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Abstract

In real-world decision making tasks, it is critical for data-driven reinforcement
learning methods to be both stable and sample efficient. On-policy methods typi-
cally generate reliable policy improvement throughout training, while off-policy
methods make more efficient use of data through sample reuse. In this work, we
combine the theoretically supported stability benefits of on-policy algorithms with
the sample efficiency of off-policy algorithms. We develop policy improvement
guarantees that are suitable for the off-policy setting, and connect these bounds
to the clipping mechanism used in Proximal Policy Optimization. This motivates
an off-policy version of the popular algorithm that we call Generalized Proxi-
mal Policy Optimization with Sample Reuse. We demonstrate both theoretically
and empirically that our algorithm delivers improved performance by effectively
balancing the competing goals of stability and sample efficiency.

1 Introduction

In recent years, model-free deep reinforcement learning has been used to successfully solve complex
simulated control tasks [4]. Unfortunately, real-world adoption of these techniques remains limited.
High-stakes real-world decision making settings demand methods that deliver stable, reliable perfor-
mance throughout training. In addition, real-world data collection can be difficult and expensive, so
learning must make efficient use of limited data. The combination of these requirements is not an
easy task, as stability and sample efficiency often represent competing interests. Existing model-free
deep reinforcement learning algorithms often focus on one of these goals, and as a result sacrifice
performance with respect to the other.

On-policy reinforcement learning methods such as Proximal Policy Optimization (PPO) [19] deliver
stable performance throughout training due to their connection to theoretical policy improvement
guarantees. These methods are motivated by a lower bound on the expected performance loss at every
update, which can be approximated using samples generated by the current policy. The theoretically
supported stability of these methods is very attractive, but the need for on-policy data and the high-
variance nature of reinforcement learning often requires significant data to be collected between every
update, resulting in high sample complexity and slow learning.
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Off-policy algorithms address the issue of high sample complexity by storing samples in a replay
buffer, which allows data to be reused to calculate multiple policy updates. The ability to reuse samples
improves learning speed, but also causes the distribution of data to shift away from the distribution
generated by the current policy. This distribution shift invalidates the standard performance guarantees
used in on-policy methods, and can lead to instability in the training process. Popular off-policy
algorithms often require various implementation tricks and extensive hyperparameter tuning to control
the instability caused by off-policy data.

By combining the attractive features of on-policy and off-policy methods in a principled way, we
can balance the competing goals of stability and sample efficiency required in real-world decision
making. We consider the popular on-policy algorithm PPO as our starting point due to its theoretically
supported stable performance, and develop an off-policy variant with principled sample reuse that we
call Generalized Proximal Policy Optimization with Sample Reuse (GePPO). Our algorithm is based
on the following main contributions:

1. We extend existing policy improvement guarantees to the off-policy setting, resulting in a
lower bound that can be approximated using data from all recent policies.

2. We develop connections between the clipping mechanism used in PPO and the penalty term
in our policy improvement lower bound, which motivates a generalized clipping mechanism
for off-policy data.

3. We propose an adaptive learning rate method based on the same penalty term that more
closely connects theory and practice.

We provide theoretical evidence that our algorithm effectively balances the goals of stability and
sample efficiency, and we demonstrate the strong performance of our approach through experiments
on high-dimensional continuous control tasks in OpenAI Gym’s MuJoCo environments [3, 21].

2 Related work

On-policy policy improvement methods The goal of monotonic policy improvement was first
introduced by Kakade and Langford [14] in Conservative Policy Iteration, which maximizes a
lower bound on policy improvement that can be constructed using samples from the current policy.
This theory of policy improvement has served as a fundamental building block in the design of
on-policy deep reinforcement learning methods, including the popular algorithms Trust Region
Policy Optimization (TRPO) [17] and Proximal Policy Optimization (PPO) [19]. TRPO achieves
approximate policy improvement by enforcing a Kullback-Leibler (KL) divergence trust region, while
PPO does so by clipping the probability ratio between current and future policies.

Due to the strong performance of TRPO and PPO, there has been substantial interest in better
understanding these methods. Engstrom et al. [5] and Andrychowicz et al. [2] both performed
extensive empirical analysis on the various implementation choices in these algorithms, while other
research has focused on the clipping mechanism used in PPO. Wang et al. [22] and Wang et al. [23]
both proposed modifications to the clipping mechanism based on a KL divergence trust region. To
the best of our knowledge, we are the first to directly relate the clipping mechanism in PPO to the
total variation distance between policies. Wang et al. [23] also proposed a rollback operation to
keep probability ratios close to the clipping range. We accomplish a similar goal by considering an
adaptive learning rate.

Sample efficiency with off-policy data A common approach to improving the sample efficiency
of model-free reinforcement learning is to reuse samples collected under prior policies. Popular
off-policy policy gradient approaches such as Deep Deterministic Policy Gradient (DDPG) [15],
Twin Delayed DDPG (TD3) [8], and Soft Actor-Critic (SAC) [11] accomplish this by storing data in
a replay buffer and sampling from this buffer to calculate policy updates. Note that these methods are
not motivated by policy improvement guarantees, and do not directly control the bias introduced by
off-policy data.

Other approaches have combined on-policy and off-policy policy gradients, with the goal of balancing
the variance of on-policy methods and the bias of off-policy methods [7, 9, 10, 16, 24]. Gu et al. [10]
demonstrated that the bias introduced by off-policy data is related to the KL divergence between the
current policy and the behavior policy used to generate the data. Fakoor et al. [7] considered a related
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KL divergence as a penalty term in their objective, while Wang et al. [24] approximately controlled
this KL divergence by applying a trust region around a target policy. These methods are related to the
penalty term that appears in our generalized policy improvement lower bound, which can be bounded
by a penalty that depends on KL divergence.

Finally, there have been heuristic attempts to incorporate off-policy data into PPO [13, 20]. However,
unlike our approach, these methods do not account for the distribution shift caused by off-policy data
that invalidates the theoretical support for PPO.

3 Preliminaries

Reinforcement learning framework We consider an infinite-horizon, discounted Markov Decision
Process (MDP) defined by the tuple (S,A, p, r, ρ0, γ), where S is the set of states, A is the set of
actions, p : S×A → ∆S is the transition probability function, r : S×A → R is the reward function,
ρ0 is the initial state distribution, and γ is the discount rate.

We model the agent’s decisions as a stationary policy π : S → ∆A. Our goal is to choose a policy that
maximizes the expected total discounted rewards J(π) = Eτ∼π [

∑∞
t=0 γ

tr(st, at)], where τ ∼ π
represents a trajectory sampled according to s0 ∼ ρ0, at ∼ π( · | st), and st+1 ∼ p( · | st, at).
A policy π also induces a normalized discounted state visitation distribution dπ, where dπ(s) =
(1− γ)

∑∞
t=0 γ

tP(st = s | ρ0, π, p). We write the corresponding normalized discounted state-action
visitation distribution as dπ(s, a) = dπ(s)π(a | s), where we make it clear from the context whether
dπ refers to a distribution over states or state-action pairs.

We denote the state value function of π as V π(s) = Eτ∼π [
∑∞

t=0 γ
tr(st, at) | s0 = s], the state-

action value function as Qπ(s, a) = Eτ∼π [
∑∞

t=0 γ
tr(st, at) | s0 = s, a0 = a], and the advantage

function as Aπ(s, a) = Qπ(s, a)− V π(s).

Policy improvement lower bound The starting point in the design of many popular on-policy
algorithms is the following policy improvement lower bound, which was first developed by Kakade
and Langford [14] and later refined by Schulman et al. [17] and Achiam et al. [1]:
Lemma 1 (Achiam et al. [1]). Consider a current policy πk. For any future policy π, we have

J(π)− J(πk) ≥
1

1− γ
E

(s,a)∼dπk

[
π(a | s)
πk(a | s)

Aπk(s, a)

]
− 2γCπ,πk

(1− γ)2
E

s∼dπk

[TV(π, πk)(s)] , (1)

where Cπ,πk = maxs∈S
∣∣Ea∼π(·|s) [A

πk(s, a)]
∣∣ and TV(π, πk)(s) represents the total variation

distance between the distributions π( · | s) and πk( · | s).

We refer to the first term of the lower bound in Lemma 1 as the surrogate objective, and the second
term as the penalty term. Note that we can guarantee policy improvement at every step of the learning
process by choosing the next policy πk+1 to maximize this lower bound. Because the expectations
in Lemma 1 depend on the current policy πk, we can approximate this lower bound using samples
generated by the current policy.

Proximal Policy Optimization PPO, which has become the default on-policy policy optimization
algorithm due to its strong performance and simple implementation, is theoretically motivated by the
policy improvement lower bound in Lemma 1. Rather than directly maximizing this lower bound,
PPO considers the goal of maximizing the surrogate objective while constraining the next policy to
be close to the current policy. In particular, PPO heuristically accomplishes this by considering the
following objective at every policy update:

LPPO
k (π) = E

(s,a)∼dπk

[
min

(
π(a | s)
πk(a | s)

Aπk(s, a), clip

(
π(a | s)
πk(a | s)

, 1− ϵ, 1 + ϵ

)
Aπk(s, a)

)]
,

(2)
where clip(x, l, u) = min(max(x, l), u). As seen in the second term of this objective, PPO constrains
the difference between consecutive policies by removing the incentive for the probability ratio
π(a|s)/πk(a|s) to leave the clipping range [1− ϵ, 1+ ϵ]. Finally, the outer minimization guarantees that
(2) is a lower bound to the surrogate objective in Lemma 1. In practice, (2) is approximated using
samples generated by the current policy πk, and the resulting empirical objective is approximately
optimized at every policy update using minibatch stochastic gradient ascent.
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For a sufficiently small learning rate and sufficiently large number of samples, PPO results in stable
policy improvement throughout the learning process. However, it is well-known that high variance is
a major issue in reinforcement learning, so often the number of samples must be large in order for the
empirical objective to be an accurate estimator of the true objective (2). Because these samples must
be collected under the current policy between every policy update, PPO can be very sample intensive.

4 Generalized policy improvement lower bound

A logical approach to improve the sample efficiency of PPO is to reuse samples from prior policies,
as done in off-policy algorithms. Unfortunately, the distribution shift between policies invalidates
the policy improvement lower bound in Lemma 1, which provides the theoretical support for PPO’s
reliable performance. In order to retain the stability benefits of PPO while reusing samples from prior
policies, we must incorporate these off-policy samples in a principled way. We accomplish this by
developing a generalized policy improvement lower bound that can be approximated using samples
from the last M policies, rather than requiring samples be generated only from the current policy πk:

Theorem 1 (Generalized Policy Improvement Lower Bound). Consider prior policies πk−i, i =
0, . . . ,M−1, where πk represents the current policy. For any choice of distribution ν = [ν0 · · · νM−1]
over the prior M policies and any future policy π, we have

J(π)− J(πk) ≥
1

1− γ
E
i∼ν

[
E

(s,a)∼dπk−i

[
π(a | s)

πk−i(a | s)
Aπk(s, a)

]]

− 2γCπ,πk

(1− γ)2
E
i∼ν

[
E

s∼dπk−i

[TV(π, πk−i)(s)]

]
, (3)

where Cπ,πk and TV(π, πk−i)(s) are defined as in Lemma 1.

Proof. We generalize Lemma 1 to depend on expectations with respect to any reference policy,
and we apply this result M times where the reference policy is each of πk−i, i = 0, . . . ,M − 1,
respectively. Then, the convex combination determined by ν of the resulting M policy improvement
lower bounds is also a lower bound. See the Appendix for a full proof.

Because the expectations in Theorem 1 depend on distributions related to the last M policies, this
lower bound provides theoretical support for extending PPO to include off-policy samples. Note
that Theorem 1 is still a lower bound on the policy improvement between the current policy πk and
a future policy π. This is true because the advantage function in the surrogate objective and the
constant in the penalty term still depend on the current policy πk. However, the visitation distribution,
probability ratio in the surrogate objective, and total variation distance in the penalty term now depend
on prior policies. Finally, the standard policy improvement lower bound in Lemma 1 can be recovered
from Theorem 1 by setting M = 1.

The penalty term in Theorem 1 suggests that we should control the expected total variation distances
between the future policy π and the last M policies. By applying the triangle inequality for total
variation distance to each component of the penalty term, we see that

E
i∼ν

[
E

s∼dπk−i

[TV(π, πk−i)(s)]

]
≤ E

i∼ν

[
E

s∼dπk−i

[TV(π, πk)(s)]

]
+

M−1∑
j=1

M−1∑
i=j

νi E
s∼dπk−i

[TV(πk−j+1, πk−j)(s)] . (4)

The first term on the right-hand side of (4) represents an expected total variation distance between the
current policy πk and the future policy π, while each component of the second term represents an
expected total variation distance between consecutive prior policies. This demonstrates that we can
effectively control the expected performance loss at every policy update by controlling the expected
total variation distance between consecutive policies. We see next that the clipping mechanism in
PPO approximately accomplishes this task.
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5 Clipping mechanism

Connection to penalty term As discussed previously, the clipping mechanism present in the PPO
objective removes the incentive for the probability ratio π(a|s)/πk(a|s) to leave the clipping range
[1− ϵ, 1+ ϵ]. Written differently, the clipping mechanism removes the incentive for the magnitude of∣∣∣∣ π(a | s)

πk(a | s)
− 1

∣∣∣∣ (5)

to exceed ϵ. We now see that (5) is closely related to the penalty term of the standard policy
improvement lower bound in Lemma 1 as follows:

Lemma 2. The expected total variation distance between the current policy πk and the future policy
π that appears in Lemma 1 can be rewritten as

E
s∼dπk

[TV(π, πk)(s)] =
1

2
E

(s,a)∼dπk

[ ∣∣∣∣ π(a | s)
πk(a | s)

− 1

∣∣∣∣ ] . (6)

Proof. See the Appendix.

Therefore, the clipping mechanism in PPO can be viewed as a heuristic that controls the magnitude of
a sample-based approximation of the expectation on the right-hand side of Lemma 2. It accomplishes
this by removing the incentive for (5) to exceed ϵ at all state-action pairs sampled from the state-action
visitation distribution dπk . As a result, the clipping mechanism in PPO approximately bounds the
expected total variation distance between the current policy πk and the future policy π by ϵ/2.

Generalized clipping mechanism for off-policy data We can use this connection between the
clipping mechanism and penalty term in PPO to derive a generalized clipping mechanism suitable for
the off-policy setting. In particular, the decomposition of the off-policy penalty term from Theorem 1
that appears in (4) suggests that we should control the expected total variation distance

E
i∼ν

[
E

s∼dπk−i

[TV(π, πk)(s)]

]
(7)

at each policy update, which can be rewritten as follows:

Lemma 3. The expected total variation distance between the current policy πk and the future policy
π in (7) can be rewritten as

E
i∼ν

[
E

s∼dπk−i

[TV(π, πk)(s)]

]
=

1

2
E
i∼ν

[
E

(s,a)∼dπk−i

[ ∣∣∣∣ π(a | s)
πk−i(a | s)

− πk(a | s)
πk−i(a | s)

∣∣∣∣ ]
]
. (8)

Proof. Apply the same techniques as in the proof of Lemma 2. See the Appendix for details.

The right-hand side of Lemma 3 provides insight into the appropriate clipping mechanism to be
applied in the off-policy setting in order to approximately control the penalty term in the generalized
policy improvement lower bound:

Definition 1 (Generalized Clipping Mechanism). Consider a current policy πk and clipping pa-
rameter ϵ. For a state-action pair generated using a prior policy πk−i, the generalized clipping
mechanism is defined as

clip

(
π(a | s)

πk−i(a | s)
,

πk(a | s)
πk−i(a | s)

− ϵ,
πk(a | s)
πk−i(a | s)

+ ϵ

)
. (9)

Note that the probability ratio for each state-action pair in the off-policy setting begins in the center
of the clipping range for every policy update just as in PPO, where now the center is given by
πk(a|s)/πk−i(a|s). Also note that we recover the standard clipping mechanism used in PPO when
samples are generated by the current policy πk.
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Impact of learning rate on clipping mechanism Due to the heuristic nature of the clipping mech-
anism, it can only approximately bound the penalty term in the corresponding policy improvement
lower bound if the learning rate used for policy updates is sufficiently small. To see why this is
true, note that the clipping mechanism has no impact at the beginning of each policy update since
each probability ratio begins at the center of the clipping range [5]. If the learning rate is too large,
the initial gradient steps of the policy update can result in probability ratios that are far outside the
clipping range. In addition, the sensitivity of the probability ratio to gradient updates can change as
training progresses, which suggests that the learning rate may need to change over time in order for
the clipping mechanism to approximately enforce a total variation distance trust region throughout
the course of training.

In order to address these issues, we propose a simple adaptive learning rate method that is directly
connected to our goal of controlling a total variation distance penalty term via the clipping mechanism.
Using Lemma 3, we can approximate the expected total variation distance of interest using a sample-
based estimate. We reduce the learning rate if the estimated total variation distance exceeds our goal
of ϵ/2, and we increase the learning rate if the estimated total variation distance is significantly lower
than ϵ/2. This approach more closely connects the implementation of PPO to the policy improvement
lower bound on which the algorithm is based. In addition, the adaptive learning rate prevents large
policy updates that can lead to instability, while also increasing the speed of learning when policy
updates are too small. We formally describe this method in Algorithm 1.

6 Algorithm

The surrogate objective from the generalized policy improvement lower bound in Theorem 1, coupled
with the generalized clipping mechanism in Definition 1 that controls the penalty term in Theorem 1,
motivate the following generalized PPO objective that directly considers the use of off-policy data:

LGePPO
k (π) = E

i∼ν

[
E

(s,a)∼dπk−i

[
min

(
π(a | s)

πk−i(a | s)
Aπk(s, a),

clip

(
π(a | s)

πk−i(a | s)
,

πk(a | s)
πk−i(a | s)

− ϵ,
πk(a | s)
πk−i(a | s)

+ ϵ

)
Aπk(s, a)

)]]
. (10)

Our algorithm, which we call Generalized Proximal Policy Optimization with Sample Reuse (GePPO),
approximates this objective using samples collected from each of the last M policies and approxi-
mately optimizes it using minibatch stochastic gradient ascent. In addition, we update the learning
rate at every iteration using the adaptive method described in the previous section. GePPO, which we
detail in Algorithm 1, represents a principled approach to improving the sample efficiency of PPO
while retaining its approximate policy improvement guarantees.

7 Sample efficiency analysis

Generalized clipping parameter In order to compare GePPO to PPO, we first must determine
the appropriate choice of clipping parameter ϵGePPO that results in the same worst-case expected
performance loss at every update:
Lemma 4. Consider PPO with clipping parameter ϵPPO and GePPO with clipping parameter ϵGePPO.
If

ϵGePPO =
ϵPPO

Ei∼ν [ i+ 1 ]
, (11)

then the worst-case expected performance loss at every update is the same under both algorithms.

Proof. See the Appendix.

Lemma 4 shows that we must make smaller policy updates compared to PPO in terms of total
variation distance, which is a result of utilizing samples from prior policies. However, these additional
samples stabilize policy updates by increasing the batch size used to approximate the true objective,
which allows us to make policy updates more frequently. Ultimately, this trade-off results in faster
and more stable learning, as we detail next.
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Algorithm 1: Generalized Proximal Policy Optimization with Sample Reuse (GePPO)
Input: initial policy π0; number of prior policies M ; policy weights ν; clipping parameter ϵ;

batch size n; initial learning rate η; adaptive factor α ≥ 0; minimum threshold factor
0 ≤ β ≤ 1.

for k = 0, 1, 2, . . . do
Collect n samples with πk.

Update policy:

Use n samples from each of πk−i, i = 0, . . . ,M − 1, to approximate LGePPO
k (π).

Approximately maximize the empirical objective using minibatch stochastic gradient ascent.

Update learning rate:

Calculate sample-based estimate T̂V of expected total variation distance in Lemma 3.

if T̂V > ϵ/2 then η = η · 1/(1+α) ;

else if T̂V < βϵ/2 then η = η · (1 + α).

end

Balancing stability and sample efficiency For concreteness, in this section we restrict our attention
to uniform policy weights over the last M policies, i.e., νi = 1/M for i = 0, . . . ,M − 1. We provide
additional details in the Appendix on how these policy weights can be optimized to further improve
upon the results shown for the uniform case.

Assume we require N = Bn samples for the empirical objective to be a sufficiently accurate estimate
of the true objective, where n is the smallest possible batch size we can collect and B is some
positive integer. In this setting, PPO makes one policy update per N samples collected, while GePPO
leverages data from prior policies to make B updates per N samples collected as long as M ≥ B.
First, we see that GePPO can increase the change in total variation distance of the policy throughout
training compared to PPO without sacrificing stability in terms of sample size:
Theorem 2. Set M = B and consider uniform policy weights. Then, GePPO increases the change in
total variation distance of the policy throughout training by a factor of 2B/(B+1) compared to PPO,
while using the same number of samples for each policy update as PPO.

Proof. See the Appendix.

Alternatively, we see that GePPO can increase the sample size used to approximate each policy update
compared to PPO, while maintaining the same change in total variation distance throughout training:
Theorem 3. Set M = 2B − 1 and consider uniform policy weights. Then, GePPO increases the
sample size used for each policy update by a factor of (2B−1)/B compared to PPO, while maintaining
the same change in total variation distance of the policy throughout training as PPO.

Proof. See the Appendix.

By combining the results in Theorem 2 and Theorem 3, we see that GePPO with uniform policy
weights improves the trade-off between stability and sample efficiency in PPO for any choice of
B ≤ M ≤ 2B − 1. Also note that the benefit of GePPO increases with B, where a larger value of B
indicates a more complex problem that requires additional samples to estimate the true objective at
every policy update. This is precisely the scenario where the trade-off between stability and sample
efficiency becomes critical.

8 Experiments

In addition to the theoretical support for our algorithm in the previous section, we aim to investigate
the stability and sample efficiency of GePPO experimentally through simulations on several MuJoCo
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Table 1: Performance comparison across MuJoCo tasks.

Average Performance
Over 1M Steps Final Performance

Steps (M) to Final
PPO Performance

Environment PPO GePPO %∗ PPO GePPO %∗ PPO GePPO

Swimmer-v3 98 161 65% 136 195 44% 1.00 0.23
Hopper-v3 2,362 2,544 8% 3,126 3,450 10% 1.00 0.41
HalfCheetah-v3 1,764 2,439 38% 3,223 3,903 21% 1.00 0.54
Walker2d-v3 1,817 2,199 21% 3,041 3,502 15% 1.00 0.63
Ant-v3 545 762 40% 1,227 1,576 28% 1.00 0.79
Humanoid-v3 584 665 14% 972 1,345 38% 1.00 0.85

∗ Represents percent improvement of GePPO compared to PPO.

Figure 1: Performance throughout training across MuJoCo tasks. Shading denotes half of one
standard error. Horizontal dotted lines represent the final performance of PPO, and vertical dotted
lines represent the time at which GePPO achieves the same performance.

environments [21] in OpenAI Gym [3]. In particular, we consider six continuous control locomotion
tasks which vary in dimensionality: Swimmer-v3, Hopper-v3, HalfCheetah-v3, Walker2d-v3, Ant-v3,
and Humanoid-v3. We compare the performance of our algorithm to PPO, which is the default
on-policy policy optimization algorithm. We do not consider a comparison with popular off-policy
algorithms since they lack approximate policy improvement guarantees, and as a result the risk
associated with each policy update is not comparable.

We consider the default implementation choices used by Henderson et al. [12] for PPO. In particular,
we represent the policy π as a multivariate Gaussian distribution, where the mean action for a
given state is parameterized by a neural network with two hidden layers of 64 units each and tanh
activations. The state-independent standard deviation is parameterized separately. The default value
for the clipping parameter is ϵPPO = 0.2, and the default batch size is N = 2,048. Sample trajectories
for the tasks we consider can contain up to one thousand steps, so we represent the default batch size
as n = 1,024 and B = 2 using the notation from the previous section.

For GePPO, we select M and the corresponding policy weights ν to maximize the effective batch
size used for policy updates while maintaining the same change in total variation distance throughout
training as PPO. The clipping parameter ϵGePPO is chosen according to Lemma 4, which in our
experiments results in ϵGePPO = 0.1. We estimate Aπk(s, a) with an off-policy variant of Generalized
Advantage Estimation [18] that uses the V-trace value function estimator [6]. We run each experiment
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Figure 2: Evaluation on Walker2d-v3 with different policy networks. Hidden layer sizes in paren-
theses. Shading denotes half of one standard error. Top: Performance throughout training. Bottom:
Change in average total variation distance per policy update. Horizontal dotted lines represent target
total variation distances for PPO and GePPO, respectively.

for a total of one million steps over five random seeds. See the Appendix for additional implementation
details, including the values of all hyperparameters.1

As shown in Table 1 and Figure 1, GePPO results in fast and reliable learning. We see that GePPO
leads to improved final performance across all environments. In addition to final performance, we
assess the sample efficiency of our algorithm by considering the average performance over the course
of training as well as the number of samples required for GePPO to match the final performance of
PPO. Despite the fact that the default implementation of PPO achieves stable learning with a small
batch size (B = 2), our results still demonstrate the sample efficiency benefits of GePPO. Compared
to PPO, GePPO improves the average performance over training by between 8% and 65%. Moreover,
GePPO requires between 15% and 77% fewer samples to reach the final performance level of PPO.

In addition to improving sample efficiency, GePPO also ensures that the total variation distance
between consecutive policies remains close to the target determined by the clipping parameter through
the use of an adaptive learning rate. This is not the case in PPO, where we observe that the change in
total variation distance per policy update increases throughout training. As shown on the left-hand
side of Figure 2, the change in total variation distance for PPO under default settings is almost 40%
higher than desired after one million steps on Walker2d-v3. We demonstrate that this can lead to
instability in the training process by considering a standard wide policy network with two hidden
layers of 400 and 300 units, respectively. We see on the right-hand side of Figure 2 that this minor
implementation change exacerbates the trend observed in PPO under the default settings, resulting
in unstable learning where performance declines over time due to excessively large policy updates.
GePPO, on the other hand, successfully controls this source of instability through its adaptive learning
rate, resulting in stable policy improvement that is robust to implementation choices.

9 Conclusion

We have presented a principled approach to incorporating off-policy samples into PPO that is theo-
retically supported by a novel off-policy policy improvement lower bound. Our algorithm, GePPO,
improves the sample efficiency of PPO, and can be viewed as a more reliable approach to sample reuse
than standard off-policy algorithms that are not based on approximate policy improvement guarantees.
This represents an important step towards developing stable, sample efficient reinforcement learning
methods that can be applied in high-stakes real-world decision making.

1Code available at https://github.com/jqueeney/geppo.
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Despite this progress, there remain limitations that must be addressed in order for reinforcement
learning to achieve widespread real-world adoption. Because our algorithm is based on PPO, policy
improvement guarantees are only approximately achieved due to the use of the clipping mechanism
heuristic. In addition, the constant factor in the penalty term on which our algorithm is based may be
too large to deliver practical guarantees. Finally, we considered PPO as our starting point due to its
theoretical support and stable performance, but there may exist other approaches that more effectively
balance the goals of stability and sample efficiency. These represent interesting avenues for future
work in order to develop reinforcement learning methods that can be trusted to improve real-world
decision making.
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