), despite their impressive capa- 047

bilities, face limitations and can only generate up 048

to 8k tokens. This disparity highlights the ongoing 049

need for advancements in training methodologies 050

to overcome the inherent challenges of long-text 051

generation. 052

Conventional supervised fine-tuning (SFT) for 053

long-text generation relies on teacher-forcing 054

(Williams and Zipser, 1989) to imitate training 055

sequences stepwise, but has limited capacity to 056

enhance holistic text quality. This arises from ex- 057

posure bias (Li et al., 2024): models trained on 058

ground-truth contexts are incapable of handling 059

errors that accumulate during autoregressive gen- 060

eration. In long-text generation, early inaccura- 061

cies trigger cascading errors through subsequent to- 062

kens, worsening the training-inference gap between 063

teacher-forced optimization and free-generation ex- 064

ecution. This gap ultimately restricts SFT’s ability 065
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to improve the overall quality of the responses.066

To address this limitation, various alignment067

methods have been proposed to optimize the gen-068

eration quality from a more comprehensive per-069

spective. Among them, Kahneman-Tversky Op-070

timization (Ethayarajh et al., 2024) (KTO) has071

shown promising results. Unlike previous meth-072

ods like Proximal Policy Optimization (Ouyang073

et al., 2022) (PPO) and Direct Preference Opti-074

mization (Rafailov et al., 2023) (DPO) that re-075

quire paired preference data, KTO can work with076

unpaired data, offering greater flexibility. KTO077

is based on Kahneman-Tversky’s prospect theory078

(Tversky and Kahneman, 1992), which models hu-079

man utility in a way that captures biases such as080

loss aversion. However, KTO still employs binary081

supervision signals, which are insufficient to cap-082

ture the varying degrees of quality among different083

generated texts. This limitation hinders KTO’s abil-084

ity to fully utilize the available data and accurately085

guide the model towards generating higher-quality086

long-text.087

In this work, we propose Group-Reward088

Adaptive Calibration for Enhanced KTO (GRACE-089

KTO), a semi-online framework aimed at enhanc-090

ing long-text generation quality by addressing the091

limitations of KTO. GRACE-KTO refines KTO’s092

binary signals into dynamic intra-group rewards093

by harnessing KTO’s flexibility with unpaired data.094

The process begins by grouping responses to identi-095

cal queries and calculating rank-sum scores across096

key linguistic dimensions, including content length,097

expression diversity, professionalism, and rele-098

vance to the query. These scores are then normal-099

ized within each group to provide a comprehensive100

reflection of each response’s quality. Moreover,101

global normalization is applied across all samples102

to adaptively adjust the importance of each sample,103

thereby determining their respective weights in the104

KTO training process.105

To improve both efficiency and effectiveness,106

we adopt a semi-online training strategy. Unlike107

fully online algorithms that require frequent real-108

time model updates for sampling small batches of109

data—a time-consuming process particularly for110

large models like 72B models—our semi-online111

approach efficiently harnesses the concurrent pro-112

cessing power of frameworks like vLLM (Kwon113

et al., 2023) to significantly enhance sampling effi-114

ciency. Moreover, this strategy proves to be more115

effective than offline training methods. To reduce116

the reliance on labeled data, we utilize the training117

set as seed data and prompt the LLM to generate 118

new queries for training. This allows the model to 119

improve the quality of its responses by leveraging 120

its inherent knowledge rather than depending solely 121

on labeled data. Additionally, by extending the con- 122

text window to 32k tokens using YaRN (Peng et al., 123

2024) interpolation during inference, the model can 124

generate longer texts with low perplexities. 125

Through experiments, we show that GRACE- 126

KTO surpasses vanilla KTO in both automatic met- 127

rics and LLM-as-a-Judge (Zheng et al., 2023) eval- 128

uations. By dynamically calibrating rewards across 129

groups, GRACE-KTO enables the model to better 130

learn from varying quality degrees in generated 131

texts, resulting in more coherent and contextually 132

consistent long-text outputs. In summary, our work 133

makes the following key contributions: 134

• We propose GRACE-KTO, a novel semi- 135

online framework that enhances KTO by trans- 136

forming its binary signals into dynamic intra- 137

group rewards. This allows for more nuanced 138

optimization of text generation quality by ef- 139

fectively capturing varying quality degrees in 140

the generated texts. 141

• We develop a semi-online training strategy 142

that improves upon the time inefficiency of on- 143

line sampling. This approach also minimizes 144

reliance on labeled data by treating the train- 145

ing set as seed data and prompting the LLM to 146

generate new queries for the alignment dataset. 147

Thus, the model leverages its inherent knowl- 148

edge rather than external annotations, enhanc- 149

ing its long-text generation capabilities in a 150

more efficient and self-sustaining manner. 151

• We extend the model’s context window to 32k 152

tokens using YaRN, enabling the generation 153

of longer texts while maintaining perplexity. 154

2 Related Work 155

2.1 Challenges in Long-Text Generation 156

Long-text generation poses significant challenges 157

for LLMs, as it requires coherent and contextually 158

consistent outputs across extended sequences. Var- 159

ious benchmarks have been developed to assess 160

this capability. LongLaMP (Kumar et al., 2024) 161

provides a benchmark for personalized long-text 162

generation but is limited to shorter output lengths. 163

HelloBench (Que et al., 2024) evaluates long-text 164

generation across multiple tasks and shows that 165
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Figure 2: Overview of GRACE-KTO.

most LLMs struggle to produce texts longer than166

4000 words without quality loss. LongGenBench167

(Wu et al., 2025) further evaluates models’ ability168

to generate long texts while following complex in-169

structions, demonstrating the challenges faced by170

even state-of-the-art LLMs as text length increases.171

These benchmarks collectively highlight the gap172

between current LLM capabilities and the require-173

ments of real-world applications that demand high-174

quality long-form text generation.175

2.2 Methodological Comparisons176

Approaches to enhancing long-text generation can177

be categorized into two groups: methods lever-178

aging external agents or tools, and those focus-179

ing on model intrinsic training. AgentWrite (Bai180

et al., 2025) uses an agent-based pipeline to break181

down ultra-long generation tasks into manageable182

subtasks. Similarly, RAL-Writer (Zhang et al.,183

2025) employs retrieval-augmented generation to184

mitigate the "lost-in-the-middle" issue. These ap-185

proaches depend on external mechanisms rather186

than enhancing the model’s inherent capabilities.187

In contrast, our work focuses on improving the188

model’s intrinsic ability to generate high-quality189

long texts.190

Methods focusing on model training itself have191

shown promise. For instance, Self-Lengthen (Quan192

et al., 2024) presents an iterative training frame-193

work that expands responses through iterative SFT194

without auxiliary data, using two models to itera-195

tively produce longer responses. However, this 196

approach still relies on SFT, which may suffer 197

from teacher-forcing issues in long-text generation. 198

LongWriter (Bai et al., 2025) demonstrates that 199

incorporating extended-output datasets into model 200

alignment can unlock longer generation capabili- 201

ties, and finds that DPO training outperforms SFT 202

when using the AgentWrite-constructed dataset. 203

Suri (Pham et al., 2024) explores multi-constraint 204

instruction following for long-form text generation, 205

proposing the I-ORPO algorithm, which still re- 206

quires paired preference data. 207

Our proposed GRACE-KTO stands out with 208

a semi-online framework that transforms KTO’s 209

binary signals into dynamically calibrated intra- 210

group rewards, removing the need for paired pref- 211

erence data that PPO (Ouyang et al., 2022), DPO 212

(Rafailov et al., 2023), and ORPO (Hong et al., 213

2024) depend on. By aggregating responses to 214

identical queries and adjusting sample importance 215

via group-wise and global normalization, GRACE- 216

KTO offers a more nuanced approach that better 217

reflects varying quality degrees. This makes it more 218

efficient and effective for long-text generation. 219

3 Methodology 220

In this section, we introduce GRACE-KTO, our 221

proposed framework for enhancing the quality of 222

long-text generation. As depicted in Figure 2, 223

GRACE-KTO refines the conventional binary feed- 224

back of KTO through group-wise adaptive cali- 225
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bration. This process enriches the training infor-226

mation by capturing diverse quality degrees. Our227

semi-online training approach not only improves228

sampling efficiency but also outperforms purely229

offline training. By using the training set as seed230

data and employing query generation to construct231

an alignment training dataset, GRACE-KTO lever-232

ages the model’s own knowledge to enhance its233

performance. Furthermore, by extending the con-234

text window, we enable the generation of longer235

texts while maintaining low perplexity.236

3.1 SFT for Instruction Following237

We propose a specialized system prompt to guide238

the model in generating well-structured long-form239

texts for formal document requests, with further de-240

tails provided in Appendix A. The prompt instructs241

the model to first generate a summary and outline,242

followed by the complete document, with each sec-243

tion enclosed within designated tags. Additionally,244

we have reformatted the SFT dataset to incorpo-245

rate these elements, which not only enhances the246

model’s ability to adhere to instructions but also247

simplifies the subsequent evaluation of generated248

content through regular expression extraction.249

3.2 Query Generation with Seed Data250

To prevent overfitting from reusing SFT queries, we251

construct new queries for the alignment phase. We252

treat the training set queries as seed data and use a253

large language model to generate new alignment-254

phase queries. Specifically, we uniformly sample255

five queries from the training set as examples and256

use a prompt to direct a large language model to257

create new, theme-related long-text requests. The258

new queries, formatted similar to the examples,259

diversify our dataset, ensuring broad topic and in-260

tent coverage for robust training. For a detailed261

description of the prompts, readers are referred to262

Appendix B.263

3.3 Multi-Response Sampling and Quality264

Assessment265

For each collected query Qi, we generate m diverse266

responses Ai
1, A

i
2, . . . , A

i
m using top-p sampling.267

Using regular expressions, we extract the summary268

Si
j , outline Oi

j , and document Di
j from each re-269

sponse Ai
j , i.e., Si

j , O
i
j , D

i
j ≜ extract(Ai

j). These270

extracted components facilitate subsequent quality271

evaluations across several dimensions, detailed as272

follows:273

Content Length (L). The content length L(Ai
j) 274

measures the richness of the response Ai
j by count- 275

ing the number of tokens in the extracted document 276

Di
j : 277

L(Ai
j) = len(tokenizer(Di

j)). (1) 278

Expression Diversity (E). The expression diver- 279

sity E(Ai
j), reflecting lexical variation in document 280

Di
j , is defined as the percentage of unique n-grams 281

relative to the total n-grams in Di
j : 282

E(Ai
j) =

Nunique(D
i
j)

Ntotal(D
i
j)

× 100%, (2) 283

where Nunique(D
i
j) is the count of unique n-grams 284

in Di
j , and Ntotal(D

i
j) is the total number of n- 285

grams in Di
j . 286

Professionalism (P ). The professionalism score 287

P (Ai
j) evaluates the domain specificity of docu- 288

ment Di
j by comparing the perplexity of two lan- 289

guage models: a general foundation model MG 290

and its domain-adapted counterpart MD, obtained 291

via continual pretraining on domain-specific data. 292

The metric is defined as: 293

P (Ai
j) = PMG

(Di
j)− PMD

(Di
j), (3) 294

where PM (Di
j) represents the perplexity of Di

j as 295

assessed by model M . The domain-adapted model 296

MD, building on the general knowledge of MG, 297

shows lower perplexity for professional terminol- 298

ogy due to domain-specific pretraining. A higher 299

P (Ai
j) indicates better alignment with the target 300

domain’s linguistic norms. 301

Relevance (R). The relevance score combines 302

summary-level (Rs) and document-level (Rd) com- 303

ponents computed between query Qi and response 304

components Si
j /D

i
j . Following BGE-M3 (Chen 305

et al., 2024), Rs and Rd can be computed as 306

Rs(A
i
j) = 1.0rSdense + 0.3rSlex + 1.0rSmul

Rd(A
i
j) = 0.15rDdense + 0.5rDlex + 0.35rDmul,

(4) 307

where rdense, rlex, rmul represent the similarity 308

scores from Dense Retrieval, Lexical Retrieval, 309

and Multi-Vector Retrieval methods introduced in 310

(Chen et al., 2024), respectively. Superscripts S 311

and D denote similarities computed between: 1) 312

Qi-Si
j for summary-level (rSdense, r

S
lex, r

S
mul) and 2) 313

Qi-Di
j for document-level (rDdense, r

D
lex, r

D
mul). For 314

further implementation details of these automatic 315

metrics, please see Appendix C. 316
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To establish comparative quality assessment317

within query groups, we propose a non-parametric318

rank sum method. For each query Qi with m candi-319

date responses {Ai
1, ..., A

i
m}, the composite score320

is computed as:321

ρ
(i,j)
total =ρ

(i,j)
L + ρ

(i,j)
E + ρ

(i,j)
P

+0.8ρ
(i,j)
Rd

+ 0.2ρ
(i,j)
Rs

+ ρ
(i,j)
−PG

,
(5)322

where ρ
(i,j)
X ∈ {1, ...,m} denotes the rank posi-323

tion of response Ai
j based on metric X within its324

query group Qi, with lower ranks indicating better325

performance. The weighted combination coeffi-326

cients (0.8/0.2) reflect the relative importance of327

document-level versus summary-level relevance,328

reflecting the greater emphasis on document-level329

relevance while acknowledging that summary-level330

relevance can aid in generating a more relevant331

document. Notably, to constrain our model from332

deviating too much from the reference model, we333

also add the perplexity term ρ
(i,j)
−PG

into ρ
(i,j)
total .334

The rank-sum method offers inherent robustness335

to non-uniform metric distributions and extreme336

values, avoiding the sensitivity of linear normal-337

ization methods like z-score or min-max normal-338

ization to skewed scales. By converting absolute339

scores into ordinal ranks, it achieves scale invari-340

ance while preserving interpretable relative com-341

parisons among responses within the same query342

group. In this non-parametric framework, lower343

aggregate ranks indicate superior holistic quality.344

3.4 Group-Reward Adaptive Calibration345

Building upon the KTO algorithm, we introduce346

Group-Reward Adaptive Calibration to refine train-347

ing signals for long-text generation. The method348

transforms binary rewards into dynamic quality-349

aware rewards through two key operations:350

Group-wise Reward Calibration. For each351

query group Qi with m responses {Ai
1, . . . , A

i
m},352

we convert the rank-sum metric ρ
(i,j)
total into normal-353

ized rewards Zi
j via two operations: polarity in-354

version and intra-group standardization. The cali-355

brated reward is computed as:356

Zi
j =

−ρ
(i,j)
total − µ

(i)
(−ρ)

σ
(i)
(−ρ)

, (6)357

where the group statistics are derived from the358

negated rank-sums: 359

µ
(i)
(−ρ) =

1

m

m∑
k=1

(−ρ
(i,k)
total ),

σ
(i)
(−ρ) =

√√√√ 1

m

m∑
k=1

(
−ρ

(i,k)
total − µ

(i)
(−ρ)

)2
.

(7) 360

This transformation ensures higher original quality 361

(lower ρtotal) translates to higher rewards. Mean- 362

time, it normalizes the response rewards of dif- 363

ferent queries onto the same scale, which shares 364

similar spirit with GRPO (Shao et al., 2024), en- 365

suring the comparability of response quality across 366

different queries. 367

Global Normalization. Within this phase, the 368

z-normalized rewards Zi
j are subjected to a polarity- 369

aware mass redistribution process encompassing 370

the entire dataset. For instances where samples are 371

positive, characterized by Zi
j ≥ 0, the correspond- 372

ing weights are redistributed in accordance with 373

the following formulation: 374

W i
j =

Zi
j∑

(k,l)∈Ω+ Zk
l

· |Ω+|,

Ω+ = {(k, l)|Zk
l ≥ 0}.

(8) 375

Conversely, for negative samples where Zi
j < 0, 376

their weights are adjusted through scaling by the 377

magnitude of their deviations, as expressed below: 378

W i
j = −

Zi
j∑

(k,l)∈Ω−(Zk
l )

· |Ω−|,

Ω− = {(k, l)|Zk
l < 0}.

(9) 379

This globally applied scaling mechanism ensures 380

that the summation of weights for positive samples 381

remains unchanged at |Ω+|, and likewise, the sum- 382

mation of weights for negative samples is preserved 383

at −|Ω−|. 384

3.5 Semi-Online Training Strategy 385

Our semi-online framework employs periodic 386

dataset renewal. In each iteration, the model gen- 387

erates K new queries, replacing the previous set 388

to construct the GRACE-KTO dataset DGRACE = 389

{Qi, Ai
j ,W

i
j}Ki=1

m
j=1. Each query Qi is paired with 390

m responses {Ai
1, ..., A

i
j} and associated weights 391

W i
j ∈ R. Positive samples and negative samples 392

are determined by: 393

y(W i
j ) = sign(W i

j ) =

{
+1 W i

j ≥ 0

−1 otherwise.
(10) 394
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Method
Metrics

Avg. Rank
L E P Rs Rd

Baseline 3878.7 (5) 86.58 (5) 0.217 (4) 1.983 (5) 0.982 (5) 4.8
KTO 4903.7 (4) 87.48 (4) 0.213 (5) 1.991 (3) 0.987 (4) 4.0
GRACE (offline) 5137.7 (3) 88.27 (3) 0.223 (3) 1.998 (2) 0.993 (3) 2.8
GRACE (K=500) 5255.1 (2) 88.41 (2) 0.224 (2) 1.989 (4) 0.996 (2) 2.4
GRACE (K=250) 5377.1 (1) 90.01 (1) 0.257 (1) 2.002 (1) 1.003 (1) 1.0

+38.6% +4.0% +18.2% +1.0% +2.2%

Table 1: Performance comparison of different methods across various automatic metrics: L (Content Length), E
(Expression Diversity), P (Professionalism), Rs (Summary-Level Relevance), and Rd (Document-Level Relevance).
The numbers in parentheses indicate the ranking of each method for the corresponding metric. The last row shows
the percentage improvement of GRACE (K=250) over the baseline.

The GRACE-KTO objective integrates our quality-395

aware weighting with the original KTO loss (Etha-396

yarajh et al., 2024):397

LGRACE-KTO(θ) = EDGRACE

[
|W i

j | · λ(W i
j )

·
(
1− σ(βy(W i

j )∆r(Qi, Ai
j))

)]
,

(11)398

where σ denotes the sigmoid function, λ(W i
j ) is399

the weighting function with the value of λ+ and λ−400

being the positive and negative sample coefficients401

(λ+|Ω+| ≈ λ−|Ω−|), and β is a hyperparameter.402

∆r(·) denotes the policy log ratio relative to the403

reference point zref, defined as404

∆r(Qi, Ai
j) = log

πθ(A
i
j |Qi)

πref(Ai
j |Qi)

− zref,

zref = EDGRACE

[
KL(πθ(Ai

j |Qi)∥πref(A
i
j |Qi))

]
.

(12)405

Here, πθ represents the current model, πref repre-406

sents the reference model and the KL term repre-407

sents the KL divergence between the model and408

reference model policies. By incorporating this409

reflection of response quality, W i
j provides richer410

information during training.411

3.6 Context Extension via YaRN412

During inference, we utilize YaRN (Peng et al.,413

2024) interpolation integrated in vLLM (Kwon414

et al., 2023) to expand the model’s context window415

to 32k tokens, enabling the generation of longer416

texts while maintaining perplexity.417

4 Experiments 418

4.1 Experimental Settings 419

In our experiments, we employed the SOAEsV2- 420

72B-Chat model provided by (Deng et al., 2025). 421

The model has undergone specialized pretraining 422

and SFT on data related to Chinese state-owned 423

assets and enterprises (SOAEs). Our dataset is 424

derived from the report generation sub-dataset pro- 425

vided in their work. The specific task involves 426

generating theme-related, content-rich, and profes- 427

sional reports based on a given research topic and 428

outline. Specific query examples can be found in 429

Appendix D. 430

Training Details. To adapt the model to our task, 431

we first modify the prompt-response format to bet- 432

ter align with the expected instruction-following 433

behavior, and conduct SFT using a constant learn- 434

ing rate of 1× 10−6 with full-parameter updates. 435

To ensure consistency across different alignment 436

methods, we controlled the total number of queries 437

used for training KTO, GRACE-KTO, and their 438

variants to be 1000. For each query, we gener- 439

ated m = 8 responses. Responses that could be 440

matched using regular expressions were grouped to- 441

gether. Unmatched responses were simply treated 442

as negative samples with W i
j = −1. For the train- 443

ing with these methods, we adopted 4-bit QLoRA 444

(Dettmers et al., 2023) to improve memory effi- 445

ciency and scalability. The LoRA rank was set to 446

64, and the learning rate was initialized at 5×10−6, 447

followed by a cosine annealing schedule down to 448

1×10−6, with a warm-up ratio of 0.1. The GRACE- 449

KTO loss employed a hyper-parameter β = 0.05. 450

During training, we applied the auxiliary SFT loss 451

to positive samples with a weight of µ = 0.1. All 452

models were trained for one epoch with a batch 453
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Method
Metrics

Avg. Avg. Rank
CAR TF IDA SC PE

Baseline 80.27 (5) 82.90 (4) 72.15 (5) 70.75 (1) 67.31 (5) 74.68 4.0
KTO 81.89 (4) 83.03 (2) 72.91 (4) 69.08 (5) 68.22 (4) 75.03 3.8
GRACE (offline) 82.73 (2) 83.02 (3) 74.71 (3) 69.42 (4) 68.43 (3) 75.66 3.0
GRACE (K=500) 82.33 (3) 82.87 (5) 74.91 (2) 69.94 (3) 69.64 (1) 75.94 2.8
GRACE (K=250) 83.22 (1) 83.68 (1) 75.59 (1) 70.59 (2) 69.54 (2) 76.52 1.4

Labeled Answer 82.02 80.67 74.04 63.65 67.02 73.48 -

Table 2: GPT-4o evaluations of different methods across multiple dimensions: CAR (Content Accuracy & Rel-
evance), TF (Tone & Formality), IDA (Idea Development & Argumentation), SC (Structure & Clarity), and PE
(Persuasiveness & Effectiveness)

size of 8. We further applied FlashAttention V2454

(Dao, 2023) to accelerate attention computation455

and optimize training throughput. All experiments456

were conducted on 8 × A800 80G GPU.457

Evaluation details. We computed automatic458

metrics on the test set as detailed in Section 3.3.459

To further evaluate our model’s responses, we em-460

ployed a LLM-as-a-Judge method using GPT-4o461

(Achiam et al., 2023). The evaluation focused on462

five key criteria: Content Accuracy & Relevance463

(CAR), Tone & Formality (TF), Idea Development464

& Argumentation (IDA), Structure & Clarity (SC),465

and Persuasiveness & Effectiveness (PE). These466

dimensions are often subjective and complex, mak-467

ing them difficult to quantify with traditional met-468

rics. Using GPT-4o for evaluation offers a more469

nuanced assessment than conventional automatic470

metrics alone. The detailed prompt is provided471

in Appendix F. To derive the final score, we con-472

verted the average score from these dimensions into473

a 0-100 scale by multiplying by 10, enabling a com-474

prehensive quantitative assessment of our model’s475

response quality.476

4.2 Main Results477

Comprehensive Performance Evaluation. Fig-478

ure 1 shows the z-score normalized performance479

across 10 metrics (5 automatic + 5 LLM-as-a-480

Judge), based on Tables 1 and 2. GRACE-KTO481

(K=250) achieves the highest z-scores in most di-482

mensions, excelling in professionalism and Tone483

& Formality. Automatic metrics in Table 1 fur-484

ther shows our GRACE-KTO (K=250) produces485

a text length of 5377.1 tokens, a expression di-486

versity score of 90.01, professionalism of 0.257,487

summary relevance of 2.002, and document rele-488

vance of 1.003, with the lowest average rank of 1.0.489

Compared to the SFT-only baseline, it shows im- 490

provements of 38.6% in length, 4.0% in diversity, 491

18.2% in professionalism, 1.0% in summary-level 492

relevance, and 2.2% in document-level relevance. 493

These results demonstrate GRACE-KTO’s superi- 494

ority over vanilla KTO. 495

Analysis of LLM-as-a-Judge Evaluation Re- 496

sults. Table 2 presents GPT-4o evaluations across 497

five quality dimensions. GRACE-KTO (K=250) 498

achieves the highest scores in CAR, TF, and IDA, 499

with competitive performance in SC and PE. It at- 500

tains the highest overall average score of 76.52 and 501

the best average rank of 1.4. This demonstrates 502

the effectiveness of our method in enhancing long- 503

form generation quality. 504

Regarding evaluation results of labeled answers, 505

it is important to note that in long-text generation 506

task, it does not always represent the optimal re- 507

sponse. This could be due to potential issues in 508

the data labeling process, such as incomplete clean- 509

ing, or inherent ambiguities in long-text generation 510

tasks where a single definitive answer may not exist. 511

Consequently, the labeled data might not capture 512

all aspects of high-quality responses, which further 513

underscores the value of using advanced methods 514

like GRACE-KTO for long-text generation tasks. 515

Comparison of Context Window Extension 516

Methods. Table 3 compares three context 517

window extension strategies—Extrapolation, Dy- 518

namic NTK (emozilla), and YaRN (Peng et al., 519

2024)—across various context lengths. With con- 520

text lengths of 16k and 32k, YaRN achieves the 521

lowest perplexity and the highest token throughput, 522

demonstrating superior efficiency and generation 523

quality. While Extrapolation shows moderate per- 524

formance, Dynamic NTK suffers from higher per- 525

plexity and shorter generated contents, indicating 526
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Extension Method
8k (1×) 16k (2×) 32k (4×) 64k (8×)

PPL #Tokens PPL #Tokens PPL #Tokens

Extrapolation 3.413 5377.1 3.321 6593.5 3.282 7238.8 -
Dynamic NTK 3.413 5377.1 3.549 6406.7 3.788 5842.8 -
YaRN 3.413 5377.1 3.242 6614.9 3.188 8048.1 OOM

Table 3: Performance comparison of different context window extension methods across various window sizes. PPL
denotes perplexity, and #Tokens represents the number of tokens that can be processed.

less effective context extension. Despite encounter-527

ing an out-of-memory issue at 64k, YaRN’s strong528

performance at smaller context lengths establishes529

it as the most effective method. Its ability to extend530

context window size makes YaRN our preferred531

choice.532

4.3 Ablation Studies533

Effectiveness of Group-Reward Adaptive Cal-534

ibration. As shown in Tables 1 and 2, of-535

fline GRACE-KTO consistently outperforms KTO536

across various evaluation metrics. For example, it537

achieves a notable increase in text length (5137.7538

versus 4903.7), a higher diversity score (88.27 ver-539

sus 87.48), and a significant improvement in Con-540

tent Accuracy & Relevance (82.73 compared to541

81.89). These enhancements can be attributed to542

the Group-Reward Adaptive Calibration mecha-543

nism. Unlike KTO, which relies on binary pref-544

erence labels, offline GRACE-KTO incorporates545

nuanced, rank-based signals that better capture the546

degree of response quality. This richer feedback547

allows the model to more effectively learn from548

and optimize long-form text generation.549

Effectiveness of Semi-Online Strategy. As indi-550

cated in Tables 1 and 2, the transition from GRACE-551

KTO (offline) to GRACE-KTO (K=500), and sub-552

sequently to GRACE-KTO (K=250), underscores553

the advantages of our semi-online methodology.554

As previously established, GRACE-KTO (offline)555

already surpasses the baseline and KTO. Yet, the556

integration of the semi-online mechanism at K=500557

further elevates performance across most metrics.558

The most pronounced enhancements are observed559

at K=250, demonstrating that a more aggressive560

semi-online strategy intensifies optimization. This561

configuration highlights the efficacy of our semi-562

online approach.563

Training Dynamics of GRACE-KTO (K=250).564

Table 4 and Figure 3 illustrate the training trajectory565

of GRACE-KTO (K=250). As training progresses566

from 0% to 100%, the model demonstrates a grad-567

ual improvement across all five automatic metrics. 568

These findings suggest that if the model can con- 569

tinuously generate diverse queries, its performance 570

has the potential to be further enhanced. 571

0 25 50 75 100
Training Progress (%)

1.0

0.5

0.0

0.5

1.0

1.5

Z-
sc

or
e

Metrics:
Content Length
Expression Diversity
Professionalism
Summary-Level Relevance
Document-Level Relevance

Figure 3: Z-score Normalized Metrics Dynamics Dur-
ing GRACE-KTO Training

5 Conclusion 572

In this paper, we introduce GRACE-KTO, a semi- 573

online framework designed to enhance the qual- 574

ity of long-text generation. GRACE-KTO aggre- 575

gates responses into groups and calculates rank- 576

sum scores across multiple linguistic quality di- 577

mensions. This allows it to adjust intra-group re- 578

wards and adaptively redistribute sample impor- 579

tance through group-wise and global normaliza- 580

tion, fully utilizing KTO’s flexibility with unpaired 581

data. We implement a semi-online training strat- 582

egy to minimize expensive online sampling costs 583

and reduce reliance on labeled data by generating 584

queries from seed data. Additionally, we extend the 585

context window to 32k tokens using YaRN during 586

inference. Experiments show GRACE-KTO out- 587

performs vanilla KTO. Overall, our work provides 588

a new and effective approach to long-context gen- 589

eration. Future research will focus on enhancing 590

the reward strategy of GRACE-KTO by integrating 591

more structured evaluation signals, and applying it 592

to multi-domain text generation. 593
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6 Limitations594

In this work, we acknowledge several limitations595

that offer avenues for future improvement. Firstly,596

the quality and diversity of LLM-generated queries597

are critical yet constrained by the limited seed598

questions, potentially limiting the generation of di-599

verse and high-quality training data. Secondly, con-600

strained by application-driven requirements, our601

present experiments are exclusively conducted on602

Chinese data.603

To solve these limitations, future directions604

should focus on:605

• Scaling training data generation through hy-606

brid human-AI collaboration frameworks to607

enhance both diversity and volume.608

• Investigating cross-lingual capabilities be-609

yond the current Chinese-language focus.610

These enhancements could further strengthen611

GRACE-KTO’s robustness for industrial-scale612

long-text generation scenarios.613

References614

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama615
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,616
Diogo Almeida, Janko Altenschmidt, Sam Altman,617
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-618
cal report. arXiv preprint arXiv:2303.08774.619

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu,620
Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. 2025.621
Longwriter: Unleashing 10,000+ word generation622
from long context LLMs. In The Thirteenth Interna-623
tional Conference on Learning Representations.624

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu625
Lian, and Zheng Liu. 2024. Bge m3-embedding:626
Multi-lingual, multi-functionality, multi-granularity627
text embeddings through self-knowledge distillation.628
arXiv preprint arXiv:2402.03216.629

Tri Dao. 2023. Flashattention-2: Faster attention with630
better parallelism and work partitioning. arXiv631
preprint arXiv:2307.08691.632

Jingyang Deng, Ran Chen, Jo-Ku Cheng, and Jinwen633
Ma. 2025. Soaesv2-7b/72b: Full-pipeline optimiza-634
tion for state-owned enterprise llms via continual635
pre-training, domain-progressive sft and distillation-636
enhanced speculative decoding. arXiv preprint637
arXiv:2505.04723.638

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and639
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-640
ing of quantized LLMs. In Thirty-seventh Confer-641
ence on Neural Information Processing Systems.642

emozilla. Dynamically scaled rope further increases. 643
https://www.reddit.com/r/LocalLLaMA/ 644
comments/14mrgpr/dynamically_scaled_rope_ 645
further_increases/. Accessed: 2025-09-16. 646

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, 647
Dan Jurafsky, and Douwe Kiela. 2024. Model align- 648
ment as prospect theoretic optimization. In Forty-first 649
International Conference on Machine Learning. 650

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 651
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu 652
Feng, Hanlin Zhao, and 1 others. 2024. Chatglm: A 653
family of large language models from glm-130b to 654
glm-4 all tools. arXiv preprint arXiv:2406.12793. 655

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo: 656
Monolithic preference optimization without refer- 657
ence model. In Proceedings of the 2024 Conference 658
on Empirical Methods in Natural Language Process- 659
ing, pages 11170–11189. 660

Ishita Kumar, Snigdha Viswanathan, Sushrita Yerra, 661
Alireza Salemi, Ryan A Rossi, Franck Dernoncourt, 662
Hanieh Deilamsalehy, Xiang Chen, Ruiyi Zhang, 663
Shubham Agarwal, and 1 others. 2024. Longlamp: 664
A benchmark for personalized long-form text genera- 665
tion. arXiv preprint arXiv:2407.11016. 666

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 667
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 668
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 669
memory management for large language model serv- 670
ing with pagedattention. In Proceedings of the 29th 671
Symposium on Operating Systems Principles, pages 672
611–626. 673

Bolun Li, Zhihong Sun, Tao Huang, Hongyu Zhang, 674
Yao Wan, Ge Li, Zhi Jin, and Chen Lyu. 2024. Ir- 675
coco: Immediate rewards-guided deep reinforcement 676
learning for code completion. Proceedings of the 677
ACM on Software Engineering, 1(FSE):182–203. 678

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 679
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 680
Sandhini Agarwal, Katarina Slama, Alex Gray, John 681
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 682
Maddie Simens, Amanda Askell, Peter Welinder, 683
Paul Christiano, Jan Leike, and Ryan Lowe. 2022. 684
Training language models to follow instructions with 685
human feedback. In Advances in Neural Information 686
Processing Systems. 687

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico 688
Shippole. 2024. YaRN: Efficient context window ex- 689
tension of large language models. In The Twelfth 690
International Conference on Learning Representa- 691
tions. 692

Chau Pham, Simeng Sun, and Mohit Iyyer. 2024. Suri: 693
Multi-constraint instruction following in long-form 694
text generation. In Findings of the Association for 695
Computational Linguistics: EMNLP 2024, pages 696
1722–1753. 697

9

https://openreview.net/forum?id=kQ5s9Yh0WI
https://openreview.net/forum?id=kQ5s9Yh0WI
https://openreview.net/forum?id=kQ5s9Yh0WI
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://openreview.net/forum?id=iUwHnoENnl
https://openreview.net/forum?id=iUwHnoENnl
https://openreview.net/forum?id=iUwHnoENnl
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u


Shanghaoran Quan, Tianyi Tang, Bowen Yu, An Yang,698
Dayiheng Liu, Bofei Gao, Jianhong Tu, Yichang699
Zhang, Jingren Zhou, and Junyang Lin. 2024. Lan-700
guage models can self-lengthen to generate long texts.701
arXiv preprint arXiv:2410.23933.702

Haoran Que, Feiyu Duan, Liqun He, Yutao Mou,703
Wangchunshu Zhou, Jiaheng Liu, Wenge Rong,704
Zekun Moore Wang, Jian Yang, Ge Zhang, and 1705
others. 2024. Hellobench: Evaluating long text gen-706
eration capabilities of large language models. arXiv707
preprint arXiv:2409.16191.708

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-709
pher D Manning, Stefano Ermon, and Chelsea Finn.710
2023. Direct preference optimization: Your language711
model is secretly a reward model. In Advances in712
Neural Information Processing Systems, volume 36,713
pages 53728–53741. Curran Associates, Inc.714

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,715
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan716
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-717
math: Pushing the limits of mathematical reason-718
ing in open language models. arXiv preprint719
arXiv:2402.03300.720

Amos Tversky and Daniel Kahneman. 1992. Advances721
in prospect theory: Cumulative representation of un-722
certainty. Journal of Risk and Uncertainty, 5(4):297–723
323.724

Ronald J. Williams and David Zipser. 1989. A learning725
algorithm for continually running fully recurrent neu-726
ral networks. Neural Computation, 1(2):270–280.727

Yuhao Wu, Ming Shan Hee, Zhiqiang Hu, and Roy728
Ka-Wei Lee. 2025. Longgenbench: Benchmark-729
ing long-form generation in long context LLMs. In730
The Thirteenth International Conference on Learning731
Representations.732

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,733
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,734
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.735
5 technical report. arXiv preprint arXiv:2412.15115.736

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu,737
Fei Huang, Haoyan Huang, Jiandong Jiang, Jian-738
hong Tu, Jianwei Zhang, Jingren Zhou, and 1 others.739
2025. Qwen2. 5-1m technical report. arXiv preprint740
arXiv:2501.15383.741

Junhao Zhang, Richong Zhang, Fanshuang Kong,742
Ziyang Miao, Yanhan Ye, and Yaowei Zheng. 2025.743
Lost-in-the-middle in long-text generation: Synthetic744
dataset, evaluation framework, and mitigation. arXiv745
preprint arXiv:2503.06868.746

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan747
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,748
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,749
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging750
LLM-as-a-judge with MT-bench and chatbot arena.751
In Thirty-seventh Conference on Neural Information752
Processing Systems Datasets and Benchmarks Track.753

A System Prompt for Structured 754

Long-Text Generation 755

System Prompt for Structured Long-Text Generation

A conversation between User and Assistant. User presents a
request for a formal document, and the Assistant generates a
comprehensive and well-structured long-form text based on the
request. The assistant first conceives a summary and outline,
and then produces the complete document. The summary,
outline and document are enclosed within
<summary></summary>, <outline></outline> and
<answer></answer> tags, respectively, i.e.,
<summary>summary here</summary><outline>outline
here</outline><answer>document here</answer>

756

B Prompt for Query Generation 757

Prompt for Query Generation (Translated from Chi-
nese)

I want to generate question-answer pairs for the long-text
generation task of my Large Language Model. Please generate
new long-text generation requests that users may ask around the
topics covered by the following examples. The output format
should be similar to the examples.
query #1: {queries[0]}
query #2: {queries[1]}
query #3: {queries[2]}
query #4: {queries[3]}
query #5: {queries[4]}
Please organize the output in Python list format and use
queries.extend(generated_query) to update the output.

758

C Implementation Details of Automatic 759

Metrics 760

C.1 Professionalism Score Implementation 761

As described in Section 3.3, the professionalism 762

score computation employs the following model 763

configuration: 764

• General-Purpose Model MG: Qwen2.5-7B 765

(Yang et al., 2024) (base model without do- 766

main adaptation or task-specific tuning) 767

• Domain Expert Model MD: SOAEsV2-7B 768

(Deng et al., 2025) (domain-adapted model 769

continual pre-trained from Qwen2.5-7B on 770

domain-specific corpora) 771

Both models perform zero-shot scoring of re- 772

sponses, with the final professionalism score com- 773

puted as a weighted combination of their individual 774

scores. 775

C.2 Relevance Score Components 776

The relevance computation consists of three com- 777

plementary retrieval approaches introduced in 778

(Chen et al., 2024), using their BGE-m3 model: 779

• Dense Retrieval: Given input query q and 780

passage p, their representations are derived 781
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Training Progress
Metrics

Avg. Rank
L E P Rs Rd

Baseline (0%) 3878.7 (5) 86.58 (5) 0.217 (5) 1.983 (4) 0.982 (5) 4.8
GRACE (25%) 4166.5 (4) 87.63 (4) 0.250 (3) 1.978 (5) 0.988 (4) 4.0
GRACE (50%) 4856.0 (2) 87.86 (3) 0.225 (4) 1.987 (3) 0.998 (2) 2.8
GRACE (75%) 4833.1 (3) 89.16 (2) 0.254 (2) 1.991 (2) 0.991 (3) 2.4
GRACE (100%) 5377.1 (1) 90.01 (1) 0.257 (1) 2.002 (1) 1.003 (1) 1.0

Table 4: Performance of GRACE-KTO (K=250) at different training stages. Automatic metrics include: L (Content
Length), E (Expression Diversity), P (Professionalism), Rs (Summary-Level Relevance), and Rd (Document-Level
Relevance).

from encoder hidden states:782

eq = norm(Hq[0]),

ep = norm(Hp[0]),

rdense = ⟨ep, eq⟩ = e⊤p eq.

(13)783

where Hq[0] and Hp[0] denote the [CLS]784

token embeddings, and norm(·) is L2-785

normalization.786

• Lexical Retrieval: Term weights are learned787

through neural projections:788

wqt = max
i∈pos(t)

ReLU(W⊤
lexHq[i]),

wpt = max
j∈pos(t)

ReLU(W⊤
lexHp[j]),

rlex =
∑
t∈q∩p

wqt · wpt .

(14)789

where pos(t) indicates positions of term t,790

Wlex ∈ Rd is the learnable weight vector.791

• Multi-Vector Retrieval: Utilizes full token792

embeddings with projection:793

Eq = norm(W⊤
mulHq),

Ep = norm(W⊤
mulHp),

rmul =
1

N

N∑
i=1

max
1≤j≤M

Eq[i]
⊤Ep[j].

(15)794

where Wmul ∈ Rd×d is the projection matrix,795

N and M are query/passage lengths.796

In our framework, the query corresponds to Qi797

while passages are either summaries Si
j or docu-798

ments Di
j .799

D Example of Query for Report Writing 800

Task 801

An Example of Query for Report Writing Task
(Traslated from Chinese)

Please write a report titled "Management Practice of
Grid-Source Integration Digitalization Construction in
Northeast Combined Heat and Power (CHP) Enterprises",
covering the following sections:
1. Background
* Company Profile and Reform Background
* Dilemmas before Separation and Transfer
* Challenges after Separation and Transfer
2. Connotation of Grid-Source Integration Digitalization
Construction Management Practice
* Digitalization and Intelligent Management
* System Framework
* Multiple Mechanisms
3. Practices of Grid-Source Integration Digitalization
Construction Management
* Platform Development

* Digitalization and Intelligent Management Platform
Construction

* Big Data Analysis Platform
* Precision Control
* Secondary Network Hydraulic Balance
* Pilot Operation of Model Demonstration Zone

* Management System and Mechanism Innovation
* Management System Innovation
* Performance Incentive Mechanism Innovation
* Supervision and Management Innovation
* Environmental Protection Red Line Management System

4. Implementation Effects of Grid-Source Integration
Digitalization Construction Management Practice
* Preservation and Appreciation of State-owned Assets and
Livelihood Protection
* Safety and Environmental Standards Compliance
* Innovation in Management System and Mechanism
* Green and Low-carbon Economy
* Green Emission Reduction
* Intelligent Regulation Technology
* Enhanced Social Influence

802

E Detailed Training Dynamics of 803

GRACE-KTO 804

The results in Table 4 show a progressive improve- 805

ment in performance across all metrics as train- 806

ing progresses. The 100% training stage achieves 807

the best performance in all metrics, with the high- 808

est values for content length, expression diver- 809

sity, professionalism, summary-level relevance, 810

and document-level relevance. The average rank 811

also improves, reaching the highest value of 1.0 at 812

100% training progress. 813
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F Prompt for LLM-as-a-Judge814

Evaluation using GPT-4o815

Prompt for LLM-as-a-Judge Evaluation

You are an expert evaluator of written responses on the topic of
Chinese state-owned assets and enterprises (SOEs). Your role is
to critically assess a candidate’s response to a writing prompt,
focusing on how effectively it addresses the original task. Your
evaluation should be rigorous—not lenient—and should
highlight meaningful distinctions in quality. Assess the
response according to the following criteria, assigning each a
score from 1 to 10 (1 = extremely poor, 5 = average, 10 =
outstanding): Evaluation Criteria:

1. Content Accuracy and Relevance: Does the response
demonstrate a sound and accurate understanding of the
issues raised, particularly Chinese government policies,
official statements, and reform priorities concerning
SOEs and state-owned assets?

2. Tone and Formality: Is the tone appropriate for an
official or institutional context? Does it maintain a
consistent level of formality throughout?

3. Idea Development and Argumentation: Are
viewpoints clearly articulated and well-supported with
logical reasoning, evidence, or policy references? Are
the ideas developed thoroughly and insightfully?

4. Structure and Clarity: Is the writing logically
organized, easy to follow, and coherent? Is the
expression varied yet precise?

5. Persuasiveness and Effectiveness: Does the response
communicate its points compellingly and persuasively,
while maintaining clarity and professionalism?

<User Request >instruction </User Request ><Response
>response </Response >Instructions: First, provide a concise
overall analysis of the response, noting major strengths and
weaknesses. Then, deliver a detailed evaluation in strict JSON
format as follows: "Analysis": "Your analysis here.", "Content
Accuracy and Relevance": score, "Tone and Formality": score,
"Idea Development and Argumentation": score, "Structure and
Clarity": score, "Persuasiveness and Effectiveness": score

816
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